请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现& D/ q6 m# W/ b" g( P" q
globals0 }* O) n1 ~( a, ^1 |5 c
[
! Z! z. [) `7 v+ b1 L max-grain 7 w# C! \8 o9 V7 u
% p! g% Y9 }' L# i
]2 W, I5 z# c$ ?+ @4 q
8 v+ F }3 Q5 Z& O( A0 w
patches-own
' {6 H2 t: _ e: V! \9 Q9 c0 @/ _, k[2 @0 t% V/ r7 X/ t; @1 A8 y
grain-here
) w5 {% _' S$ h0 W1 b0 _5 V max-grain-here
; F$ D2 ~' r7 S$ V" T]6 \$ e4 a# @0 Y' o$ K$ t0 h
8 Y' t: `, U/ T5 L6 I0 ^! t/ ]% Y
turtles-own
% O' `) u* w) l) F* _0 d" p[
. _4 p( A! j. T: M. ^5 {" P$ `% p age
) m; f( Q/ X! h1 V( s' @4 R' [! L% `0 V wealth
4 ? E7 c: e5 ~/ k life-expectancy ; b9 v9 J, U2 A* _
metabolism : I; Q$ J7 _% j
vision( q" b+ M% P2 x) I% C! ?0 z
inherited
: z+ C. K" z6 L" z]& f6 {' b; w. y/ b: W5 E1 c- S
7 e& J! t* A( D6 f5 h& l$ m/ {4 `, \; o& D8 n
to setup
5 ?. l6 Q8 a: m- Y- S# _ ca
2 u7 c. G6 y4 w4 U. t. ]5 A" M1 ^ set max-grain 50
/ M8 q" |' F* H. i4 s) H6 P setup-patches
( O1 f6 Y) o( p( ?, ^ setup-turtles( f, i# s% v: K7 o4 \ f% X
setup-plots# P8 S- `# f) d2 y0 _/ U
update-plots
U) Z, v) l0 O% p+ \ oend
?5 `; _# i8 z* q) F, A6 u; vto setup-patches4 s9 w6 s& K. y5 b% N: ~- y
ask patches
& C$ d$ U Z1 d! @' H [ set max-grain-here 09 S. A0 j7 r) u. |7 L
if (random-float 100.0) <= percent-best-land
8 d5 o) O/ {9 T- J9 M [ set max-grain-here max-grain5 Q9 a1 b) A6 V3 q! a
set grain-here max-grain-here ] ]% H/ k1 N! j2 p0 G# A
repeat 5
5 m) c; y r. O: X+ A2 W [ ask patches with [max-grain-here != 0]
, x# x" j. i$ ^ [ set grain-here max-grain-here ]
7 |5 M. ^. |# n/ e1 M$ _* G diffuse grain-here 0.5 ]4 v2 p' i% G6 J
repeat 10
+ f+ @2 t' w$ H3 _/ t$ X [ diffuse grain-here 0.5] / {# w7 b! Q. c( ]
ask patches% |' m( ? @# N. [3 j
[ set grain-here floor grain-here
7 L& r7 ~0 i$ X; e( N8 d8 V* e set max-grain-here grain-here ' }& x* f5 y8 R8 A% h+ ?& ?
recolor-patch ]9 _" K/ b7 L i6 ?9 B
end
9 ^8 o5 }3 O0 [to recolor-patch
: d' R) q6 O4 A$ Y6 |+ S set pcolor scale-color sky grain-here 0 max-grain: t; _) S/ h' R, U9 b
end
4 Y8 F5 l m/ i m6 B! G( i) E/ e6 A) `to setup-turtles
' U7 y7 w; Z: u2 W; J! V: D" } set-default-shape turtles "person"/ r, V7 s- P1 c4 n; T0 m, G
crt num-people
* _% z4 g9 p0 F8 X [ move-to one-of patches 3 x) d5 D' I1 j( m8 |2 }. E
set size 1.5 " E* [; c8 R; w5 V
set-initial-turtle-vars-age4 u9 ]3 \& d6 L j) f% U A# D
set-initial-turtle-vars-wealth
2 p4 A% ?; N/ ?/ g |; H3 C set age random life-expectancy ]
7 W# |1 Y. \ d* S3 v recolor-turtles$ y) ]- I7 u$ h7 o* g
end
: i, ` i4 \3 I( k H) Z: b! o; s7 ]3 i) Y) O
to set-initial-turtle-vars-age
) a7 b! a! Y: H0 n4 `/ }% E( e let max-wealth max [wealth] of turtles
# o: O. c' v& j) \1 A3 V & s' f& }# u; {" M& ?
ifelse (wealth <= max-wealth / 3)
1 c* ^0 M4 P+ h5 E [ set color red
) i9 r- a0 o# v; ^# P+ o+ K set age 0
0 S s3 v* _, w9 I+ R' W3 t% T1 p face one-of neighbors4
w- c* \( e+ I1 U# S; _. O( }: B set life-expectancy life-expectancy-min +( x* Q( U" {1 g h( k: o* `
random life-expectancy-max 0 t& {- s4 m% s) R# b4 f
set metabolism random 1 + metabolism-low
, i) m: u2 M, @3 a0 y set wealth metabolism + random 30
' I- o5 R, n' g% m( g! I set vision 1 + random max-vision6 q9 L5 H# p g( S% S( K
set wealth wealth + Wealth-inherited-low ]
* I" p4 o! S& t# ^ [ ifelse (wealth <= (max-wealth * 2 / 3)): t' I( a3 Z$ g2 N3 ] R' w( {, |3 p
[ set color yellow ) \& |, D: D: D6 z- { {
set age 0, ^% i5 q' ^ s& x; a) z
face one-of neighbors4 & s: }+ H* h# v) F8 y2 }8 d
set life-expectancy life-expectancy-min +3 k1 q* R2 B0 h; G
random life-expectancy-max + 15 r( r: H1 }* C6 i' k
set metabolism 1 + random metabolism-mid
% D( P2 M0 D& j7 k set wealth metabolism + random 30
' m' {, K1 B Z+ o- ?! ^ set vision 3 + random max-vision
2 G* s! ]$ {* ^ W set wealth wealth + Wealth-inherited-mid]
9 A9 b k2 O9 i$ F9 E [ set color green 6 l+ g: y Y+ B
set age 0
, q7 m" A. w" U8 ~& T( |* X face one-of neighbors4
/ K! L y: D1 { set life-expectancy life-expectancy-min + W2 A K9 |( u4 \/ p6 D
random life-expectancy-max + 2
* U5 W: U9 u1 s set metabolism 2 + random metabolism-up; q9 Z+ j7 [9 s3 Z U4 V! ]) i
set wealth metabolism + random 30
+ C& b% m$ V! C5 N) ]0 L set vision 3 + random max-vision+ t7 J/ V. r! @8 m7 g9 {9 e
set wealth wealth + Wealth-inherited-up ] ] I4 Q' g- {2 d" v
! R, I9 f6 b; k' c
end1 `$ g `" ?# e5 V) q
to set-initial-turtle-vars-wealth
6 ?+ i4 l7 a. @ X% |" E6 q let max-wealth max [wealth] of turtles
/ ?9 ]' G% T4 n5 m, d& K5 _ set age 06 ^8 |5 n. `9 |
face one-of neighbors4
K a( n- O- j% \, c! {; \ set life-expectancy life-expectancy-min +
; j" s. X0 u9 L ] random life-expectancy-max
, k: @7 ?' W) r set metabolism 1 + random metabolism-up3 R9 E0 ?! ^. c6 O' G* P4 P
set wealth metabolism + random 30
6 [8 {& C% m* B set vision 1 + random max-vision N( ~: w/ Q+ y2 _! n- C3 ?8 `
end) ~9 s3 G9 O9 g
to redistribution
+ E: o! l1 `6 k9 L6 e- P7 Zlet max-wealth max [wealth] of turtles
: S. P8 V) s D `. G( `$ }let min-wealth min [wealth] of turtles
9 i5 B9 E' Y# e4 Z2 Xif (wealth <= max-wealth / 3), V" S }5 z; T, x& N% s. O
[set wealth wealth + Low-income-protection ]
" k2 G3 m! _. B; g* F( x0 _end
) G# a5 h# f7 x5 G* u ' @3 F3 K" x; e! \. ~4 t0 |8 t
to recolor-turtles
9 ~6 |) V2 _0 ]* M1 T$ C' z let max-wealth max [wealth] of turtles$ J8 Y/ I7 H9 V6 o
ask turtles1 I0 l/ H6 d s. F7 {' V# d6 A
[ ifelse (wealth <= max-wealth / 3)
" L! ]- S8 }5 T: U* N& ] [ set color red ]) n! L* o. z( M
[ ifelse (wealth <= (max-wealth * 2 / 3))
# F t; | j0 C) Q1 r/ P8 ^ [ set color yellow ]* l4 c' `& r( C; l
[ set color green ] ] ]9 r+ k. y6 S& v1 E
ask turtles [ifelse show-wealth?
% d+ U t5 z1 E* Z3 c, d [ set label wealth ]
: ? d3 ~0 x. m4 z3 ] [ set label "" ]]5 q- M; h0 t5 F- s4 K' r9 g6 c' W6 h, h* V1 _
end
! D, |1 O6 j6 H) M$ t( r" `$ A7 q& j; J, q# F5 W4 L; ^( e
to go
$ c* f* y) e* V0 } R ask turtles. @! k( g* h* G9 E
[ turn-towards-grain ]
' U6 n. m' e( a( x/ @5 \ harvest
! U. _2 B! Q4 h& s& k! p ask turtles: P: y8 C2 K5 g7 M7 S
[ move-eat-age-die ]
! ^! N$ b4 y4 x. c) }" _, b. v recolor-turtles
! I; O/ @: L+ n$ v if ticks mod grain-growth-interval = 0- {$ U2 A; ^1 g) w F, D
[ ask patches [ grow-grain ] ]
, n7 u& g' s9 {$ P$ I3 H 3 N2 j8 [, D3 r7 y8 ]
if ticks mod 11 = 0
" ^4 v0 N* G& a" n4 }1 d, ] [ask turtles. J1 d0 C2 j. r4 Z" I" ~
[ redistribution ]]" V7 w* O: E' Z' \: Y
if ticks mod 5 = 06 x; F$ _ D' a7 ?6 B
[ask turtles* |# a f& ^' ?& L0 P
[ visions ]]9 h7 @1 P) p. j! G: [* t2 ?$ i
tick
0 O" g! b# P- ~2 y3 C update-plots4 T1 t; t3 ` }2 b# g/ x6 N2 A
end2 @* S* S Y- j% T* o( l
to visions: l! U: d. D$ p) f: U
set vision vision + 1 * C! L8 @% Z T$ {2 _
end
- ~7 }4 P; J$ J" y f U8 C# c
% g3 g9 W0 G; g3 @/ t" ?. V; o
9 U M5 L. A& b0 _$ H$ E$ M
1 X$ U/ Q( O0 G1 {! X$ r3 Oto turn-towards-grain
& H H5 J0 _1 g$ d) N% H set heading 0
. P0 t- I) h! u1 U let best-direction 0
/ n& G0 j4 t+ X8 x8 G let best-amount grain-ahead
/ Z# v1 P% e+ n+ {7 Z set heading 909 f- a) b+ i; y! j
if (grain-ahead > best-amount)- `# F1 A6 h+ h1 I
[ set best-direction 90
" f6 G( t8 ~7 j3 }% { W2 k; u set best-amount grain-ahead ]$ V. [) d# F1 R
set heading 180; r F) ? Q1 q5 f# F4 g4 _
if (grain-ahead > best-amount)
. c O3 |8 I0 n3 z [ set best-direction 180
' f* d# h2 _" H: u set best-amount grain-ahead ]/ S, y1 w7 f5 D9 e8 G
set heading 270
0 _- F, O' G$ e2 T if (grain-ahead > best-amount)
, [ W$ Q. n0 w0 ]& f* \ [ set best-direction 270
. W4 q& F# q/ b+ Y set best-amount grain-ahead ]
1 W D* n1 e8 d; j# O6 D4 j set heading best-direction
. y# Q+ s! \+ Nend- F1 [) u$ m" ^; V2 r
) J2 V2 d7 c! b6 G: {( A; q% A8 j% j$ ]* p# I6 ^# a
to-report grain-ahead $ t% k. n/ N$ M8 B
let total 04 \, l# P0 {* n/ Q" c
let how-far 1/ b9 _7 s1 j* O& E6 { C" |2 }
repeat vision
- Q% J2 @" {9 x" j; k( Q- B [ set total total + [grain-here] of patch-ahead how-far
! d, O9 i7 z( a) w* T: \ set how-far how-far + 1 ]
4 U P4 V) v4 F. c# p5 C- Q report total
/ \7 P/ x* `8 | P5 J. i2 \ oend
0 ?3 O& I! K! j1 C( V" ~1 Y+ C8 T# n- b1 c
to grow-grain
/ x, r, ?5 J& u if (grain-here < max-grain-here)
. _3 M2 O( `, \) @3 j [ set grain-here grain-here + num-grain-grown, D' i0 M$ s8 U8 \1 V
if (grain-here > max-grain-here)
7 E- `8 @. @- e: u9 R2 n [ set grain-here max-grain-here ]- I6 q: h/ y+ X1 r/ P, R; D3 T
recolor-patch ]
9 ?- I: x* j. y# Hend$ ~ z. ]3 \! K5 W/ d! Q
to harvest- L7 b- C8 N* W1 Y
ask turtles
) U6 v+ C/ Z) l; [% }0 { [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
7 b5 j4 s; d+ `) O+ d ask turtles! k. p6 n, L7 E0 p* P- W( g
[ set grain-here 0! c" j# k8 ?$ l& H
recolor-patch ]/ O7 }# o0 F) N% [. w7 l
9 p3 V: R! _$ zend+ L( E9 v# `7 T1 z0 u8 d2 j; A
. \; W$ o' o& w4 Eto move-eat-age-die
/ P: F( W! z( G* j# Z, t- T fd 1- ]- g( Y/ |& j% Q$ K$ S1 {4 i5 m
set wealth (wealth - metabolism)7 c @! K' z) A# n4 @9 K
set age (age + 1)
7 R! a h& U, ]# h# s5 ?; I if (age >= life-expectancy)/ f! [% _+ \/ Y5 T
[ set-initial-turtle-vars-age ]
- |$ [7 {& L. F! R8 U5 P3 e5 `9 l if (wealth < 0) R z" Q; [2 L% \+ p: @; k- r
[ set-initial-turtle-vars-wealth ]
3 X- o4 e ^& ^) Y; J. s& p( |
7 Q ~& G8 N1 s- }& w* @end3 I) t2 p5 }6 j8 @8 v
# B6 S7 m, ^! e: O; R- R$ ~, H
: c4 k& a% q, m$ n9 u1 e( g8 G" Hto setup-plots
) w7 d" Y+ F# w- R' } set-current-plot "Class Plot"9 Q7 m4 L0 d* ?# D5 ~/ o
set-plot-y-range 0 num-people
* h6 c/ Q8 k! a set-current-plot "Class Histogram"& e$ s; Z+ h2 y1 C$ |* u9 t
set-plot-y-range 0 num-people
d3 e6 z( v' Y6 ]0 T2 [# `. ]end- u3 a, M: C7 v+ O$ A9 x& F& ], f
8 y. S, i; h0 t2 Cto update-plots
. S: h9 k. w/ B6 D/ y update-class-plot
5 b! G; j6 m' m7 Z update-class-histogram0 T, m3 @8 D6 K$ J
update-lorenz-and-gini-plots: ^7 h: o% c+ }
end& W! D; o7 n: y
$ {4 W+ D2 }$ c Vto update-class-plot
7 k. h/ Z) |$ V7 |. w set-current-plot "Class Plot"
+ p3 w2 k! k& s set-current-plot-pen "low"
: s f( D. {0 }% M plot count turtles with [color = red]
8 p8 w" m' D+ b8 k3 @5 O set-current-plot-pen "mid"
: w" y# [! b: x9 c. d plot count turtles with [color = yellow]
1 o8 m/ D8 X9 j) I( f% \ set-current-plot-pen "up"
8 b0 J1 C# {3 {( i6 i2 W4 ?6 G plot count turtles with [color = green]% E: p+ r# v- N8 f3 b" o, `: `
end$ h' f$ |! @3 _2 w4 G& S9 @7 y
- f6 R: w5 z3 N( l% _6 ]# lto update-class-histogram
* t* l4 U- {5 Y9 ?* o7 p6 @8 s set-current-plot "Class Histogram", O* Q$ ~# w @/ R7 N
plot-pen-reset
9 \4 U" i/ h% f; Z: Y7 C set-plot-pen-color red
8 g% }. `$ P( ?1 g1 N plot count turtles with [color = red]
6 E) {" t& F- y set-plot-pen-color yellow4 S& ?5 i8 z" C1 u% e/ O8 ?7 [5 [
plot count turtles with [color = yellow]
5 {; _6 t V, l1 M7 U set-plot-pen-color green
8 r* |5 o0 c) C! M- S | plot count turtles with [color = green]
3 ?% b* Z* p, t$ y4 {end
2 q6 K3 V% v, Z& b5 C7 q" z6 yto update-lorenz-and-gini-plots; z( L+ R" v0 t3 a
set-current-plot "Lorenz Curve"; w2 R. }( h1 O5 Z p% F9 G0 V
clear-plot* J$ i' U$ F. V( l
5 O( O( `: C, T6 | set-current-plot-pen "equal"/ j+ E9 k6 a+ u! [( e
plot 0
) Y3 I7 z; X0 C/ b9 U plot 100: z$ K8 r+ L, H4 m
# @* o6 s, @' H A6 t
set-current-plot-pen "lorenz"6 P2 [. j S5 J3 `5 w2 K/ x0 F
set-plot-pen-interval 100 / num-people
# a9 h6 r8 D) q1 Z& y plot 0! [; q- z& i& U% T" C& V" ~ V' i
" h& g S2 ~# A( n& Q
let sorted-wealths sort [wealth] of turtles* J S) K3 q1 n& T9 n2 \# R5 n
let total-wealth sum sorted-wealths
* M ]6 @/ s* q9 H let wealth-sum-so-far 0
! C, q9 F! V9 u) C% I2 S2 M0 y let index 0
; @2 s- s% m: \( B" O- ? let gini-index-reserve 0
5 J% h9 c' | x! q5 z {4 Q
8 ]2 F! l9 l3 W. S2 Z- ?1 a! ? repeat num-people [& F' t0 S( S- k+ W- i* M
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
( \: o3 o8 Z4 [7 q. K2 o) x plot (wealth-sum-so-far / total-wealth) * 100
2 S% [& T* `7 E5 X4 k set index (index + 1)
# Z% I6 T" ]5 x+ U set gini-index-reserve; p6 |* `' \, T* v. K. |' w
gini-index-reserve +
/ I. u, X' A; c/ G# a (index / num-people) -
' g' n" G+ \+ i (wealth-sum-so-far / total-wealth)* ^- i C! X& P6 A$ @
]0 H' T/ M* \. w! S
- c1 ? D4 b* e* r5 w8 c5 A6 [
set-current-plot "Gini-Index v. Time"2 {4 [( f( h; z0 m& G G
plot (gini-index-reserve / num-people) / area-of-equality-triangle8 q- d4 ~ w3 s l: O
end
7 _4 i4 E) F) T7 j1 V7 J& N$ K; L0 `to-report area-of-equality-triangle" e1 D: J' f1 ^( ?
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)4 _3 q5 N6 z% `0 S, _
end |