请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
- U ?: u6 X3 U1 ~2 ?6 Y, Gglobals2 Q, w0 n B: h6 O' l
[2 }5 J' J# b4 l) K- ^% v0 ^
max-grain
. ]0 r7 I% {5 P0 ~; g- J$ D7 D8 |6 z3 X: d
], q& K4 l' _+ F
6 M$ ~1 @$ N: W, D4 {( `1 j
patches-own0 W0 a* V4 r! s% K. f. j
[& d; W) R& c& t: h
grain-here 6 a$ N: F h# z/ M
max-grain-here
# U3 V) \6 o, ]" e5 V2 O]
* r8 r6 F) F% `9 J/ |: p% h7 e9 x3 F5 k
turtles-own" {+ R# E/ o I" m
[+ b8 R+ G6 N! q9 z+ u& _/ v' D- T( T
age
: c, @# T+ X6 H; i wealth
! Q' u F6 {7 X2 r) ~* z life-expectancy
: a( w( _3 z; y4 \$ `/ U metabolism 5 S0 g8 I; g I/ ~/ g6 Y6 J9 ~# w
vision$ d. ^/ S3 z% k8 T
inherited
- S9 g2 z' I6 |$ T) {0 y( ^]- f4 C9 Q! K/ y$ w8 ]; u
7 q; f' v3 [, }% M5 m$ U6 c
! V/ T& e0 p a6 e; }- Wto setup
1 \1 ?: g6 V; m9 m1 t/ P ca& e- r4 p7 `1 p0 i! B
set max-grain 50# } |7 c% W! O4 d
setup-patches* \& j1 X6 k* _9 a# t
setup-turtles
& e8 ?: I! G+ Y/ l1 M! O setup-plots
" l6 D2 n% g% p; K: A3 Z; w- M" J update-plots
- x/ n e$ E; W- h! `end
/ m2 r' w' Q) l- Z9 e6 Ato setup-patches3 {8 x% w. ~( ~( `) O& [2 O( r: E- ]
ask patches/ k& i" `( i( L. Z
[ set max-grain-here 02 D+ X o. ]8 ?; K" y
if (random-float 100.0) <= percent-best-land
h) H$ M0 p- f% X5 u. i4 ] [ set max-grain-here max-grain0 X6 J+ L1 \% T5 {) A
set grain-here max-grain-here ] ]
. H; n, {4 H" m) S4 ^ repeat 5$ o% h- U0 y- {. w0 @4 c$ d6 p4 w7 w
[ ask patches with [max-grain-here != 0]9 V! Z5 Z& j# t1 J0 c; ]
[ set grain-here max-grain-here ]$ U' Y9 [8 Y7 `' D5 Q
diffuse grain-here 0.5 ]/ N' z. a; m, A
repeat 10
& R0 P. K7 H9 A [ diffuse grain-here 0.5] $ d( d! u+ i+ j) c- g! B0 H7 K
ask patches
* b: `. a& B" |5 l9 S [ set grain-here floor grain-here
# u/ Y1 d. R7 N set max-grain-here grain-here $ X) h: d& Z" E
recolor-patch ]
* F" |( x: A- c% V( Q1 Yend! \8 b' \# [. }/ ]
to recolor-patch
; q% E- j1 T, C8 z set pcolor scale-color sky grain-here 0 max-grain
8 n0 @) p( B1 o7 }( g9 D% Tend8 L$ C- A, m5 @1 n" {8 F/ c# }
to setup-turtles3 q1 a. H4 |4 {; R2 v( T
set-default-shape turtles "person"% Y( T) h2 H$ R9 \* J/ I9 w
crt num-people
/ j$ C$ [- j% O1 x [ move-to one-of patches
* X/ W8 \' x3 x3 d( N set size 1.5
% @8 ^+ o" r! W' t' c- z set-initial-turtle-vars-age1 y$ ?% r2 m+ h4 u% ?' f; a4 k
set-initial-turtle-vars-wealth! @# t5 c% b* I) @; g+ I1 [
set age random life-expectancy ]
# Q V( J' D6 M& Q recolor-turtles
s5 A7 T6 N3 W/ Z Mend" z" M" o4 j8 k D* O9 S# X. Z
" t; ?# J# B; Gto set-initial-turtle-vars-age
* b" K$ t5 s8 y" |* L) y$ } let max-wealth max [wealth] of turtles, j. U7 \3 Q: h
6 v$ d o5 S* Q5 G ifelse (wealth <= max-wealth / 3)
W5 w3 l u6 ^5 i [ set color red 0 j( t9 g3 O, V- T* T: X/ R
set age 02 R! b4 j+ a, ]: \4 N4 p' K
face one-of neighbors4 1 _# u1 d4 t! F
set life-expectancy life-expectancy-min +# W$ {# M( H+ |
random life-expectancy-max
1 s# p! e8 ^, K% L set metabolism random 1 + metabolism-low; H- J% ?' h4 W$ k
set wealth metabolism + random 30
Y8 R' b& s0 ?7 k set vision 1 + random max-vision9 T; Q6 N! `% ~1 q( j
set wealth wealth + Wealth-inherited-low ]
" m( f o8 f* x7 l5 v1 U4 Y [ ifelse (wealth <= (max-wealth * 2 / 3))- R+ q" M1 L9 X- |; k
[ set color yellow
1 t8 M4 [2 j! {3 E! V B8 X set age 08 A" w$ [7 g( M9 Z
face one-of neighbors4
' B: z; a% k0 Q set life-expectancy life-expectancy-min +
1 ~, l# C+ P3 K3 J& z& \ random life-expectancy-max + 1
; h$ e+ @( E" F7 _2 B; I set metabolism 1 + random metabolism-mid2 i) {, O. L4 L- p' T7 j9 r) N
set wealth metabolism + random 30
q0 _+ ?( \- }$ K% L* m set vision 3 + random max-vision
* {+ ?' p' l& t! @' M' X! U8 F set wealth wealth + Wealth-inherited-mid]4 L( L3 V& A# p, h7 A j, V
[ set color green ; Y+ P5 v9 _0 _8 t* s
set age 0
7 I# Z) K; z8 i o4 A1 k$ u face one-of neighbors4
) @8 p6 y% u) m3 I- v7 V4 v set life-expectancy life-expectancy-min +6 t, N5 E- w: O/ R+ W. r
random life-expectancy-max + 2
9 s/ A4 D8 A5 W, g, I. v& B set metabolism 2 + random metabolism-up
3 f0 Z" L/ ]$ t1 Z; p \ set wealth metabolism + random 309 r/ S% Z7 F! k" Q7 v
set vision 3 + random max-vision; N& i, C, ^6 S6 Y" J3 [4 @
set wealth wealth + Wealth-inherited-up ] ]
0 G% i: y& v a8 Q* B' b
" Z* y. d2 T/ P+ T" W* Send! [+ E& D- n0 Y- w) S2 m: W/ S
to set-initial-turtle-vars-wealth3 H9 Y$ L, G1 @; c8 O) S
let max-wealth max [wealth] of turtles
. H2 N1 U& k# J+ e* @# S set age 0
" n$ o, o$ @5 V0 D% A- ` Y face one-of neighbors4
: K9 W7 }. H8 P3 ]9 a5 o set life-expectancy life-expectancy-min +
5 Q0 u, X: ]4 W2 T; n1 W% D random life-expectancy-max 0 I( F" m6 F2 _/ j5 K! b/ Z+ H2 |
set metabolism 1 + random metabolism-up6 F# Q$ g9 I( N( {, C; [
set wealth metabolism + random 30
+ }1 |0 i! w' F set vision 1 + random max-vision
# x- U' t; N, @& q, Dend9 m }1 T+ p2 e1 z: J- X
to redistribution$ U `$ H- A0 e# I! v& C8 _. K
let max-wealth max [wealth] of turtles
2 o9 y& c* P4 F7 wlet min-wealth min [wealth] of turtles8 @+ A' N5 k p" z
if (wealth <= max-wealth / 3)
v: K3 c: ?: Z2 j6 ^2 h1 ~+ ^, u [set wealth wealth + Low-income-protection ]
( c1 z) A* k% Y2 Aend* F4 @- B( s& p1 M- \1 h e) C5 C
( s3 ~: {7 K1 I: r% j$ F1 Cto recolor-turtles
& U* x4 a/ m2 h* Y& W let max-wealth max [wealth] of turtles" n; P0 x. I5 W: L0 b$ }% S
ask turtles' f" B# `8 ?# e
[ ifelse (wealth <= max-wealth / 3)
' c4 N2 n. T& w n' _* d# @ [ set color red ]7 c) @; e& Y4 A7 G, F) J
[ ifelse (wealth <= (max-wealth * 2 / 3)) A5 Z+ i6 [/ Q6 ~" s `9 [3 O Q
[ set color yellow ]% I4 M/ r7 I1 k
[ set color green ] ] ]
3 Z/ ?9 n9 l1 S9 u' j: B" \ ask turtles [ifelse show-wealth?
# P4 x9 o: L& B4 n+ p [ set label wealth ]
/ ~2 e# z" B% l [ set label "" ]]
( l0 ^0 N$ F! n ~end) [4 O, q: ~" `& L# k. Q2 _6 {
+ X' [; g- `' m7 |* ~( h3 p) v4 bto go
+ V! ~; j3 M b/ m) U' d ask turtles
2 K% U7 `5 B0 Z Y [ turn-towards-grain ]
* l- ^2 t/ S7 q) C harvest
7 D$ j. G6 `0 a- H2 P ask turtles
6 k* F, w; {0 ?3 e+ F [ move-eat-age-die ]
! f, @6 }; Q4 B- q2 f: k3 N9 D7 v recolor-turtles
" h' b: [( W! r! T6 A, l4 C+ f if ticks mod grain-growth-interval = 09 m* w% X5 v0 }1 N0 h
[ ask patches [ grow-grain ] ]8 H3 @; \/ j' W0 G, t; G* Z
0 F* H9 c: F& W! z) Z
if ticks mod 11 = 0
+ K/ |% H; k4 L0 z( V9 I$ Y0 G3 X [ask turtles3 G/ R. [) _' g/ A
[ redistribution ]]9 _$ M, g8 E: ~# p4 S' Z5 v( d: c: A
if ticks mod 5 = 0
8 \( o) p) Y& Y' O5 i' ` L [ask turtles9 y! { b3 w0 K9 r! i( f" e
[ visions ]]
/ \1 _7 _# U' T' X& c, k tick& _/ T3 E4 {' X( D) p7 K7 z
update-plots# P" O0 J4 \5 t/ q2 x( ^6 s
end' V+ B- S: h! N, h; O) T5 i
to visions
c1 l1 m& `' I6 n1 a set vision vision + 1 ) a6 X8 W1 E0 U& \* ^6 _
end: u1 N# h$ h' j
: b' U' y4 L( @8 @( u% x
+ o/ |8 Z" o4 w
& I$ D# O& c6 v$ n* }, Rto turn-towards-grain
# C* y' ~' f8 k) \' n/ K set heading 0
% ~5 L. N! X& Z6 }0 t% g let best-direction 0
+ f2 u5 G, t M; e# i* f0 o let best-amount grain-ahead: ?. H' b2 J0 e: ~7 E; Y
set heading 90
, v4 P ~8 W. V if (grain-ahead > best-amount)2 z' Y. a' P' E2 }* G
[ set best-direction 90
- c$ k# Y5 @3 Q- k5 x set best-amount grain-ahead ]; S) G$ l! W$ s: p$ @
set heading 1802 d; |0 n4 W7 z, w D7 y( h) d+ ?
if (grain-ahead > best-amount)
! C, {# G& z2 D [ set best-direction 180
$ _& ~$ O; X9 j P! X3 m2 @5 _! b set best-amount grain-ahead ]
. V) ]' U) |4 k; \ set heading 270
, i2 X6 q4 I. E i# k if (grain-ahead > best-amount)$ g" ?* X2 J6 i9 l& l1 x* x
[ set best-direction 270
3 I/ T, J' Y! ], r5 u1 S set best-amount grain-ahead ]
1 x0 Y; d. q( }2 J9 H2 {: M6 S set heading best-direction& ]7 U- N; G9 S9 Z! f( v4 Y
end
7 {" Y& T4 U4 m/ j: C5 G& l" ]& Q# g7 v& b" B3 |" Z
# M7 [; Y2 X9 H9 h0 \3 A# b; s' T# H; }/ @
to-report grain-ahead
: o( T( y* ^2 y) E let total 0
/ ~% ~7 E9 e2 ]7 T# y7 h let how-far 1
8 I8 A. F2 C- v+ f' Y repeat vision
( m# X+ \( `, N& E [ set total total + [grain-here] of patch-ahead how-far
6 l t: B; h( W& Y1 I. Q3 |- l set how-far how-far + 1 ]
. P" Z( W% T" N; V0 D6 V4 W report total
. ^- a1 j8 a( C# ?$ U1 j2 m/ Nend# N% _* {- i, m8 r* ]% n
% }3 n% V' w& C0 G H- \2 Q0 yto grow-grain - E0 k* o; b% k; I
if (grain-here < max-grain-here)
- X( Q- B0 }$ k6 H& d [ set grain-here grain-here + num-grain-grown
% p' `& C2 B0 P( | if (grain-here > max-grain-here) 6 m; t v f7 ~8 s3 y' r
[ set grain-here max-grain-here ]. C0 t# o* t; L& I1 {, @
recolor-patch ] L: E6 \# [6 j. S2 I
end
4 a' y5 w- ~; I: v% B2 qto harvest
. i: g, A4 W5 f ask turtles" A, v: ~$ d5 l6 P
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]4 B6 l4 k) h6 ^, X& G4 l1 W$ n4 u
ask turtles
+ q# m% i: |$ D+ r [ set grain-here 0
' L6 l/ P _ |4 Q8 M/ h: L$ I8 U9 H' v recolor-patch ]1 k5 u3 T+ q% c9 a- k) g! x
: J! |: k/ A k) _, D! t/ vend
4 k5 N2 w6 f _; Y& z6 A9 p/ @& G0 @# y% W/ B3 I
to move-eat-age-die
) i# j" u7 k$ f0 { fd 18 w$ @: O# m- W3 ]
set wealth (wealth - metabolism)! ], \9 d9 n0 @8 B7 y
set age (age + 1)$ V3 T4 W0 l; `1 }
if (age >= life-expectancy)
% m/ c4 z- X$ C$ C" M [ set-initial-turtle-vars-age ]
: e8 p$ }/ B4 b7 Z) s0 h- m if (wealth < 0)
1 K0 g8 N- K* p [ set-initial-turtle-vars-wealth ]! H! ]& e* p5 s8 m6 b& }
" z6 c9 I$ h& `end- v) n& ^4 b5 O8 s* y* W; O6 h2 ^' u
2 N( l' |0 P# c- p) v5 n+ ?
' y3 c/ d: \; ?' v& Mto setup-plots
& m. b1 ^& l. h `; Y7 l. T set-current-plot "Class Plot"
# l% w4 t/ u* x3 X, n set-plot-y-range 0 num-people
2 ]' L0 v0 B) l& z8 _. p8 f set-current-plot "Class Histogram", \2 u1 q: x0 P" G
set-plot-y-range 0 num-people
1 Z- b2 R& B/ ?; E9 V. Z' dend
3 N) ^7 b- P; t' x8 C% t* O6 U% o* x* ~) a* n3 l
to update-plots G& k9 B+ Q% L$ ?% n- [
update-class-plot
9 F) ~7 t7 N6 d( h, p" s$ g update-class-histogram
* w" r* }' e' b- S$ _( `$ e: n update-lorenz-and-gini-plots
8 k8 X/ \) X& }! b0 f# Uend: r2 n- L6 [0 U" C1 a
$ a, D+ M) ?/ E% i1 Y
to update-class-plot
# K. T' p4 M( O" O set-current-plot "Class Plot"
9 z' q* @6 E. w set-current-plot-pen "low"
! ]5 ]; l9 D' a) T, g# o plot count turtles with [color = red]
- @7 m# }8 c, h/ ~% x set-current-plot-pen "mid"6 a$ i/ U# f5 B4 R& p- @
plot count turtles with [color = yellow]3 H$ t" y8 {8 _0 F( j7 i2 i3 f. h
set-current-plot-pen "up"/ m% f/ I- d( z% ^
plot count turtles with [color = green]
, Z) B8 f4 w4 Q2 J fend
) X/ U' Y' b, X0 T" v
; R3 Z% G6 [! b- P1 Z, I/ H, Kto update-class-histogram
7 J: A5 H2 N- m! V) ^; E- f* i9 h set-current-plot "Class Histogram"4 Z& e, A# V! F, n s
plot-pen-reset8 p3 b1 g* c! u- q3 d
set-plot-pen-color red
6 `. }) Z9 t- b8 { U0 y plot count turtles with [color = red]
6 o1 S6 \4 e7 k$ I" t8 P$ B set-plot-pen-color yellow
& m& u: i6 n* i- J plot count turtles with [color = yellow]
0 C+ B( a0 F; u3 | a$ \ set-plot-pen-color green
2 ]( O5 ]2 I& J; n0 o8 H$ ]5 O plot count turtles with [color = green]& a9 f2 X# |- F% E2 r9 h
end
" x9 p {0 H& Sto update-lorenz-and-gini-plots4 ]- q5 `' m, U2 @& d5 o
set-current-plot "Lorenz Curve"6 D# h# o" _* w& x" f
clear-plot
6 v5 }: o/ U2 M ?- Y( u) g. h( k# S }7 S* ?
set-current-plot-pen "equal"
% F' N) v8 Y' [0 k" P8 D A plot 0- x8 X' v6 `( E0 v, J
plot 100# u e) `* R: k0 c' p/ y
; D$ q8 v( G9 H5 C: S7 E( Z6 h set-current-plot-pen "lorenz"
2 @7 D6 s) \& T! O o- L set-plot-pen-interval 100 / num-people
; N' j9 p" ?7 r4 L" v plot 0
6 i8 k( u) t: _9 g2 R/ o# z' K8 {4 m% K$ T! R# R9 {
let sorted-wealths sort [wealth] of turtles
1 q! c& D3 v; w! S: X let total-wealth sum sorted-wealths
! u5 w, v2 i5 A6 P; G5 t; W) U let wealth-sum-so-far 0; M2 u& D% c9 i3 Q
let index 03 A; J: v; X4 o! y
let gini-index-reserve 0( v' Y/ p5 ]8 f# M
/ N& l2 K1 ?0 Y9 i repeat num-people [4 P" ?1 ~) j* k) l7 N* |2 p9 Y1 p
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths) @6 Y+ S0 Q) L: U" O& O
plot (wealth-sum-so-far / total-wealth) * 100' J3 J' S+ h% Z& C
set index (index + 1)
6 ]2 K2 Y" K% J8 H/ N. s. o set gini-index-reserve
; u0 W+ q C- G gini-index-reserve +8 M! J" M7 _7 L% ^2 C+ _$ y0 [( _; Z" X
(index / num-people) -: X1 F: Z* F: r2 `0 v$ A
(wealth-sum-so-far / total-wealth)
4 M$ B1 u4 Z0 E, T ]& B2 J6 `- \9 z- I% s
/ J' x A% c6 H( c3 O set-current-plot "Gini-Index v. Time"
' M1 {/ O2 S1 J! d% p' a- A4 | plot (gini-index-reserve / num-people) / area-of-equality-triangle
+ t7 L. A8 O6 g& c# k7 Y9 G, ]7 n8 Oend4 m8 v6 m j" J6 n* e U
to-report area-of-equality-triangle
+ E h; \! _1 \( G- | report (num-people * (num-people - 1) / 2) / (num-people ^ 2)5 X5 R! |4 e/ s; Z. l# d
end |