请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现/ y" d2 }* Y. M: V
globals
$ _$ V- t$ K7 w& J; `* X[ q: h# h& n8 o( W7 Q
max-grain - B/ x% i+ V+ F
f0 E' E8 W, u$ j( ]9 X]
% i" {2 X! x/ P( S, e# l
% C6 P. o; j" O; R v+ Mpatches-own* ~$ E% ]' U( _" G) s# V% O
[
* A( b; a: t7 j9 N; e. \& E grain-here # [* u2 R1 a/ N! ~$ a
max-grain-here 6 N1 n. }/ ~3 ~
]
7 L) N* y% _4 H2 r" M- g: p# X1 E! T. a; u
turtles-own
2 {8 j+ L; v) j9 d; Y# I4 c[: M [3 u( n: B0 d" J; D0 L- r
age 2 h; y# a# K9 w1 d
wealth 2 U5 S$ O# Z) Q- L
life-expectancy
0 Q5 K V9 i. u/ O metabolism : s' r. {! G# B' T" G7 }
vision
& l4 C8 {- r2 k% Z inherited , C. U- E+ O0 X. `$ I
]
# v! {" G3 c9 L! o7 g
( B4 G% _+ d, s5 l4 n
* D$ V0 {8 D8 K% ]to setup$ X3 F7 V/ Y+ c8 X9 |" M' z
ca
v2 E7 K+ f: X, a2 p) D set max-grain 50
' U+ K# j9 c4 E- ~1 s% Q+ s3 T# n setup-patches' u# S' s3 K { S4 ?: m
setup-turtles! u$ c/ ]0 s+ K% {
setup-plots y# { L- Q- J4 q
update-plots
& q4 O" r; y4 K% R/ }end# H) X* O0 L, O ?! d3 L
to setup-patches
" \* b; `0 _; m ask patches
4 P+ t. ]" v, T [ set max-grain-here 0
2 c# i) W! A7 y8 o: S+ A if (random-float 100.0) <= percent-best-land
( }2 d+ u! m: n! D8 G* `( L [ set max-grain-here max-grain
. e: T$ {3 f- Q3 ]4 \" {$ g! Q1 @2 j set grain-here max-grain-here ] ]
2 r& n. B. d% e5 F& I: C repeat 5
3 y+ t- w/ w$ H# B* O! Q0 T7 O [ ask patches with [max-grain-here != 0]
+ \' s" W1 U8 h [ set grain-here max-grain-here ]: }( B! p. ~" |9 Q- K, D7 J4 v, S
diffuse grain-here 0.5 ]
# \7 h! \9 J8 \# [ f7 F0 z repeat 10
- q. \. J' v. N1 ~* J) x$ F8 p [ diffuse grain-here 0.5]
7 U; T, S% e+ G# J ask patches
% l4 K ^* ~2 c( a0 x6 O! Y3 p [ set grain-here floor grain-here
0 x2 x. Z! H7 k* L" Z set max-grain-here grain-here
* E- J. a& t( }% X recolor-patch ]" {+ r% X" O9 d9 e' C8 ^, {
end; Q8 J5 o: `- v9 \" n! k
to recolor-patch
& d9 p6 E' K1 Q$ N! D, V set pcolor scale-color sky grain-here 0 max-grain
* j0 c6 L( @4 S2 T- n. Yend
4 _: E8 R: ^5 A: yto setup-turtles5 h' _% y( { C0 F# v9 h @
set-default-shape turtles "person"! f& ~; ]4 u/ u( W D
crt num-people, t) e( o/ v. F1 i6 D
[ move-to one-of patches 5 R) P4 R0 f2 P) R
set size 1.5
/ O/ f* @- J- A, e& F set-initial-turtle-vars-age
' m- r7 E8 n5 z1 N/ U% w- Q+ L. k# g set-initial-turtle-vars-wealth
( o# F) Q* Y9 e' P0 W) I8 M set age random life-expectancy ]
% s$ s) ^0 X! F) J: `( T recolor-turtles
% @3 R: W! Y" c5 }. Send: w# R* q# R. x1 G E9 z8 t
; ]: I" u6 f! r2 p( s& Y
to set-initial-turtle-vars-age0 l" A# E0 x0 _) x0 i
let max-wealth max [wealth] of turtles; N+ {2 P$ t! n3 w1 s
6 w; ~* w3 H; F; |# ~' o ifelse (wealth <= max-wealth / 3); n$ e V8 _( h5 r
[ set color red ( P! a5 E. H0 H7 ~4 L7 I" N
set age 0
6 x& W* o7 \# N" ^* H7 X% { face one-of neighbors4 + r6 B2 G4 g% W4 |; N* i$ Q
set life-expectancy life-expectancy-min +# E) M$ `( i/ \" t- i, m7 @4 n
random life-expectancy-max 8 A. ?+ K9 k) a# `0 t2 p/ r; C4 T
set metabolism random 1 + metabolism-low/ |6 Z2 c9 o5 v8 L
set wealth metabolism + random 30
8 m, Q. Q7 U5 l1 D8 l2 q X! q set vision 1 + random max-vision
0 G* a/ u2 x ~ l) r set wealth wealth + Wealth-inherited-low ]9 S+ a( i: b# ~, {5 {, e
[ ifelse (wealth <= (max-wealth * 2 / 3))! H1 o) }, m8 F' s N
[ set color yellow " u) \9 k9 s+ X P$ U
set age 0. H |4 Z6 x, R# ], P
face one-of neighbors4
. `1 z/ B8 L1 W( d set life-expectancy life-expectancy-min +) }3 w: j9 U, g4 n% F8 T* M
random life-expectancy-max + 1
% Z0 Q- m$ `: _+ j8 L& H set metabolism 1 + random metabolism-mid3 n) R4 J' g% A. H; \" }
set wealth metabolism + random 303 P! f' {" \9 p! P
set vision 3 + random max-vision
+ f$ N) {, L0 g8 L set wealth wealth + Wealth-inherited-mid]+ R% x+ J) ?9 }& S$ O Q, N
[ set color green 1 Y6 \6 |/ s5 B* _
set age 0
. t* ~. [2 {3 D8 n face one-of neighbors4
6 y/ w. P/ b% B m2 C0 R2 g set life-expectancy life-expectancy-min +" m, R! i+ T, c- Q
random life-expectancy-max + 2
- D6 T/ Q6 f5 K/ C set metabolism 2 + random metabolism-up
$ i% X" A% G- | set wealth metabolism + random 30
7 o; [! I% [& \4 k1 M% N set vision 3 + random max-vision
* k% \ X2 h% u/ m set wealth wealth + Wealth-inherited-up ] ]
. D( X M1 q7 K9 M) N* b ! y0 Q, X8 o% b: B
end
$ Z4 C) z5 T8 Y' mto set-initial-turtle-vars-wealth
/ X4 S0 t1 i1 d. p, R" v4 ~; X. g let max-wealth max [wealth] of turtles
7 W" S3 z; N6 G8 P9 \/ ]2 O6 [7 [ set age 01 g/ d+ C' n- w5 X! K. A. m$ [
face one-of neighbors4
4 }! r0 |# a2 N$ g" y% v set life-expectancy life-expectancy-min +
) j* a. w$ {# I7 a4 F8 G; x3 A random life-expectancy-max 9 B: e1 ^4 l3 a. B2 N
set metabolism 1 + random metabolism-up
9 |' G/ N8 W8 E& q2 c set wealth metabolism + random 30- g: E" x# D6 J2 X9 ~/ ?. C
set vision 1 + random max-vision
8 Z- ^7 l4 Q& Oend
( j( I' ^* w0 @. z2 g" @1 z) @to redistribution
# M" r. W+ `: L. r& Ulet max-wealth max [wealth] of turtles' L# h0 @& [6 }7 _9 h& t
let min-wealth min [wealth] of turtles/ F4 R! v" B% Y+ r$ l
if (wealth <= max-wealth / 3)
( S# r P. p8 q! N; J8 l% X3 A' d [set wealth wealth + Low-income-protection ]3 g# o( D. k: n. [
end
( U8 Y! u/ S) U4 _4 J6 ~$ D+ w 5 n1 h* i- O9 H9 a- E
to recolor-turtles5 ~8 k8 L+ X' `" |. u
let max-wealth max [wealth] of turtles$ i0 Z2 h0 ^+ j: r0 a. u2 a& B! j
ask turtles/ i" j$ ^% U4 d- P7 @7 g, T
[ ifelse (wealth <= max-wealth / 3)
+ N! [: Z+ p# A$ r5 H$ a' \ [ set color red ]
+ X1 ~% v& n6 H- Q6 |# b [ ifelse (wealth <= (max-wealth * 2 / 3))
. ?$ M/ v* n* M1 {% y [ set color yellow ]1 c5 ]! J; U& g. s6 E4 i
[ set color green ] ] ]( e5 x4 g" z6 Q2 U
ask turtles [ifelse show-wealth?
+ z/ ` n$ q( F* J! ~( S3 m5 @ [ set label wealth ]$ _$ Y' {; ?1 M! }6 \( {! X
[ set label "" ]]- d3 E5 K9 C$ R
end/ g1 v: P( ]8 O
2 X6 E/ V/ Q) Q6 Bto go7 r( f! X: f; D9 @0 {
ask turtles {2 R1 |% Z' W; c* U5 t% b
[ turn-towards-grain ]
2 X1 T0 j1 Z, S }4 G5 Q$ u$ Y harvest
2 w+ S4 Y# ?% c' I ask turtles
4 z; F5 O+ m3 a' a& q [ move-eat-age-die ]+ T$ n9 \! P1 n9 ]
recolor-turtles! S, C1 `1 h* f# G: f3 i% R
if ticks mod grain-growth-interval = 0$ D8 ?; V6 [, N7 N) n
[ ask patches [ grow-grain ] ]$ {, L8 F% B& D
; \8 {+ Z; q2 F/ n if ticks mod 11 = 0
: C* |3 L K% G2 E [ask turtles% C' j4 |1 k6 l$ W& M
[ redistribution ]]& o5 B& A, q1 U8 N y& _; [8 q* S
if ticks mod 5 = 0
: E) e# z* d% k: P5 `5 ^ [ask turtles
P8 O8 ~/ x! X6 ^" h: S! z, P [ visions ]]$ v5 N& c( c9 j3 M8 X- B/ L
tick
" |' Y0 {4 e) L$ d9 J8 K update-plots6 I( b( q" m6 |/ k+ Q8 |
end% ?" n4 t2 M# k
to visions
6 @$ T9 a; j0 |, q/ c6 n set vision vision + 1 5 w$ [/ Q6 o- o6 s4 I
end
9 S( O: d7 H9 k; M! ^, ~$ N" y; f. R0 p; S/ _ i. k1 ^' N
4 D5 ?- P8 q- w" X
, d v2 S- o2 oto turn-towards-grain
: c/ x+ c! q' k set heading 0
6 i& k1 @ ^! [' a let best-direction 0
7 m$ y( i6 t& D1 |% `/ ^ let best-amount grain-ahead" Y) Q' h' K) ^
set heading 90; c' L6 r7 E/ t6 A4 y
if (grain-ahead > best-amount)* }2 t+ o0 v+ o0 G. }" b
[ set best-direction 907 u6 k, i) |' p. U
set best-amount grain-ahead ]
+ B* {! V9 {. o# ]1 J) s set heading 180
' v, w1 l) X, r$ A/ {6 b5 H if (grain-ahead > best-amount)
! [: Z( v: q; P- s/ h/ A [ set best-direction 180
$ Q+ h) l' b, M- X# U set best-amount grain-ahead ]
3 J: t- e! T1 C d$ P0 K set heading 270
& j1 p. o& k3 n& x2 A, c if (grain-ahead > best-amount)
3 \. T8 y# m" o/ `5 q+ b, _ [ set best-direction 270$ _% ^) Q' m- J
set best-amount grain-ahead ], @ E" t, z* [, N
set heading best-direction& P5 d* Q3 o6 A! o/ |8 L: S* k
end
2 C7 ]( G- I/ p4 J! {
8 V* X+ e: r" l( _& H9 j( `0 ~1 P5 v. C) B! e% U$ I! o
to-report grain-ahead ! v7 C9 b2 p- D8 Z. N
let total 0
/ @4 u. N! ~8 g5 \. j' V let how-far 1" j0 f/ o$ H. ~ H( y$ R
repeat vision
$ S$ n) \" Y0 X' K( P) N [ set total total + [grain-here] of patch-ahead how-far" [8 h- A# U+ H$ v/ P8 b
set how-far how-far + 1 ]7 Z. O" ~ z* b$ X: S
report total9 b f! J$ m+ J" J2 S- D* } W9 r
end* L: D% @$ z0 }. k% x
5 Z- i" K( I7 s( g
to grow-grain
6 ?& v. X# G) N$ N if (grain-here < max-grain-here)& P" L) ^8 T) h* Y- I7 E
[ set grain-here grain-here + num-grain-grown
' o- [; v2 J5 r if (grain-here > max-grain-here) - [* k/ k+ \( o0 V5 O! R+ f7 B, e
[ set grain-here max-grain-here ]
( x* y! f9 i8 k4 Z. E" P recolor-patch ]2 k& S+ Q( k& ^& o/ D* d: F
end
7 r' ?- u) d. l& I2 ~6 E: _3 v" Yto harvest1 S; n, o( F5 w- B6 C
ask turtles
, p, d8 J7 ~1 C* H$ J7 W- r7 r [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
5 P: o* l0 L/ l& m+ |0 z8 _8 t3 l3 B$ t9 z ask turtles
/ B) b1 [6 N0 x5 Y U/ f [ set grain-here 0& G- V4 V0 {* ~6 `; |
recolor-patch ]4 \9 Z+ k, g6 u
% T N2 w: b4 |end- a. C" n! J6 c! H* }
1 Y k, \! r1 R- K! v
to move-eat-age-die
' r" @- o, T: W* K6 ^# n fd 1% g6 V2 H5 T# u6 \% z) V
set wealth (wealth - metabolism). ` d9 @3 ^$ B% r4 q
set age (age + 1). F8 b2 T& C9 k7 w H5 d' w' m
if (age >= life-expectancy)
, v0 e: ?; f# G! g) u5 y [ set-initial-turtle-vars-age ]: o9 ^. X5 m7 @
if (wealth < 0)
+ {; b% G, u& ?" q! T+ }9 ? [ set-initial-turtle-vars-wealth ], M2 g3 E" |5 r. K- X3 S
% J# }7 w0 m' d1 B. P) B
end
' V& s( e- t& a
* p3 k' ^7 R: j! T, I
8 d! o# L, ~1 L+ q2 R" ato setup-plots
+ c/ D+ m. M% ^" r* u- Z9 u7 Q, { set-current-plot "Class Plot"
9 p9 x) _6 m) q0 z# ? set-plot-y-range 0 num-people
: ?! Y) B L. {' F+ g set-current-plot "Class Histogram"
6 J. X3 M# [% Z set-plot-y-range 0 num-people0 m6 ]9 e9 Z2 V7 `& h0 ?& C
end
4 {. M. C: i8 _1 ^: B* K: S1 J& x( {3 A/ b; `
to update-plots( ~# K# _9 M* U0 O' L
update-class-plot
: S1 P9 [8 q' `- e9 l9 N/ W: X8 t" e F update-class-histogram
0 x9 F% U& h0 S# O/ _$ N update-lorenz-and-gini-plots
8 E( M$ u: Z( p5 z7 ^# V1 \end: b4 D. R; J. x5 \3 X
. f3 h! ?, r: Nto update-class-plot
5 ]7 T( a' }5 s8 k# c6 @8 y% z set-current-plot "Class Plot"
! P- q5 ~# M* ]# r set-current-plot-pen "low"
& c8 S6 d8 P; I- e, Y' w4 D. C plot count turtles with [color = red]3 T2 F* X+ [# @) a0 `, A
set-current-plot-pen "mid"- a3 t4 c/ q+ M# |- `7 _/ x
plot count turtles with [color = yellow]
4 y- F* U" o2 R, [ set-current-plot-pen "up"* ]8 M' M, T. ^
plot count turtles with [color = green]
' |" {: o9 R1 u+ z: g* e* f- Uend$ S ~1 j$ h# z- O2 W5 q
9 U9 m, k5 N( a& `- ?. D" Hto update-class-histogram8 P) F9 M$ g. ^* r: [
set-current-plot "Class Histogram"
% u/ Y6 d: H! y% L+ u- M8 \! I plot-pen-reset( p5 b+ l$ ^) _8 Z+ g
set-plot-pen-color red1 H/ B, V8 d6 {+ [
plot count turtles with [color = red]9 ^8 l. A9 `6 d: F
set-plot-pen-color yellow
1 z" m; ], X" V# r7 | plot count turtles with [color = yellow]
p2 ]9 t5 d' k' x$ V2 f% m set-plot-pen-color green
! p# p$ b" X7 W- ]+ p% K plot count turtles with [color = green]
0 w2 j( w* V) A- n5 pend+ [% p8 s4 s# E: m8 {
to update-lorenz-and-gini-plots
: V! w/ |) _0 P& x/ m2 m8 {& f7 s I set-current-plot "Lorenz Curve"
4 G' _2 _$ Y2 B0 a0 p clear-plot
@0 R* b0 `( ], t
; C; ^6 h7 R" d set-current-plot-pen "equal"
% B2 Y' x* `( I; { plot 0
/ c) W, o' z1 d+ V plot 100' a) _1 s! Q2 d, F/ `; Y, u! G0 h
! @) i8 A8 w% a+ | P3 } set-current-plot-pen "lorenz"
" O8 [1 ~ w: b! O6 X! w Y set-plot-pen-interval 100 / num-people) l/ u1 r+ O3 p( R
plot 0" x4 a/ K& `/ a. C
& _$ ?+ h8 _3 M4 r/ L. [1 M0 N
let sorted-wealths sort [wealth] of turtles
) {3 r+ z6 o% J/ | let total-wealth sum sorted-wealths' R- O& E- y# j& W" v+ U* D
let wealth-sum-so-far 0& p0 b+ @1 H8 E G/ [
let index 09 K+ p0 }! M+ E$ M- U: d; ~! J
let gini-index-reserve 0
* L1 @2 r" q2 b4 ]0 a( t3 {9 N. T3 s) W& U* f" {6 o2 o# `
repeat num-people [
, z& _. n2 ?2 D2 E3 D8 q& V( Z set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
) I. R' R( y) r" ? plot (wealth-sum-so-far / total-wealth) * 100
1 }/ I5 d# B' u3 `8 o' w! c! J set index (index + 1)
5 z# e0 f, i9 |. N- w! `9 G set gini-index-reserve
- ~" T5 k$ f ^# t K gini-index-reserve +4 m, x/ F- d4 b& P9 t" B& v m
(index / num-people) -
/ U) `0 J9 f! v5 \3 p (wealth-sum-so-far / total-wealth)* r8 [2 a' A: j2 ^
]
, f V( |- ^9 A# W/ y4 i% W* V2 ?: ~2 q
set-current-plot "Gini-Index v. Time"
4 {4 ~1 C5 x8 a plot (gini-index-reserve / num-people) / area-of-equality-triangle0 A4 P4 H4 W/ \& Q
end
0 Z( e9 ]7 V, \to-report area-of-equality-triangle
* m. s7 Z( A* ` report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
0 u2 m k+ C6 l: y* |end |