请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现* s9 Y2 Q' B7 ?, `- R' L0 F+ M' Q
globals
) `& j5 ]6 R+ s* a2 E1 u" X3 W3 Q# ][
7 _0 U" v/ s0 d) I8 V- ~" G max-grain
+ O! r v+ N' |6 @) q1 X+ Q, _! ]# t( w. q8 u
]4 }2 O0 Y( X- H0 h- K. P
: F L# b% ?: ^3 @* |! L
patches-own
6 D4 `. n# w6 z5 d- ?[
% c& K" a) t# |# s4 U9 F grain-here 9 j- W. \: X0 {% P
max-grain-here
$ C7 ?* T4 P# \7 h]1 V/ U& N0 E) N" [; V" ]4 p
& r) f& D3 V- M+ v( f& b {
turtles-own! G9 T! F8 A. p5 Q+ E
[
. ~ D' \ ?8 B. ` age ( v1 t& Q7 N4 f/ l, `1 ^
wealth
4 M# m' t" W0 J life-expectancy 1 i. J& i4 x5 U! N+ o9 [
metabolism
* t# y* l4 f! k1 Y2 f; j# H! q vision( P) _- a; L. R3 @% T7 e/ E
inherited
% I. H2 F! D: k: k, k! y! b]
9 h+ l8 M" l5 n- C
6 l+ k8 w6 ^3 o
( y( I. n. Q# S) R h" pto setup" ]- Z) O3 {3 u ?
ca
3 k$ I; m, i8 N+ ] set max-grain 50
( F2 F& W" ?0 ?- s( ~5 @8 l+ Q# U$ ? setup-patches& u; V: p- ~' N4 i! }" K9 }9 g
setup-turtles
/ Z" E5 Z$ S1 _# Z9 l K8 |+ r setup-plots
) N% o* m5 i$ D, f% C; M* M update-plots* y) v4 R# z! E7 N1 v
end0 r- Z% ^" e1 U( {6 Q% ~
to setup-patches5 S0 n% ?" ?; ]+ {4 ]4 }: ]% G* a
ask patches, B4 H$ ?# F2 P. j9 V$ }
[ set max-grain-here 0
# e' z4 o8 `; u O' [4 ~$ ` j [ if (random-float 100.0) <= percent-best-land+ x; t' [1 d5 u$ @5 u. D6 x
[ set max-grain-here max-grain
) t; C$ R* Y6 i set grain-here max-grain-here ] ]5 o8 W9 w& I+ `9 R6 l- o$ W
repeat 5; f$ O1 a2 n9 l' ~2 Y
[ ask patches with [max-grain-here != 0]
; \& q0 p. W! P7 q" l. v [ set grain-here max-grain-here ]
- Y0 C/ {/ N: x& q- ?/ N/ i diffuse grain-here 0.5 ]8 Y9 R6 U/ x6 P7 _# ?
repeat 10
8 g7 {& e0 g& W5 L [ diffuse grain-here 0.5] 0 b2 `/ a" g. S0 a
ask patches
, p9 ~' }6 M8 v+ N }9 U [ set grain-here floor grain-here
$ N3 N, {) O( n4 s+ O9 X. f2 q3 o set max-grain-here grain-here
+ h, @, }- l" e recolor-patch ]
# @: w0 G. \! L2 R1 C( ~! Yend) y6 s; f% _# j7 q
to recolor-patch
5 f( e: f4 _- L k7 o$ K3 Y4 e set pcolor scale-color sky grain-here 0 max-grain
6 i; x! ]3 T9 O# Rend
3 U M8 q" j( ?3 bto setup-turtles
& m5 G0 s! b; D6 T, J2 y set-default-shape turtles "person"
) s+ ?' x* n9 ]& ]/ ?2 _ crt num-people
, U( `( R( W- w8 y7 v [ move-to one-of patches
: {0 x$ y1 o4 [& u. k) U6 Y8 r1 i set size 1.5
- I' D* E- \$ l+ h9 C set-initial-turtle-vars-age
0 A5 p6 G# W2 y- x9 O" Q2 X, [ set-initial-turtle-vars-wealth
& `7 ^1 B8 @% @2 a7 o) T; q- I set age random life-expectancy ]# F" V \+ [. v \ x2 f% c* R1 U
recolor-turtles
7 V. M5 u A/ ?: D( dend+ P! {5 `# n+ n8 l7 z/ s8 U6 O6 ~' m
9 b* J3 A4 }3 @0 P
to set-initial-turtle-vars-age
3 h8 [8 l4 a" b s" I let max-wealth max [wealth] of turtles# }6 J0 O. v% i. L2 C
. r5 ~; I4 D% ^ P: Y
ifelse (wealth <= max-wealth / 3)
* b, v. }3 [$ w) M& _ [ set color red # q" Q9 {, D3 s- @/ H1 ~* i$ q
set age 0
6 P# _: X2 R+ M face one-of neighbors4 ) c% G% ]( m! {' S3 u# \
set life-expectancy life-expectancy-min +
8 I/ v& `2 D# W random life-expectancy-max ( C7 \' h; r o* T
set metabolism random 1 + metabolism-low
( o& ~, [& C9 _7 L/ A) Y% O; D set wealth metabolism + random 30, M& {' U' u, ~0 C. r+ N' U! j+ f
set vision 1 + random max-vision1 t# M& \3 f! e1 k
set wealth wealth + Wealth-inherited-low ]: a" S. p% o/ c2 r e; g7 x
[ ifelse (wealth <= (max-wealth * 2 / 3))
$ @9 H* r3 L: @0 C [ set color yellow
7 B, @3 Z8 r: b$ R9 s- b: M set age 0
* g3 D; i" H, e. Z face one-of neighbors4 1 N* a4 G" _4 f* V
set life-expectancy life-expectancy-min +
3 E) u* j1 l& I! A# o random life-expectancy-max + 1
, }4 S5 c$ @% t q set metabolism 1 + random metabolism-mid
+ m2 C' f4 N) H' x% I1 `- R$ D I set wealth metabolism + random 30( q9 t$ r/ z# z+ L! r; _. h
set vision 3 + random max-vision3 _! N( g/ S" z/ w: w
set wealth wealth + Wealth-inherited-mid]
" O0 o7 ?7 q' B# ]% Z. [" Q [ set color green / Q9 r+ h3 l- [+ @: P
set age 0
; M$ T9 l0 S+ W! g* p face one-of neighbors4 / v1 A8 D6 n& t6 R# {/ P
set life-expectancy life-expectancy-min +
+ n5 }! \( C. b! K k9 h random life-expectancy-max + 2" _% u7 J+ w8 v
set metabolism 2 + random metabolism-up' G; n$ @7 n( P. B/ i
set wealth metabolism + random 30
h2 j& M! J% D; B# v set vision 3 + random max-vision
% R2 Z& k6 Y; `$ z; r set wealth wealth + Wealth-inherited-up ] ] ( I x4 s, K1 b! d/ m9 J" {( o# d6 F
. z/ T0 R* b$ w5 E& l0 J5 \- `% E% Uend
' y' n- j6 w: C7 y o' W' k. lto set-initial-turtle-vars-wealth
5 F3 v8 r1 c W# t let max-wealth max [wealth] of turtles" A0 \) ~+ h% g6 \8 F% Q6 _$ F
set age 0/ W6 G% }4 \4 I. j+ `; ]
face one-of neighbors4 2 h' a# Y% h n& T# l
set life-expectancy life-expectancy-min +
" ~* C# R" X' \9 B% z" q3 L2 D- s+ k random life-expectancy-max
2 a _* [3 x# f/ G+ K. q set metabolism 1 + random metabolism-up0 e8 @# S4 O+ J/ ^! U1 q
set wealth metabolism + random 30
7 s2 U) @: t+ r# X, P set vision 1 + random max-vision , |* D8 o l6 U1 J% p. O
end. Z% E9 `* p; b; Q) a# t
to redistribution2 i m/ `' w$ Z- W3 J6 }( p( U' i* n& M
let max-wealth max [wealth] of turtles
& f# @+ Q# ?9 n: N; Glet min-wealth min [wealth] of turtles4 j, B* r' Z0 @' Y0 V7 v
if (wealth <= max-wealth / 3)" e) [- |4 o0 @% A4 {
[set wealth wealth + Low-income-protection ]' O$ o' H i6 `% u1 q3 Y
end
3 p% w( I5 b+ E: ~
$ q( |' z7 h3 Yto recolor-turtles
0 P3 r/ ~9 w% |% g) [! I' e let max-wealth max [wealth] of turtles6 E7 ?0 E' @0 n9 g L/ h2 B
ask turtles3 t1 n. V6 a6 \' v* [( i
[ ifelse (wealth <= max-wealth / 3)
# [+ u5 M! h K( [, b2 c5 ~ [ set color red ]* S: [9 h# j& w
[ ifelse (wealth <= (max-wealth * 2 / 3)). Q3 V) r' t' j/ K& }
[ set color yellow ]+ }4 N# e* F% U9 K$ ?& G
[ set color green ] ] ]3 z( m8 r9 r. Z1 S2 X' ?
ask turtles [ifelse show-wealth?5 N$ c/ M' d7 ]: G8 n' X# Y
[ set label wealth ]
4 N* A; `3 I: N T- r [ set label "" ]]5 J: l: X2 V1 U' G, h$ ?) {
end: g$ l( ~6 {6 j1 a% a
8 s6 j$ O5 x8 Y8 y! O- N0 k/ ^, }to go$ q4 o% N. K4 B8 } e, v, W
ask turtles
8 y- w7 G9 [( O7 Y; S [ turn-towards-grain ] 9 f i" R* d% X6 w
harvest
% v; p( {/ ^3 T ask turtles
, U/ ?# W8 J. h7 ^' G, |' n% } [ move-eat-age-die ]! J# S. ~4 ?* M
recolor-turtles
. c4 D E( ^( Z0 ~) k) q if ticks mod grain-growth-interval = 04 o4 l$ {9 \! B: a$ Q7 t: i
[ ask patches [ grow-grain ] ]- d1 i" q0 p! c; m/ a7 t+ p" r
6 R) f6 `" J( z$ p" A9 ? if ticks mod 11 = 08 X, j* w* J5 u
[ask turtles
, w( K( C+ F% h [ redistribution ]]
; S/ U9 A+ }/ e4 P2 x if ticks mod 5 = 0
# n/ b. w F9 ?. S: }' `) K* @; o [ask turtles
, ]: j; ^4 O ^# n5 c$ |5 q [ visions ]]4 k: P8 ^$ M& i6 w$ _% G
tick+ R3 m& H2 D [, |! R; @" j
update-plots
( F& ?: B, \9 O$ C* Uend% n# p# U9 m* ]0 E- c; L) k
to visions
. p: J; G$ ]! b5 x. ` set vision vision + 1
# I; p6 G" y" H" l$ Nend8 q8 C- m6 p: ]( R e8 Z
6 a0 C& s8 Y* `# a* u
" l& c" e1 y0 ]7 S9 T! f
: t5 B7 D2 X% i2 E2 j
to turn-towards-grain , X2 P2 ~2 t: C) R G: Q
set heading 0" L4 T1 _! j4 g# g. t: |+ e, o
let best-direction 03 k. M* W7 B; k6 o' w* g
let best-amount grain-ahead- P6 F; Q$ w0 i' k8 y* L5 C
set heading 90* X" ^( x8 i6 D" }8 g
if (grain-ahead > best-amount)) L- z- ` o9 b+ z
[ set best-direction 90
/ Z7 u# ~) E0 h) c, b set best-amount grain-ahead ]
) L0 L$ f$ Z5 z; N, q% k+ ~- m/ Y set heading 180
- r! R# l- u2 X8 W& u- Q6 ], r" \ if (grain-ahead > best-amount)/ p( I9 `8 L$ S6 X6 `- Z: c$ _
[ set best-direction 1800 ~! a' B' E* P9 w6 z
set best-amount grain-ahead ]
7 }' }' _' ?. ~ set heading 270
( [ p v7 k6 L% w* U if (grain-ahead > best-amount)# Q- t+ h" N* W. L
[ set best-direction 270: w$ }% x$ I* ~' L/ V+ Q7 L
set best-amount grain-ahead ]) Q; e% Z# e' F* D% E! v6 f
set heading best-direction8 Y" a/ A: m# ?
end7 i4 C+ r7 S8 o0 w& ]/ H
5 N& B9 d; ^/ N5 d4 W+ b
; @5 [4 r+ P2 ~% [
to-report grain-ahead 9 ~& l* @: }3 |2 U9 F/ |3 }
let total 0
% k9 Q4 x' B! M, A let how-far 1
% y$ @8 I& p" l" C9 {' k repeat vision
2 ?2 @' G; @7 r+ s9 W- R [ set total total + [grain-here] of patch-ahead how-far
. ~1 N6 i$ T0 ^ set how-far how-far + 1 ] ^, y) S2 B5 T9 C5 y: w
report total
0 R! ]: E' L, rend
" @' f" X) l( v0 x1 J- J# q
! k% \# ^+ u! @( w% j: G/ }/ h1 K( wto grow-grain
) g" t( w" i* p2 K" u if (grain-here < max-grain-here)
: Q# A: z7 p6 T' [& l+ T9 R" o [ set grain-here grain-here + num-grain-grown: D4 A2 w6 a2 F& B5 B5 @
if (grain-here > max-grain-here) : O O2 I5 |. o4 Y
[ set grain-here max-grain-here ]% I# M9 U# l, c1 b* j
recolor-patch ]$ \2 X4 t' O3 C! t6 [
end. y k, n: E" ^6 j" l
to harvest% w$ G) L4 z: M2 W" R
ask turtles1 d# u7 e& u) C) w; t. ?! B+ `
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]% z3 D; y& G2 k+ c
ask turtles/ {9 q$ ^/ Y& W) I
[ set grain-here 0) E7 j6 R/ v: T% F2 n, @
recolor-patch ]
7 F$ F2 s% _9 W; S, m! o " s: v4 ~3 i7 }
end* f1 s- _ ?. h( U0 O
9 N8 G! n6 q0 {; C+ m
to move-eat-age-die # s! T# O: A& m$ p+ S" m
fd 1
& _7 `+ L i9 U set wealth (wealth - metabolism)( a5 v$ A J: ~+ ^8 b3 P+ H: h
set age (age + 1)* [+ \" @1 u# y( T2 [
if (age >= life-expectancy): _* [5 a' P$ ]6 i
[ set-initial-turtle-vars-age ] ~: \- j' H% `& F: Y- V% k; P
if (wealth < 0)
4 F1 H7 o$ J0 P; j [ set-initial-turtle-vars-wealth ]
3 s* K% D) J! w) s- q4 s 6 f& G- e7 t7 z8 z7 P7 u
end: w) H* F$ ?, r+ c1 C0 u
. @, _3 X1 m) E
7 `. x: u! [( n/ ^" y/ d: W4 Xto setup-plots% ^) O( ^5 h' y @
set-current-plot "Class Plot"
5 @3 g* E1 r7 b$ g set-plot-y-range 0 num-people g0 N+ R! O* D, v' q8 g0 {5 m
set-current-plot "Class Histogram"7 t% C- g, Y! g1 t8 W, K+ R
set-plot-y-range 0 num-people2 Q# j& O0 @: i
end
4 j) x( l% L. O6 e, [2 _; p& Y( D* I
to update-plots
8 w; s7 p4 J& K, F% }, u update-class-plot
7 x4 Y, x! I1 k update-class-histogram' g/ u+ t" ^9 F& F ]1 I7 V
update-lorenz-and-gini-plots
" B# l+ Z* R1 k' G4 b; W' j7 Vend5 b4 `) W' K. c- G2 u
2 p/ M" h& `3 H* r, z4 @
to update-class-plot
! D u0 @9 A# V set-current-plot "Class Plot"
5 g4 O- r9 J6 h1 D set-current-plot-pen "low"
0 B- J; I; i. F3 H plot count turtles with [color = red]- J; V( a6 P3 V2 a, _
set-current-plot-pen "mid"
0 v) ?5 ~9 o7 v' Q! L plot count turtles with [color = yellow]
. k7 R! M5 X, z' j$ T0 O set-current-plot-pen "up" f+ f& S/ ?: h
plot count turtles with [color = green]5 k5 W' G9 s. q% _
end
$ ^6 \/ q- E J& ^% s' [" `/ \9 w: V' o0 }8 t
to update-class-histogram
5 }% N# v( r3 `/ W" e# u9 y$ b set-current-plot "Class Histogram"
. D8 G9 X2 e" a: @" v plot-pen-reset# v5 L ~1 c1 ~: a! D1 [
set-plot-pen-color red( \1 f& Z" F5 [! ?: @" W
plot count turtles with [color = red]- R7 @. {. s3 p8 m" d+ V; O$ c
set-plot-pen-color yellow" s) U9 V+ P+ B9 {
plot count turtles with [color = yellow]
2 U- o( n. c' Y0 s set-plot-pen-color green7 x" S0 F$ X- K, G
plot count turtles with [color = green]
& v3 T$ b1 Q; D/ T5 T9 e9 r) tend
6 ?, i" h/ K. @( W B3 f2 ]% G5 {& rto update-lorenz-and-gini-plots" e" ^- v9 ^1 C+ \
set-current-plot "Lorenz Curve"
. U1 b [4 e4 l; M2 ^ clear-plot
9 ~6 i. q `3 R+ m/ W3 U5 B6 t* [& _- T' j9 Z9 S
set-current-plot-pen "equal"" l4 [- E5 i) J: O6 L6 m$ Q8 H
plot 0
" t8 y( Q3 r' c4 H, M' B plot 100, ] T6 L) Y- b3 F8 y3 A$ E
( t- o2 [1 X% V, ]5 m
set-current-plot-pen "lorenz"
8 u$ N+ J1 F1 L- W% ]" `& u& b set-plot-pen-interval 100 / num-people
1 D4 g' k0 `$ C plot 0
4 ^3 g9 ]' o+ D4 A) u" w4 I7 X% D8 ^
& m/ M& _/ Q4 v+ M8 b6 P let sorted-wealths sort [wealth] of turtles
* L9 L4 S" A/ x( {2 P let total-wealth sum sorted-wealths
' p2 S) x$ P; z& U let wealth-sum-so-far 0
4 \8 i0 s% L' [5 J let index 05 U7 ^% p6 q" {: |6 g2 }. g
let gini-index-reserve 09 m( G: W3 U' C. X/ t; a, h0 R
& m2 E9 O U8 E5 X/ Z+ X+ |/ ~
repeat num-people [
: N% ~3 x$ t4 I: v: ^, U0 q set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)/ L0 n* F/ B. T4 r8 q
plot (wealth-sum-so-far / total-wealth) * 100
( i8 q6 v, U3 d5 ~. Q6 B set index (index + 1)
4 W/ o& ?( @5 U set gini-index-reserve! D" k6 Y0 u0 R& Z( k8 m
gini-index-reserve +5 r5 X" {5 R; |( y- p& R
(index / num-people) -
. W4 ~3 l1 b7 k (wealth-sum-so-far / total-wealth)
Z; n! l2 W5 T2 H' s+ h ]
, z+ L3 Z9 L! s
Y" E1 _. w& m4 R set-current-plot "Gini-Index v. Time"
8 e+ z: o- J( Q: _7 e! t1 @ plot (gini-index-reserve / num-people) / area-of-equality-triangle' K7 ] v. I, W7 E7 e
end0 | q$ V: v: z/ w0 a
to-report area-of-equality-triangle; r" N! a. u. b' f) ?/ c# R
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
6 w: d5 L; m: u: lend |