设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7136|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现5 y1 Q/ L* n* ?
globals6 y2 W3 R3 E# Q- L( u: O
[
( m- |1 C/ P. ~: E0 |; H- p  max-grain   
" v/ T! [. s* i( I6 F
9 s5 o% u! }9 j0 }' f) S9 _]: _) x4 m' W9 x! K3 E2 \" o& v: x

5 \' j  d4 i9 vpatches-own
) @- J4 m" s1 u[; O& G) I7 d6 ~9 w
  grain-here      
# W9 n' J) ?5 d4 n3 n  max-grain-here  
, i3 Q' d8 P" {( F" l3 k]1 L) @9 C: @8 f. [: M
9 H4 W9 o8 ^' _$ n+ s# L4 D. i
turtles-own3 k7 ^" m0 w2 s5 N* V
[
; y4 v- ~% X) x) F: q  age              ) A! Q9 B* W1 }
  wealth         2 d0 l' I& K9 D0 d% t
  life-expectancy  
) T+ T& M; p4 X$ q5 n( M  metabolism      
" N1 M' j7 j& y/ [  vision
; n6 @; u- L" x+ z# E, b, Z7 o. q  inherited         
* n/ q6 o0 H2 `! N5 ^0 g]
+ T/ V( }% Y3 d) x8 j: }) B, q. a( ^! H! I. j& D3 ^5 t+ a

3 x1 |' m4 f, h# ~: uto setup- K; I3 U4 o5 O9 E( o8 o* @
  ca) F; f$ f( R% H" V: u5 u' b
  set max-grain 50
2 v# k; O# T0 g* y, S, f, m  setup-patches$ R8 A+ u: p$ `( u
  setup-turtles
# ^/ b5 W0 X0 g: |: s1 q. I  setup-plots
5 @$ p0 @2 K" |: r  f9 j  update-plots3 t% g, P* G- i1 a& j5 Q" R# x$ t
end
* H, G) `' M& p/ ?# dto setup-patches% _+ z, P+ V& I* V& N# p: N9 b) B
  ask patches
1 F# N1 q: G5 f    [ set max-grain-here 0
1 Q  A1 T3 E4 V4 Y      if (random-float 100.0) <= percent-best-land
1 I& q" I: u3 Y4 Y, g. L' D5 q        [ set max-grain-here max-grain
. d* [4 U) w% U/ F8 @          set grain-here max-grain-here ] ]
6 B) \2 W+ Z) I& M# x  repeat 58 n2 @4 q/ W" \$ a/ R6 {
    [ ask patches with [max-grain-here != 0]+ ~0 v) x, y! J6 J6 S
        [ set grain-here max-grain-here ]
+ ^, x9 g5 s. F4 D      diffuse grain-here 0.5 ]; c5 \- v( S9 Q5 c7 {# U' K! K; i
  repeat 10
$ j5 X; p. X! G# C    [ diffuse grain-here 0.5]         
6 M- F$ ~6 E, u$ Z. a8 z- ^  ask patches
" Q# f/ v0 O; k0 e, f: P# E& A1 [: l    [ set grain-here floor grain-here   
9 R( S3 K6 U) y) O5 v3 A. I3 Q      set max-grain-here grain-here      : D- _, F  I! B1 ]
      recolor-patch ]
/ `( Y3 o. |4 }4 R) J: A1 hend
* Z! S0 A( I; j) Q) }3 C; @to recolor-patch  
/ E7 V& C$ y' p2 b# l: v8 v  set pcolor scale-color sky grain-here 0 max-grain
9 B+ Z& t- `1 h' Q* Fend0 v/ {" Y8 @7 D$ t# h3 R( s6 |; m
to setup-turtles2 ?/ W; T! `" C" x5 y
  set-default-shape turtles "person"
* x$ e+ k+ ^6 ]- r  C  crt num-people8 F  ?6 f9 x2 {' j, }/ K% U1 Y: Z
    [ move-to one-of patches  
0 \9 v) P' u" P- [! }/ V$ b5 l      set size 1.5  % V( _' r- T) @8 }' d
      set-initial-turtle-vars-age+ Y' g& r0 z5 {5 I2 @
      set-initial-turtle-vars-wealth
- H3 w7 a: g$ q      set age random life-expectancy ]
! n; v0 j7 {. y0 e9 ^1 D. G  recolor-turtles
. T+ O4 C0 M9 A% M4 e; send3 B. s: @  [7 s1 o% L, D0 P. A
  B# R' c, n- H. \) l6 h# j
to set-initial-turtle-vars-age
) X1 s$ |5 G$ f: R* O: t0 f  j8 v let max-wealth max [wealth] of turtles4 J6 `+ B! q9 I6 K# ~$ k
    : z5 r" z- l$ Z9 Q: F! p
     ifelse (wealth <= max-wealth / 3). i* `: p0 c1 ?7 ?/ d2 D  v' J
        [ set color red
, m# z- u( g  t# G3 A! Z          set age 0
, U8 ?1 F7 v' ^, L% G- x          face one-of neighbors4
, F0 ]5 y1 e( ^, `# |* Y4 N          set life-expectancy life-expectancy-min +
% t$ T3 }, n: y/ N& f                        random life-expectancy-max
( O0 e9 m; o9 @/ y+ P          set metabolism random 1 + metabolism-low9 i- N! y7 k7 T% y: ^* y9 M
          set wealth metabolism + random 302 j6 f) f- c+ q# F3 u9 @+ P( J
          set vision 1 + random max-vision. D( q! Z) m$ X* S' A( _/ ?
             set wealth  wealth +  Wealth-inherited-low ]9 s; J2 u, h2 u! ~; j: |
        [ ifelse (wealth <= (max-wealth * 2 / 3))
( C# n( ]9 M$ F1 f. f+ ^            [ set color yellow
# W* b9 ~, P4 E( x5 n  ^              set age 04 Y4 W0 ?4 _" W% ~; t9 z
              face one-of neighbors4 5 D; t4 R: N+ [4 n; i+ h* L$ J
              set life-expectancy life-expectancy-min +
2 p# J) d; F+ |& {$ `5 J                        random life-expectancy-max + 18 L/ q& b3 g/ f* q3 }2 k
              set metabolism  1 + random metabolism-mid2 ~% Y# v; o9 C$ t# X9 m
              set wealth metabolism + random 30
  c% f7 d6 V6 u# q3 k, ~! s' `              set vision 3 + random max-vision
) G+ z7 t2 Q. C  v8 |7 X" v                set wealth  wealth + Wealth-inherited-mid]; }, r! S" ?" C1 C5 J- L4 i
            [ set color green
  G1 w. V3 ]8 O6 h8 _              set age 0
% c2 q  ^# |* v0 R6 D* v. Y& |              face one-of neighbors4 # [2 L  S1 g1 W, b8 I# r6 ?8 H" n
              set life-expectancy life-expectancy-min +0 F- b: G9 R2 f3 h, Y3 G% z
                        random life-expectancy-max  + 2
6 ~& @, e* X2 [6 K  M              set metabolism 2 + random metabolism-up
+ b& E5 f- P4 x! {+ ~              set wealth metabolism + random 30
# ^7 _; V6 b+ g% G! F& |. r              set vision 3 + random max-vision
) B# q+ U5 z( r6 l$ w              set wealth  wealth + Wealth-inherited-up ] ] ) v1 R6 v( |9 @, }: Z

. `, i7 Z! m& \end
0 k& e3 s9 b7 P; Y2 x' \% M5 @to set-initial-turtle-vars-wealth0 B8 H: z9 {8 c3 q. I' P0 e, w
let max-wealth max [wealth] of turtles. o, X4 n7 \' t% V% Y% x
          set age 00 w( @8 Q+ _8 A! a
          face one-of neighbors4
6 Y$ ~7 n' F: C: {4 v, o& B2 _7 B          set life-expectancy life-expectancy-min +
: j: M# S% S: ^. ~9 ^                        random life-expectancy-max
- Y1 @7 ^- n4 s+ k* B! ]3 B2 I9 \          set metabolism 1 + random metabolism-up, K9 y- R0 _5 U6 G
          set wealth metabolism + random 30
, j6 e% d" g: v" e          set vision 1 + random max-vision
+ n: L) {% O# @+ N. L  O1 N7 mend
( A! K; m. ?# {% n1 W  P$ uto redistribution
# c* x+ L% W, J: _* rlet max-wealth max [wealth] of turtles
( ^( a( j! v" F% ]: q+ k* L9 mlet min-wealth min [wealth] of turtles( P3 x# Y: e' m' R: P
if (wealth <= max-wealth / 3)+ V6 N9 X: O4 g3 }) ~+ j
[set wealth  wealth + Low-income-protection ]! r* C" I* y* S7 D6 A6 t6 A
end, a7 A& G0 O) t% K8 d
          $ A+ h9 M$ ]# j6 N  L; P  w
to recolor-turtles0 _0 b7 Y% V, W- f+ l5 `$ U
  let max-wealth max [wealth] of turtles; d2 d$ ^, |' n" K' R8 J2 U( g5 v
  ask turtles
2 |: A5 H! V% Q. X0 p5 U1 B- a0 @. ^   [ ifelse (wealth <= max-wealth / 3)
- L3 P/ }- v$ R- n        [ set color red ]. D3 y6 G# {3 E" b* l
        [ ifelse (wealth <= (max-wealth * 2 / 3))
# W) L* g& j. a1 F9 `            [ set color yellow ]# M; r- L( ~4 z$ I0 p- d
            [ set color green ] ] ]
: K8 W/ k) m' u ask turtles [ifelse show-wealth?! q0 b/ P- b% B4 P( M/ M
    [ set label wealth ]
$ d  y2 m) f8 J; ~8 @    [ set label "" ]]
3 _$ ^/ w, @2 Y* V' Lend
" h; p/ E2 w: T# p$ a; c( i
3 \3 O# S+ E% [; C' u5 K/ s! dto go
7 d. R  \" h# u* R  ask turtles
3 A2 |' ^3 P! L9 l" {    [ turn-towards-grain ]  9 K. d2 |6 \" ^: L- w4 s! J5 M' u0 g
  harvest
! ^! |2 W8 u% X  ask turtles9 G5 ]% {6 L+ x) K# A& X
    [ move-eat-age-die ]
% ?# j& N0 }' q. S8 Y0 I. S  recolor-turtles
) s* P1 \, w- ^* z& s# r7 c' k  if ticks mod grain-growth-interval = 0% Y( G5 @. K" F+ C+ `6 F
    [ ask patches [ grow-grain ] ]
1 i1 d& O( S8 x0 c8 [   2 C5 j- h% C* h0 {
  if ticks mod 11 = 0
  Z7 o+ i8 P. ~' l$ J$ z$ B  [ask turtles
( @) A, X' `5 a  q3 N  [ redistribution ]]; v# I' A/ g. r9 U
  if ticks mod 5 = 0
5 c' r) a9 R# \" R! k# ~: W   [ask turtles0 r: e, X& r* ^9 S- ~. d8 ?5 [
  [ visions ]]
1 D: \: @3 U5 ~) |# }/ K  tick+ D9 j  }1 \4 p  D% s9 o) R
  update-plots" e1 D$ F5 F5 J8 d# n
end
& ?3 H. ^* S% T; ?to visions. c% m1 r5 V( {' V
set vision vision + 1
6 V% @/ ^6 S6 n" U8 r9 zend) S: P& w0 R- K$ e* P+ j) H

( l) \- [! S2 I' ^# p* |( ?1 u+ ?+ u5 p- @
3 L: E9 C$ k' u5 K
to turn-towards-grain  ' @. G7 o3 E* a: q
  set heading 0
$ j; R! V7 }8 m8 A. Y$ W  let best-direction 0
% G; t& v& i/ S% _- w# }4 ?$ i  let best-amount grain-ahead
# P5 g/ ]; X9 }$ C  set heading 90
# w0 p  C0 t. |. T, p6 l2 _  if (grain-ahead > best-amount)
1 e( b7 D! F7 j  w6 a+ z    [ set best-direction 90
. s1 t! g$ p4 K7 F      set best-amount grain-ahead ]
8 [+ w0 q+ Z$ @( a% j3 G  set heading 180
5 x( {- H* Z6 }  if (grain-ahead > best-amount)+ {& I- p! v, |6 _7 s1 i% W: q' V1 a' v
    [ set best-direction 180
" K% Z% P6 u, E2 @      set best-amount grain-ahead ]) N  ?) q% `6 U$ d8 D  ]4 V, \# G. Z
  set heading 270( E* A+ z1 T8 X5 |; y& w9 F
  if (grain-ahead > best-amount)2 g# s% ]6 j. U# L9 ~" n
    [ set best-direction 270
: u( q4 J  ^0 q      set best-amount grain-ahead ]
! H4 ]- Q1 f0 F7 A, O5 ]  set heading best-direction: I- o% M( I! \9 j# j7 X
end1 u6 X" I8 {! \0 @- [" g
1 P* A& t4 {, V% q- b4 `

5 c8 u) H, W" h- _) x1 Sto-report grain-ahead  3 Q- d8 n# Z5 w- E! ^
  let total 0* j! z: ^# f6 @3 A& R& M5 K
  let how-far 1- e' C/ {1 U, L& C8 l, V
  repeat vision
# ]: _: L$ v4 I7 K" j) C    [ set total total + [grain-here] of patch-ahead how-far
% O( Y6 T' z4 ~# O+ Y( k8 u0 a      set how-far how-far + 1 ]
9 l/ l1 [4 ^+ v1 x- Y  report total  x+ q2 e; E; Y' T
end, z$ L  s. m2 N' l& C' V# |

! U* G% K" |3 q/ @8 Sto grow-grain 1 Y, b! G" F0 L$ |3 t
  if (grain-here < max-grain-here)
' q5 V3 ^) H2 L9 I% l    [ set grain-here grain-here + num-grain-grown: }; ?; l. ?( l, Q) B) f3 K. m, `
      if (grain-here > max-grain-here) 1 J& ^0 p# b8 B6 ]1 N+ h& @
        [ set grain-here max-grain-here ]1 k; R3 e8 V+ t" m. R5 y
      recolor-patch ]7 ?# N" D. j: ?1 e# n5 U% V; f! v/ l
end
6 l" }5 a: ~5 z4 Gto harvest
* O4 z$ Z; R+ u: D, p  ask turtles; t" k7 k0 g' ?) I, u
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ Q) t" k& r+ J5 l* {  ask turtles+ L4 i# `/ N% {/ t9 t: K1 V
    [ set grain-here 00 X  D/ E6 t4 |! w+ W8 W
      recolor-patch ]
: r) m# {% i1 B0 d  
4 `- U! A& c' l% L2 V8 rend
6 n' }$ @9 ?0 p) ]
' y* L2 g0 R, B0 i, D3 W6 Vto move-eat-age-die  ; ?  b  w3 m) ^
  fd 1( T) w( M3 u& [# U3 `- O: ]( V
  set wealth (wealth - metabolism)
" I* U+ n0 x% d    set age (age + 1)* H9 n' u0 Z" z6 ]+ C+ J, r
  if (age >= life-expectancy)
* K0 x  o; \8 P    [ set-initial-turtle-vars-age ]
2 {4 P7 ^" M- v  if (wealth < 0)' P0 {4 d9 b  C! j
    [ set-initial-turtle-vars-wealth ]. _* ~/ L% F* l$ n
    ! i  i3 X4 S5 H
end
' }3 m; L# |, @9 d( ^5 Z' A6 T/ Z' K" p0 P
# y1 ]* f) ?/ b& w8 i) Z
to setup-plots3 V0 ]. w' t9 Z; b/ n0 B
  set-current-plot "Class Plot"
1 m1 A+ z1 S1 A- d/ t  set-plot-y-range 0 num-people  ~. j5 z/ H( R. `7 s$ U
  set-current-plot "Class Histogram"& C- J* v& L$ j/ y: O) \$ u
  set-plot-y-range 0 num-people+ V, Y2 m. b% @0 T6 i0 [" Z
end1 ]# l. {1 F& E  \  s3 {9 X. n
+ `) C& z3 d1 J
to update-plots$ a' W; t# A) @3 e- x
  update-class-plot
4 C) e8 V, J  t0 `- @, P: o  update-class-histogram
% `1 c" G6 O" j" C2 Y  update-lorenz-and-gini-plots/ e7 N3 R0 \0 m* H* V
end
4 p/ a; ~8 O: h' g9 O7 ~
8 K) d1 m2 h1 m. {, f1 cto update-class-plot" z1 L; j. e3 k" J9 P6 C8 m5 x& r
  set-current-plot "Class Plot"' X5 A( V" d$ j0 H$ D1 Z' G
  set-current-plot-pen "low"( t2 M, \" S* {2 r$ j/ d7 W4 Z
  plot count turtles with [color = red]
' T7 |! M8 ?& Z  set-current-plot-pen "mid"
! L2 a5 p8 b) b  plot count turtles with [color = yellow]8 X9 f# a' m- S6 d5 {) e& r
  set-current-plot-pen "up"
$ E# F$ @% ]0 T0 ^: O" U  plot count turtles with [color = green]* j  J: z( m2 C7 m
end
! \- x0 \: \+ J4 q4 U8 {6 G
# b1 e* r4 S$ b. d( V7 y0 p8 rto update-class-histogram
- g( N) F/ G4 Z0 ~  set-current-plot "Class Histogram"
7 _0 [- W5 h1 s" F$ z" s9 V3 W  plot-pen-reset
2 y# o! y* c$ K1 u5 Z1 l" }  set-plot-pen-color red9 j2 x; a9 z: u7 C
  plot count turtles with [color = red]  k$ V1 P$ `% P3 _' j( {! Z
  set-plot-pen-color yellow3 \& @% l5 z0 X6 T
  plot count turtles with [color = yellow]
& f$ z1 [8 N+ H  set-plot-pen-color green
1 X0 T/ D1 i- w# }: A( `  plot count turtles with [color = green]. E% @9 v+ A! e4 t6 K1 J
end
! P( r: u6 n3 o% S! n8 oto update-lorenz-and-gini-plots- |4 S* x, Z3 f; Z+ G" e7 g; a
  set-current-plot "Lorenz Curve"
. w6 Z% f8 u+ O4 j  clear-plot
% _. c- J8 {( f- J  I0 l5 s' \
9 _" [9 l( q8 U% Y+ x6 _5 y  set-current-plot-pen "equal"
- Z% h! h& ]8 c/ v* M  plot 0# I7 l% q2 x" g
  plot 100
8 r+ R" E: K" P% t- i+ P6 w4 S$ N9 w/ n0 A1 x+ e
  set-current-plot-pen "lorenz"# X" Z6 V6 r) ^  B
  set-plot-pen-interval 100 / num-people
' O% w7 E; d% t* b+ L9 G  plot 0
. B" m. t) @; t+ A  T& C& V2 S# x" a* \0 h
  let sorted-wealths sort [wealth] of turtles
) `( [4 z' ~, A' L& z9 Y" ]' T  let total-wealth sum sorted-wealths
+ `* ^& w2 R- N0 k  let wealth-sum-so-far 0/ ^3 k7 `' r# c$ F0 Q
  let index 0
2 v( c, [$ U1 h" T  let gini-index-reserve 0) u1 _" [* I! P" u

" B0 u) S7 J# S6 V" n& H" S7 w; o% |! Q  repeat num-people [
# k! G4 _/ k1 F) X: k+ E: F* e    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
- ?. Z; F! P) ]1 r' T! P- Q' k    plot (wealth-sum-so-far / total-wealth) * 100
* O2 q4 C+ N' z7 d# _    set index (index + 1)
+ ^$ @% J% t7 B/ ]7 N    set gini-index-reserve
8 `9 n) X6 t' m) x& L8 A0 @      gini-index-reserve +
+ I4 I# u% [1 H5 \1 ]  i( g      (index / num-people) -
! {5 b$ R4 b/ _3 t9 r, f' Z0 W- A' _      (wealth-sum-so-far / total-wealth)* }6 M( R# q* m+ T& Z4 m* h- Z9 S, Q
  ]8 P4 ]/ a6 E: d  A: ?4 ?+ J4 M

; B4 k9 j5 b; ^  e7 H; U: C  set-current-plot "Gini-Index v. Time"
% j2 Q+ _) d: |  plot (gini-index-reserve / num-people) / area-of-equality-triangle
' j3 I, F. R7 y/ E! u+ Bend" W& O! V% B2 f( u, Z1 V
to-report area-of-equality-triangle0 W6 x+ l" {/ s, y6 F% K$ }- M& e4 S
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
+ E9 c3 Y9 u! v4 L+ D6 O1 q) U: G5 Hend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-11 01:13 , Processed in 0.019359 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表