请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现, T8 @# `- \4 K, c6 I* a5 U( v
globals6 |0 P$ M% T7 F6 n
[
1 m) k# V/ A3 r& P3 Y( E5 \. Y1 j max-grain 2 g5 ?9 i) _7 h( W
" D! M, f" k! _" Y$ l]
. h# `3 r; h& T0 O! B% l- q8 `3 n" I
patches-own
! }9 c# \/ u% S* n; q: z9 _8 s* P! c[
8 O' z& o7 I% n6 T5 c/ { grain-here
V; u& ~! ?' x) }% ^ max-grain-here
$ w" R# L3 T4 J0 B; { a]) e- H4 m$ a6 e# ~7 K; N
5 n& E6 l7 @- V' q }, Z2 jturtles-own
! ]1 L- c9 M; D) J& C[
: K1 o$ u2 I, T4 J age ) K! j4 F' ~, A4 v" m' N9 A
wealth
0 S# S: O Q3 ` life-expectancy
# d9 d. s: H; k) P4 ]+ h# { metabolism ; M% @4 v- x* ~/ T2 M& d, M# }
vision" ]; Q& j# V$ D' z1 `
inherited % n# x4 N4 X* R0 W
]
' u# h" T7 m/ p; o u2 D1 t z
8 S9 f M! A4 Y+ Z
1 g3 H: M0 }# L9 k8 t& Cto setup' M+ `3 ^7 U( | N
ca( Z9 U9 e$ E# L& K( Q1 x% h
set max-grain 50
2 ~& x( a/ U3 g4 e. s; \3 } setup-patches
) P. x" d+ v, X2 _0 c setup-turtles
2 }5 I+ e* [( x/ ] setup-plots
1 y7 U; h! I6 L! J3 w7 e' R2 W( H update-plots! _# l" l8 f4 R' w: K) u* L
end6 S7 [! E/ [" F& e! \/ }. Y, d
to setup-patches+ o Q) _, W0 m: s
ask patches2 T$ X# a8 J/ S8 U5 l$ u
[ set max-grain-here 0
& @9 S, \) r3 h) D0 l4 V if (random-float 100.0) <= percent-best-land2 d, o+ `, E$ }: K L- t
[ set max-grain-here max-grain
. t. s8 y! D4 w/ k k set grain-here max-grain-here ] ]% {6 W% e7 h, {. V& Z
repeat 5$ k% l6 f: ~& c& g% c
[ ask patches with [max-grain-here != 0]" [. H9 v( ~3 f$ S7 x6 @0 u$ K' G x5 D5 b
[ set grain-here max-grain-here ] @: Q& {% t" N% S! |8 W
diffuse grain-here 0.5 ]
9 f, t+ g/ \+ [2 b) {1 d5 \ repeat 108 b9 R8 _5 l- y# j0 u {) c3 J% q
[ diffuse grain-here 0.5] % _. ^2 |- `! ^) ]8 }9 D& t6 E
ask patches6 L: |! y4 S6 ?' h7 q3 S$ _
[ set grain-here floor grain-here 1 b9 \3 a4 N; j/ o' I: M y
set max-grain-here grain-here
5 l: Z8 n1 L& S! `; A& d) w6 @) C recolor-patch ], \1 f# g: w' {0 u! Y, r9 v
end
! Y( P3 Y+ ~7 u8 Mto recolor-patch
, {8 x% ?* [% b4 r4 H: E5 W set pcolor scale-color sky grain-here 0 max-grain
8 s+ h% U2 N, }# [# u0 B, U( L( ]end
& k o5 D! e- Fto setup-turtles
8 t6 T8 x2 Z3 \7 { set-default-shape turtles "person". P2 T _5 A/ G
crt num-people
5 i$ G# ]: L5 l3 I' Y* ^ [ move-to one-of patches . g- d* @, l, a0 a
set size 1.5 # l# u" P9 {* w* e2 i
set-initial-turtle-vars-age4 z/ v- r1 c# O
set-initial-turtle-vars-wealth
) H+ Q9 B- _- J set age random life-expectancy ]! U* H0 @: o- U. p
recolor-turtles
8 `# c9 ?7 i; h4 |) E+ G$ Kend
: [0 t( v4 w# E2 R2 f0 P2 H% X* o1 ]; e8 y8 G
to set-initial-turtle-vars-age
; ^* |1 t8 ]7 A# K6 x8 ] let max-wealth max [wealth] of turtles
8 e( I6 y+ Y7 g- ^/ H6 ]* Z ! i6 S2 p/ F! h3 D8 w/ s
ifelse (wealth <= max-wealth / 3)
- g" b. r8 H1 x" y- w [ set color red 9 f, G, ?# } S+ x, p/ A# i% |
set age 04 D1 p+ y/ R ^7 A
face one-of neighbors4 * W' d0 c* g: J' `8 R, S: l
set life-expectancy life-expectancy-min +
* ?: G& u+ `: H( P random life-expectancy-max 6 L) w9 V& k3 [4 h. [
set metabolism random 1 + metabolism-low2 j0 P, J, h- h3 l* m
set wealth metabolism + random 30+ I; X$ ^: E! B5 C& i0 H* R7 h
set vision 1 + random max-vision
& n/ O! @9 H5 x% s7 ]8 n set wealth wealth + Wealth-inherited-low ]
5 Y. K. L8 v: ]' s [ ifelse (wealth <= (max-wealth * 2 / 3))8 ?) l8 Y& a" w4 \5 `+ Y
[ set color yellow
8 ^7 r% X" x# }1 A% W+ X, t5 m8 K set age 06 P# }8 r5 m8 ]1 Y; h0 m
face one-of neighbors4
^8 |+ W% S. K, g set life-expectancy life-expectancy-min +3 h' }! |" y! C% @# w! L/ Z
random life-expectancy-max + 1( ]! C9 L& X" J$ a- E* V* ~, x
set metabolism 1 + random metabolism-mid
9 R. G" Y$ r( V" x+ l2 z7 i set wealth metabolism + random 30
) a) @" O2 @$ A: V7 q8 b! g set vision 3 + random max-vision
) s' O# z5 L9 x# ]4 t& A set wealth wealth + Wealth-inherited-mid]8 |( ?7 P4 ^2 T& S, f% E+ C2 G& A
[ set color green
2 c; t% X2 ~ k- O1 K+ F; L set age 0( T* w: ]4 k. {, n4 {" v
face one-of neighbors4
C9 `" S$ I. g. t: M set life-expectancy life-expectancy-min +
' t0 {) S4 m8 R* E4 | random life-expectancy-max + 2
( e' w; f. ~1 o4 e set metabolism 2 + random metabolism-up5 [$ w& w- Y2 I3 ?- w) P
set wealth metabolism + random 30- W/ Q; P. E7 C+ j
set vision 3 + random max-vision
2 K2 a3 z# K! d$ l set wealth wealth + Wealth-inherited-up ] ]
. ?% ~% f& f, s2 A4 h* W
/ P0 \6 h/ Y B5 Nend/ i# ` ]" l: {: }
to set-initial-turtle-vars-wealth
2 O: V7 K) m+ r let max-wealth max [wealth] of turtles9 B* k$ B: t/ ?1 }, d Y5 [
set age 0
9 z& I& a5 C4 y1 A$ f/ q8 ? face one-of neighbors4
1 W2 P9 B" R/ M* i2 ?: ?% N set life-expectancy life-expectancy-min +8 E# a3 V+ F0 o" v$ \; w2 M l% U
random life-expectancy-max / i" d5 q; F1 R0 C( K8 y! ~
set metabolism 1 + random metabolism-up
9 z+ R5 @- y' M! H& J* e2 t set wealth metabolism + random 308 C2 E$ R1 @4 b6 ]+ I
set vision 1 + random max-vision ! @, `) ^, n- G- ?8 P
end( K6 B2 \8 F( K# {5 e2 a R, F
to redistribution! O7 y' Y" g1 M5 j8 [8 Q
let max-wealth max [wealth] of turtles. @* e+ F/ R8 } K. ]- d
let min-wealth min [wealth] of turtles8 r4 a8 u6 b. c
if (wealth <= max-wealth / 3)
3 Z3 B. \ [- [% G# X [set wealth wealth + Low-income-protection ]- S' Y/ }1 ^6 z% v
end! r5 ~+ j) o P, S0 _
- j0 k- c' p6 y. s9 {0 ]
to recolor-turtles% B+ B4 V* E, ?/ _+ c
let max-wealth max [wealth] of turtles; b; j9 {- o; V' P; [- k
ask turtles
! m C e$ F1 j/ r5 N9 S! P$ o [ ifelse (wealth <= max-wealth / 3)
; S" |% n4 ?0 Y$ c [ set color red ]
" s1 P, h% d5 n" @$ p [ ifelse (wealth <= (max-wealth * 2 / 3))
8 T. i. _5 h! A: u7 l( M [ set color yellow ]0 l0 y* J. Z( I) M* c
[ set color green ] ] ]( ?& `6 Y$ Z; h0 x0 N" B }# N
ask turtles [ifelse show-wealth?9 d. @$ Y2 u1 `, y) | F. c
[ set label wealth ]
6 g$ M% e2 M8 z- T6 @ [ set label "" ]]
0 V4 ?1 \# S: N$ Bend6 E3 n$ T9 {% F4 M2 Q
' ^& x" A Z: t5 [* S9 @3 V. \( S
to go! M0 @0 x" g* t/ i
ask turtles' g; V r2 a1 @# S* v7 g* C/ c. g0 H
[ turn-towards-grain ]
' T% C, }- `3 W harvest
/ _; ^/ V Q% ]! X' v h ask turtles
+ H& l# Q% ]7 s, ] [ move-eat-age-die ]) _5 z# F' J# ~0 T" i% ^
recolor-turtles) Q8 m4 a4 p4 w" a
if ticks mod grain-growth-interval = 01 ]" z, e T- }5 `3 C9 m' ]! \
[ ask patches [ grow-grain ] ]
, \5 n" d* ~/ M5 G$ P* X! Z) X 7 m! b( |: i9 q X; ?
if ticks mod 11 = 06 A* A4 _% u @9 [4 x# v* D$ z) _
[ask turtles
c. t/ U) _: Y; ^ [ redistribution ]]
9 Q6 W/ ^9 q4 M' y if ticks mod 5 = 09 V3 S$ c+ {: r+ c
[ask turtles+ x+ \; o* J) P0 _2 T3 k$ J
[ visions ]]8 u) R/ O% w% t- a) q
tick$ s' d& x B5 {5 {" H* M2 g/ T! v
update-plots5 e+ ?4 e# P' r. h4 N( H
end) a7 X% r3 v ?8 N* E1 F0 r3 _
to visions
/ z# i ~0 o; o! u% y set vision vision + 1 . j% w! C1 U0 Y. o
end
! N) M% m( n+ u# ^3 }: `" c( H
5 f m7 i3 F5 Z/ z/ ]4 _1 |8 l4 R' A4 c/ N1 b
8 l! ~' V$ r* O/ v" w0 i
to turn-towards-grain
. f% ^ r8 T3 C2 j4 A( Z set heading 0
4 J; I( Q0 K, v! T1 o8 N/ M let best-direction 0$ k b3 S) c$ j( A
let best-amount grain-ahead4 K2 o* o- S; j/ {
set heading 90
0 a" A9 R& n) g& @ f1 J$ N if (grain-ahead > best-amount)
% M/ m$ D2 ?2 |; U. c [ set best-direction 90
) G6 \/ E* c# @& L1 D set best-amount grain-ahead ]2 n) l7 {* E) X8 M. v
set heading 180
2 \3 o0 d# N/ Z if (grain-ahead > best-amount)/ }+ i- d% P$ I! E
[ set best-direction 180
: E5 A: ?& a( B set best-amount grain-ahead ]- g" K% Z# H: X6 {
set heading 270
2 A5 ?9 f8 F+ X" ] if (grain-ahead > best-amount)6 t; o5 Z0 R" O: ? X6 O( d2 i
[ set best-direction 270/ g% X" b; J9 j: t3 C, o
set best-amount grain-ahead ]
: S. b* W+ I& C: W6 \ set heading best-direction7 h2 X9 u7 M, `# C$ I
end# A, Z( t7 | D9 Q3 I
% I7 y( U2 T6 x2 t$ |! E
7 z; w/ d) C u K2 A& q
to-report grain-ahead $ B6 w9 J6 l" P# G
let total 0
4 O6 r- \# o- H( @ let how-far 1* J5 a+ M8 w5 c' \7 j( V
repeat vision
% a+ W$ X2 w( I+ L [ set total total + [grain-here] of patch-ahead how-far
! h$ r6 _2 B. L6 {# M' L( ^: @; q set how-far how-far + 1 ]
# \' w8 w5 h- v% ?7 p report total
& G& U( G* d( ?% |8 Z5 Dend8 F" z# m5 }. A! w# h
0 @4 d3 g; H" x& ito grow-grain 9 g4 K z6 M1 d% @( m# f
if (grain-here < max-grain-here)
6 F9 F! q/ p I8 |" r [ set grain-here grain-here + num-grain-grown2 F: [6 N3 o* y w9 _/ I8 K
if (grain-here > max-grain-here)
0 I2 d! r% i- p. G# C [ set grain-here max-grain-here ]' x2 }" }" B) J. o
recolor-patch ]% R( ` o# N1 Z8 c, R5 ~
end
/ y" D: z2 Y [6 s/ Xto harvest
8 j3 }! X) ?1 f9 b ask turtles
1 c0 s2 r1 r& t$ K: q4 J; p [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
" ?- l4 R. J% G5 p ask turtles
5 w8 g8 f! f) i C3 E" ^ [ set grain-here 0
: n, P. {1 Y- h) B$ |6 O recolor-patch ]
% Z% Y% t; Q2 l , r# Q5 r7 G; j8 v
end3 `* ]" u6 i2 c# f: l3 ]$ w- c
- Y' Z8 d$ b g0 B+ M% m# j% T+ x T' Eto move-eat-age-die
3 O+ \, ]7 z3 K: Y$ \6 [ fd 1
9 g% h+ E7 {% V& V2 K5 `& @$ q set wealth (wealth - metabolism)9 i0 ]6 p6 F* c* a) f8 e
set age (age + 1)) \) E8 @% w0 A
if (age >= life-expectancy)
0 b/ Z8 T' y# V. b* h [ set-initial-turtle-vars-age ]
( S; \. |% @* y" a% e5 G& |1 b if (wealth < 0)5 a% t9 R% F0 T. ^
[ set-initial-turtle-vars-wealth ]( [8 |* Y' [; ~/ W. _! i6 E6 N
L1 G' ?2 \- \# tend* V- r# e5 s. y/ w: H1 h
2 {3 w% ]* c5 ~: T
6 t& l9 c, Z2 Y$ D$ c- }
to setup-plots/ E- s; b+ M: I9 c2 B6 D# R
set-current-plot "Class Plot"
. `8 m, E9 V' u2 e8 B& Z Y set-plot-y-range 0 num-people
1 z" l4 ~* B6 j4 v8 Q set-current-plot "Class Histogram"3 E& y/ C* D/ ]; q* ?3 J. l) `% C
set-plot-y-range 0 num-people& z$ m" O) L+ d6 D% r: j
end
8 {6 v8 e1 o" N- y
# G! \0 X. y$ s! k" S/ l: fto update-plots
# U9 H6 v0 j2 Y: n0 a0 |, i update-class-plot# e+ Q7 @+ B' J6 t# s! A
update-class-histogram5 W) O+ f; c- O
update-lorenz-and-gini-plots
8 G7 d/ k+ R5 Z/ H! `0 z& i' q0 z3 @end2 ]% m7 R: ?" }8 D8 d6 Y$ s! `, X
* C& a9 @4 H1 r5 X9 e
to update-class-plot
) a# G$ h1 L7 V set-current-plot "Class Plot"
) J4 Y8 J: O6 S# Y set-current-plot-pen "low"# J! v; _' l8 x! q
plot count turtles with [color = red]4 ^" I$ U. t7 U$ }$ H
set-current-plot-pen "mid"
; Z! A& m7 T5 X5 r4 b) x; Z: N* @ plot count turtles with [color = yellow]
4 b* q# Y3 U( I2 F. m set-current-plot-pen "up"3 f+ ^+ u8 n+ E4 e/ ^2 M& F
plot count turtles with [color = green]& D; u3 s' C" {8 R6 a. ~7 ^
end
5 U$ n8 x w* C& A- g2 I& h! v* u, H* \: a% A! [
to update-class-histogram
# n! ]: Q8 y4 A; c1 W set-current-plot "Class Histogram"
5 s( u% L3 S1 c* A plot-pen-reset* b/ h/ T" D0 i# k
set-plot-pen-color red' m1 S$ d8 z+ ~ m5 C* j% u
plot count turtles with [color = red]
, H: A0 R& p* C8 F$ [1 u6 i. ] set-plot-pen-color yellow' B9 u- s5 ?- l
plot count turtles with [color = yellow]! h$ X1 T! \7 T4 R$ p7 a1 p
set-plot-pen-color green, l/ \0 v2 ]9 Z e. l& r% r% ?
plot count turtles with [color = green]' L, z: U+ _+ x. {
end+ L% M% L" R+ T3 K7 ^7 Z
to update-lorenz-and-gini-plots* k# E, m$ j' g% o o
set-current-plot "Lorenz Curve"+ v( Z0 L" k F/ U7 \' F7 J6 h
clear-plot) Q2 z* {- ~& I2 H8 Y) R
# x. m2 d% F% D" A$ @: m: ^0 W: q set-current-plot-pen "equal"
) O7 X" B q* d( y plot 04 w; f5 H) h! Z, |6 J
plot 100: f/ H3 ]; }6 ~
( s, B! G9 a0 _( u d7 U- ? set-current-plot-pen "lorenz"
( ]0 s: l2 c: _4 N: e/ s, B set-plot-pen-interval 100 / num-people
) p: v& p% B( Z w plot 0+ s9 X n: k [) w, D
. F3 ]; p1 D. t" |3 \2 G
let sorted-wealths sort [wealth] of turtles0 E9 P( \6 s' @8 U4 Y9 W# k
let total-wealth sum sorted-wealths% _# h+ c" @5 j9 w. P% Z
let wealth-sum-so-far 0
/ O6 w, V( |, @- k4 f b let index 0! n2 \7 k1 J( a6 [; t' B7 P
let gini-index-reserve 08 I4 s; I+ O; `4 g1 `: `% R
3 Q; L# {4 C- e; A
repeat num-people [2 U# y2 a+ ~2 G8 x8 M
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
1 D4 q+ I2 `1 a9 S plot (wealth-sum-so-far / total-wealth) * 1009 `- l* q8 a0 D) a* E
set index (index + 1)
$ c8 K! e8 i, d set gini-index-reserve/ ~( i1 k6 Y" M' ]6 @
gini-index-reserve +
/ m8 d+ w0 v1 x, E1 A% m (index / num-people) -% z' x) d* l# v: ~
(wealth-sum-so-far / total-wealth)
% I& y- V8 T; I3 j ] |( ]- p8 o4 }- }
4 b% N1 E1 _7 h8 Q set-current-plot "Gini-Index v. Time"7 z3 t2 G: }9 w+ ]5 ^! ?: @
plot (gini-index-reserve / num-people) / area-of-equality-triangle
2 w% Q+ l5 @3 [: Dend9 _! K$ b; N) O7 v
to-report area-of-equality-triangle
. s" u9 g/ B, B c! ~+ a report (num-people * (num-people - 1) / 2) / (num-people ^ 2): i7 b! M" y- ?# P/ a
end |