请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现, ?! Q: U: U3 H: _% E) ]. ?2 U3 C) K
globals
7 q) @" y9 @) N! r[* E# f* \; ^. @0 h* x, Y1 T
max-grain ! B7 V7 ]% K$ g# Q! i S
6 Z9 f: N* Q5 P3 t+ k/ R" E6 e0 g
]
! B r5 Q; J: Z0 |
3 P z1 H) |( R# Lpatches-own
$ w D& n% J O. \[
, Q+ j/ ]! h: @0 M0 [ n: _+ u% p grain-here
8 a9 J" Z! ~, T- ~$ t- ~, |2 N max-grain-here
% C" j1 t2 E4 i6 Y]: z( w( R* W) _4 s2 r* s
! H; f: I% @: t3 u5 ~" r+ Tturtles-own
; v g5 m5 i4 R8 B2 {[9 z# t9 ?- B2 ]+ s/ {1 M4 h
age
$ b! E0 B' O: j0 X! \) u wealth
1 S* R& g1 h8 O/ m4 M6 z/ @ life-expectancy ) g/ ]/ l! |( J
metabolism , Y7 E/ G4 H7 a6 X4 c
vision1 l) H3 ]- s/ h1 S- D0 J
inherited
1 e! ^: d% z/ x& o9 W1 p6 m]7 i4 n% `5 e) W2 k/ B6 F% b4 W4 p
l4 N0 {' q9 _- o3 t) C- z( B0 {! {2 _# v1 N) g
to setup$ D/ e a4 ?, n [1 l. i4 c
ca
! A4 {) _4 x3 l- J/ k set max-grain 50* `" y* ~! @2 ?7 a) m: i" m3 E
setup-patches: C) a* w H$ f6 J
setup-turtles2 s& ~) A, h" V$ i# m: u) ^3 T8 [
setup-plots
+ {) f4 `$ K o G3 K& _ update-plots: m" `( O# Q1 S1 h1 s2 c
end
/ P) g5 ?/ I) Ato setup-patches
3 w7 ~) d' H% P ask patches
5 P- k# y2 T, p3 E9 `1 T: ~$ ~2 | [ set max-grain-here 0& g6 I" b/ m0 s
if (random-float 100.0) <= percent-best-land+ \9 w4 W# v! f$ o; F* v+ d
[ set max-grain-here max-grain
' s0 e3 q' C. ~7 q: G set grain-here max-grain-here ] ]4 d: R* i( Y6 D+ ? Y1 p% |5 q
repeat 5- r' f1 O' m: o& z3 O2 ^: w5 Y F
[ ask patches with [max-grain-here != 0]
& ]- N9 a! O. s+ P& w- M# h F$ G [ set grain-here max-grain-here ]% }8 ]' C" v/ m( M
diffuse grain-here 0.5 ]- v% v4 g. T: y4 J& D5 U
repeat 10
- f% U3 S' Q( h* E [ diffuse grain-here 0.5] 7 i) Y+ j9 c9 v& S+ a4 W! Q7 L6 c
ask patches5 |/ J& Y0 a- V; R1 E v8 ~+ t
[ set grain-here floor grain-here 8 c3 }1 ?2 v! t |8 b6 ?+ h( ~. E
set max-grain-here grain-here
l+ v8 P { S* U1 p0 ^9 e* p4 i3 B& D recolor-patch ]
9 k- h6 j% K8 b3 g* rend' Z9 z1 M0 R' |. k# f+ n# B+ y! n T. j
to recolor-patch
- r1 J& T0 r3 @( o# j+ u9 T6 y set pcolor scale-color sky grain-here 0 max-grain6 z/ n) _. c' ^4 N/ P! M
end
* `7 }4 g- M1 @5 u% h. F# L/ x3 Wto setup-turtles& q- e% s* t F% c
set-default-shape turtles "person"
2 P0 Y/ f" i+ j7 V crt num-people
) m+ M0 e2 i" K! u' p' h' o) x3 u2 s [ move-to one-of patches
) W; S: R$ D, {4 ]7 N$ a3 C2 P set size 1.5
' W& e. y! O% X6 D0 |& x set-initial-turtle-vars-age
3 w6 d& H# J! P; I: x3 i/ ] set-initial-turtle-vars-wealth8 j0 T& k, H% `1 J/ W# y, [
set age random life-expectancy ]
3 }6 U4 H6 Y8 _% H' e' w" { recolor-turtles
- F; }7 t }$ M. lend
% n7 T% v& Z- _; ~) g- s' Z, e4 r! u# ?: h- E
to set-initial-turtle-vars-age' B! i) q8 y$ {+ \$ L# f! W
let max-wealth max [wealth] of turtles
& J6 I+ V) `( `, t. _, H& T
# B* J# X( H0 d$ q0 a ifelse (wealth <= max-wealth / 3)
/ u E9 s9 g" \ [ set color red
3 g% a6 f2 m) [; Y2 f: C5 [ Q' _0 j set age 04 Q& j/ Y5 Y6 \. B* H
face one-of neighbors4
& O% g. E& x" }7 |* t2 ^- r set life-expectancy life-expectancy-min +
6 G6 D, a I ^0 o" \0 f random life-expectancy-max
7 |. a# F; ^6 L( K7 w: V4 T set metabolism random 1 + metabolism-low
8 y9 y) F3 y& B2 d- z0 ]4 o set wealth metabolism + random 30
- c$ w) O" x" Z4 F t2 Y7 s) ]; g set vision 1 + random max-vision7 G( C! U \# R& U/ }5 Y1 q/ y5 K
set wealth wealth + Wealth-inherited-low ]
3 ?1 R( x }+ J" c: R4 D1 Y [ ifelse (wealth <= (max-wealth * 2 / 3))2 J# C; G- x2 `7 U: c( E+ v
[ set color yellow ; ]; F* P+ V( i% \ a% O" t; `
set age 0" a4 F3 S5 P9 }; t, i
face one-of neighbors4 8 l" h3 t7 o) F" _
set life-expectancy life-expectancy-min +: P! B" M5 y6 R+ m. c! `
random life-expectancy-max + 1
; i0 x0 Q5 T8 }8 A' C+ [ set metabolism 1 + random metabolism-mid* l* G- L- y# {
set wealth metabolism + random 30
( Y9 Q4 h' O( `2 z set vision 3 + random max-vision; b' z% u/ ~" A: q( @: V
set wealth wealth + Wealth-inherited-mid]
/ {0 w; _0 Z1 E [ set color green
_. F* I( G0 V$ Z2 Y' R set age 0
- |- u3 Q7 U* B+ x, {' |0 ` T% d! V5 o face one-of neighbors4 7 t9 V [% ^' [5 T, N$ ?# b2 ]' Q
set life-expectancy life-expectancy-min +
# ^2 \8 J* k9 {6 M random life-expectancy-max + 20 j3 Q; Y0 Z! T$ N- J
set metabolism 2 + random metabolism-up0 v4 n2 O! \2 D9 |
set wealth metabolism + random 30
3 {( C& L3 p$ D4 B7 O set vision 3 + random max-vision( R, q i! ~* J" V3 f3 I0 t2 {
set wealth wealth + Wealth-inherited-up ] ]
! ^& x, y' v# F5 z; A 8 c, j8 p1 `6 |
end w7 m& X. d3 q: o5 q
to set-initial-turtle-vars-wealth/ w4 Y! m0 W/ H& M3 x0 d
let max-wealth max [wealth] of turtles
9 G% f$ _( H! ?, U9 ^ set age 0
* s/ {+ U% L3 o1 Z9 O! i! s face one-of neighbors4
$ f% R' a1 D- g5 b set life-expectancy life-expectancy-min +# q$ f* ]& R5 ]8 L2 f0 [
random life-expectancy-max
9 c; P5 L" Y2 ^/ e, z2 ` set metabolism 1 + random metabolism-up
1 g3 | a' f& ?, c5 P* P- p set wealth metabolism + random 308 C' f* W8 K9 |" ^ |5 _
set vision 1 + random max-vision 9 b: k) R( l% m
end
( _! ]0 H6 d2 c7 _to redistribution" `6 [. _# r' S
let max-wealth max [wealth] of turtles8 b s# t6 l# z% H: u' g* t; U
let min-wealth min [wealth] of turtles
- H6 t; z0 A$ Y" u3 U; G+ hif (wealth <= max-wealth / 3)( Z: T% r6 C+ g$ s
[set wealth wealth + Low-income-protection ]1 I7 }4 e) m [6 c) _8 o
end! P0 \! z [% ?. P+ P
' ?- @+ U; p; f% u. s( ?5 j
to recolor-turtles
3 R+ ]# Y: i) A4 I let max-wealth max [wealth] of turtles
6 O" }9 P7 s# @5 Z' H ask turtles
% d3 ~1 t+ h3 A$ n1 h+ U5 X [ ifelse (wealth <= max-wealth / 3)
' Y6 T" I+ I/ i& l [ set color red ]
' n, {5 ]3 \% y5 D1 S: Q! ], _ [ ifelse (wealth <= (max-wealth * 2 / 3))
$ c. ?6 G# K+ W [ set color yellow ]$ T( J; E4 W5 E1 `
[ set color green ] ] ]2 b8 F O/ V! z$ W1 B
ask turtles [ifelse show-wealth?
0 Q' D& C3 ]. c! G, _ [ set label wealth ]
) x% k R' |; i7 ~: e( g$ X1 a [ set label "" ]]
1 `! K' r9 @7 y% T" Fend
. _* j2 @/ a# N! Q5 @7 u1 T$ i' B1 ]3 n7 c
to go
- [/ [2 C% j( ?, s& F5 J ask turtles# G) }* \) Z% y: m, e- R/ G. n
[ turn-towards-grain ]
4 n8 F2 L& `- n l0 Q harvest
+ Y* _3 Q( N- v3 }) s$ ]/ Q: Y+ @ ask turtles
4 l9 x, c: b8 X [ move-eat-age-die ]4 L, ?3 B! L0 b$ x+ ?7 ^
recolor-turtles
4 K( N% M. L ~5 B/ F k3 M6 D if ticks mod grain-growth-interval = 0( R, T& t0 k) w" h( q. D Y, Q V* z
[ ask patches [ grow-grain ] ]; O6 c, J& i* D" n8 |$ b! r
3 [$ z$ }+ a: G% L' q( }
if ticks mod 11 = 0. L- E( ?% C+ s D o! x4 K
[ask turtles( n% C& B: u4 `5 j8 N& \8 P
[ redistribution ]]
5 R& T9 f' f# }+ u- \+ | if ticks mod 5 = 0* ]' B% D' C; e- p7 @7 i2 ]1 [
[ask turtles8 i" c; z& J' p: o3 `0 V$ A2 u- i
[ visions ]]% _$ N+ m/ r" j% t; ]" u9 V
tick1 A1 Q2 O, ?; K* S6 A
update-plots
5 G X- z8 a# ^; Z% O% b) N8 jend
* I( g$ H3 G }$ k! Ito visions. s7 C+ {$ \+ x# B
set vision vision + 1 2 T" D4 s) h" _: l
end5 j4 ?- i9 G& X- }
4 K0 @2 b2 b0 K6 N. ~
7 R3 U2 a/ K9 q2 r$ _! V! c% h' D- u' h& t* M
to turn-towards-grain
, t4 R2 V3 F: w1 J9 ~ set heading 0- M0 f' X( s% B
let best-direction 0
# l8 Y( o9 ~: [ let best-amount grain-ahead
$ x! c$ ^# \; o set heading 90
/ x6 N5 O- M* G% n9 a. Q' c6 ? if (grain-ahead > best-amount)
% f( Q# k5 H( I [ set best-direction 908 o! S' T+ b* V7 s3 l) P l
set best-amount grain-ahead ]& a R0 \9 A0 f, ^1 h
set heading 1800 B; C$ X( f" \+ @
if (grain-ahead > best-amount)
- e! o4 J: F, c: S [ set best-direction 1801 E! U# F& R, Y: ^
set best-amount grain-ahead ]2 `/ C* |; _1 q) l) d
set heading 270% y' O' G: B- p. x- U
if (grain-ahead > best-amount)
4 `0 ?) s' t% n/ P [ set best-direction 270 _6 x# {5 A* e* @- {4 E
set best-amount grain-ahead ]+ N" i3 o1 f1 ^' k
set heading best-direction8 D5 E( F' F) \2 ?" r9 ~
end9 ^1 X! w1 M+ }! M! F9 e% i
4 o! Q4 c4 F* u/ K. y2 G/ N
+ ]' k4 a2 Z5 t! z; \/ Oto-report grain-ahead
- s) V5 b2 \7 X) X let total 01 X) O7 D7 N4 r) A/ u0 p/ Q% E
let how-far 1
; I' M8 c& y3 d6 T0 l0 K6 v repeat vision
8 N# `+ W9 J8 B [ set total total + [grain-here] of patch-ahead how-far! A$ y: a" y- ?! ^; j% c
set how-far how-far + 1 ]
" H9 V9 _" A( E0 k report total8 [* s8 X( X% r% V( g
end' ^) ~* ~5 E7 U" z7 I
2 ^" e; X+ t0 j
to grow-grain
# l' K- ~* m- D" U3 z# N if (grain-here < max-grain-here)
: A0 ~. B. J. s( V- C3 b) ~ [ set grain-here grain-here + num-grain-grown
, M( W) s$ q2 M" g if (grain-here > max-grain-here) * Z `( r8 ?# f! }
[ set grain-here max-grain-here ]
2 E* o% D( `, V1 C recolor-patch ]
& b3 \. a A3 o1 q; ] }, f: uend
4 {) D& o6 E' z% P) Bto harvest8 t) C; f D3 e4 {3 V3 x
ask turtles: m! a/ A. G" h1 W
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
8 ?2 d# I/ @, o6 [7 B% I ask turtles
( m0 b( Z+ z8 o, g0 F* U8 R [ set grain-here 0
: `5 [ @5 @# D. K0 b recolor-patch ]
* D! M% X+ Y; K4 }
9 |' q2 n8 u5 n1 ^/ Dend
\$ o* ?- X3 K4 \7 Y4 |% M
1 A- T9 m! a, \to move-eat-age-die " n0 o& y4 y" }: Z. ^: W1 u1 A
fd 1
) R7 L1 o X8 f0 n set wealth (wealth - metabolism)
}4 c3 H+ T0 U: J+ D9 W5 [. l set age (age + 1)3 R; C' Z) V* F9 E0 f2 A! k# }2 \
if (age >= life-expectancy); T3 y9 M& i, y* `% ]) M1 y4 X% H
[ set-initial-turtle-vars-age ]* v+ e# u, d! J1 ]% n) _
if (wealth < 0)# ^6 C% x; h" n2 t& x; C
[ set-initial-turtle-vars-wealth ]
, f4 @0 a$ y+ b' _. i
3 I( V& z0 ~$ q8 u- w% Jend) D5 ?% D% F1 _: y3 e5 y
6 i+ A! A( M/ o% @
3 T% N4 W3 S3 a6 y7 X/ I; Oto setup-plots
$ J! V) q* Z7 h/ j set-current-plot "Class Plot"
& k( l4 \; ?9 q8 F1 a4 O set-plot-y-range 0 num-people
3 k6 t4 d/ N# a set-current-plot "Class Histogram"
/ k5 p: _% ^9 g1 a+ Q set-plot-y-range 0 num-people* Q# ]$ w. R' n, \" A
end: B$ M! w4 }- ?0 h3 i# X1 W
% @; r; U4 N! k3 T
to update-plots. G' n: G$ s [% c
update-class-plot+ w1 J" u: v4 p: r. x; {
update-class-histogram3 p7 o% G& M4 h( B0 ~0 x+ F
update-lorenz-and-gini-plots
, x0 J& Z4 D+ o. e; Y9 j' Uend& L% b$ N5 J# ? N- c, W, i
* ?) q9 u$ x7 v' F }$ mto update-class-plot7 M! X% R8 d; ~& N0 \
set-current-plot "Class Plot"
9 Q: i; `2 F0 ]7 e8 S set-current-plot-pen "low") g! \* \1 c( h; |; T0 U
plot count turtles with [color = red]
3 O# Z. m6 f# z set-current-plot-pen "mid"7 q8 E1 R3 B- R/ T; Z4 X
plot count turtles with [color = yellow]
: x9 z( z. x% p set-current-plot-pen "up"
! f% o7 X7 P6 y& o/ \( k; p s plot count turtles with [color = green]# Y8 n, [. n) W& N& R
end9 g( l% ]/ V$ @' E5 y6 ^: M
, O( U# I0 Z/ K' M. t! b) H( p/ eto update-class-histogram" g$ ^# T3 V1 v5 x2 ^% t j' b$ {
set-current-plot "Class Histogram"7 {1 R4 d. y! v1 t
plot-pen-reset
: {/ }: m& T0 Y( B set-plot-pen-color red+ Q/ {% ^1 }2 A/ `) P1 m
plot count turtles with [color = red]+ {4 `( a# u/ n2 u
set-plot-pen-color yellow
. m- v2 W) p+ t2 J. |3 H9 t. e0 U plot count turtles with [color = yellow]3 R7 B4 l/ g' y0 M# H+ ]: D1 _
set-plot-pen-color green
8 z/ {1 ?- W: w+ D2 ?8 t6 H plot count turtles with [color = green]4 L4 B$ n$ L! q* Q ~7 q5 P U
end
/ @% l# G2 ?8 Z7 d5 Nto update-lorenz-and-gini-plots% p" D5 o' r$ C l4 ?$ u
set-current-plot "Lorenz Curve"* Y0 u1 O$ U" l& x
clear-plot5 ~7 }0 V, h5 h/ m9 g
, W- d1 p; J$ e: Z
set-current-plot-pen "equal"
! ]8 Z% p" q/ ]% Y) K7 z plot 0
7 r6 x% @, { e# r7 t8 g) R: v- K plot 100( n6 R. C' r8 F# P) \! Q5 u
3 M8 W U4 ]7 m0 Y+ ?& t5 ~ q
set-current-plot-pen "lorenz"
- @, u) K$ g* h& W7 m) C set-plot-pen-interval 100 / num-people' Z2 Y1 h, r2 H+ A3 y6 b3 Q
plot 0# Y( Z8 J( `2 F
& p3 ?! A* \( B5 | let sorted-wealths sort [wealth] of turtles
! V* H4 t- S1 \# C let total-wealth sum sorted-wealths
- {* [$ W8 m* ?! E. B* J. k, r, n let wealth-sum-so-far 0
) Q" J4 s5 V1 j+ Y' { let index 0
1 v# m( L) f9 l' [, T! F3 g let gini-index-reserve 0
6 y, j- i Q. i0 Z1 I% l5 |
L6 v) J: z2 G repeat num-people [
B0 G! G; X* @: _& ?' ~ set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)) N+ w% R8 c6 f$ \
plot (wealth-sum-so-far / total-wealth) * 1000 I5 j; \. U; {0 a# ?# _% S
set index (index + 1)
" A4 ~7 a- W# b" E4 b' |. [1 P, _ set gini-index-reserve
- h3 r2 |, {! z, p! Y gini-index-reserve +
& u" Q, O& T' Z0 l- L# ]9 J8 q4 V (index / num-people) -- G, T' \) x5 o7 p
(wealth-sum-so-far / total-wealth)- @6 e: L6 O& j* y
]5 C' O8 w3 ^, `2 }+ S
, g& O' }& k- {- L set-current-plot "Gini-Index v. Time"
4 V8 @4 z% U# O& b9 f5 j plot (gini-index-reserve / num-people) / area-of-equality-triangle/ }0 ^; `' }9 t8 x, p
end& t0 t6 L4 M. v7 Q8 `' A
to-report area-of-equality-triangle4 c5 d' ]' W" Q) F `5 |
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! U$ U9 ~) x V: T
end |