请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现" W$ ^4 D' G: A
globals
. S, k, N, _) ?9 ?8 p9 v0 f[
! e3 M+ Z. S- `$ z' L$ C+ C: h* L max-grain : h2 K6 C- {2 d8 n4 n$ b. n, |
, B1 p( U8 Q9 P1 C0 T( e
]9 g* b7 j: u4 m
5 \& a- X: A& |6 O7 w9 g% Z2 ypatches-own
( K4 ~) R; y- E3 T) O/ t* b2 a[
9 T% a, E3 X) p0 }% ~1 U grain-here - s- O- c- K9 p0 b6 G7 t
max-grain-here
+ h- z# i! n( R3 \, ?]
/ o! {3 C! D; \2 c3 ?& ?0 E$ m \
1 E' ?, E. | T# `* q- kturtles-own5 a: h# S* A7 I& K& P _
[! W$ A4 a/ s9 u* I( G2 s
age 1 W2 c/ q9 F. T
wealth
+ Y% t# V0 N* [1 ]0 z: } life-expectancy
8 P& F# B+ a3 A/ ?" |, I metabolism
1 w& c+ g, ]9 `- ^. X vision
& U/ _: z4 h1 P% c( t# x inherited
- h9 c% P+ V# I( b]
9 f! z( m$ m) h9 g" G0 {7 w `$ P4 L0 B7 \
# q# E% n8 w } I/ T- n# p; B- k- |& t6 Oto setup
+ L j$ p' c4 Z) P& d* l3 d ca
7 g; Y2 F5 t! K5 b* J set max-grain 50
& E/ c( m: X* E) p setup-patches
7 E# p; @- N- g, R! b U; w( t( J setup-turtles
0 @9 f1 c! X% X5 j1 U; ^ setup-plots4 F9 v. ?( e* y w% u0 M& x
update-plots W9 E. |& F* k
end5 _% k, b: Y: ]: [7 M+ F6 u0 w
to setup-patches
" R" T5 T i+ F( b ask patches
) i0 J2 T* p2 V: @ [ set max-grain-here 0
* ^* [& S! p# B" o! \& C if (random-float 100.0) <= percent-best-land
4 E+ F$ Y4 u0 C! N; q9 \ [ set max-grain-here max-grain- |$ ~6 T- l6 b! C1 ~1 Z+ x
set grain-here max-grain-here ] ]5 I- f# x- d' u1 L! Q
repeat 52 [, {- A$ ]! H! `- P
[ ask patches with [max-grain-here != 0]
1 c! A+ D' Z5 \: E- X6 D8 T6 O [ set grain-here max-grain-here ]4 D% s' u, t. p2 l
diffuse grain-here 0.5 ]2 f. `* T* E# [# q$ S
repeat 10
# ] d1 I$ m& }3 ?$ l' H( i3 c9 x [ diffuse grain-here 0.5] ( e1 D6 l$ D; m0 b
ask patches
/ z& R* R% R( \8 S2 ^' r$ j' m [ set grain-here floor grain-here 8 A, H3 b9 W' ?! M5 k5 s
set max-grain-here grain-here
1 Z$ M1 j' N( K; g recolor-patch ]% K( ^! Y* U, u9 H% h& t0 w
end
( V2 s G) U" e- k# ~( R1 `to recolor-patch : a; @! Q( e5 K) z
set pcolor scale-color sky grain-here 0 max-grain
9 T4 a: z. N U' wend7 E' u% V6 B' W/ p
to setup-turtles
4 q9 Z9 U/ f1 Q. O3 B! S* P set-default-shape turtles "person"
6 x# Z7 o# z5 R& b; {3 V crt num-people1 O2 U6 X& r+ K8 b
[ move-to one-of patches
s* }' ~7 d: F+ n1 | set size 1.5 # H) P8 f5 Q/ w& s" S9 M
set-initial-turtle-vars-age
! \- k$ d8 n/ c6 H set-initial-turtle-vars-wealth
9 y1 l' O; f4 C; M' g; C( K, B set age random life-expectancy ]
7 N4 S( m$ }) c( | recolor-turtles
9 N8 t, j* c1 [) h7 d$ [1 iend
2 q9 J u, M/ d7 L U. H6 @* u9 V6 V1 k3 ~2 c& k& b/ G
to set-initial-turtle-vars-age
+ \& Y4 K& K8 K, X' V# X0 N let max-wealth max [wealth] of turtles
3 {0 a1 P; o# h* H7 i% l, B/ Y$ P) z 8 s4 {5 i4 Y: b/ N
ifelse (wealth <= max-wealth / 3)
$ M% k6 Q$ D' A P+ E [ set color red
- l4 H8 M9 f J' @. a set age 07 x. W& U; Z3 T" v1 j* g# B
face one-of neighbors4
) r ?$ F7 s6 h+ [9 k set life-expectancy life-expectancy-min +
* X' y' \+ V% s* V random life-expectancy-max : r8 f! p8 x) O6 m1 z
set metabolism random 1 + metabolism-low
) Q3 Q' s+ i; m/ b; G) b6 b0 ] set wealth metabolism + random 30
7 b" L' G8 {9 T set vision 1 + random max-vision
3 s% l( K: L& J4 W, C% h set wealth wealth + Wealth-inherited-low ]
) V1 u4 F' d5 Q9 U4 I. T' t [ ifelse (wealth <= (max-wealth * 2 / 3))$ g2 A9 N* x( h" D4 {/ {
[ set color yellow ; s( X1 }1 x; f5 U. L
set age 0" s+ O9 h- G9 E5 H0 Y- |
face one-of neighbors4 . Y9 e0 C0 g2 f
set life-expectancy life-expectancy-min +
. O1 d2 r# g6 ] random life-expectancy-max + 1
6 u3 b- W; W5 s3 F' @. q% d7 E/ I set metabolism 1 + random metabolism-mid
/ A5 q4 K4 v; k7 T: Z" {- o. J5 u" d set wealth metabolism + random 30
[. ?0 A7 H5 N, }1 s" |( k& J set vision 3 + random max-vision
/ n1 W8 s- Q1 d: p set wealth wealth + Wealth-inherited-mid]
# x- c& L; o. m& i, k2 ] [ set color green
: Z( Y( ^+ x j" l# g- { set age 0' ?1 x* i5 G: P& d4 r7 a
face one-of neighbors4
8 H, M% T! V+ L8 j set life-expectancy life-expectancy-min +
8 u) J6 z! e# r4 S; J% Z6 ? random life-expectancy-max + 27 u) t' F, Q0 W" V; _4 G
set metabolism 2 + random metabolism-up
8 ~$ v) F7 j& u3 D/ t( Y set wealth metabolism + random 306 M3 A) U$ `: P8 v9 C% P) b" ]
set vision 3 + random max-vision
9 ]: ^& n6 z6 [) | set wealth wealth + Wealth-inherited-up ] ]
2 i9 |; l2 K4 y6 q
5 P6 @. y- l. o4 Nend
6 U5 T7 n" T9 h* j+ G' D0 [ wto set-initial-turtle-vars-wealth! p$ I* ]* U4 X2 \) I
let max-wealth max [wealth] of turtles
! Z1 l. D! h; w! @# B set age 0
" T; X- `3 d' h face one-of neighbors4 # T% |; G1 z0 @; }2 C
set life-expectancy life-expectancy-min +
8 q! i: n- z4 p" s5 Y& P random life-expectancy-max
I7 R( S+ W5 w7 h. t% I# |. Z7 G: E set metabolism 1 + random metabolism-up: Q8 ?6 s! H7 B, S K
set wealth metabolism + random 30
' q# m1 \5 Z1 p9 ]! N- f set vision 1 + random max-vision
! h+ F4 H% e7 p* J7 S& Iend8 o1 V9 } T4 G& g8 [
to redistribution
: b5 V) P* l( r* s. I! k/ klet max-wealth max [wealth] of turtles
0 ]' h. y, z9 H- Y7 b+ u% r" B$ w# ?let min-wealth min [wealth] of turtles; \7 U) d4 j/ M. M2 b' Q2 n
if (wealth <= max-wealth / 3)- ? G2 ?1 Y2 ?5 Y8 T7 P) p
[set wealth wealth + Low-income-protection ]0 n' n2 G$ u7 F: f
end
; }- Y1 ]- U/ Z / D. q2 p2 ]( \/ Y7 K* j
to recolor-turtles
8 ~5 u) |( n& d# {4 S& E9 {% g let max-wealth max [wealth] of turtles
+ W' o( o8 ~4 r9 n# G ask turtles/ C2 n$ E3 J+ a
[ ifelse (wealth <= max-wealth / 3)
/ }) c. S* W1 G4 R# m! q8 c [ set color red ]# t" |9 [4 f% G1 y) z* v8 @; C
[ ifelse (wealth <= (max-wealth * 2 / 3))
$ Y- P% O" h' y5 V# p [ set color yellow ]
/ v& [, F) ^- C0 _3 J [ set color green ] ] ]: t# L5 F* W0 J0 F& m) z
ask turtles [ifelse show-wealth?. g# {$ p" @/ K* E q
[ set label wealth ]
$ H4 _; Y H( N& s2 j, ~8 e [ set label "" ]]
. B' o! Q( }- `5 a* H3 Nend j) \9 S. M. ~1 r
4 q* Q8 ?) B5 |3 n/ r* L( {
to go1 D! c% L% O4 { _
ask turtles$ G: C' U. H. f3 b/ G7 z
[ turn-towards-grain ] ! b3 U$ k+ t( H: w
harvest
5 E: V0 [* Q$ p7 n$ f ask turtles
@: L9 a% j6 h( L' e [ move-eat-age-die ]
3 w' U% q2 f8 @ recolor-turtles
6 {: H2 C4 E- ]% v; a if ticks mod grain-growth-interval = 0
1 p+ n0 @" `5 n; {1 x [ ask patches [ grow-grain ] ]9 G& F3 e4 j3 |
% A5 G A" g5 y* }& K% D0 ^
if ticks mod 11 = 0
* N( Q2 H4 H4 a% I' _/ U [ask turtles
5 w1 b8 d) \* O4 Q [ redistribution ]]0 G" ^% K$ }) T" @
if ticks mod 5 = 0
( r3 K; p& W2 U" w4 P- q9 O# E" U [ask turtles: [' ?4 _2 X" w% W ?- ^* m
[ visions ]]
& N' S8 ^2 W: F! F tick& J. w9 R) w' A9 f4 C2 L4 a* D
update-plots
* [: n5 x+ o, z4 f5 Cend
4 C& h9 n" U V) {1 R9 D/ ?to visions+ B: Q+ v7 K3 j& M
set vision vision + 1
* D" ?8 c- |5 u2 @; m7 D+ g hend
% h$ q! U3 {+ H3 c( g
; Y: ~3 ]( ` f
3 B& |1 F+ F8 @7 r- m& R, V( X0 F& C
to turn-towards-grain
4 @* [$ Q; j0 r" K/ L) a set heading 02 ?* |+ {4 t9 K# m
let best-direction 0
6 L+ q2 {; p3 q" q8 N. u let best-amount grain-ahead! y+ ]" |/ f7 \" \3 M
set heading 909 h- D# @. i" P1 U% h+ Z2 W
if (grain-ahead > best-amount)& V6 G( @# h3 O& R1 Y- \; J
[ set best-direction 90
( ^: c! ]0 q4 x8 e4 ]; R set best-amount grain-ahead ]
0 Q7 Q! B( m& c7 T set heading 180
P9 k1 n# `1 `% _+ m" T& ^4 |$ F if (grain-ahead > best-amount)
% R1 ^' ]4 g' W! @ l [ set best-direction 180; G& P/ D% @, V% R! F7 y2 Z
set best-amount grain-ahead ]+ k8 G! C* D) c2 u c# {! _* A
set heading 270
; e* j( O' y+ q% n3 Y Z if (grain-ahead > best-amount)
* [: {, @1 j2 p( o [ set best-direction 270
0 i" f5 \4 y( U6 q; j set best-amount grain-ahead ]; c1 r" O P( |1 C9 B6 }
set heading best-direction
4 D* N5 R% K+ k9 _$ |( c$ ^end p3 D: R+ q1 [1 G; p7 G
( e" f! W' Y, `9 g
$ k: l) @; z' d3 a
to-report grain-ahead , [9 S2 A# {/ J! `
let total 06 h; o6 E$ ]7 `) O
let how-far 1/ f6 O) w8 V2 P6 t! }* l5 c
repeat vision% v8 u" [4 {& c4 z& t
[ set total total + [grain-here] of patch-ahead how-far
4 g% I1 m2 u- r set how-far how-far + 1 ]( g$ ^0 ]& Y! l' ]6 `
report total
; @- c! H7 p4 D0 K `end
0 t; c8 O% o$ |( d4 x' d" H# Q7 z* C2 D, }
to grow-grain
" {% o6 ^/ M$ k8 V+ P2 k8 V4 @3 T if (grain-here < max-grain-here): G" u, D7 {; ]
[ set grain-here grain-here + num-grain-grown$ |0 N% U* O2 Q! H) j; L
if (grain-here > max-grain-here) $ Q+ l: `& H* l7 _- O$ V4 o$ b
[ set grain-here max-grain-here ]
# u2 g8 l1 l1 u* T$ [ recolor-patch ]$ a- t2 p, {' K9 @
end
! J* c& c- a5 A5 P8 c: Dto harvest3 J6 E% r; Z7 Y6 v$ p8 [
ask turtles
: s& I4 ?2 _. D3 s1 d8 ` [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
+ G" s0 d/ ~, i# _! \ ask turtles
/ P& Z d& d3 d0 G, @ [ set grain-here 0
# [% g, m. `+ \0 m recolor-patch ]( R8 e6 p4 K, p3 k3 G
- G& Z) ?3 c" Z+ e' A7 E
end! l+ p1 ^/ _6 C+ Q$ d, P
9 t! e) n e9 d) D5 N* N" u1 Qto move-eat-age-die
4 t" c$ e- o( Y% b0 |+ Z fd 1* ]2 [, d& c# q+ R2 A4 U3 o
set wealth (wealth - metabolism)+ f& p7 e1 m: E2 r- p- C
set age (age + 1)
5 Z# V0 b$ Q" h if (age >= life-expectancy)
/ w4 r: H0 a$ @2 S, c r [ set-initial-turtle-vars-age ]7 R9 j5 C. H2 s. I% J% E Z
if (wealth < 0)
" d0 I9 B$ K/ ^" l [ set-initial-turtle-vars-wealth ]
' R( j! j9 v. u2 c+ h- w5 ^ ( s" V+ q, u+ G' e1 R
end
& E/ E6 t- h. ^
2 o% @& B$ N$ L6 _
2 `5 D& Y" U& l/ \* b) T$ qto setup-plots
" i( O: H/ Q: A' {% S9 S set-current-plot "Class Plot"+ m7 ?" v0 Q, s# N
set-plot-y-range 0 num-people
" Z8 ?( d7 e- X" S/ b; m set-current-plot "Class Histogram"3 W/ J& _2 n+ m9 ^. d# B. u# ^# T
set-plot-y-range 0 num-people
" A, y) _% U) ^2 T4 U/ _end- k4 q5 G+ l* T3 u2 k& n' P
4 @( }7 G- @1 F
to update-plots: Q- K' n- m) V/ ]
update-class-plot7 u! b& T3 g8 [% t9 g
update-class-histogram
( Q. | A' @3 _/ }6 I& E9 d+ M8 i' e update-lorenz-and-gini-plots8 K. t4 v9 L; m* T9 z/ Y
end7 R2 J# a) s8 z* D: m6 J* b( U3 D
/ P" {. ~& N/ ^, O7 Y/ M: H
to update-class-plot
3 O! W( V8 y$ h" v/ ~/ \9 ~ set-current-plot "Class Plot"
# Y) m+ F, w& n' ~, { set-current-plot-pen "low"2 D# a( w A6 r* V) \* c
plot count turtles with [color = red]! U/ Q0 @: E5 Z k) T
set-current-plot-pen "mid"; ~0 W7 M3 U" G$ O! |
plot count turtles with [color = yellow]' w+ `# `6 C' k7 s4 i; T- `
set-current-plot-pen "up"; M2 H2 Y5 G5 b: ?- U+ K" W+ |
plot count turtles with [color = green]; ~' C$ a2 ]/ K7 W( z
end
6 Q0 Z9 c. S2 L4 t; B5 ~9 p1 w4 G) h3 Y! k7 }, Y
to update-class-histogram
# t4 t a& L, D7 U7 r; T+ f' A% [ set-current-plot "Class Histogram"
2 i8 c- W+ _" [* ^# s8 ^* v plot-pen-reset
: F3 x n0 F2 ^) ] set-plot-pen-color red
5 L) P$ g; t# m/ S( i7 R plot count turtles with [color = red]7 @, k' u6 h/ {1 S* v
set-plot-pen-color yellow
3 W! @. V8 y- R- ]: |. g plot count turtles with [color = yellow]
- m" T5 X( q! F( W" y8 M! q set-plot-pen-color green9 Q1 ^* x T9 ]; {& Q1 k
plot count turtles with [color = green]0 S9 a8 I$ c/ ]; Z; X8 s* [
end+ z5 x9 L# Q) ^& v9 j
to update-lorenz-and-gini-plots& i8 i% `( T4 S$ a+ s" ?
set-current-plot "Lorenz Curve"' |5 v7 Z$ k/ H2 q
clear-plot, f2 b8 T3 n. a( N9 z
# s2 R+ i# @% t% X3 n1 ^4 w7 V set-current-plot-pen "equal"
* Q( d" s' h m H* e6 d- S; N plot 0: _! \# x% ^2 x z# u5 Z; e' }
plot 100
+ |" q' h8 S6 c, I
# P$ ^9 U/ k% A p2 r set-current-plot-pen "lorenz"
4 e9 s! n6 @4 y, R0 X set-plot-pen-interval 100 / num-people
6 p0 e1 A6 i; D2 S% Y b- K plot 08 |+ s% l7 ~0 q) [! G
4 w. K. Z# p3 O+ c! y- C+ w) c let sorted-wealths sort [wealth] of turtles$ y% G8 x/ y9 ~
let total-wealth sum sorted-wealths5 \: }/ T* e! r' z; P
let wealth-sum-so-far 0
4 i {# b) g1 M5 u* Q6 X$ Y let index 05 v! h4 d8 }/ N! r! v( z
let gini-index-reserve 0% q' h# Z5 A9 y$ B! K
) ?0 O% c# C/ D j& H repeat num-people [3 y! y1 m8 e2 m$ C2 H3 ]( e
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)) y$ Q! G2 n( A+ q8 D E% V* R Z4 V
plot (wealth-sum-so-far / total-wealth) * 100! Q. d8 L+ C1 j1 M- i: S
set index (index + 1)
% z4 C' U' v- b: ]8 ]5 T set gini-index-reserve
& a4 w! ]( G6 z gini-index-reserve +
# ~/ j( }6 n) N5 A% g- I+ `; c' R" n (index / num-people) -% H9 w/ O) C; B. K3 b. X9 `
(wealth-sum-so-far / total-wealth)
: v& ?3 f$ @3 H9 V. z/ q ]
1 ~. h' T8 r* @) K9 h% ^2 Q5 D. ^, }. j( ?- a! N8 k8 [0 K5 N
set-current-plot "Gini-Index v. Time"
1 X. m' \' @* t# X, b plot (gini-index-reserve / num-people) / area-of-equality-triangle: R, k$ X/ L2 n" f% R) u" g
end
& A) D+ ~! h+ G4 Y( ]: S, ?- kto-report area-of-equality-triangle
b9 G& Y2 C: ]3 x& E9 ? report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
4 i1 g9 B+ w' c3 `' Kend |