请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
5 C9 ]; X4 S: ?- k+ y! dglobals1 M4 O% O8 w3 m
[4 H# z. P1 Q; Z" ], h% G* _( z
max-grain
* c3 J; q) P/ [9 T# M0 y: r) O3 k/ G( n% D3 c. `
]
( |2 w9 Y* M G
7 w8 C+ G, t5 g( npatches-own
6 |6 L4 H6 \; X6 V4 L' P+ {3 K5 _[
0 K+ e; a0 Q* T3 V6 b grain-here 6 [/ N; q' h+ t" @
max-grain-here
; F. X: _+ m$ M1 a3 g]
# |# W$ T* h; O$ ?7 I$ p0 C4 u' t. T" _! E P
turtles-own
& y% K, E5 G( ?. U[
! |2 r; h& `! E0 |5 I. h age
7 b- l1 [8 j, L" z' O wealth 0 K( E5 X& |1 H# D/ ?
life-expectancy
( \) {0 |. h. w& g% }% h [ metabolism
! O4 `$ v" k/ W/ |$ o vision5 H/ z. v+ V9 n" z0 G2 M0 ^
inherited
: f. ^# H; [2 Z( ?7 Y7 D]
. Q. @& w% q+ x: R
1 B; S& p5 h$ u/ H% Z6 l! Q6 ?# r* X2 C0 q4 |1 {4 O- [! G
to setup
4 s0 o8 ^6 H! z2 S- M ca
) i3 @, X, \8 k( A* p- A set max-grain 50: e! x& S, P4 }% H- c# m
setup-patches
6 ]5 Z# p. v4 | setup-turtles0 D1 R9 Y, p: n% `) F
setup-plots
9 [# l: q9 ~- }! {% r update-plots
6 g2 x+ D |: dend
: [: c7 |0 ]4 H2 c" G ?: yto setup-patches
. p/ t8 d! X w ask patches
) T' b6 X1 `9 g8 F; M [ set max-grain-here 0
. G9 D7 g& ?$ x6 b if (random-float 100.0) <= percent-best-land c; t$ p& {) C' p% s# O$ f
[ set max-grain-here max-grain
. q0 E; e- o( p9 m- ?( u+ ` set grain-here max-grain-here ] ]3 L9 n1 D0 g7 Q) S5 ^$ r
repeat 5
& S: U: B/ j# g, Q4 ]6 z T [ ask patches with [max-grain-here != 0]: T: W) d3 g& h9 }) x- A8 H- z! L
[ set grain-here max-grain-here ]" f( `. V7 A/ b! z R7 V
diffuse grain-here 0.5 ]. O5 O9 J1 _& q$ ?: I
repeat 10
+ N9 p- J. Z. Q! t o [ diffuse grain-here 0.5]
+ w; ^1 o2 K. ^1 B# i( Q ask patches
; s# j& x9 o; i6 \ [ set grain-here floor grain-here
' n5 V# I7 T0 w) F set max-grain-here grain-here ! k0 R3 s) D2 s
recolor-patch ]" q2 ^( I( H+ C! p
end! K J) S! _9 H3 M) X j! h
to recolor-patch
$ [& P" x% x9 O9 ~4 p& z0 \ set pcolor scale-color sky grain-here 0 max-grain1 @* ]$ M% G( J( B+ Q
end
9 f+ C2 {0 u8 {# W+ Q0 R# \to setup-turtles
+ h$ r& @/ R `7 K" E9 Y, Z% _9 q set-default-shape turtles "person"/ l" q: ~8 r$ w1 ]
crt num-people3 y+ ?& K. b) |% k9 g* ^- o
[ move-to one-of patches
/ b' J5 l: U; M- k5 T set size 1.5
8 j/ e: A" X+ ~# b7 C2 W% U set-initial-turtle-vars-age
/ ?( c+ J8 s0 d: D2 C5 Q set-initial-turtle-vars-wealth0 S8 I- U% Y" o+ m- K& W; F+ Q
set age random life-expectancy ]
, e* d8 N+ C' ^ recolor-turtles
2 t& q! Y( t0 a; dend9 o" H( P' k g( l. O) ^+ |, W
( d+ U |0 c1 ?
to set-initial-turtle-vars-age3 y U0 m( x& V: [( o) S
let max-wealth max [wealth] of turtles
2 w) K- a. R0 u+ N. M + t5 B+ [$ o p& w7 X7 B
ifelse (wealth <= max-wealth / 3)
6 w \ S8 i4 t. H. p1 o" N5 m [ set color red C4 l2 b1 @6 ?
set age 02 `/ c- y }; u; t/ p8 A( `! n: K. F
face one-of neighbors4 5 q( x% y5 ?* m5 S8 D3 a. Q
set life-expectancy life-expectancy-min ++ W3 |7 l# @( S
random life-expectancy-max
, L, V2 I5 a- w* ~ set metabolism random 1 + metabolism-low; p! N0 m; z4 |' o1 N# V$ V: x
set wealth metabolism + random 30
9 m+ y% Y8 ], ^5 I" d set vision 1 + random max-vision+ q9 E6 e9 G# u6 r
set wealth wealth + Wealth-inherited-low ]% g H6 R7 i7 j- G8 G4 H# k
[ ifelse (wealth <= (max-wealth * 2 / 3))
. B8 j. e7 v2 c0 f [ set color yellow
: e7 L! _( [- P! `8 ]* [+ C set age 0
( y" A* _, e2 [! M face one-of neighbors4
2 w2 S& G4 @7 P. z* j( n6 n set life-expectancy life-expectancy-min +5 j" \( k% {$ D
random life-expectancy-max + 1
- [6 y' A" [1 i9 V7 Y4 m% Z6 e set metabolism 1 + random metabolism-mid
9 K/ ?; f7 W6 [# l: \/ c6 x set wealth metabolism + random 30& F+ y) Z! Q O
set vision 3 + random max-vision0 G2 t& |$ [: K4 X! x
set wealth wealth + Wealth-inherited-mid]6 [! v) P; k, @2 u4 ?* c5 t
[ set color green
% `4 _* H% n) h. P9 G/ e set age 0# M7 H/ n) A4 Z$ _6 a7 l' Q
face one-of neighbors4 4 |9 |* [: w1 T$ i0 d0 {
set life-expectancy life-expectancy-min +* S5 q7 Z& H2 T. e/ l4 k
random life-expectancy-max + 2
2 K+ X4 K. h. E! f2 i0 [$ U6 d set metabolism 2 + random metabolism-up% U9 O D$ F' c0 o' p
set wealth metabolism + random 30' p6 |1 G+ o6 ]; {
set vision 3 + random max-vision
! J* J- K% H0 }$ G# ? set wealth wealth + Wealth-inherited-up ] ] ' F. c0 ^( y6 V* v% ^$ a
3 g4 U; _ s- A- U/ u) W
end
+ e. W6 x; w3 B* r; Eto set-initial-turtle-vars-wealth. ~ N X" e$ H5 o# ]
let max-wealth max [wealth] of turtles
) I# e$ L6 h: m$ J: m, |2 W" G set age 0- |! S( z. \& n3 b& \8 w) Z
face one-of neighbors4
& m1 _% a( C7 E5 f1 A set life-expectancy life-expectancy-min +9 w! Q, J# U9 Y
random life-expectancy-max
0 V1 g: X2 F" @& s% o" u set metabolism 1 + random metabolism-up
! x' E& u: k# J& n4 d set wealth metabolism + random 30
# d0 G0 @! a' w0 w8 h set vision 1 + random max-vision
% F6 a" R v9 ]! _end7 ~! [ A& V& v! Q
to redistribution
0 s- j* p' R2 m6 e- N7 c( qlet max-wealth max [wealth] of turtles4 c. O x' i+ @) E2 p! I1 |( c* ~
let min-wealth min [wealth] of turtles3 d; q+ g5 m+ ~8 d4 n
if (wealth <= max-wealth / 3)
* y" k4 K l7 O; p3 q9 a [set wealth wealth + Low-income-protection ]7 Q8 G* n' n5 a9 o- B% [0 X
end
1 ^4 ]9 a+ d" E% z; ^ $ x5 |- A: B; t2 U
to recolor-turtles! O. A3 G4 \9 X
let max-wealth max [wealth] of turtles
5 F3 g: J! m/ N: ~# q ask turtles5 W. s7 {% z& F; K1 [
[ ifelse (wealth <= max-wealth / 3)# r" c( g6 Q! n( j5 g* R. J0 S
[ set color red ]% v$ [* z/ U, d1 ^4 z
[ ifelse (wealth <= (max-wealth * 2 / 3))
! x0 d+ U( [0 i6 r3 ?- m( i [ set color yellow ]0 k' f- A( d* M+ ]/ n
[ set color green ] ] ]
; w, e. b# t) }, H- d ask turtles [ifelse show-wealth?4 q/ ~ U' x( w
[ set label wealth ]8 B# ] x6 X& G# y+ E+ c
[ set label "" ]]2 p4 e* q# {9 _# G7 Z2 M
end
! ^, z; M; \% l( C% f& }
/ n K) O, a( cto go3 ^( P' e4 j( L
ask turtles- O0 b# t* m+ b
[ turn-towards-grain ] ' h' f* M) f" o$ E6 R( C r
harvest
0 {0 `) ]- ^% K ask turtles
8 y) I% b) k5 P. q5 s [ move-eat-age-die ]7 e: z$ g1 ?& r& z+ t3 h
recolor-turtles
4 h+ K7 V L9 ^$ ^8 l if ticks mod grain-growth-interval = 0( |7 ?9 i3 Z6 C8 U7 e8 u, ^
[ ask patches [ grow-grain ] ]3 _! b% i3 h# e. H% `/ G7 W) R+ t _
9 w R: `' M$ p' {! W
if ticks mod 11 = 0% \; f- G! c4 h/ R$ z+ L5 `
[ask turtles2 s# m N& V5 D* R$ G; F; R0 p
[ redistribution ]]
6 g* O4 B9 ~( \* ?; V if ticks mod 5 = 0
" \. N# ?4 a j9 x7 I' j% o [ask turtles4 B: r$ P7 l) z+ i% j% X7 K% o
[ visions ]]! u. n2 J- L5 O: Y' _- T4 [
tick+ M- m( u% R; `# |0 q5 v
update-plots
: U+ j6 k! T* N/ m) Bend4 L( y7 W: G4 y7 r" U1 H. w' t. G
to visions6 g5 `* v4 P* s* J
set vision vision + 1 " t9 n, O! Z8 E3 C7 D) ?* w1 ^, u/ q* D
end) U: I) T2 C* e4 D
( @- l, g: B- x) O! l( T
( [) e& h! q( b: j' w6 U/ {
/ d& n* E# ?: \4 lto turn-towards-grain
5 s( O& Q9 K3 i set heading 0% p; ?( S% z7 {4 F: N. ^
let best-direction 0
7 \# d8 k% u3 U; h I. x let best-amount grain-ahead7 ?" K/ p7 R+ Z, O( ^: r
set heading 90
3 x" H; ^" Q" Q. b9 C" _ }" k if (grain-ahead > best-amount)
0 `. w; b7 r) h0 P; e P [ set best-direction 909 }2 Z7 W5 K" b7 ^) ]; m
set best-amount grain-ahead ]$ {6 W3 U& \* I
set heading 1802 a' L1 D$ Z M1 @
if (grain-ahead > best-amount)
" X- O1 W. [. X, y8 i" i [ set best-direction 1804 s$ v; p, n4 T5 y3 a
set best-amount grain-ahead ]
$ h7 ]$ m* [: {9 u set heading 2703 R9 l" Y1 Y$ i6 W0 T
if (grain-ahead > best-amount)' n$ o; K8 q0 U0 e
[ set best-direction 2705 C% `! n9 K9 }/ s3 Y, @$ G# U+ P
set best-amount grain-ahead ]
) x- w; a, F5 V8 ^( d4 b set heading best-direction
/ D/ g( W2 n6 f$ C U8 {end
8 k. \# V! I" C8 \/ @2 X i- ~0 h. E! X) U) [$ u( N$ N& T5 h
/ N4 c C' r2 _: c5 G) q5 Pto-report grain-ahead $ g3 M7 O" S# v( ?# m1 m
let total 0' y9 J; K$ ^8 i; c2 o+ |
let how-far 1% u. k- e# s# r. x
repeat vision0 J8 i6 M( m p* q% L1 w$ k
[ set total total + [grain-here] of patch-ahead how-far- m# U N8 N/ E
set how-far how-far + 1 ]
; |1 w, b* e0 i3 S8 a report total9 f( p j7 z# E# {9 H a7 m2 E
end9 x: {# `5 E8 `' \, D
0 t' a0 `8 A5 t
to grow-grain : C% l( M2 U* b) Z% D2 [
if (grain-here < max-grain-here)
$ U7 R, S; H. T* y, i R [ set grain-here grain-here + num-grain-grown
3 l. A9 M3 l* r6 V1 ?( L if (grain-here > max-grain-here)
7 J' C1 [% q0 M! \. I# Z" G [ set grain-here max-grain-here ]
6 p+ N A; h7 Y' o6 J recolor-patch ]
9 f- ?% _7 v0 p: bend8 \4 h, X" Y" e6 R
to harvest
+ z' }5 X+ I" y6 e2 Y! | ask turtles
$ r& x, {; X) ]! ] [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]" n* f1 C( ^" w$ b- _ F
ask turtles
! |3 o0 { V5 G3 ` [ set grain-here 0) U& ^* A' q8 {% K5 u6 k9 R" }+ t
recolor-patch ]4 A( X3 W) O4 L/ y% o6 d$ f
" r c/ }! A+ p$ H$ rend0 `$ c2 p/ [! ^2 b- \
& b/ F( \7 t- Y* j3 d
to move-eat-age-die
5 N" e% ~$ B9 f2 Y) V3 W# l- v fd 1. \. \5 C3 ?1 U* P3 L
set wealth (wealth - metabolism)
4 e j& ~8 _6 S7 s/ r1 ?& X3 G6 f! L& k) h set age (age + 1)+ b7 z, {5 v% E3 U* w
if (age >= life-expectancy)
5 m! v! J4 g- e# |' s [ set-initial-turtle-vars-age ]
( k! W6 [' x3 N) m" F if (wealth < 0)
8 U" j$ \6 H- N- A9 ? [ set-initial-turtle-vars-wealth ]4 z3 [% h' D: \2 i( ]$ _6 r( M
- r! O2 e3 A( B0 y, Uend
7 Y B% d9 T9 s6 M; Z8 }" r, u+ I8 w( h% a! F
3 V! Y8 J& }. j5 Y# z$ Z9 b
to setup-plots; C5 m6 v# |4 }8 W% g$ x [
set-current-plot "Class Plot"
! I- E* t( w3 P; R& {1 k r set-plot-y-range 0 num-people/ N, \. W( M# l2 i/ u
set-current-plot "Class Histogram"
5 a3 W$ n/ Q' Y V; q" j5 i9 W+ T+ ] b! h set-plot-y-range 0 num-people) K/ k/ J8 J! A5 U
end7 N/ J8 z. o3 z i- V. F
8 s. ~2 l' x+ D( mto update-plots
8 {: q- }/ f' ]9 V/ z' z- s update-class-plot8 J+ B, M" x9 U. u$ A+ q
update-class-histogram) i0 h5 ~) u0 U. S
update-lorenz-and-gini-plots
0 @: Y4 N6 q# S1 U1 Nend1 L s3 N7 z" a
* ^0 P0 t! _9 L/ S1 b( j6 T# Fto update-class-plot' X2 u* I( [- H. ~1 e g
set-current-plot "Class Plot"
7 e9 I( V+ p! J- E set-current-plot-pen "low"
7 e& }% \: I! s: ]! E plot count turtles with [color = red]$ s4 ?0 \' q' W3 c
set-current-plot-pen "mid"2 a1 ~$ t5 _! C2 K; q
plot count turtles with [color = yellow]' e5 q: n; A& m: S9 d6 n1 ~
set-current-plot-pen "up"! i# e2 O& X5 H$ t0 w) u
plot count turtles with [color = green]
% H5 @) n1 `) aend7 ~8 W; N- T4 ^4 N3 {
* Z& @) e% f5 q0 G1 a' c0 V2 W
to update-class-histogram/ U3 [, m/ S* k: C2 K
set-current-plot "Class Histogram"' W% O! w+ d* q+ W" ~1 L/ }
plot-pen-reset& C4 l& q4 ?. U$ U: l% N3 l
set-plot-pen-color red; C7 L* o& m: Y
plot count turtles with [color = red]
5 P% h% K) `; R& T+ l set-plot-pen-color yellow
8 l6 g( R2 |) z4 O3 K plot count turtles with [color = yellow]4 d) O5 Y& n+ l9 t ^
set-plot-pen-color green
$ w8 x; w- u8 h" x' H, s plot count turtles with [color = green]
2 v' b4 V2 c8 i& n: c: ?end0 m% u; Z1 x- U8 j
to update-lorenz-and-gini-plots
, F& U9 r+ H) @ J* j- G5 B set-current-plot "Lorenz Curve"* |* W1 p9 e( O9 n$ g1 }( v; D3 K4 H
clear-plot
X ?" ~7 G, r5 x- v
$ C. M6 b! U" D: g set-current-plot-pen "equal"
" U# z, u7 T" o. N plot 0' P5 I3 O4 ~' B, A& B5 E- C
plot 1007 J) f7 M6 G+ k- w3 w, W4 u* b. }
! H2 s1 _$ |& v; J) O2 b3 w' N set-current-plot-pen "lorenz"
0 I" k ]5 K1 }! `0 Y+ Q2 F# ] set-plot-pen-interval 100 / num-people
+ }7 e2 \, u G/ F4 W* m: l g2 N plot 0
" j7 C8 A+ w- Y* P
' p( V/ V# Q! Q0 \9 ], L! ?' P let sorted-wealths sort [wealth] of turtles
9 \8 Z; \ m" ] let total-wealth sum sorted-wealths, L* K7 W& i/ ~( N# m( \* q
let wealth-sum-so-far 0
' J- B" [. l. g. `2 t let index 0
9 y7 t' u$ o" E8 J D2 g+ L let gini-index-reserve 0
, p- _/ r7 V9 Y/ o7 U* \2 m. [& C" `& g. T/ L% G$ }" a
repeat num-people [( e; d6 ]6 @7 U
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
' [' m+ _ L( _3 \( J) @# L6 A1 G _ plot (wealth-sum-so-far / total-wealth) * 100
3 O( J1 V! ]# {, j' \) L% z set index (index + 1)
( x. ]0 ]1 E6 ] set gini-index-reserve
7 |$ E0 ]% W3 ] gini-index-reserve +" N$ z3 l# h9 c" S
(index / num-people) -$ X/ n0 s7 W4 ^7 A6 R) i
(wealth-sum-so-far / total-wealth)
8 D0 v- ]! ]; Z- r( y* C ]6 b* x+ @! K; i; I8 l# V% Q
: J$ B5 _8 \) k
set-current-plot "Gini-Index v. Time"
; W9 |5 i) r5 H/ t' a- ? plot (gini-index-reserve / num-people) / area-of-equality-triangle
# x* `: o/ V. d4 P% L rend
, Q! n2 @: y4 k; @0 l0 Fto-report area-of-equality-triangle1 n6 E6 p: N) V2 a
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
& f* Q2 n Y. Aend |