请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现$ e! B; P) h* ~, \/ A& Q/ y
globals/ p( f7 {! {( A+ ?4 Z
[
6 h' ]% Z- A/ b7 m( R! Z max-grain
]: t1 ?* A6 I- X: z. T0 p" b z$ y$ C. {. r
]
$ X ?. S/ [& ~
4 L u" d% h1 |* @7 t* ~, |patches-own+ q* G7 w* Q+ I1 A0 e
[" J# O) k+ f) d Q
grain-here 5 j; D$ K5 O5 v5 V) K. m
max-grain-here
9 I. p. t: [5 w3 s8 E! P9 Y]8 L3 i) f, s B0 z! R% |
/ H6 ]# d6 }* R' Q! W1 Aturtles-own, M7 w/ k) u0 F/ v( W" F
[
7 E3 m4 a3 a# D) m5 [ age ' ?* W; R, h2 f# f" T+ d
wealth # C3 k( f1 |! B1 b# g
life-expectancy
& o/ H" @, }. a+ X$ y3 a1 l metabolism ( F% m: |3 ^7 L: H# C Z
vision2 u$ i% O# k) n D0 @0 Q1 A
inherited
1 c9 j8 ~/ h, a+ C- x9 M]- D7 x, L( W3 \0 B
- `( f, o* r' a3 B I- }! i8 P
L9 b1 r: z2 y% ]* Rto setup
8 ?+ m# K3 z' ] ca+ R& W- P% Z2 q6 a
set max-grain 50, U. s% w' h+ l* H. N2 f
setup-patches. A# v8 @% i; c r9 g
setup-turtles: M4 P1 v" |' ?2 N
setup-plots
3 a/ z1 R. ^# N; x0 Z update-plots. C! s5 } q0 y, d4 U
end2 _9 h1 s/ o$ s+ q# _
to setup-patches
$ M/ A5 S. n; X: J ask patches( k b* h* h" y3 R2 M- O5 C6 r
[ set max-grain-here 0: L: D5 t) e- ^7 ~) D# p0 u2 D
if (random-float 100.0) <= percent-best-land
, S5 c! s- A- { [ set max-grain-here max-grain Y. v o9 l& T4 D7 W
set grain-here max-grain-here ] ]
. P5 E2 X7 a+ K2 w! L! c8 [3 D; B repeat 58 a+ u/ Y5 e, \ x8 d& Z& [8 q
[ ask patches with [max-grain-here != 0]8 B* E8 B$ v4 g5 N M' I
[ set grain-here max-grain-here ]
# l8 D% x, c4 n* r: ~+ W q8 T) w diffuse grain-here 0.5 ]: J3 P, t! ]! t
repeat 10! O$ O& i) l. [5 t4 x
[ diffuse grain-here 0.5]
; `6 |$ X; {, T2 X I0 R& v' ? ask patches
3 z+ _$ R; ^+ E$ Y: P1 |& x/ p [ set grain-here floor grain-here
, ~, x* a3 ^7 E u' j set max-grain-here grain-here 8 R% Q; J% O( g$ Y& K9 p; p
recolor-patch ]+ e8 C5 g9 Q- _- c$ W: e
end
+ q( I6 J& a, _9 X5 |to recolor-patch
. [' Q7 e2 I1 J$ ] set pcolor scale-color sky grain-here 0 max-grain
, j: B- B3 D8 R3 D2 W4 g/ \. Oend
* Y* s; Y$ n \' Uto setup-turtles
# ?$ M. G7 Q4 u7 w7 \ set-default-shape turtles "person"# g6 v" g- {2 G$ I* a
crt num-people
6 r ~) N2 c- z6 v) a& k [ move-to one-of patches 8 F$ |' G5 x: ~8 V+ D0 V
set size 1.5 ( Z0 Y" w" v0 A0 q% ?0 I+ S
set-initial-turtle-vars-age! h4 f6 v% t$ C( i- H
set-initial-turtle-vars-wealth( l' M. s% h1 F# _! }
set age random life-expectancy ]( a1 O* w; L0 U9 k8 l6 N
recolor-turtles
* m: I1 ^3 t7 u. l- cend
* b0 f! w/ H2 W9 s1 n7 x# ~; L! w* t% L; j9 ^4 ? f3 L, h
to set-initial-turtle-vars-age5 Z8 B5 V, L; |7 K+ F
let max-wealth max [wealth] of turtles
& u/ v' k# D' {! v
, X* M) B: {4 W% g4 f$ F& W ifelse (wealth <= max-wealth / 3)+ \4 g. p$ u5 Z, P4 U. @
[ set color red
( Q' S& {+ F( f! @/ \ set age 08 q# Y2 u7 ^" B* m
face one-of neighbors4
; m- W6 f: x S$ u( u8 \5 F set life-expectancy life-expectancy-min +& J# F, s* [8 O' v+ G
random life-expectancy-max
7 k* p& J0 x4 V set metabolism random 1 + metabolism-low# b+ T! F2 J S" a( q5 C
set wealth metabolism + random 30
; a7 J& o- j, C set vision 1 + random max-vision- O- b% | j6 O' k* c
set wealth wealth + Wealth-inherited-low ]
$ l. w g8 M$ k3 E" H: N1 G [ ifelse (wealth <= (max-wealth * 2 / 3))2 B* l5 u s2 u7 {1 `0 d
[ set color yellow
0 k1 Y3 U v2 r set age 09 ^# Z0 N/ ]$ c' j, h
face one-of neighbors4 / u i( [! F3 t# `- R9 u! a; t7 H( ?
set life-expectancy life-expectancy-min +
# Q# r; |0 {; F; n* d random life-expectancy-max + 1
- l1 f; I* z" M* c# I3 V& w* k set metabolism 1 + random metabolism-mid
/ V$ D0 e; b3 Z! q, z; T, p set wealth metabolism + random 30
# t5 b1 v* e- Z. ` set vision 3 + random max-vision
9 v+ V- d( h3 N" w) ^/ O, P1 M4 n set wealth wealth + Wealth-inherited-mid]
% b0 A0 [; ]. Z6 D7 F8 y x7 D [ set color green
" E1 ~. o2 k4 D, B+ l; ? set age 0
$ y6 G# J2 `: K c face one-of neighbors4
$ V: x |6 b6 f5 _4 M( I# ~1 u set life-expectancy life-expectancy-min +- m+ D: }! n4 i m& r
random life-expectancy-max + 2
& m6 a/ j1 i3 _& y2 u2 w( V set metabolism 2 + random metabolism-up
F' N; D% z m: i9 x set wealth metabolism + random 30
8 L8 J% \ w P" V0 ~2 `" J5 K set vision 3 + random max-vision
5 `* V4 V" q" |* ] Y set wealth wealth + Wealth-inherited-up ] ]
; u3 O; p' L9 i" H0 r % w. u6 z) z5 @$ U4 i5 l; v
end6 M! D: z$ @0 j, M3 Z5 t
to set-initial-turtle-vars-wealth! Z' R) h: [! l0 f, O
let max-wealth max [wealth] of turtles# J! E2 n* f/ c
set age 01 ^) X5 f8 @5 ?1 Y" {+ i5 B
face one-of neighbors4
! l& ?- N5 E& L" e7 Z9 w. b+ q set life-expectancy life-expectancy-min +( O2 y7 y% R) z4 z
random life-expectancy-max 2 o! c' E) b& o" ?1 q/ b9 N
set metabolism 1 + random metabolism-up
3 Q6 |8 d+ C, d: e set wealth metabolism + random 30( Y+ [7 I; C6 ~( }% Y
set vision 1 + random max-vision 2 _: _* U2 Y) J2 c
end
, P) ]0 N$ o1 y2 W X; A& vto redistribution
i6 u; A& {* [ J' C9 }) ?let max-wealth max [wealth] of turtles ^" z O" _% y
let min-wealth min [wealth] of turtles" Y% I1 m; v2 E4 @
if (wealth <= max-wealth / 3)
2 p, Z$ x) j; {* y( n1 H ` [set wealth wealth + Low-income-protection ]3 ~7 z! J; m' r( T) s' k" g
end
" W3 M; S9 ^ ~) h& W$ ]: } 8 F) K9 Z5 I5 q1 ]3 ~
to recolor-turtles' `; h e0 k# R
let max-wealth max [wealth] of turtles
7 t2 _+ P+ ~3 Y( r ask turtles5 r7 }# T# R6 E* L+ u" Z
[ ifelse (wealth <= max-wealth / 3)& B1 f e3 w5 M1 v
[ set color red ]& i7 D" j) J2 C% D
[ ifelse (wealth <= (max-wealth * 2 / 3))& u7 Q% \4 ~0 v( x6 P1 G6 q
[ set color yellow ]
7 h2 A8 d3 X4 P- R2 z$ z: d [ set color green ] ] ]
' y+ P! n/ ?: f+ d ask turtles [ifelse show-wealth?% h, Y9 J. r& o# Y* z
[ set label wealth ]4 }1 S6 F' V. g' M
[ set label "" ]]9 e/ p# T& x! w3 L: B O
end
! h! _' P4 `0 k8 C- E) e+ {1 k
. G) S( x; k# f% d5 z6 e* w* Fto go
* }% i' t$ Q6 \; `7 ? ask turtles- V' i# G% m* `$ Q0 J
[ turn-towards-grain ] 9 b9 U% D/ x: t. Z ?( t
harvest
9 ?# _: X! V, f9 a; A3 @& O) K ask turtles; ]" }" f3 C" m9 c' l
[ move-eat-age-die ]& T! L$ t( ^* l- l/ w
recolor-turtles
c, \. l A5 \9 U- {. B, w if ticks mod grain-growth-interval = 0
+ q+ g1 \: G' V H& \ [ ask patches [ grow-grain ] ]
2 `3 g' F, f: @1 R' b% F1 d0 e
# o; y( ?2 s3 j1 U, W if ticks mod 11 = 0
" b+ M* B) x: V7 W, K/ M7 @5 o [ask turtles
3 n! m( M* z O3 C! ` A( ~! J [ redistribution ]]7 z7 Q; K: ~( y2 X% x
if ticks mod 5 = 0
/ ^) b5 |) T L) W/ v [ask turtles
$ o( { F( T/ _6 p) D0 [0 M [ visions ]]
% B6 f7 P2 T9 K4 @7 G tick5 a* P% E0 C2 L1 ]: H
update-plots
7 `. o7 v4 N4 |% N* z! _; Kend: M \ {: ?% @( q0 R
to visions; W% l/ X4 e6 o9 X
set vision vision + 1
0 g$ r* Z* ^2 g8 F/ `- a$ v: R7 tend
& ]' d9 |* Q/ m; P& `
k7 s7 L2 Z! | B
1 k2 y4 o2 z3 ~0 i" f8 t' n2 q ^ S1 P& j; s& z
to turn-towards-grain
3 x1 n# z8 y* z' t* m. D set heading 0; v B0 G; X: j
let best-direction 0
$ f$ l3 x- D& c1 U2 O let best-amount grain-ahead
" N( A) x/ c8 L9 v! p8 l set heading 90
M& ~; f$ M! q if (grain-ahead > best-amount)
# E( w+ i+ N3 o# D1 o, P [ set best-direction 90
6 [& L4 i! B8 w/ ]/ `2 g set best-amount grain-ahead ]; K; s" l4 J/ H+ @( k
set heading 1801 H0 ]# y$ i7 j- s" ^* }, T$ d
if (grain-ahead > best-amount)+ ?* O$ @# B5 f5 e
[ set best-direction 1804 _" M+ a6 |: B; N/ _. |
set best-amount grain-ahead ]0 j7 V: E) L) C5 R0 s0 z
set heading 270+ U; L+ W1 q% G. X: ^
if (grain-ahead > best-amount)% c- j# [: q% z. p4 k/ ]
[ set best-direction 270' {/ z! Z+ X% @ ]3 ]
set best-amount grain-ahead ]" ?' \" p( P2 H, R( Z
set heading best-direction7 f4 v% ?2 N9 u- W
end5 h+ i. {$ n: k# u
& j- A) |3 O1 x7 A0 _$ U/ z! I+ ?( g6 }, i
to-report grain-ahead
# S" y6 @+ ] i! |! | R! o# e let total 09 J2 g& p" X) Z! }6 a
let how-far 1
. R7 R, p0 \8 R) R& W9 K3 H) Q! t( H. I8 l repeat vision& t% {4 V8 K" z3 Z5 f
[ set total total + [grain-here] of patch-ahead how-far& h9 i5 t6 r( S% P8 u
set how-far how-far + 1 ]
; X' d9 j: p/ `& `1 F& g report total
+ O) b& [3 Y/ y8 H* D8 dend
! i( N( s' A" Y3 g7 i# ~: ~. Z7 W9 K
to grow-grain
' U+ |7 n; B$ m. k& Y4 Q3 m if (grain-here < max-grain-here)
3 F) u1 d: n2 z1 j7 Z- C! y1 z [ set grain-here grain-here + num-grain-grown
5 A4 y3 c' L- t! `" P) y# S if (grain-here > max-grain-here)
! D4 @7 P: b+ i6 ]: x3 c0 a3 S [ set grain-here max-grain-here ]
1 O% B$ S' |0 A, J1 u( |: e" y recolor-patch ]* M9 K4 c; R" N) q5 @1 Y7 x
end c$ \/ R: p1 \- m* l! C* }
to harvest
0 Z. E+ h$ R s2 v/ v4 g ask turtles
9 T6 o* }+ V0 u' N7 c0 M [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]! p5 i- Q0 R! q9 z5 [: `
ask turtles ]( R# J) M4 A6 A- w3 ~6 y. v
[ set grain-here 09 H% J" r6 S1 K) { E
recolor-patch ]0 M' R" W& d1 j( Q: g. k, a+ A0 r
3 O5 z" p+ ~& O* N, X
end& B0 k% N$ R% J6 d" ~4 ^+ e
% R0 n2 p5 N* y$ j
to move-eat-age-die
2 |6 K' K* ?* Z1 z* ^; b5 |: H3 V9 t fd 1
- T- l1 g$ g, \6 X( C set wealth (wealth - metabolism)
" D' T& D+ z( u @; L set age (age + 1)
p2 S+ \3 p5 q& s6 L if (age >= life-expectancy)! ^' X4 r8 q8 s) ]
[ set-initial-turtle-vars-age ]! ~" Z8 z: k2 l" g0 _% r
if (wealth < 0)
# B# N. Q+ b/ ^; u. x x C [ set-initial-turtle-vars-wealth ]" h6 k; e( t" M f* y- l
' N6 E9 M0 F+ [8 q* ~$ aend1 B" M1 U3 A, v, p
5 A; E# X! M0 w$ x5 \* K6 v) c- W8 z ]$ O% W
to setup-plots
+ q$ m) ?1 m# ^+ v0 u7 F+ L set-current-plot "Class Plot"
' v& o, n( s; X1 h set-plot-y-range 0 num-people
& R" z% V: }5 j0 ~- g" b set-current-plot "Class Histogram"! h9 U$ T% T5 l; B1 `
set-plot-y-range 0 num-people
3 l1 A* I" x9 [. R1 u+ M2 fend
! M/ x7 M3 l& f5 k! p1 c; H
) z2 P: [3 p: M& m9 n3 nto update-plots: ?( T" i8 m* ?0 E. V0 D* Z
update-class-plot
& L' ]/ ?5 B! ]# D0 C' f update-class-histogram$ ~5 f# L8 `: _
update-lorenz-and-gini-plots
; N2 o8 H9 I. x" Q2 M# \9 qend7 o! Y0 k" ~8 ~: b5 J- q" S3 ?3 m
4 P {0 e8 M- J% t7 l' Q
to update-class-plot1 g4 q( v% T' a* C8 j
set-current-plot "Class Plot"" m; L; _" b. j& S0 h" H. C, x; Y
set-current-plot-pen "low"
4 l$ a. n7 Z; e/ b0 F plot count turtles with [color = red]% R3 G% L( O: ?$ R# K
set-current-plot-pen "mid"
1 O& {# T) v4 _7 M# V( q plot count turtles with [color = yellow]
8 y' _' L0 B9 G set-current-plot-pen "up"4 a0 F/ d1 { X$ u* J
plot count turtles with [color = green]& U. W I" @/ q# I9 p: \- ~
end
6 L2 D* ^( d# J2 K+ Q3 E. t+ [1 G- F; n& d& ]
to update-class-histogram2 @+ @2 k1 |0 X) ]0 w4 P
set-current-plot "Class Histogram"' B7 d/ s, ]: [
plot-pen-reset
# C8 ^ x/ z# ^' q1 v8 y set-plot-pen-color red
2 L7 |* o( o& P: N1 a plot count turtles with [color = red]& o, ?, I8 O) w8 e- H( k
set-plot-pen-color yellow
2 s; X0 B+ m' C3 b7 ?- q' G* P8 [ plot count turtles with [color = yellow]
, N5 S- r. X! e* B" z+ H2 T- | set-plot-pen-color green
- ]+ p5 C/ A' _3 x8 K/ k plot count turtles with [color = green]
$ n4 G( {# A% p( I2 k1 k/ r) `* Hend* K# @7 C# B1 ]* B% Y! U$ g
to update-lorenz-and-gini-plots1 O" X: q0 p% C6 y
set-current-plot "Lorenz Curve"
0 W1 f& C5 l* f: i0 { clear-plot! }% g" R$ w( K7 x! Z
0 o' S3 c+ Z7 ~$ X7 k+ X- P# Q: y
set-current-plot-pen "equal"
Q e" [9 x3 b( T5 x plot 0
' n+ j, x3 g( h plot 1000 H; H3 w+ C* V: C5 _4 y& }. A
7 h" i/ n1 C% Z: ?- Q8 F5 R( @, r set-current-plot-pen "lorenz"
/ _+ |5 l8 u6 m! _ set-plot-pen-interval 100 / num-people
* q' I1 i' _8 [+ J2 Y' _ plot 0
2 _$ f7 i* Q W+ q- G4 r" b) ?
$ ~0 E2 [4 \% S( h let sorted-wealths sort [wealth] of turtles
1 }' B2 W5 b$ |! ~0 U( [# z let total-wealth sum sorted-wealths
+ P. M( E+ U4 `& K+ l let wealth-sum-so-far 0
8 g" e2 m' L7 T. E3 g1 J let index 0. x$ v7 y: C9 k1 }9 Z/ Q$ g( H
let gini-index-reserve 0# I d: I: k3 X" t) b
# c# s- ~$ @% E- h6 B* w
repeat num-people [
% N+ i& u- M) ?/ p8 \6 S1 e- E set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
0 a& g3 E* h/ \# \- d/ { plot (wealth-sum-so-far / total-wealth) * 100
2 ^: G X5 R+ U; D) a& a set index (index + 1)
! I+ o' i3 t: B' T# Y' I9 [ set gini-index-reserve( _+ V3 m: s# E2 _* Y k/ ~6 I
gini-index-reserve +
8 @! @9 h. o p (index / num-people) -) r" d8 b; D9 ]; R
(wealth-sum-so-far / total-wealth)" t$ A0 P# o: t6 I) Y# h" ]3 j, E
]; t3 k7 H; R4 L0 ?3 ]
% K) X/ z5 v) [9 V+ |) @2 e set-current-plot "Gini-Index v. Time"
" J3 ^! g( D! C- v7 R" i plot (gini-index-reserve / num-people) / area-of-equality-triangle
" E T* h, S( bend
! _$ r( o) }+ h( k! I5 L sto-report area-of-equality-triangle
1 c; j8 m3 R+ `4 W* U9 p" o! F1 |' \ report (num-people * (num-people - 1) / 2) / (num-people ^ 2)* j1 w( i U/ B& S h, r5 z
end |