设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7147|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
4 m" U! T* N0 C& ^+ `globals
) g+ x- A2 P6 \, A5 n  ~1 |0 x$ F[% D- B6 n" g0 e! y( n- u6 f
  max-grain    ) ]  ~+ p( p* Y
3 w8 G& }. y2 F8 C- r, Q' R
]
: f' ?, W, S4 t& P7 x5 N3 @8 f# r2 s0 E" j. ?
patches-own: m" C/ `- N" h* {4 \
[  I! y$ I- B5 |) M1 i) t
  grain-here      7 z' e$ Z  ^- U; [+ S/ w
  max-grain-here  : S7 F3 ?; z# F( J
]
- ~6 x  @: X2 ?. `3 g
# w) |/ C' S* b2 ^- @3 j1 X/ n9 Nturtles-own
& x& M! ^6 K$ E[  r2 w8 ~/ M  ^
  age              5 x* F9 {( z# K' K- c
  wealth         * K7 z" R2 z1 j  @$ V
  life-expectancy  ) @! x/ S+ R& i. J! t# l! N# w6 O
  metabolism      
3 V/ F0 [: L. s  vision* h9 y) N' a5 Q
  inherited         
% |1 p0 G4 G( R* \4 M]
/ i1 v+ F" L! p7 w# Y! y  M: R/ C1 J4 u( F" {

: w) P+ @+ T8 G, e$ P) v6 lto setup( k, w) U, E6 }" w, x- x
  ca
) u2 T9 D! R3 w  set max-grain 50/ w8 F! X8 \: X, E
  setup-patches
" \* @0 ^6 u( v. u: ?/ U  setup-turtles) B% k8 M9 z' Y" n/ K( B' }, v
  setup-plots
0 f- W+ b% w; m2 E  update-plots
1 b) Q! V( ^1 ]0 z4 Iend
; h% ?! E7 {' D' _) o$ B- o: A$ oto setup-patches
& s6 G' y' o7 `& e: A" U- h  ask patches5 a. S5 F  x. \( q$ p) q2 t
    [ set max-grain-here 04 R0 j- o7 C" ~+ f
      if (random-float 100.0) <= percent-best-land
# S! V6 [, w+ D  m        [ set max-grain-here max-grain
' N6 A% g9 q9 s& x' w6 x          set grain-here max-grain-here ] ]
+ k. Z# o1 a! p% e  repeat 5
5 G, I7 N7 r% e$ o! l& N    [ ask patches with [max-grain-here != 0]
5 P% I2 h0 z9 I3 {' {0 I& F) O6 T        [ set grain-here max-grain-here ]# X1 d6 X* _" b$ d3 m+ E
      diffuse grain-here 0.5 ]
+ Q  n: C4 P2 K( M/ m  repeat 103 g6 n$ {: V: ~7 C5 U6 \( E  F9 P
    [ diffuse grain-here 0.5]          * N1 C5 t: j  x- Q1 \# j
  ask patches4 ?1 h* ]6 w( K: I: e
    [ set grain-here floor grain-here   
7 l% p' r, E* `5 ?      set max-grain-here grain-here      4 ?8 P4 X8 g: W+ c
      recolor-patch ]; X$ v" R9 {" p+ c: b
end
% h: g/ [+ ^1 yto recolor-patch  2 i; F! _) {1 y
  set pcolor scale-color sky grain-here 0 max-grain3 b; p) q9 L8 ^6 W( c, S' r
end
3 h; F; m% Z! [4 q* j+ r8 Rto setup-turtles
/ d' C8 |  R* J3 n3 ~  set-default-shape turtles "person"
- p2 \$ b6 o2 c- W+ O  crt num-people
3 w6 M+ i; g, X& o- _$ ]    [ move-to one-of patches  
9 A( Y( G6 x8 ^: T      set size 1.5  
/ H% R3 D1 }4 \      set-initial-turtle-vars-age; V# x( L- [1 ~: s0 _
      set-initial-turtle-vars-wealth: L' d- |7 a: |1 x0 a4 [
      set age random life-expectancy ]; ^; |5 a( F* H9 d! X
  recolor-turtles7 [4 |. T) `% z. |/ i& f8 W  U
end
2 F' H1 i4 W" o5 [+ u6 x- N3 V! X. C; g( q4 y/ Y8 J4 U" I1 h
to set-initial-turtle-vars-age
& n5 j3 t* p6 B! b let max-wealth max [wealth] of turtles
0 u1 F$ K  k7 h7 |    8 ~! _* K% f- a/ H; Z
     ifelse (wealth <= max-wealth / 3)2 b9 y; e, C9 }: e4 g$ r
        [ set color red 1 O$ G2 j( O) S/ V9 X, ?
          set age 01 r# [5 J7 R% _' C9 w
          face one-of neighbors4
/ D$ S! a# d" u! n1 b; ]6 i          set life-expectancy life-expectancy-min +0 P3 y  P0 ^0 \6 m4 ]# F- T6 m) v
                        random life-expectancy-max
; A! [6 y. b5 D          set metabolism random 1 + metabolism-low
& A& O+ J0 u$ ]) U3 P/ {9 Z          set wealth metabolism + random 30
4 s) f- R% X( V9 G* _: Y          set vision 1 + random max-vision, ^- j6 g+ z* |5 f# K- m
             set wealth  wealth +  Wealth-inherited-low ]) ]3 c; c! {/ T. _+ H6 V
        [ ifelse (wealth <= (max-wealth * 2 / 3))5 j' a# n5 G( Q4 F1 }5 v
            [ set color yellow ' K4 ~2 k2 e2 u6 s/ Z* d
              set age 0% c7 q; j+ z, u1 v5 D  E
              face one-of neighbors4
- {6 N7 C* w* P4 P) D              set life-expectancy life-expectancy-min +$ {1 ~) w' o/ j5 k( }
                        random life-expectancy-max + 1: D. q; c, W. v! k) G
              set metabolism  1 + random metabolism-mid0 _4 U7 R  ^1 w
              set wealth metabolism + random 30$ ^# H, g" ^3 v' h! f
              set vision 3 + random max-vision
% R7 y: J6 ]; H) d  g                set wealth  wealth + Wealth-inherited-mid]
& a" B4 H1 E! o& h            [ set color green
8 w2 V% a8 D, X3 L3 ^              set age 0
' c: o4 N: x9 I              face one-of neighbors4
5 A" [, n; W& u/ m              set life-expectancy life-expectancy-min +
9 t: I( R3 s: i1 q! ?% q                        random life-expectancy-max  + 2& k" e& [/ M+ V. g
              set metabolism 2 + random metabolism-up" W2 ~8 L( G# i, ?7 }  @$ K
              set wealth metabolism + random 30+ V( J# u. U4 o$ E3 d, T
              set vision 3 + random max-vision
" L2 o4 P3 _8 W' }7 Y! Y) _              set wealth  wealth + Wealth-inherited-up ] ]
1 k$ S# ?4 s: x7 N
2 o: `+ c: _5 r, mend) T) B0 A3 A" g+ f, F6 N
to set-initial-turtle-vars-wealth
$ |6 F3 D  g9 l5 E1 P6 E" m let max-wealth max [wealth] of turtles# h$ X  t4 P" {# {; t7 v# r8 H4 }3 \9 _
          set age 0
( a* c% g: V, [! s' h          face one-of neighbors4 " u' G/ D7 y, v+ c
          set life-expectancy life-expectancy-min +
6 c% y* ~' d/ {* d0 I6 s/ n9 O                        random life-expectancy-max + c) V6 Z8 X/ |; ~6 }$ @& p7 ^
          set metabolism 1 + random metabolism-up: m1 t1 M' b; h# T
          set wealth metabolism + random 30
$ T% T7 F4 L% }& o3 b          set vision 1 + random max-vision 8 ^* r6 W" v* J: m5 |
end
' M: L: p5 N5 C: j' xto redistribution2 ]9 Y- l9 D1 k* M0 T
let max-wealth max [wealth] of turtles# G1 n0 r4 }$ ~/ m+ l# U, [( O" u
let min-wealth min [wealth] of turtles
6 I% J* L4 x, aif (wealth <= max-wealth / 3)
# \$ N9 C* N  A- w  n [set wealth  wealth + Low-income-protection ]
' T, \) O3 A' ]% `end
0 A% o' U% x2 {0 }3 P) I          ! X' I- B* I/ S/ g' \
to recolor-turtles6 m0 l& w9 N3 P- v8 d3 t$ ~3 \
  let max-wealth max [wealth] of turtles, a4 s# e6 [8 A% ]* ?
  ask turtles/ p! o8 y* ]# q' i3 g
   [ ifelse (wealth <= max-wealth / 3)
0 q' F  }) m; C        [ set color red ]
4 a5 E" e7 h$ p+ m        [ ifelse (wealth <= (max-wealth * 2 / 3)), h5 d% E0 E& p( A( |- v
            [ set color yellow ]
. _6 X! q8 @* M" u* b            [ set color green ] ] ]! y, C4 p& Y& ^) Q9 ~( g2 z1 [
ask turtles [ifelse show-wealth?8 _2 w$ t3 ]$ C- i2 v
    [ set label wealth ]6 d: p0 r, Y5 c" r+ {
    [ set label "" ]]$ v8 h8 |4 u! Y3 @( w5 ~7 B
end$ A. M# `5 k% _0 l" c
# R( g  H* `# p  |" H
to go$ _3 V3 j4 X& B# J  s. O( T
  ask turtles7 ]0 p% s  r) o1 y' s7 L; J
    [ turn-towards-grain ]  2 L' C, V0 W2 U5 e% W
  harvest% ?: u: f. B% K) V, x
  ask turtles  i8 Y; o' P5 T& k0 _7 X- `
    [ move-eat-age-die ]
6 u/ \- a" o7 f. n# }" M( Q% T9 Z5 o: G  recolor-turtles+ b6 U( q/ k8 N6 R
  if ticks mod grain-growth-interval = 0' u  @6 I( f, A- k8 P" p
    [ ask patches [ grow-grain ] ]
: L* A9 z1 h; ]' ~/ h   , f* y2 F! W8 T
  if ticks mod 11 = 0
! v5 N- Q* H$ H$ l0 H/ w" a6 n  [ask turtles( |; Q' \* w  W4 i9 A7 b
  [ redistribution ]]: b& q2 M/ I2 L, r4 k5 w, m! g) a
  if ticks mod 5 = 0
! {: d# M7 R, P& r   [ask turtles2 i& ^: _5 f0 e; ^
  [ visions ]]
) E( P  L' D1 Z# o* D4 ]1 d  tick
5 q, R. x- n* u8 z0 X  update-plots' J, B4 _! M, d2 ~- A8 n9 @
end9 }+ i; G( ~# ^
to visions
6 Y: j- P7 V( J9 X. ~" d set vision vision + 1
! n! b: P9 Z( a5 r- }end+ }5 j, Y& I& B9 k8 ?7 ]4 X

; E  q+ a' i+ r4 J& u/ J+ F
7 V) ~6 R. V# [+ d% I
% }! e! e& H) O9 w; U- K# sto turn-towards-grain  9 {$ a0 z* p! {+ m
  set heading 0
0 _, n/ g9 z: v+ s6 y/ W  let best-direction 04 u7 g' b# s/ G( q& G7 |0 P; \9 P
  let best-amount grain-ahead
, @% r* ]+ u. w/ Q  set heading 90/ K& H: c  r# E! K5 O
  if (grain-ahead > best-amount)$ I) ^* }( d$ E& r+ m
    [ set best-direction 90
$ f% E+ _- `- \+ E4 T2 F$ G. }2 _      set best-amount grain-ahead ]
2 K6 f* I, ?7 {+ a0 j  set heading 180
: j0 b0 T, P! T( Z5 h; S  if (grain-ahead > best-amount)4 @3 \2 S2 L0 ~: L
    [ set best-direction 1808 q3 s! V/ R/ u
      set best-amount grain-ahead ]; A& s' e, o" _6 a$ Z4 U
  set heading 270: m) B% c2 C5 h, _8 ]# G4 C
  if (grain-ahead > best-amount)
1 P. l' [4 x+ N    [ set best-direction 270
+ P1 r/ n; \$ k, F% B. S      set best-amount grain-ahead ]
0 B% N' d( F7 N8 ^1 W- T- x  set heading best-direction
+ d, T! k" t/ D( ^+ Tend
/ X; H  M  f% s9 _) O  D! ?8 ?3 c7 L! S, `6 W8 y& G

: H( `, M+ ?- K; B1 N; xto-report grain-ahead  
2 _7 H" v6 r  x& d; K; R. H9 q  let total 0
0 e% F* D9 y8 Q, `. i' [* ]7 _6 V1 Y4 U  let how-far 1
0 E* x: q1 V$ q6 `) K3 G$ O( b  repeat vision
. Z# q" {1 D. r& s    [ set total total + [grain-here] of patch-ahead how-far
+ o; @' Y- O! M: h* M( a& L, J      set how-far how-far + 1 ]/ b( o( C3 g6 O4 _" g+ E: x$ J
  report total
, c/ H: y3 i4 Rend$ S8 x+ z, s0 S1 x! ~' J
' B& y1 ^. d2 ?; m# O
to grow-grain
" ~2 ~. r4 o1 k7 R- ]. V  if (grain-here < max-grain-here)
2 X! O0 \4 s0 A* Y) t    [ set grain-here grain-here + num-grain-grown. o& q+ U- f  V0 b
      if (grain-here > max-grain-here)
4 J, J. F& \  b! u& }0 d        [ set grain-here max-grain-here ]
6 R2 j& @2 N5 D" ]4 r+ d      recolor-patch ]5 h' J1 M1 [% v& p, `4 w! x! v
end& F; L7 `! _( @2 G2 L
to harvest
% C; W8 }: H  K' u/ k/ A) T  ask turtles
6 i  V8 U% Z% R6 c, M& B9 n    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ], E, p. m1 M6 M" }' r" k
  ask turtles6 X+ \0 Z* B4 S! k, v/ l) F5 Z
    [ set grain-here 0" h7 \9 `. ^& q4 i. s" i
      recolor-patch ]# x2 J5 ~! V# z' [/ u6 n$ P. V$ a6 j* v
  
  T8 R$ F: k& `. Send3 Z, u. h6 c3 o7 i7 L7 H

1 R0 \! s7 U7 N+ O' E6 K; v. nto move-eat-age-die  ; C0 D2 |. o, q/ S6 z4 b5 B" z: _: _+ a# c
  fd 16 ?; ]( A- p3 e0 {) R  C/ B0 z) {
  set wealth (wealth - metabolism). I: \3 V: H/ m/ x7 a
    set age (age + 1)# J2 c/ a7 V, e9 e% u
  if (age >= life-expectancy)
# c4 l8 U- {0 Q$ }5 p    [ set-initial-turtle-vars-age ]% w- _9 k( c& u: P) n4 J# ?0 e
  if (wealth < 0)0 _1 j7 W1 w7 B: D+ ^. Q* D/ o9 R
    [ set-initial-turtle-vars-wealth ]$ K1 g6 \# R4 n9 ~) [" I
   
' G- I- v+ W! U' ^' _+ X6 gend4 ^* \! d  J7 J% t% X: W# F

8 v3 e9 u6 u- W+ L
' h3 h% W1 D) c2 Y3 _to setup-plots. ?. D% w: R& \& c
  set-current-plot "Class Plot"
) Q; h5 j9 z5 f* {' s2 A$ ]5 ^  set-plot-y-range 0 num-people$ e7 q# M6 t  i+ c$ j
  set-current-plot "Class Histogram"
# A, l9 i' i" ^6 S+ r7 w! A* L: r  set-plot-y-range 0 num-people$ d" m: o7 k! }) k0 f
end8 _; w. i" H, a" g# H

. V( }) |% p! k- h8 `3 Kto update-plots6 ^+ v. h$ C3 L7 d
  update-class-plot" o2 N% s% b$ i8 Y7 T5 `
  update-class-histogram; L/ C# f, w4 w8 \: ]; I6 J8 a
  update-lorenz-and-gini-plots$ t* M6 d/ Q7 F0 m7 @
end
9 b, L4 `$ @6 U9 J5 |# X% j7 K' k7 u
) I7 H8 j8 _* `) \7 i1 _to update-class-plot7 z( Z$ L; d7 h* {; k' Z7 m
  set-current-plot "Class Plot"1 y- c" _1 S, n) P+ }+ {
  set-current-plot-pen "low"4 D1 V) `- H$ t- o( ^0 k9 f7 w1 l
  plot count turtles with [color = red]
0 [2 l  i7 k  ^1 J* k  set-current-plot-pen "mid"; s- _$ W8 T! H' f- a- p
  plot count turtles with [color = yellow]
% E9 [7 l. R2 n8 z  set-current-plot-pen "up"
8 k) n- ?1 J! N7 U! j  plot count turtles with [color = green]
* d2 E' u- N. V  D5 jend
* M- i& ~) D" Y+ N" O: F) @: ^3 N/ M7 S2 v: Y$ X! U
to update-class-histogram
9 ]8 ?1 \0 k/ v3 }  set-current-plot "Class Histogram"
% |, a1 [9 _: a( x5 p. K" D  plot-pen-reset
2 C  s. m6 j- M& E+ F  set-plot-pen-color red- Y& `! _" S1 U' Z
  plot count turtles with [color = red]# T: U- c: k: G4 W8 f' p, |5 ]6 Y1 q# h
  set-plot-pen-color yellow- i3 M# |' p, z# w! N
  plot count turtles with [color = yellow]
1 A. r. M+ `/ {3 [4 @" C  L  set-plot-pen-color green
; V# L- I' `- }) Y0 O$ o  plot count turtles with [color = green]: s" h; x; n: t- W' l; W
end
/ R! X* F0 \" a. L% z7 s2 Wto update-lorenz-and-gini-plots! I  a- I' U! J$ g9 Q
  set-current-plot "Lorenz Curve"- `+ _1 r9 k8 X' J- {2 ?
  clear-plot0 d$ b$ S- j6 l! u8 H1 F$ g, N; l3 ?/ w

4 n! L! z3 M7 d+ v, _6 \  set-current-plot-pen "equal"
4 o% a7 l, w0 [2 [7 V# ^' e  plot 0
' |% ~& O. S& `( W( D  plot 1008 H2 s7 u( I0 t  g3 u; T+ F- ?
. u3 Y" ~' z( P
  set-current-plot-pen "lorenz"
+ z6 s9 W* z; N+ N- i# s# V7 U  set-plot-pen-interval 100 / num-people6 _0 ^- J& U3 b0 Q4 w- U; F% c5 s( \$ T
  plot 0; N2 S9 j7 C$ d
+ w: [$ Q% Q* b* l
  let sorted-wealths sort [wealth] of turtles4 j) H2 V# N' O- E6 p+ x
  let total-wealth sum sorted-wealths
% p7 ^* u7 g7 K* g* g6 ~  let wealth-sum-so-far 0
( c: ]4 O; Q' {& K  let index 0. y( F5 n; R( W. p' m
  let gini-index-reserve 0
3 Q: a; D1 A& ^% [% g6 f
0 R# b; e) q/ \3 s. }# q6 i) d# ~  repeat num-people [
0 u- t( ^2 f9 s# s    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)6 k) r" U+ q$ t$ y& z/ W8 L* T
    plot (wealth-sum-so-far / total-wealth) * 100
; i2 [5 h! ^& {7 k; J; ?& k! n( I    set index (index + 1)2 b2 J3 Y$ d% n6 G, Y6 ?& V
    set gini-index-reserve
' n, U- }; `& k      gini-index-reserve +" y' N: v3 J# Z% I  g
      (index / num-people) -
. }% J- g6 D. H, N7 z' c6 k8 K4 v      (wealth-sum-so-far / total-wealth)% _& J% L: u. O$ Y
  ]
8 z/ R' P% V& _
# K! H+ l2 ~, p. C3 G  set-current-plot "Gini-Index v. Time"6 L3 b6 x8 Y; p; m9 e/ Y
  plot (gini-index-reserve / num-people) / area-of-equality-triangle  U( s$ _) q/ _0 t$ A7 m. H
end$ H' D1 v# Z5 h$ [, _$ }2 y+ E
to-report area-of-equality-triangle% _0 E1 `$ i  S( _  A0 l' i
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
* q3 F0 s6 w6 qend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-12 07:42 , Processed in 0.021542 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表