设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7298|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
2 C9 C: f/ B% H3 B; Cglobals
4 \! L% d# |6 y# h+ n9 R& X4 v* \. b[: s% k) p( R! O8 }+ Z, D
  max-grain      o8 E* ~( o) A" V

2 V) a4 a2 f( l8 N9 M# H2 `]
6 _) `$ o0 d- u$ r( o$ t  G6 y) m  W$ h6 H4 S6 J  A( B
patches-own
( M3 C2 d- ?6 l4 R& V% v[0 V1 ^8 J" ^- M- K
  grain-here      
' g% m- _# S! Y6 K* {$ D+ m  max-grain-here    X. j( L; l, ]
]+ j4 U' j% k6 o1 B: C: y1 l
- P! D# \- G. O9 p
turtles-own
' P) {! h3 m- N4 A9 r- G2 A7 z[5 X9 I$ ^7 ?- z8 p7 m4 P, j
  age              8 \$ f3 L) x- K7 O2 {
  wealth         4 q7 R% z% J9 k+ H9 z
  life-expectancy  
( W8 k! |" l" Y7 c1 k. A4 T) @2 g  metabolism      
+ c8 B! q; f. n) n; ^  vision
  j: m+ K, S; M  inherited         
" F2 O2 k; R. ?, e  ~% T. y]* ~4 ~) K) p) W, ?8 G' N

1 K4 c3 D) h# Q  c9 m7 ^- ~" O& Y) c9 T: o
to setup
/ v$ L: K" n/ m! v/ f  ca
5 D* o. A/ \/ U, |3 k  set max-grain 50
( a, h' h3 N5 q: J' U4 m, Z9 B6 k+ S  setup-patches
- t) `6 R+ {# I9 v  setup-turtles( N( X1 p8 {$ }9 U
  setup-plots
2 j; L) B8 @7 B, I2 J9 H, R# a  update-plots
: C/ |5 I- Z- `, `end
2 j; D1 ^5 P' l9 {# Z! r% ^to setup-patches
# y& }. X, H7 \; j7 e) B  ask patches- {+ j) \! _1 E- z4 V( H; W0 F4 j1 m
    [ set max-grain-here 0' B! j1 P! }4 W) A' S. F
      if (random-float 100.0) <= percent-best-land
8 C  N$ C' @5 [9 ?        [ set max-grain-here max-grain
( d/ T! T. _# g0 z; z          set grain-here max-grain-here ] ]
. d& q' w( Y2 d( B  repeat 5) ~6 b' n2 t0 ?; }+ m: ]
    [ ask patches with [max-grain-here != 0]( N% P: ~) L8 |2 q: h
        [ set grain-here max-grain-here ]! c0 L/ }& E" f) w, `" F4 j- G  }; s
      diffuse grain-here 0.5 ]
- ^2 R+ R7 L1 H' E. U  repeat 104 h, g8 i0 s7 J, n8 F/ M" h% B
    [ diffuse grain-here 0.5]         
9 _- D+ s. i! h: ]  ask patches
  K' f  ~3 B! P8 w- E  l    [ set grain-here floor grain-here    0 l) t4 a& s, g. }, a3 [
      set max-grain-here grain-here      
3 J! ]7 j. n! o4 G      recolor-patch ]
* {' ]! h& z: b2 @1 m8 I& rend/ O2 y% A0 c* D1 |3 J1 ~  j
to recolor-patch  
- s% I% H) a9 O% d# e  set pcolor scale-color sky grain-here 0 max-grain5 I/ Q% q; M( C
end- K5 |5 ^7 J8 Q1 ?( j
to setup-turtles' W% x0 b4 h, w$ {: A# m5 ]" Y  M
  set-default-shape turtles "person", N( J* ^3 c; ]' j9 v9 \
  crt num-people
8 X+ ]- X5 _+ l- q. Y6 i, ~    [ move-to one-of patches  
1 i7 `1 u5 M+ [$ \8 t      set size 1.5  : c8 r. p7 ?; p3 d9 h
      set-initial-turtle-vars-age
: P0 n/ Z! y# ?% T      set-initial-turtle-vars-wealth
4 A4 G  f5 Q5 }; [; ~      set age random life-expectancy ]
6 v; p6 i2 h3 U1 s* \2 y  recolor-turtles
8 E/ W% D9 j" Q* c5 w( ^end  E6 S+ T* ]1 D# L" Q6 \3 I
* Y+ n1 f1 \5 K1 m1 m; Y
to set-initial-turtle-vars-age: ^7 Z5 a3 ?$ P
let max-wealth max [wealth] of turtles
& ~$ ], H: c) o6 D+ h3 D3 Z    % J. P( r; Q6 @  i8 z) {  _
     ifelse (wealth <= max-wealth / 3); A0 J: C( s: I$ d
        [ set color red & H0 |4 e/ \8 b+ H  C. e/ N4 m
          set age 0
9 s. N/ n+ r% ]1 n+ @8 \0 i' u          face one-of neighbors4 6 s; e/ J. ?4 |3 R0 `+ W
          set life-expectancy life-expectancy-min +0 f: W+ K# d3 E3 D/ [% T
                        random life-expectancy-max
  K" N5 h! G1 i) M8 w7 i$ ?2 H          set metabolism random 1 + metabolism-low
0 r- E9 e/ ~( Z3 r& j* [5 n* S; p          set wealth metabolism + random 30
/ s8 K$ H; f8 ]( S          set vision 1 + random max-vision8 a2 Q* N8 a6 p: ?- I4 G1 E2 Z
             set wealth  wealth +  Wealth-inherited-low ]; l* E) v8 j" S' m
        [ ifelse (wealth <= (max-wealth * 2 / 3))( n: _  f9 f$ s
            [ set color yellow - w, S: \+ q4 [6 b$ N- t2 Q4 G; C
              set age 0' o  w& u/ _  `: i7 K
              face one-of neighbors4
: Q7 J5 q' m# s( Y$ [# k              set life-expectancy life-expectancy-min +
8 l1 C3 d1 }: u9 y2 j, U                        random life-expectancy-max + 1
0 \' W4 D, H- F- |              set metabolism  1 + random metabolism-mid) X: F+ U0 ^! o+ C$ a
              set wealth metabolism + random 30
( Z( r3 Q+ a8 O2 L8 x* s) q. \              set vision 3 + random max-vision# {6 K: I+ }. o' b0 c. D
                set wealth  wealth + Wealth-inherited-mid]4 H  x% V; w" p5 b
            [ set color green ; ]: ^! f; t+ x& V
              set age 0
6 M0 [2 Y6 E) G              face one-of neighbors4 ! L& [( u' B6 K
              set life-expectancy life-expectancy-min +
* I; T& k( k9 N                        random life-expectancy-max  + 2
9 C  v0 ]! N9 Y% H              set metabolism 2 + random metabolism-up
8 Z/ ~  A8 b+ N* M" k5 N: j              set wealth metabolism + random 30& i* ?( {1 C; i8 J
              set vision 3 + random max-vision6 c/ i: V% d5 s
              set wealth  wealth + Wealth-inherited-up ] ]
8 w9 K; I4 \, \
& R1 [$ W; j8 E& B; T, {, B2 v4 a, Tend
2 Z) q( }! f) V  f) Oto set-initial-turtle-vars-wealth2 N7 o- H. [# w$ g" `; A. R0 c
let max-wealth max [wealth] of turtles2 E! P' d, g' G
          set age 0
! V* r0 @4 |+ T/ v; l, t          face one-of neighbors4
1 x5 \5 i+ F/ M! u! V          set life-expectancy life-expectancy-min +# k) w% l- w0 K5 i: ]3 p; m9 v
                        random life-expectancy-max
7 b+ Y- F: ?' _* F( v' {5 z, y% g          set metabolism 1 + random metabolism-up( C! h. A# T( G( v5 e
          set wealth metabolism + random 309 `; a0 V  d- ]' b. D
          set vision 1 + random max-vision " w% i) c* o+ X5 h8 h7 u- U6 `5 ?
end
  {& u0 E7 E* j' `: I9 M* ]; kto redistribution
) g5 r& m* g- Clet max-wealth max [wealth] of turtles+ X8 j" H) \3 B
let min-wealth min [wealth] of turtles
$ `' h- ]( x4 y) l- n9 }4 a- }if (wealth <= max-wealth / 3)
  T9 O: d- m5 [' K. N [set wealth  wealth + Low-income-protection ]
: Z: g: ?* ~9 D" b! q! uend
2 G5 ]0 a2 ?: v4 K  R5 }         
# k( n! u4 }; H' Z9 |! mto recolor-turtles
7 J$ P8 Y- m; p5 V  let max-wealth max [wealth] of turtles
3 h: X- a5 i# B5 y  ask turtles8 Y% i9 ?7 ^9 U+ W5 Z
   [ ifelse (wealth <= max-wealth / 3)7 A/ P$ `/ l, w2 |( s( s# I5 s
        [ set color red ]) w5 f, q$ \. U2 A% x8 w
        [ ifelse (wealth <= (max-wealth * 2 / 3))
! e& H' r! K/ ~) j6 Q2 B            [ set color yellow ]
* K- |# g9 l  r8 I4 p& h: ~1 C            [ set color green ] ] ]
, V  X8 f" m! M0 g( }1 y ask turtles [ifelse show-wealth?1 Q; \2 O8 p5 M6 D3 \2 ^/ M
    [ set label wealth ]  c- f2 O, y6 q
    [ set label "" ]]
: x" e" S' \* a) v( Dend  ~5 u( Y, {' n0 x* ]4 a/ V

  _) ^% l( \  c8 c3 \9 hto go. H1 e/ `0 g5 h
  ask turtles8 R2 |5 j& X. K. ]+ ?5 w
    [ turn-towards-grain ]  ! F3 [. P8 G) x( i2 U
  harvest
4 q8 o9 V& N' J& U- a  ask turtles
' V3 v( V# q/ X9 \    [ move-eat-age-die ]8 P/ }* f, v; ^0 A
  recolor-turtles
2 y- u$ |' Z( X; ?) }, ]1 \; H) S  if ticks mod grain-growth-interval = 00 a1 [1 e4 c  L
    [ ask patches [ grow-grain ] ]! v; E( T7 v! H: Z- l  o. T
   
  G5 K# d: y6 h6 j  if ticks mod 11 = 0, l- P- i) ]+ h4 N0 h5 G% Y, S
  [ask turtles
. |$ t: c, E' P' p0 B8 {% `) i4 ~0 |  [ redistribution ]]
) o% R2 d' x* v" T! I$ E  if ticks mod 5 = 09 _5 a" R5 C. k* j( t/ u7 i# A. k
   [ask turtles9 o$ H) ~' E0 a: V* A8 q' |6 t) {9 c
  [ visions ]]
8 s( {) b9 V7 l! s  h) K, r* k  tick
1 _) t# Z, E) N( |  update-plots
0 t0 r9 L/ I! r& H: uend9 x0 _8 a# w. {7 k* S7 X& e2 E
to visions& v. r1 F# `2 a/ A# {  M
set vision vision + 1
# B7 Z% |' W/ ^) p, kend
; k9 k, A6 Z( B/ a1 |
3 o/ {- z/ Z& i, B) G! K, z+ l& T& w% c
# V+ ~1 c* d2 W1 b$ \0 E6 R1 x( c
to turn-towards-grain  
3 ^# L. o# R3 B$ x3 K  set heading 08 B. f# L+ s3 F; ?- u
  let best-direction 02 i; Q" }) b, s! |
  let best-amount grain-ahead3 q' S. e; g) a0 n! J/ y; j
  set heading 90. v: J0 x/ g% U6 G$ ]" B8 ]( w1 n
  if (grain-ahead > best-amount)
/ d' d# w4 u5 U    [ set best-direction 904 v* b$ y! F6 [& @; d  |0 ~
      set best-amount grain-ahead ]
( n2 K% c/ L% n3 S0 k* |2 B  set heading 180
( G' S6 e4 ]3 S* v0 e4 z$ [; h  if (grain-ahead > best-amount)7 b$ N5 s: [# }) D1 q) `
    [ set best-direction 180
/ z, A' ]; ]- n7 @- n* ?, U2 i4 b! j$ F9 y      set best-amount grain-ahead ]+ |+ ^1 N6 X0 w% c1 K
  set heading 270
8 X6 D3 ~5 [/ b9 ?  if (grain-ahead > best-amount)* f* n/ i3 _1 N1 t- n3 `: D
    [ set best-direction 270
# Q1 a% k& ?, Z2 X. O      set best-amount grain-ahead ]
& G+ S& u% {0 ]" o% S7 d8 K( H5 j  set heading best-direction
. e6 H) c, ^. H/ H9 nend" `* U7 g6 _( N  K! ]3 }. Q

: ^) C/ s6 K, l: m
$ h2 q; }* n4 ]to-report grain-ahead  # p+ r* i0 j0 i6 }1 R4 h, S
  let total 0' g" f5 B' k' ?# R- j6 t4 i. A5 z
  let how-far 1
) j8 Z  [5 i8 {& u. b  repeat vision' P. P7 P- P$ V% M! U( \& B: ]
    [ set total total + [grain-here] of patch-ahead how-far
  @! {9 e3 R; G      set how-far how-far + 1 ]
0 F/ K$ w" y. {2 N2 `6 n  report total
3 t6 S# ^1 N: s& G, D' _end
/ I! S/ P9 E7 o
5 G# z" V9 b) d+ E" m$ t5 D, mto grow-grain
" ]8 f0 J$ m2 p6 @  if (grain-here < max-grain-here)1 p4 l+ R. L. X* X( F  A  r' i" |
    [ set grain-here grain-here + num-grain-grown+ J( ]5 u  q/ n5 ]0 _! g6 i
      if (grain-here > max-grain-here)
7 u0 Y, Q- `% S7 H        [ set grain-here max-grain-here ]
$ N( ~) z. F! U+ M9 l      recolor-patch ]
5 r, F! M2 d- Q+ aend
, Q/ N' s) r, P  V! A  nto harvest
4 Y: n: z1 ?: k' v- F6 g  ask turtles
, ]7 ?4 a7 S. D! C, g    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
' m1 ~2 e- a1 y  ask turtles4 `: J& o$ c* J8 {3 [9 S! x& B
    [ set grain-here 09 x* ~) Y. C5 F6 M0 J0 d+ x6 u
      recolor-patch ]
% E$ u: T1 K! D2 N7 \+ M1 N! P4 r  
, h9 I4 D+ N9 [7 _) c' cend
! J% W* R5 `1 `; ~
9 A: O" u3 U. W& S6 w1 @9 \to move-eat-age-die  4 s% M& ?' E. T& ^
  fd 1+ c& {  t$ l2 Z1 _
  set wealth (wealth - metabolism); z; M# J; u% o
    set age (age + 1)
, H# n  L: ^  v0 n8 b& H) _. Z  if (age >= life-expectancy); ]2 l7 j& Z! E3 C! N
    [ set-initial-turtle-vars-age ]
% A+ b& d$ H6 h  D  i# f1 I* Y$ w7 L  if (wealth < 0)( u4 r" y4 i* G0 ^
    [ set-initial-turtle-vars-wealth ], }  Q$ w& x% i. b; ~. x- @
    + ]( N# J! G' }, Q# `! u
end
6 E9 }$ f( p9 c1 C; ^
: I1 @% Z9 o; G0 }2 O3 Y# G) F4 t
7 ~& w. H! m/ j1 {; I: Tto setup-plots
! ?. E/ v! y; f- [  set-current-plot "Class Plot". _8 y& i3 {7 m$ N) `
  set-plot-y-range 0 num-people* ~  e) m, g5 O. H
  set-current-plot "Class Histogram"
# w2 c7 r5 _# F6 m9 e+ U+ \" ~) ?  set-plot-y-range 0 num-people9 I% ]- }0 o2 Z; {, ?
end( X1 s! h3 X: u8 r' x! a. {& h4 x* G
9 t$ V% O8 ]+ q' P# |% y
to update-plots$ B0 m8 N. {/ |" M
  update-class-plot
7 K' r, w3 }# T) [7 g' A  update-class-histogram; X% B  y; o' B7 v7 a( a
  update-lorenz-and-gini-plots8 J. P5 ~- B: y6 s' h, o* R5 C: c9 z" C) U) }
end- S7 t- o. m6 F- Y! f/ ?- D; [

# Y1 @1 |: y1 _8 [$ ?1 A5 g# b4 E# Kto update-class-plot8 f' S% S5 d+ j  t8 [
  set-current-plot "Class Plot"
# D8 h* }# O) T, Q  set-current-plot-pen "low"
  T+ l# {* L! Q1 A  plot count turtles with [color = red]
; ?0 g& T+ _9 k' y! N! a+ {0 y1 b$ w& z  set-current-plot-pen "mid"
: q: {0 n, S9 ]8 o1 s1 G  plot count turtles with [color = yellow]
" ]# F: |% r: E1 u: r& u8 P  set-current-plot-pen "up"0 k. p6 m; _8 Q) [4 T+ M2 p
  plot count turtles with [color = green]
5 l* a. K" q0 I8 Xend" s" @+ g7 {2 T/ y

! z: y2 s8 ~" n" r" y! v+ Ato update-class-histogram
% Y0 t' ]2 t5 R2 [* F5 w* [$ L  set-current-plot "Class Histogram"
9 a, c* n6 J) m, C  plot-pen-reset3 E+ m+ G( `* m* P. w! S
  set-plot-pen-color red1 [4 q, g" i. ^/ o8 h6 E& Z
  plot count turtles with [color = red]
5 ^  z) A" E+ p  l+ F  set-plot-pen-color yellow
9 I8 Z4 G+ W) x0 n: D5 N  plot count turtles with [color = yellow]2 Y# L6 P0 ?& K; t" o& ]5 Z
  set-plot-pen-color green
( x9 Z1 S0 N' G* \8 d0 D1 Z! N! L2 E  plot count turtles with [color = green]
$ ~" ~% p3 r8 ?end
- D1 N  K0 D2 n1 _+ r; Gto update-lorenz-and-gini-plots
) X9 v, W# Z$ E7 O8 L  set-current-plot "Lorenz Curve"
  a, |3 D9 X; ~4 N9 l  clear-plot
( i4 X) [/ ?( r" W" U; U2 L6 u) a/ ]& }; z0 w
  set-current-plot-pen "equal"
. U, {, j6 n8 k0 G% Q' x; v  plot 0
( `- o0 s$ p1 X- V) _/ g  plot 100+ T7 I4 j2 s6 _+ Y9 J

9 D9 v. e7 M/ Y  q3 }" S9 A1 C  set-current-plot-pen "lorenz"  c/ m2 |" _. A( L9 @* \9 z; C1 S4 a
  set-plot-pen-interval 100 / num-people
$ R' D3 P0 D8 p$ y. G  plot 0# _- Y9 n$ k. k* {0 b. t
2 `; z+ }  y7 a' c: m) l1 h
  let sorted-wealths sort [wealth] of turtles
8 O4 Z8 D# X9 m- p/ E. q1 O  let total-wealth sum sorted-wealths
  `. Q" O+ Y; l/ m6 ?3 k  let wealth-sum-so-far 0
8 D1 o( t+ r$ f9 l* o4 j& H, a  let index 08 }6 c2 P/ B; ]# C# c# s  O
  let gini-index-reserve 0
% _- R! C, ?6 [( F. p6 n, q0 A
7 c/ b* ^: V( z' W  repeat num-people [
. H, g7 t( r9 Q8 i    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% |+ ~/ F7 W2 I1 a) c
    plot (wealth-sum-so-far / total-wealth) * 100% t3 H( {! v& W5 s" x
    set index (index + 1)) M0 x- _$ p/ ^5 j2 Y
    set gini-index-reserve
  a$ x; k: D- A/ S      gini-index-reserve +) X# ]% y3 _! ]  M; X
      (index / num-people) -5 N% u0 L3 B- u$ q" d4 u* r- J& H
      (wealth-sum-so-far / total-wealth)  W7 S% I1 D. U4 T$ ^: n; T$ R$ x1 Z
  ]( @! \8 Z. _7 ?7 V1 N# r9 |; h

& T( c! b, R' n2 |6 I  set-current-plot "Gini-Index v. Time"
4 L0 e. P& O5 C) g) f+ u  plot (gini-index-reserve / num-people) / area-of-equality-triangle
; P( k1 y! b+ B. mend2 w1 Z8 G9 P* \0 _* `# m/ @% W# r
to-report area-of-equality-triangle
3 c. u' u! p( r4 ?0 u9 O: D  g1 s  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
; G3 G4 Q" z9 S) e- _" Nend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-1-2 00:19 , Processed in 0.019444 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表