请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
% q9 ~8 ~5 u$ |1 jglobals
K C% l8 u$ _* I- N3 y[" a) C+ j4 F l
max-grain
1 }( f% n0 E/ h! K+ ~1 n8 p. R. @* T# Q3 ~- I# b% w
]& u9 H6 u- W. |6 ?
7 X- ]7 l/ V/ M" E, ~patches-own9 J1 {8 l- P5 o" \
[
. T4 w* h r$ V0 t: n grain-here
, m5 b5 k; B' L1 e( d' u max-grain-here 8 O, P# j! v: S) f$ c
]! n l5 r9 [& Q$ A3 K, a
3 [" n9 U) y6 z# ]+ r3 T% O
turtles-own
+ } P8 W% X9 ^: l1 m% \0 C[! b3 m6 S% s1 O- E
age
- r* a; L; D( u: J3 @1 a/ e: g6 I wealth " a2 j5 R; P4 S% { O+ s8 F. I3 i2 e
life-expectancy
0 x" [8 }5 \* T metabolism ' o1 K0 M8 L7 W3 e) x, d% I0 N
vision# H5 u6 M) k, _4 c
inherited
4 t0 F) U ~& m/ v/ W6 T]3 b1 a1 R" Z& M. M8 G- x
: x: g; W) x" g# j- K8 h
* ]( G- `6 k; @# H& [8 Y8 t$ ato setup1 ~& j' X, }; j+ @6 v1 `
ca' Z5 x. @% P. m: X
set max-grain 50
# T K' D/ a' e& ^# P setup-patches
3 k) ^* a% X7 I) ?+ d+ g1 v setup-turtles
. J# [. R& O0 @$ I setup-plots
* V2 z; ~2 q( w update-plots
$ c* y+ i8 h+ o4 s1 x* J3 {$ L0 aend
+ m, g4 z% ~, k1 Fto setup-patches/ G, G# \- A: {0 u" r; a
ask patches
* F( V( _- b4 n r% p [ set max-grain-here 06 S# a5 t; {" U3 J, b
if (random-float 100.0) <= percent-best-land% r% ~8 N' h& G7 `! u3 j
[ set max-grain-here max-grain
B- a/ r7 ^& y. I& O$ A" e) A set grain-here max-grain-here ] ]3 o& X. t8 ~" z! ]2 u
repeat 51 D- m# a1 b& R! V0 P7 T. e4 u- I
[ ask patches with [max-grain-here != 0]+ `# F% Q# S4 J3 Q6 h; h+ ~1 J
[ set grain-here max-grain-here ]$ k; ~, k6 V7 m- c1 Z
diffuse grain-here 0.5 ]
. B, `) |% z% r! N/ }) _0 C) N repeat 10: M6 w3 @. _8 ]; G% w# ?1 y. }
[ diffuse grain-here 0.5] $ c' W ]; ]. T* S9 Y/ G
ask patches
: Y% E2 R& H8 F# N [ set grain-here floor grain-here
0 Q& V1 |+ U* y1 w+ b/ |' j set max-grain-here grain-here 6 f4 a# P: O; G" Y
recolor-patch ]2 f6 X6 c# u' q
end
6 n$ ?. Q8 B# p+ T2 v5 k% D6 jto recolor-patch
% w2 z: N7 Q) x# q set pcolor scale-color sky grain-here 0 max-grain
. N, m. v) Q1 f3 h- fend7 Q9 J( A* E, b6 `" \% J) ]
to setup-turtles
) K" R: j* B1 x i. ~5 D set-default-shape turtles "person"
/ ^/ L! i& [* u0 w crt num-people
2 s" ~% d! {# K# @' S+ O2 B& e2 u [ move-to one-of patches
! t2 I5 Q& c% I* \) S- K ?5 x set size 1.5
$ T) x7 m3 N% T$ U set-initial-turtle-vars-age
& F+ d, R) ~( Y; e7 o set-initial-turtle-vars-wealth* O% J5 Y# b) U
set age random life-expectancy ]
5 f# @* u) Z$ Z recolor-turtles1 d, d8 w' y2 @& _
end
4 @4 u" g2 I: _" y1 N) y, j: N) o% u) Z5 h4 H
to set-initial-turtle-vars-age5 p" b$ t4 @& k/ S% X' H
let max-wealth max [wealth] of turtles
& d9 w: d8 W6 O. @4 R% g W3 Q
0 P2 S) E4 }' S ifelse (wealth <= max-wealth / 3)& X: l6 f0 A7 I* m1 y: O% L/ ^
[ set color red
7 F1 G1 D; }5 T7 j; }5 | set age 0
/ O2 ^ b" w4 \) _" _ face one-of neighbors4
, | S: K* |5 O8 ]9 Q set life-expectancy life-expectancy-min +9 n7 ]( ~- N1 E, s. i
random life-expectancy-max , P2 N) x, y4 F4 }7 ~# \# `
set metabolism random 1 + metabolism-low
' U) z+ f$ S) o1 B2 R8 u2 Q. w set wealth metabolism + random 30
3 a8 `' ^" r) y8 F set vision 1 + random max-vision
4 \1 Z% m$ J# S# }) J set wealth wealth + Wealth-inherited-low ]( e4 w& F& i& H6 ]3 X4 z& z
[ ifelse (wealth <= (max-wealth * 2 / 3))
7 c) X# l$ s, D& E4 E& |0 u/ f [ set color yellow ; K' b3 |6 n* U! W4 F
set age 0- W8 G1 H* U& k# E
face one-of neighbors4 0 Q% S! _- s8 x7 T; U; n3 G
set life-expectancy life-expectancy-min +
2 p. ^0 A! V* u% [& J9 D8 S random life-expectancy-max + 1
% D/ i. U& X5 {# u* D set metabolism 1 + random metabolism-mid
* r1 L& q- T& u set wealth metabolism + random 30; c2 B* g: G/ p1 L/ t- b+ ]
set vision 3 + random max-vision. h$ | |* x+ H* P% ?, r
set wealth wealth + Wealth-inherited-mid]- }/ w' n0 W* m4 K+ ~2 |
[ set color green
3 C2 t# A c1 [+ I# U" U set age 0" c4 V( L5 r! o( V2 X# y8 B$ q7 K
face one-of neighbors4
L3 J& Y/ r: ?1 A+ d6 m7 J ]/ I. @ set life-expectancy life-expectancy-min +
# [% w: a3 m6 v1 f! g9 K. { random life-expectancy-max + 2
2 x, H* u9 \6 i1 s! `6 l+ W set metabolism 2 + random metabolism-up
+ f+ x% ?& A9 a8 |5 K* X4 J set wealth metabolism + random 30
% Z/ m3 `& {$ N6 F* I/ Y: g! o set vision 3 + random max-vision
. d, x; \ S0 r set wealth wealth + Wealth-inherited-up ] ] ) p% v& R- I5 T9 S8 Q1 d
5 H0 Z' @& Z+ x/ v. u, tend( C0 o: e, p7 C; F' {7 U' q: s
to set-initial-turtle-vars-wealth4 @8 y& j* N7 l* @' D5 c
let max-wealth max [wealth] of turtles
# Z# l* h! y a( ^% k1 ~& b set age 0
3 q, ~1 j8 X$ m. p3 G1 o. U* @& ] face one-of neighbors4
& H& g* T6 V8 \, { set life-expectancy life-expectancy-min +; ]+ v+ w! B1 i% H5 k
random life-expectancy-max 1 M* `( {2 u$ N) @6 r( n5 K% r! l! `; h
set metabolism 1 + random metabolism-up
# p$ d2 i$ a; Q5 P1 G set wealth metabolism + random 30
1 f( ^ b; q2 I7 o) x set vision 1 + random max-vision
, A+ p$ r& C7 bend4 e: D* A$ M) R) A' e6 P
to redistribution" p; L( n* x( k. N
let max-wealth max [wealth] of turtles6 M( U* [7 |: {' d) W+ @+ R
let min-wealth min [wealth] of turtles
9 S. x; b" p m1 F+ hif (wealth <= max-wealth / 3)! V5 M/ F# N5 Y" Z5 ?4 W
[set wealth wealth + Low-income-protection ]5 {4 ~2 J4 q2 j8 U' c9 h0 g
end
/ e# t; |* I8 }, e, y9 O
. h s) X; w+ \6 |" eto recolor-turtles8 Z7 \) m9 i3 |
let max-wealth max [wealth] of turtles
4 y$ a( y5 y; }, n4 Y$ q ask turtles! P8 N! L& }/ Y& F6 W
[ ifelse (wealth <= max-wealth / 3)
7 k! \5 w% N! u/ p G& ~! f [ set color red ]- M- b% J4 G+ P
[ ifelse (wealth <= (max-wealth * 2 / 3))
: ? p, _2 Y. V& z1 A [ set color yellow ]
' }0 T9 m# @: ^! \/ V# a2 B0 t- s: A [ set color green ] ] ]! F$ n/ n; D$ q0 c7 J; }
ask turtles [ifelse show-wealth?) H6 f& Z8 h; R- a: R# g; |
[ set label wealth ]
& l9 T. X. ~5 f0 V [ set label "" ]]
1 M: }6 ?8 @, ^' tend' l8 Y/ _. l4 r: X2 Y2 k
N5 ^, j5 V* B1 o3 w
to go7 g9 K& j" i: [" ~, Y. b
ask turtles
$ `: O u* y. b7 U9 s/ Z, O4 x [ turn-towards-grain ] ( y0 E& A4 T# U3 ?
harvest, C: Y b8 v* f. B7 X; c
ask turtles
# b, @5 L4 Q1 `4 ^& c [ move-eat-age-die ]2 }( A5 \4 z( Z2 P- n- s' C+ E
recolor-turtles! i o# w1 R, m G" z9 q/ S0 A
if ticks mod grain-growth-interval = 07 @, }, Y- u6 E- D' f$ U* R
[ ask patches [ grow-grain ] ]
r0 f! M% Z+ h" {% i/ Y0 { 2 f | }$ v. g& d, {9 ~
if ticks mod 11 = 0
3 |8 c& |% z& } [ask turtles
" q- ?$ g' M# s( t [ redistribution ]]% f5 v1 M' B& A' y
if ticks mod 5 = 0
4 @' w/ z- L% S; F1 k7 O3 D& i [ask turtles [" O1 u8 G- b' i6 W2 I1 j
[ visions ]]* C/ L0 O# Z% c) t
tick
! e# A6 ~7 { Q( M. f/ E2 j- V update-plots2 N" F# P- i, h: ?% u3 k. S
end
7 E2 A. p& c4 ?$ H7 Lto visions
; ]' R7 d1 u: Z+ z w set vision vision + 1 5 i* u, X5 T) B2 o; Q2 p' ?" O
end
( u# z! f5 n. i7 |8 s/ h$ E$ S! H6 Y' H5 F
" Z$ n- T7 g# s
) i! b( e' ?5 L& @) l% u3 ato turn-towards-grain
4 W) S! O& |# E% M0 b9 D set heading 0. o5 B* @1 V2 v; ~1 |: e
let best-direction 0
6 M5 k/ h/ T5 E# e5 K let best-amount grain-ahead
- a I9 I7 T! E4 ?! E+ w set heading 90
& y8 V& {. Z$ x% C7 l& n1 ` b8 s if (grain-ahead > best-amount)
& t* J/ Y8 z* o/ L X; e [ set best-direction 90
& M. i' b7 K9 u! v# N# A set best-amount grain-ahead ]* B& g! `3 q7 V: L
set heading 180
% a: G9 z6 n# R6 K; O Y2 k if (grain-ahead > best-amount)# w. L6 ^' n) P
[ set best-direction 180
2 z9 A# F/ C* O3 }* \ set best-amount grain-ahead ]
) D- Y- S' |3 B set heading 270
8 k: _4 p1 {5 A& l9 _ if (grain-ahead > best-amount)
2 |( F' f8 D3 k Q% `" \ [ set best-direction 270" U& J4 }/ s) N8 q2 Y+ r
set best-amount grain-ahead ]# ], o$ t3 t- G* f
set heading best-direction
! I3 F9 N; N) u$ K1 I! ~5 Send9 O) S0 c9 @. @
; r8 Y# l" t$ @: E( H' N
! }. c9 `9 d n5 ?4 sto-report grain-ahead
7 c9 @' q. j: q: `* j let total 0; l, o# ?6 v- {
let how-far 1
% Z+ q5 p; c3 H3 i- P repeat vision- |/ x1 e( j4 p0 e2 N
[ set total total + [grain-here] of patch-ahead how-far
; i" C; C- q. O4 E& | set how-far how-far + 1 ]& W9 @9 N& H3 ]; Z; L' j S
report total
0 D. J4 X+ S* Q8 rend" J, A. [ s0 M) x6 q
/ ]2 E: a4 {* ]; [$ xto grow-grain
- g3 n' W& F. Z/ | if (grain-here < max-grain-here)" _; \1 G' K- D" B
[ set grain-here grain-here + num-grain-grown% e1 J) w& H. b# ]. {& i
if (grain-here > max-grain-here) : S/ L+ c: }% Z/ _( g* ]+ I# G) s
[ set grain-here max-grain-here ]/ W9 ~4 r3 ~7 w* B' R. G& l
recolor-patch ]7 F& Q3 D2 W& ?' B$ c0 H0 V: l2 F9 o$ X
end4 k8 b* k3 z5 L; i5 S
to harvest8 A9 E; N) h. ~* d
ask turtles
; v# } g+ t0 ]- v* Z [ set wealth floor (wealth + (grain-here / (count turtles-here))) ], @( Q# V9 _# a
ask turtles
9 r0 k. k) Z: _( `6 H# ` [ set grain-here 0
: L" p* _3 m* c/ H; V C; F recolor-patch ]. u, W6 S1 Q' m( O# e* Q. a+ ?
3 I+ H3 L2 g3 q+ y) b
end
! y* D3 s, [# t j/ z0 W
- K4 v( H- F' P8 s/ W- }to move-eat-age-die # o1 Z7 F: O4 D! U3 x% S7 H; ~
fd 1
: t! H: ]/ o2 l set wealth (wealth - metabolism)% {1 o1 j) |8 ^$ _% ^$ {( Y) }
set age (age + 1)" R% c8 }* e- j8 T. [
if (age >= life-expectancy)
8 @0 d: A' L, @2 T [ set-initial-turtle-vars-age ]
. g7 e W" ?5 ^6 d/ ~ if (wealth < 0)9 ?% R- }3 A, L: n1 ?, s
[ set-initial-turtle-vars-wealth ]
) ~/ \' X# y3 X9 o$ k& e 5 L. ]/ _6 s/ }0 J* O, o7 v* ?: `
end
I, s* r& U9 v9 I7 l, Q2 b, i, U
0 A j q, _3 J5 c1 `
2 H9 l3 e: M' J, l( yto setup-plots
m6 Y" w7 n0 @0 x$ S7 G/ ?2 g |- ] set-current-plot "Class Plot"6 Y# d0 K9 O: {! l! i2 }& {
set-plot-y-range 0 num-people" G2 j% v b. s8 Y. s5 p2 K1 {# \
set-current-plot "Class Histogram"
7 V S& Y, j; z2 a6 m4 W set-plot-y-range 0 num-people
1 i4 g, D/ c3 y9 Z5 H( \) ~end/ Q3 z) Q/ q9 L
1 X$ T, J8 N( n9 o
to update-plots! Z6 D F+ p; H$ x8 Z
update-class-plot
8 W7 P) Z" P2 l update-class-histogram
/ N( Z" z p' o2 Q$ ~. _6 | update-lorenz-and-gini-plots
R1 F8 B3 @* G- D3 x9 Z7 ~( g9 Xend) g& b1 l0 G* H" g7 S
, k4 S7 p8 [5 Y8 E) @3 y% i f
to update-class-plot7 x& r$ ]: A/ N8 \
set-current-plot "Class Plot"# s1 W7 _: S0 r. ? _
set-current-plot-pen "low"0 p8 \6 {" |% K* ~% I! x3 w
plot count turtles with [color = red]
! L& z6 o8 I8 G0 t' D) q! m! Z set-current-plot-pen "mid"! w% B: K# s4 ^. Q$ D$ P4 Q2 F
plot count turtles with [color = yellow]6 T, O7 r! d$ Y% Q3 y0 o' }
set-current-plot-pen "up"& C8 I: t2 n8 o$ J4 G8 h
plot count turtles with [color = green]
4 S: i( ]# s* O g& O6 L+ Rend
8 L9 ^5 j0 X4 Y# A) G$ N& l2 [- o% |
to update-class-histogram
) J$ n$ V: g. k# [$ ]! e7 h7 h set-current-plot "Class Histogram"! |9 F1 ? q3 W% H* ?3 p2 u
plot-pen-reset1 r6 J" v: u8 R
set-plot-pen-color red
, }& {% [6 f( R$ Z. U plot count turtles with [color = red]
) o7 p6 N7 |: t" e! ^ set-plot-pen-color yellow5 L9 L6 P6 o9 g, _% W$ p
plot count turtles with [color = yellow]
4 ?# H6 V. a# e set-plot-pen-color green
7 f1 g# K V" M plot count turtles with [color = green]
; Z% x; C1 p* dend$ N; j E! X4 g6 F
to update-lorenz-and-gini-plots
' ?% e! @* ~: x/ n' k set-current-plot "Lorenz Curve"/ z @) p+ T/ }& D. b" h
clear-plot
+ J4 F' o, T2 u1 S" X( i$ a' p
) T* W! c; J) v+ { set-current-plot-pen "equal"# P; a9 x: ^; ~* d1 w+ ~
plot 0$ @3 b1 G4 o' `" `8 C
plot 100! c: q% o+ f+ Y7 m1 ]. N
! u9 c. F, R) r3 T# |' O
set-current-plot-pen "lorenz"4 z2 m4 k3 n0 J; v3 x# _/ Y2 U
set-plot-pen-interval 100 / num-people
! h+ R$ k/ m. A9 \0 ?: m" K6 r plot 0
( E2 S- c; Q1 _# U0 e
; g# H+ @" H1 X3 R0 f ? let sorted-wealths sort [wealth] of turtles; T, x! O4 Z9 e; R# D+ V: u
let total-wealth sum sorted-wealths
" A5 b* V- n- M( q+ E6 d let wealth-sum-so-far 04 N9 K0 ]* }0 C/ N1 f5 \6 w+ \
let index 02 u: O% ]3 B3 R
let gini-index-reserve 0
' B, Q* Y) C' h4 s& u
7 v ~+ ^! ]9 A. n9 j repeat num-people [
! x/ v+ Y. x# ?, C set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)+ r. y2 A8 g$ D0 N6 \
plot (wealth-sum-so-far / total-wealth) * 100, S, l# O8 Y! U* {6 N0 n$ G
set index (index + 1)
& u6 n8 y! j& l9 L: ^ set gini-index-reserve
3 c1 F$ {9 O- A. u gini-index-reserve +
( s3 R; r0 ]7 ^) L A/ e+ U, a' m% p) d (index / num-people) -# Q# E# l- o! B4 _& R: ~. |
(wealth-sum-so-far / total-wealth). i6 }: n8 J$ S4 e6 Q* C4 [
]
/ M# p3 D" C) _3 [8 T6 W% ]8 c% B( W3 @
set-current-plot "Gini-Index v. Time"
+ Q# F: T8 b) S# h plot (gini-index-reserve / num-people) / area-of-equality-triangle# c% P( G R1 N" o7 [5 D9 z0 W* m: f
end
W" r, L P) U& `2 I- e' E' O4 y1 Wto-report area-of-equality-triangle% w t$ i: o" X2 Y
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
3 B, d! Y M- v$ [# ?) Vend |