请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
. e) S% g$ g V) Sglobals3 K$ B/ r% P& C a! u* i
[6 k- C5 e6 U- }
max-grain ! s+ r1 C& A; y' |( ^: _
- Z9 H4 a% {* W1 P: N* l: G
]4 f2 |0 Z) W& f8 S! ?) \
* H- p6 t: P5 r) A1 Q
patches-own
# z6 T' B( O0 o! N2 X7 T( \[
% R& u/ t, m+ k. K3 E grain-here
[: X9 ], ^1 A max-grain-here
' K# i+ b' F' }]
# X! E9 o% l/ v; ` O- m
* k; b6 `& i, N# n$ J5 Zturtles-own" j% c$ J$ Q/ G# @7 V
[+ f1 A- ^+ f* r9 M4 j0 B& ]; t7 K
age + N4 S+ ^) K" c3 C j: U
wealth
# c. b) w5 d& u6 C) R, m9 i1 ~* j life-expectancy / V& U6 |8 d. N7 c
metabolism
1 i9 ~) G% Y9 H+ y vision. O9 O; f3 e" }' I" N# ^# t
inherited
- i1 A) |: h% W/ V* p0 r]
+ [2 G2 |) k" a* T) J4 \% L5 U
4 U. y; h. e- k" O3 h4 }" B% l k0 E. n
to setup3 D$ x: w* d9 u* B' l
ca: [* d" A( A Q# H
set max-grain 50
! I! j; q4 J O9 P setup-patches ]! b( n" k' f; ~& q
setup-turtles
? Z$ `2 ]4 N setup-plots
( N" I+ n2 q5 Z$ e- G" E g% }0 o update-plots
- O8 M8 l, K6 j0 H9 A6 Gend
* a* ~- L( k0 v; K4 A0 Yto setup-patches9 [! y5 x5 s* Z& _
ask patches
, ?1 n. P" ^5 P8 m( k: p [ set max-grain-here 0
0 U; f! @5 q6 t9 c if (random-float 100.0) <= percent-best-land
8 m1 R# C) }& z* C6 d5 O# c [ set max-grain-here max-grain
: E/ _+ I5 Q' `1 U* n. w: m9 n4 | set grain-here max-grain-here ] ]% d: d+ m# s4 t- S+ |7 W4 @3 {7 q$ u
repeat 5
8 k! X- z6 I6 ~; ?) @3 T; ]/ J [ ask patches with [max-grain-here != 0], }3 h3 P n s8 Q* Q
[ set grain-here max-grain-here ]& N5 b0 O7 N# {' B
diffuse grain-here 0.5 ]/ n8 E1 N6 r6 h8 g [1 ]- l* L
repeat 10/ Z, ^7 h6 W! `6 n6 f3 w
[ diffuse grain-here 0.5]
% N9 e! D% P$ h. q W0 i ask patches
9 Y4 T. i% P0 J4 T! M [ set grain-here floor grain-here
& p2 l# B8 ~& }2 r8 |( ` set max-grain-here grain-here & i4 `4 \0 s+ M) s! {. o
recolor-patch ]
# ~# R. M/ Q) v7 y! ?end
6 ]6 z6 ] _/ B) O" cto recolor-patch
- J# W4 B4 {+ l/ n+ {, L set pcolor scale-color sky grain-here 0 max-grain
1 p/ x8 q. _ J6 Aend
$ p' w0 N/ B$ z, g: C# Fto setup-turtles
6 C6 J/ i, S! e$ g* x: e* H set-default-shape turtles "person"
1 g, K- I; O4 H# `: ~5 o* p crt num-people
" ^( c3 h" Q$ d1 Y. v$ Y [ move-to one-of patches . E( }/ j$ z; T. p) ]
set size 1.5 5 I- d. A1 R- h2 X. C
set-initial-turtle-vars-age$ \6 ? I. J( \
set-initial-turtle-vars-wealth; {- t0 S/ L% U
set age random life-expectancy ]
6 |3 \( F G' [' v* \' [( H6 R2 ]2 _ recolor-turtles
. s9 {' r) [6 g/ _% ^# e+ pend
( ?9 e W& K( m6 e( C
: f8 u4 e& o& Q: o! e1 y. I" |, Gto set-initial-turtle-vars-age3 h$ X, o3 A( S1 y1 k! A& u
let max-wealth max [wealth] of turtles$ d* X4 r% l5 Y) _# o9 B
$ y3 R; t% N4 @( V6 C" u4 z6 m ifelse (wealth <= max-wealth / 3): B# j% F1 \5 g( ?6 |' m3 @
[ set color red
* P7 ^$ m+ S: P6 ^: J6 [ set age 0
l# {! _5 U3 G u8 p% N v face one-of neighbors4
0 p8 p E H8 B5 T5 i) V, [1 c, ]9 e) M set life-expectancy life-expectancy-min +
& v S0 x, _# B5 S random life-expectancy-max
8 _% R: m# @4 w$ Q' V9 v) ^6 B set metabolism random 1 + metabolism-low
8 \( ]8 u/ T6 V0 j' J, S set wealth metabolism + random 30
! M5 U: ]; m5 N0 ], m$ r set vision 1 + random max-vision9 {+ d0 l6 b5 c# H9 E4 g ~& O
set wealth wealth + Wealth-inherited-low ]
1 ?' H! P4 U% `( [0 ?/ t [ ifelse (wealth <= (max-wealth * 2 / 3))
# n8 k3 `0 @0 f" |7 p [ set color yellow , u8 g9 u9 L8 N- y$ X5 X0 ^
set age 0; n. j% }8 T, H/ m9 |' N/ |
face one-of neighbors4
. S$ x9 p+ Z. d$ {, ~' M set life-expectancy life-expectancy-min +
, h# z/ L/ H7 y) G) ]9 | random life-expectancy-max + 1
& x3 c3 o; \) u+ T9 | set metabolism 1 + random metabolism-mid# p( }0 C, o. e# s8 t& O* N" r
set wealth metabolism + random 30
0 r, O5 W9 _- } set vision 3 + random max-vision
& x! ~8 d G3 |: k* N2 {/ a- j set wealth wealth + Wealth-inherited-mid]) ?3 ~' L/ {1 Q- ]2 C% O
[ set color green . v- \1 _$ a( F/ j
set age 0
, w3 r/ }( K! |1 z+ F face one-of neighbors4 % O# X H8 O. [0 P# N
set life-expectancy life-expectancy-min +0 E& c. j0 O+ r+ X: U" }, S
random life-expectancy-max + 20 D/ K, Q" C+ ^8 a
set metabolism 2 + random metabolism-up4 Q& k$ E1 ]: r5 M8 t* q
set wealth metabolism + random 30
0 T- R9 f0 M$ F/ @. [1 N. w set vision 3 + random max-vision
. l# m4 I7 N3 I) t+ R set wealth wealth + Wealth-inherited-up ] ]
- M' V) D0 }( j, {
) {* z) U; @* a5 R0 dend
( K1 [0 T u7 C) I6 A. b, V# o1 {4 eto set-initial-turtle-vars-wealth
$ h& m. T8 q6 |& x/ k! ^# Y5 v& ~& H let max-wealth max [wealth] of turtles8 K S2 `# t( ^0 Y
set age 0
1 R, L* V6 c- @8 Y9 \1 v face one-of neighbors4
' s: h4 o. ?% W3 E, l4 D4 p set life-expectancy life-expectancy-min +) y9 o- U0 K. `: `, a; d u( T
random life-expectancy-max
/ W3 F' @+ O. q; A# N. h X set metabolism 1 + random metabolism-up5 L$ c; s1 W& C
set wealth metabolism + random 30
! }# E0 Y1 d4 m set vision 1 + random max-vision
& X+ h! n5 \# Vend
& h3 M1 P/ ~; c% E; e& Ito redistribution* U8 Y" i& y7 c4 d( v# c9 q
let max-wealth max [wealth] of turtles
# M+ Q$ d. j( b) L5 zlet min-wealth min [wealth] of turtles' T2 H9 h* s3 Z, S/ V
if (wealth <= max-wealth / 3)% Y, \* I5 c9 d2 d. \5 d
[set wealth wealth + Low-income-protection ]
2 w0 t0 a' D- i% D T5 Mend6 f+ k8 ~, s1 ~" E! G
6 e! H6 }3 b4 ?* V' H, eto recolor-turtles
3 w* b% O" n- E0 U# q% h. G let max-wealth max [wealth] of turtles
; _% \% O1 W4 v; \6 h+ g3 z ask turtles
7 M1 t8 _ p( C [ ifelse (wealth <= max-wealth / 3)1 d$ t2 J# }8 d
[ set color red ]
7 [; s( N B5 x5 [ [ ifelse (wealth <= (max-wealth * 2 / 3))
' J0 g- [. c; O( l2 P [ set color yellow ]
8 H/ H% u {9 N) U8 F [ set color green ] ] ]
& x4 x, o6 o2 P7 ?- J3 Z* z: f ask turtles [ifelse show-wealth?
: ^! w5 |% X' q/ B1 e5 |/ N [ set label wealth ]
8 Z8 y5 a$ y. d [ set label "" ]]
' B3 h6 S& ^4 ^* b5 s( Z! _end' V3 U8 H' I& ~" J
5 l8 J$ _7 g1 Pto go" i7 @8 v. u9 q+ x
ask turtles
+ i: c5 ?3 V. Y1 h# F [ turn-towards-grain ] & u/ A0 {; y: K6 O; p+ o
harvest- ?! C$ y) |1 f& R/ a$ Q( m
ask turtles
# `6 A- D ~0 ?& [& T( Q0 o [ move-eat-age-die ]
$ y% R" w. X9 q% G) g recolor-turtles
' |+ U5 z3 i: o3 s% G" | if ticks mod grain-growth-interval = 0. M' x# `9 I8 \- z% y8 [+ s
[ ask patches [ grow-grain ] ]; l& I# u) ~' W; y& H( m1 \
1 ?5 R$ E V7 M if ticks mod 11 = 0) `" X( i8 Z1 H! h; [
[ask turtles& F, p9 b4 P8 }! u, |
[ redistribution ]]! p# q9 C! |" a6 o* A; R' y' _. M
if ticks mod 5 = 05 E2 E4 t5 y9 j! b
[ask turtles. g6 D: D/ ?; K$ i3 @) @
[ visions ]]
, X" ]* Z: L1 }% Y# _9 q% w tick
0 r- a9 v1 c! H update-plots2 F9 n. W3 p, \0 ?1 }+ Q1 }
end
: B: E3 t1 Y5 d4 @to visions2 D7 ~! P9 S9 G, d9 L
set vision vision + 1
% Y7 T! \+ A) v1 y6 Hend
& a) p0 o, x8 D' \
. O0 l5 W. ~4 L; D' s: W' `1 g! \3 o
' j. N+ W8 z$ w$ Z9 V. B& P
9 V. x+ f$ y, X5 l2 \. x9 Oto turn-towards-grain - F; s: d9 J, a; \2 |; q
set heading 0
) Q& f' m+ v3 u! b T( f let best-direction 0/ S% ~2 v7 M; y5 {+ h
let best-amount grain-ahead
& c# p4 h% V' F" P+ q8 q W set heading 903 H. G/ \' Y3 M. Y" `* L, D
if (grain-ahead > best-amount)
8 u. a( B; N6 x [ set best-direction 90
: X) L# L8 _6 p! @ set best-amount grain-ahead ]+ ~: ^0 X+ f: B; L6 h
set heading 180
H, i& Z5 [- C' |" x if (grain-ahead > best-amount)) p0 _9 k# H; z( t. x( o
[ set best-direction 180
' s! j% s5 ?/ h+ X+ a/ l9 M set best-amount grain-ahead ]' G( l) {; _7 B9 B8 b
set heading 270
) O; t# ^7 M( X. L+ {' H% Y0 x if (grain-ahead > best-amount)% K, z% {6 Z. _: T+ n
[ set best-direction 270
5 t/ b: T% J5 {- b set best-amount grain-ahead ]
9 u& U+ ~2 y5 P5 n: G: g% z+ o set heading best-direction
- g; ?* A3 W+ Dend+ V/ U* h! W" M, o' H" U5 V
- h' [7 A$ G5 P4 d1 U* a
8 T. z* E. C* b& y- ^
to-report grain-ahead
1 `. D( T" I2 W1 D4 W4 j* Z# e let total 0* K2 _" Y! E5 g8 {
let how-far 1
2 H7 F2 F& _ J* X- g repeat vision3 `# L5 {7 H2 A M+ v* N5 E- c
[ set total total + [grain-here] of patch-ahead how-far
) G5 n/ M( c# O7 ^. V set how-far how-far + 1 ]3 |* `5 `( ?6 |4 N& a p
report total8 _8 E8 A% I, w4 Y
end7 n6 z% _$ P9 I! g# z
7 F& T/ E, |2 L1 M
to grow-grain
4 ~/ e. Y) {, E8 C4 S if (grain-here < max-grain-here)
. B- Q; Q9 D2 b# A$ b [ set grain-here grain-here + num-grain-grown
3 P3 w6 p2 ~4 f2 }; p/ T) l if (grain-here > max-grain-here) - f8 N$ i' b, v/ ~: B) K
[ set grain-here max-grain-here ]8 ]6 v) g+ @* \: S
recolor-patch ]
! o- d+ t8 ~1 R D6 h9 aend
6 g. x* K% V$ v6 J: c3 Cto harvest! S( z! O1 j* \0 g6 E/ W8 R/ ]
ask turtles3 ]8 [2 [+ z: ~$ y; W
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
b' g @1 k4 |: R) B ask turtles$ \4 l! | V- u1 R5 [6 i) i6 \
[ set grain-here 0
+ z" Z' M( p1 R recolor-patch ]
+ a1 c! z- c9 a6 |" q: O2 D0 P
1 m3 a* Y6 f6 N7 x wend9 `$ F9 Q7 P K" D% K8 O% K
8 N6 Q( y" M/ \+ V+ H, `6 W# u: s$ Z
to move-eat-age-die
0 N v- y% J" C* ~ fd 1& o4 H% E/ S4 g8 Q, F: g2 M3 a
set wealth (wealth - metabolism)$ ] v8 z7 _% X6 K; A P* i2 }
set age (age + 1)
, }( ?. Q+ l+ S if (age >= life-expectancy): R; z, [: l2 z" E& z
[ set-initial-turtle-vars-age ]
: w! T: i; n/ B if (wealth < 0)5 x! v+ O+ k/ N5 |5 R) }
[ set-initial-turtle-vars-wealth ]/ p. W" y7 _# B; T, p$ l7 J
+ h; m- T' Y2 a/ P/ p
end
0 b+ B8 q7 h& R8 {' L( Z( m" T B \) ^
! ^: n5 O2 S3 R! U$ K5 Ato setup-plots
+ A, ^: }& B. {2 y9 [4 o* K set-current-plot "Class Plot"0 u" Z7 q+ @2 V2 h% q* i! x8 d
set-plot-y-range 0 num-people
3 R$ F: t" M. q4 f set-current-plot "Class Histogram"
9 }% i, [! j' X9 T+ @! m set-plot-y-range 0 num-people
' i, H; R- ?/ u, u1 M* v4 L% R2 ~end
0 E$ Z! ? o4 U+ a& m8 P" F, F# U! Q# Q B" e* D9 p
to update-plots: Q% Y8 J7 b) ^0 p0 t
update-class-plot0 o( T8 z8 _3 |
update-class-histogram9 \" ]' j* v* ]5 M& c
update-lorenz-and-gini-plots
7 V3 l( z7 ~# z! D) fend
$ n' k' M2 V9 \2 R! Y% a
/ z/ S5 f! Q( Fto update-class-plot
( A9 I6 V" S+ e* m5 c6 g set-current-plot "Class Plot"
, c' n+ r9 P. h0 y set-current-plot-pen "low"7 U( k/ H( \8 _4 }' J5 F
plot count turtles with [color = red]
! S) v' r/ w( g0 E z$ ~4 d set-current-plot-pen "mid"2 U, G' E1 y! D2 U/ u* W, b! c
plot count turtles with [color = yellow]
% F1 l% Z- c5 P$ d$ X) l set-current-plot-pen "up"
/ S9 c1 k6 F9 a0 D6 d0 V3 B/ p' W plot count turtles with [color = green]
# Q9 H1 Z; H- I6 o% g3 Hend. Q& a5 u+ ]( ~9 w* l) Y. b
7 P, N/ V5 _% \to update-class-histogram) ~9 {- B2 K' s2 @* q
set-current-plot "Class Histogram"
o# a" e9 b* b1 v plot-pen-reset
& n4 ?) u( y9 f g F; f! P set-plot-pen-color red
2 Q) |! i9 t8 U) x* ] plot count turtles with [color = red]* N% J8 m5 r, r/ i% Z0 U6 Y* N5 o
set-plot-pen-color yellow
, T* _" z2 a" a. H: z$ v plot count turtles with [color = yellow]
: s" ?9 j5 q1 }. N. f8 t set-plot-pen-color green, k5 W/ x8 l* u
plot count turtles with [color = green]1 ^* F$ i0 k( H) S/ `: @/ k% X: ?
end3 J1 v+ U1 G- N R2 s5 B( U8 L8 Y
to update-lorenz-and-gini-plots- @8 y1 \ O, l, \& S
set-current-plot "Lorenz Curve"- i0 ^4 J+ Q7 a4 Z5 v1 v
clear-plot
$ d3 n o: ^* ]! n4 J
8 S) P# P& R8 H5 M2 t( R set-current-plot-pen "equal"* v& R0 E3 J& Q* J# [
plot 0
h: {+ l8 s) r+ ^4 }$ J9 K8 u+ e plot 100: `5 t8 z/ m( U
; {2 V$ o, X8 L9 L: z
set-current-plot-pen "lorenz"
# ~" l; T5 N% T6 P' y set-plot-pen-interval 100 / num-people
# T- h3 P4 A/ m% B# ]+ c plot 0* Y0 l( _( C; V: y1 J
' V1 j+ l: p% s8 a; d( i0 I6 \* n
let sorted-wealths sort [wealth] of turtles) d& D% A2 G9 Z
let total-wealth sum sorted-wealths
. e5 p, c2 S0 |" z4 G$ u let wealth-sum-so-far 0# _0 x5 ^2 g% S6 w" E$ p$ O1 c! R
let index 0: c* O! V! ^! j5 e5 t9 h0 O
let gini-index-reserve 0, ?, W S4 t$ A9 U, s9 C( c; t
8 Z+ `3 {& x+ _- r3 W. N
repeat num-people [
4 N3 s! X4 E7 p6 l, l+ S set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)4 i8 h3 H, A& N7 @; E0 k
plot (wealth-sum-so-far / total-wealth) * 1008 G# |2 a( D; e5 B6 r
set index (index + 1)) j8 i# w* V- Y7 q7 Y
set gini-index-reserve7 J& v l' y8 A" M3 |
gini-index-reserve +9 T0 S5 P9 C) G; ?! d1 t
(index / num-people) -
. ~$ T% G0 u2 b (wealth-sum-so-far / total-wealth)5 i2 P4 t- z6 c
]! @3 ]# p$ x1 t& y3 c/ t2 u
9 X) m6 R; A! n% U% p
set-current-plot "Gini-Index v. Time"
/ X4 j7 F/ l" j7 y* | plot (gini-index-reserve / num-people) / area-of-equality-triangle4 ~9 R2 m5 l$ i- v2 C. Q
end
4 n0 o, l2 \' a: R Uto-report area-of-equality-triangle
6 a0 j& {" j g8 _ report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
+ N7 P, G m7 e: H1 Y% ^- Eend |