请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现4 g& _8 O) c$ t9 q0 i% Y& X
globals/ P( s" T/ t# X3 z1 _, ?4 ~* o
[5 m; u* c0 ~9 ?' Y
max-grain
1 u! @ Y& g* T" Y2 M2 y0 T; U4 h, x [8 @% n: j) M$ V0 D
]
( P1 Z) S5 P' q- Y( v
3 Y2 q4 V) W1 ^patches-own
! {4 O# y D$ z6 Y. R* `! n[# U' ?5 ^. m. ]3 m5 y. c5 b' o( @
grain-here
0 y7 c, Z% N4 T# q- V max-grain-here
/ z! Y) J3 Y) ]2 o/ q5 s; m% \! P! j]1 Z* N6 z d# c$ e; S* }
; b/ Q1 v" h8 g) }5 z/ C, V
turtles-own
V' W" h/ k5 h4 D- {* H3 T" B[- x8 j% ^6 S3 V |, V4 X
age / e+ |, f- Y! D7 b
wealth 0 A4 }6 v) a/ S- I: r! E- M. y: s
life-expectancy
& q- J. `- e( W& Q. y metabolism
! T# N9 t1 {& Z vision
% b t- S4 p3 r0 ?! ?# R inherited 6 G" q+ ?- W" _2 D! a( ^7 i
]' C$ }% {$ N D4 C. p: L* n9 i
8 |# ?3 |% E3 ~* m" i' `6 [) z
7 a6 l$ }" [' P; Jto setup
6 t8 _( t h$ h" c. s+ ? ca- Q- D/ U+ V" j0 b
set max-grain 504 u& ~. Y" T( B4 z
setup-patches
7 W# n& i1 U) |, X setup-turtles: n9 s' r2 z* f1 w3 ?$ I4 {
setup-plots
: C2 }5 A$ k- n% i* B update-plots
1 G. p% k. { e( I0 O; a$ b2 G8 A! dend
: S3 k8 Q* N) z7 m1 g6 T9 kto setup-patches V( x2 s) J. b6 Q$ V% a
ask patches9 n2 x6 B, L) D
[ set max-grain-here 0
: M- g4 o0 _- a- D. R& f( k if (random-float 100.0) <= percent-best-land. e7 ]8 }% L) C$ T" h* j
[ set max-grain-here max-grain
$ y( i# F9 m7 W" H. [4 u5 g set grain-here max-grain-here ] ]5 y2 U e9 h7 d8 Z
repeat 5
: t( r1 W' j; X [ ask patches with [max-grain-here != 0]8 w: ~7 u: y; _6 z* t6 z& t
[ set grain-here max-grain-here ]
. N" v$ L: V8 ?! L# G( I diffuse grain-here 0.5 ]
, R7 E1 A+ Y) v8 O repeat 10' |9 C3 ^ ]# h& y
[ diffuse grain-here 0.5]
. D' a, I. d: A7 x ask patches: C3 ^/ l* Y2 c- X5 ~4 B" Y
[ set grain-here floor grain-here
5 E# U! P7 z7 ?0 y, W. U set max-grain-here grain-here
8 R& [8 [2 ?! I, J7 S1 h* Y' a recolor-patch ]" ?7 ]8 c6 g: r c
end
6 B. k. c' f% W! D; sto recolor-patch
4 u0 |/ f& B: ^- L2 G: @: P set pcolor scale-color sky grain-here 0 max-grain J8 O/ Z# F$ y: x$ {. S
end# ~! x6 Z5 V* W3 |, R b2 Y
to setup-turtles/ d, `$ E$ k9 y6 }, a
set-default-shape turtles "person"3 _/ S* D* H( G$ v. K) L5 {
crt num-people
& D4 i5 I; i. x/ S2 C: X) \ [ move-to one-of patches ( F/ N- \. \ i
set size 1.5
# w. z0 d; |6 N K2 G8 |) b! ]' u: l set-initial-turtle-vars-age
o5 \) ?6 Z" q, }3 \ set-initial-turtle-vars-wealth
+ V7 B( j' u$ L4 J- Y set age random life-expectancy ]& ?4 G# K0 U' t1 f$ q( a
recolor-turtles
* R" S' a d& T9 ?end4 A; D o. |* m& M& d% x! V5 w- e& b
! \6 X5 p0 n% j
to set-initial-turtle-vars-age
% ^- e1 \/ F1 [' |' k0 ^' V let max-wealth max [wealth] of turtles& b* q4 w; v, {# P+ j
7 c. t$ G1 {0 ^$ Z
ifelse (wealth <= max-wealth / 3): R% [% R! N& U( j+ v8 I
[ set color red
( [: a) a: O5 O set age 0
" \2 p7 S% V. f/ }/ [ face one-of neighbors4 1 U( Q% `2 Y$ S! J' k
set life-expectancy life-expectancy-min +
2 j" Y: A, g$ V. K9 [ random life-expectancy-max
K0 k1 y8 @" X set metabolism random 1 + metabolism-low
0 x2 S6 Q9 q# t. P set wealth metabolism + random 30
& {! ?2 ]4 ~5 N' N6 q set vision 1 + random max-vision
; g6 a c2 |7 g# \ |- { set wealth wealth + Wealth-inherited-low ]! f6 }& t3 w, S+ X8 _! C8 _! ~
[ ifelse (wealth <= (max-wealth * 2 / 3))
: _% ?7 N8 e, P# P2 A, i: Q: T [ set color yellow
. H2 U# \3 x& r. T0 G set age 0, I: `3 F0 w/ `$ L" w
face one-of neighbors4 : t# T' d: c6 g: u/ a
set life-expectancy life-expectancy-min +2 f. e" P- Z: T& r$ P
random life-expectancy-max + 15 Y! s* h! x6 M* M7 Q4 y. F5 ^
set metabolism 1 + random metabolism-mid) G6 i' V0 @% E9 S* K
set wealth metabolism + random 30+ p7 j$ W$ D( p" ~$ {0 c
set vision 3 + random max-vision* y* | n, y$ m" D1 ~. r
set wealth wealth + Wealth-inherited-mid]
0 m, `7 N- l; }$ F0 m7 k- }6 I [ set color green [ n1 |1 e5 t. ]2 _( M! `! N( f
set age 0
5 W2 c; j% S1 k face one-of neighbors4 % s: C- o2 C! f
set life-expectancy life-expectancy-min +
5 U4 y5 X* s M; f random life-expectancy-max + 2+ K+ v2 \) i. ~# Y# Q* f7 y( f( {
set metabolism 2 + random metabolism-up: t' ]1 v9 e- K, F
set wealth metabolism + random 30: o* @6 {& t& k! f
set vision 3 + random max-vision6 `* @2 }9 e2 s
set wealth wealth + Wealth-inherited-up ] ] 0 C9 N i: q! `
7 y8 ^( Z$ P+ j4 ^6 `& `9 T1 |
end
$ s! U+ h, {; V g3 ~ [' qto set-initial-turtle-vars-wealth* |% k, d4 P9 M1 _/ ?! M: R9 K
let max-wealth max [wealth] of turtles
) G1 z' }3 i3 ?/ F" X# v, l set age 0 ~& t) e$ S+ H. E7 }" J z) r
face one-of neighbors4 / p7 q/ [+ m$ I, q
set life-expectancy life-expectancy-min +( y7 B6 j8 I( B$ l" g! B9 g
random life-expectancy-max
# l% ?" h+ @5 @& K4 W6 s# `+ j. M set metabolism 1 + random metabolism-up
+ n. m" \, `5 }1 J+ @ set wealth metabolism + random 302 n+ r" u* n8 E6 j6 ]5 w5 j; ?4 `, m
set vision 1 + random max-vision ( {4 G) |0 l$ q7 Z+ {: C
end
8 w$ I* k( D0 Hto redistribution
& o- K+ W A" l0 ` h! R5 p$ tlet max-wealth max [wealth] of turtles
5 Z* |0 W1 C3 I' q1 m2 F, jlet min-wealth min [wealth] of turtles
, f0 Z+ o1 S1 t9 z/ xif (wealth <= max-wealth / 3)- X' z4 i) K" R( Y* @
[set wealth wealth + Low-income-protection ]
+ S9 t6 t8 N3 }( a- I* W8 @end9 F5 U3 S# ?1 p* P/ P' y* u
. {8 S' n3 S1 J8 G3 rto recolor-turtles
" Y/ n3 o$ J# w6 ?& H0 v let max-wealth max [wealth] of turtles0 m" Y. o0 w) \- p
ask turtles
2 v$ L) | L; ~ [ ifelse (wealth <= max-wealth / 3)
5 A! ~& ^! P2 y/ i! g; F) ]% a [ set color red ]
1 w) ~: a* N' } [ ifelse (wealth <= (max-wealth * 2 / 3))
. O, ^/ ?0 C7 f) ~ [ set color yellow ]
. I) `, |3 B! ? [ set color green ] ] ]
5 b7 ?: R: Q X8 s/ \" Z7 O- z ask turtles [ifelse show-wealth?0 V0 i; f) N# j1 A) s" L5 P! ~
[ set label wealth ]
% C3 O4 A5 R; K: I" P+ ] [ [ set label "" ]]
, i. t2 X" ?+ u8 |. s5 I! k3 Mend
/ C$ i$ C$ t- x3 d
, X w# ]3 A3 }7 vto go
+ B5 d- B) j8 F# {9 k ask turtles
5 Z: k5 }% P* s L( J& b; y [ turn-towards-grain ] & \! x' j2 e" @2 ^
harvest( b5 T4 g) I% P3 u
ask turtles
0 }3 ]/ F4 G# ^# T& o2 A8 \ [ move-eat-age-die ]0 {# D- }9 N2 B' ]+ I1 ?: x
recolor-turtles
1 o) @/ N' h' o; X* L7 a! ? if ticks mod grain-growth-interval = 06 Z6 s0 c- m/ o7 A* _
[ ask patches [ grow-grain ] ]- ^: s' c$ P" ?9 s# k; f7 A& A! S
6 E9 ^0 C0 q9 p
if ticks mod 11 = 0
" ]6 `( ]( T: W1 e! F [ask turtles/ p q. Q" P3 Z p0 S
[ redistribution ]]
( c A' U! p$ `( f, ~4 Q2 c if ticks mod 5 = 0
1 {: W) p% o2 q: Y [ask turtles+ D* E. f9 t0 J
[ visions ]]
+ I4 j2 B! }9 ?5 m tick
0 E5 k" p, s! e( [7 E" y s5 T update-plots8 u1 O& m( _5 ^9 n+ S/ L& r: e
end
5 \* g$ e1 a7 G' M' |to visions' e$ S6 s6 b" c+ U
set vision vision + 1 ) I- _2 u( T( D3 p6 T- x
end0 y2 V; @; r0 ?/ X
$ w6 y# i& A* N/ t. p5 o, [$ C' g1 G' e
; }6 [2 V! C! p: z# f- c
to turn-towards-grain 0 Y! Y- e8 z o c' R; Y5 I+ |
set heading 0
4 d7 k( H9 }: }. m7 d: A1 w2 @ let best-direction 0
9 g+ K9 N" V+ Q3 Y let best-amount grain-ahead
5 v3 A9 a1 ?& D5 C) Z set heading 90
: R8 p: T$ K8 J8 ^3 l" y$ N if (grain-ahead > best-amount)4 W5 Q4 D( _. D; u1 [6 ~1 b) C% T
[ set best-direction 90; l0 r1 d @0 t9 T
set best-amount grain-ahead ]# f: |4 a% U1 X( \. C y' ^5 e0 X$ }
set heading 180
" I1 G7 j$ O7 d if (grain-ahead > best-amount)" r, N3 v! }; \* W( ?% r! W
[ set best-direction 180
5 r: g0 S: ]3 H: O4 u' S set best-amount grain-ahead ]
9 f6 t/ R) }" x6 l set heading 270
2 V+ |# T) q2 Y, L/ d, l if (grain-ahead > best-amount)
# l+ K+ R( V$ ^8 {0 \ [ set best-direction 270/ W# l! _$ |/ \5 e3 U
set best-amount grain-ahead ]. ^6 w3 T3 z1 v$ b: H
set heading best-direction
& { K) A# [. ]+ r X- l( vend( u$ B+ J; k U5 w& b! R* u
0 E) H( o# g2 X6 l' w# L/ N6 v# f L
1 C) a M' H) J" _to-report grain-ahead
V# O9 q7 o: B6 C) x) Z/ g' |: S let total 0
% q* d' v5 |+ d' K( p4 m X let how-far 1, o/ q L! C/ A7 |# f. W
repeat vision, Z) B8 \% U* _: N; Y! w
[ set total total + [grain-here] of patch-ahead how-far
' T" G) S* k9 s1 o( ? set how-far how-far + 1 ]
9 ?+ j! H0 O" U! {5 X8 D: | report total
, N$ m7 A7 [# qend
) Q: [7 ?" p- a$ ^
# g, p. z- z1 K/ Lto grow-grain 2 n& [8 U+ S% V7 m! x- d
if (grain-here < max-grain-here)6 t- }3 Y6 H T+ L& R, i% N, L) J
[ set grain-here grain-here + num-grain-grown) w- F( E2 i8 B; u0 ?- Z
if (grain-here > max-grain-here) K% a5 x7 s6 R
[ set grain-here max-grain-here ]
) W6 p; n. G3 v2 P7 P; r+ T recolor-patch ]" z0 A) W/ [3 s. n; }' k/ i ~
end4 B% b: m- O8 ~
to harvest
9 r, e! [. W1 B ask turtles
w0 }; Q: r X4 k [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
1 K8 w+ q; a- e0 ^ ask turtles. [- W8 x) O3 Q9 K* u ]- L4 i. ^
[ set grain-here 00 G+ ~( |9 X* k4 Z, ~' o
recolor-patch ]
1 o$ C8 m$ N9 ]! y! v
9 m" d9 k2 k- Fend9 X# D/ f4 o, h7 x9 N3 H; t
6 n5 O* Y7 W* I$ p* z& D" e% i
to move-eat-age-die
& p4 C# W& n4 c3 H" S2 k& g fd 1
, D" J3 g1 i9 B7 B, O set wealth (wealth - metabolism)$ o2 @3 a4 W7 k' _$ U
set age (age + 1)
5 {5 b! y4 }4 s7 n' a if (age >= life-expectancy)
6 c$ M% B6 a R [ set-initial-turtle-vars-age ]3 M. K) g; {0 Y9 g) l
if (wealth < 0)
]3 Q9 h! X& c, x' V2 D [ set-initial-turtle-vars-wealth ]
/ l9 s# u T1 @ A" h- H4 s9 u
) H, G# C% L% G* H6 o: v2 bend
0 {4 d; i. r- N. j/ [; | j. N; v
, m, _; z! ]( v, u0 ?, ? j% G0 E. k/ U+ D
to setup-plots
' I' y2 F3 K3 q set-current-plot "Class Plot"1 k8 X" ?% J6 W, j% T
set-plot-y-range 0 num-people
8 e7 m$ j9 g$ \/ l0 O* J- { set-current-plot "Class Histogram"3 Q0 F& b Q8 I* B; H5 o+ q
set-plot-y-range 0 num-people
7 @, n9 u8 M! \$ e, v( ]end
7 T3 G) n" h' N8 m, E3 N+ Y, V
7 w0 }/ y& w" `: B4 x+ Ito update-plots
. V7 j0 C: ]3 W, r update-class-plot
1 O& U: \0 }& g5 M% U! T" n update-class-histogram- N6 c0 h# ]6 B0 E, W) Z# ?
update-lorenz-and-gini-plots
) K6 q, h5 v$ Cend
% V% z" u9 t) j+ ?
. o4 R/ @, S! ?! h) \% vto update-class-plot
: l1 L% C5 S: \0 `! p d9 e" n set-current-plot "Class Plot"7 r% P( }! X+ U: S& B9 S
set-current-plot-pen "low"* P( n. G3 K, C/ |9 [) d) g0 f
plot count turtles with [color = red]
W7 t; [! W3 ^+ J) G% y/ E3 }$ W set-current-plot-pen "mid"
E& V6 ]: J6 l$ I% X7 J J+ B plot count turtles with [color = yellow]2 [2 ^1 y% C0 f, f
set-current-plot-pen "up"
6 D( r" Q$ y/ t" [8 W: O plot count turtles with [color = green]
, y" Q- \3 p6 T- H, Z. y& ~end
1 R* \ U# R+ _1 M
* G& W, x! i6 C/ Bto update-class-histogram
, ^ r% v1 z, B! n! H/ l" T set-current-plot "Class Histogram"$ B5 z+ h# O& N' Y9 [3 M, f
plot-pen-reset9 k# N# B/ j3 H9 F3 {
set-plot-pen-color red2 E l; @5 o! |1 M: h
plot count turtles with [color = red], @! \" i, B1 p4 D8 p& S
set-plot-pen-color yellow
0 B/ w4 I C8 w( g, `5 @ plot count turtles with [color = yellow]) i9 c+ {5 C9 G( I4 T) O* E# q
set-plot-pen-color green9 p8 |5 @; E# N: L
plot count turtles with [color = green]
) p9 b ]% n7 U4 B* A3 J; pend \! L! r* {) t% m. j
to update-lorenz-and-gini-plots* \+ t+ F! k$ F* c9 w
set-current-plot "Lorenz Curve"
% B. Q2 \9 a* Q clear-plot
h1 _- ^0 s# E; |+ _* ?- D' L# u
6 V7 W. H& C0 x' k$ z+ W7 p set-current-plot-pen "equal"4 P3 P& E2 r, h& ^$ h
plot 0
3 D- }. z8 I7 X" J% J plot 100
8 q' b5 E2 @/ w9 n: G; F
f5 m! J$ P% i" W) Y' N set-current-plot-pen "lorenz"- S f. H$ ]/ I1 k# S* k
set-plot-pen-interval 100 / num-people1 T/ r8 T# a: S' d+ a! [* ^9 l
plot 0
* z1 E$ s5 u2 m3 U2 }; X' P/ s& I( a a. H! x3 ], ?
let sorted-wealths sort [wealth] of turtles
8 G# `: B6 h& E let total-wealth sum sorted-wealths
$ B5 k1 F1 }! D let wealth-sum-so-far 0
+ g2 A% j- m @# ^ let index 0
, u* O6 Q( e# J' r let gini-index-reserve 0
S: w4 n7 r. @/ v
# P. c3 l8 O: `% a repeat num-people [) h( P+ g8 M! ]) x
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% N# M9 Q% j. L; b. H4 D0 @
plot (wealth-sum-so-far / total-wealth) * 1008 K) `: G6 Q( D7 Z% s& s1 Z6 V; o
set index (index + 1)9 |6 w) p' ]( i) q2 J2 i" j
set gini-index-reserve3 J0 X [8 }: h9 d( @1 c" p+ Y! ?
gini-index-reserve +
$ M8 m1 C. l+ B" c$ x- ~ (index / num-people) -3 }( L9 A! X Z& G9 D% B" B! I
(wealth-sum-so-far / total-wealth)8 m4 {& A/ u# r
], n2 a+ Y2 Q% Z
/ D3 D+ f" H' a% Z set-current-plot "Gini-Index v. Time"
M6 x3 z" T$ N1 W. b; N1 b plot (gini-index-reserve / num-people) / area-of-equality-triangle
5 h( j1 i" Z+ t mend* A" @ g W* _
to-report area-of-equality-triangle
4 q3 A7 E- J; j) E9 J# ~8 ^ report (num-people * (num-people - 1) / 2) / (num-people ^ 2); j: m1 e1 X0 v
end |