请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
2 {% `; L, x) z( [* E& h/ I3 q1 Hglobals
- X7 G1 d1 T9 f+ i+ S; s+ o3 Q[
" f0 M. \, Q: S max-grain ( m- F* h" y; D! Z
: _ |, z4 T( ^' A], p- J0 z% ?) A1 ]4 J
4 \7 v% h( A7 y# Npatches-own3 Y1 P$ O+ ?& S8 h j" b
[3 Y+ ?( _# T4 Z4 x6 _7 {: l
grain-here
; V% w& R4 w8 Z$ S max-grain-here
6 D$ i$ H, k, q0 Q8 v2 |]2 d$ I* U2 g s& h
& E3 F2 Q' w* j* X# `7 Eturtles-own: e( Z4 w, l! |& ~
[
0 J8 Y; b' a, T k* t age
/ g8 H) J8 o8 l/ ]7 w' k wealth
3 L" r; ?5 }3 ^3 m+ q, L life-expectancy
/ v3 o* g5 R9 v( v4 A metabolism
0 y" _ g+ h. z- \ vision% A! [: Y! Q. x' c* I
inherited ! g/ F8 h4 m# o
]( {4 { M4 R; p% I; U' `: D/ D1 L
5 A. b4 o$ K' { G$ u
6 h( n; H5 Y- o' b5 I/ }/ ~7 ?# wto setup4 \' T3 c" b7 u( |
ca, k) `' A! s7 o
set max-grain 50
0 `2 a5 R q4 y) M j; P setup-patches$ a4 j* K2 W4 Q5 T& F3 v
setup-turtles& u6 m; C3 k0 f1 A8 E
setup-plots
% }# v4 R- C, Y1 P" L; m3 K" t update-plots3 E: z, L* d' O. C% l$ w
end
]9 b4 {- H4 B$ l3 P2 t+ U& lto setup-patches
4 r, t1 i V# ?1 v ask patches
8 v1 D5 m! _$ M7 O, q [ set max-grain-here 0. e5 I. C2 X& A+ f; D2 R- q/ h$ ] T
if (random-float 100.0) <= percent-best-land6 x7 K- g; W" C+ Z9 ? f1 j# W
[ set max-grain-here max-grain$ d+ ?# r8 M, M
set grain-here max-grain-here ] ]
0 p$ F5 T+ j2 m+ ~" ~ repeat 5
! ^4 m$ W! B( F5 f' N! X* S I [ ask patches with [max-grain-here != 0]" h/ j! n: @# O% x: P
[ set grain-here max-grain-here ]
' Z9 N% `+ q- e diffuse grain-here 0.5 ] S4 L1 L& m9 @) z/ I ~- ~7 W
repeat 100 l3 b3 H: S4 y) Q% t H7 Z
[ diffuse grain-here 0.5]
+ z, `( Q6 @- T; o ask patches
; d* [( t0 H4 t5 R& H7 ]* ]4 y) g [ set grain-here floor grain-here 4 @& S# l9 \; ^6 C2 `7 G1 ]: m- N
set max-grain-here grain-here
& U5 f _5 A% U7 I) g' h recolor-patch ]
% n& i! S% e# k, L1 V4 }" W7 _5 }end0 ^5 C9 q. a, L$ h
to recolor-patch 6 j @& g. I* b; W
set pcolor scale-color sky grain-here 0 max-grain: e! a# e7 w/ \2 B
end1 F: z5 ~% U/ H& m" F
to setup-turtles9 ^- t/ m" k. o3 M8 j. V- |
set-default-shape turtles "person"
+ F3 A. s9 C1 ^- P, x8 T crt num-people
+ h, j" X8 B* u" o+ w' q' \ [ move-to one-of patches
. J2 Y1 v) \* q* l set size 1.5
# Y" P# Z% L" V% ]4 G+ u2 z- E3 s set-initial-turtle-vars-age
7 w% h* y0 r$ l7 L' B" _0 l set-initial-turtle-vars-wealth8 x$ ^5 `3 G5 `9 ~$ K2 B' p+ O9 s$ z" @
set age random life-expectancy ]
! m/ K4 r- Q7 N8 t% Z; L recolor-turtles, ]1 W7 X' G( M: t' q7 S: W5 |
end( f( y( d1 ?! G) b' k/ z
' S8 ] @$ t/ l) L6 I, d- I3 R
to set-initial-turtle-vars-age
* o8 k* ~, f( Z7 h" S: T2 O let max-wealth max [wealth] of turtles/ y2 _- G' U; j
/ ~9 H2 I2 c) N* T ifelse (wealth <= max-wealth / 3)
0 z0 j# f* H! f1 L" h7 b1 Q [ set color red
( y6 ?' c- k5 L* [1 B2 u set age 0
, J) ^+ f. \. ~% ~3 Q0 y8 h face one-of neighbors4
5 f$ F6 }. m) z4 B set life-expectancy life-expectancy-min +
( T3 F! n" ~3 ~ random life-expectancy-max - n! y8 d" V' [. A% O' [/ W
set metabolism random 1 + metabolism-low; Y. d! o+ m. x& I) q
set wealth metabolism + random 309 N3 f; ~/ t/ j8 c! X' d: O
set vision 1 + random max-vision
" G: k8 K$ k. G ? set wealth wealth + Wealth-inherited-low ]
. L# u9 T1 @/ ~1 |. p1 \ [ ifelse (wealth <= (max-wealth * 2 / 3))
+ w; v/ z/ @ g0 S7 G& ]9 Y$ q [ set color yellow $ w+ T+ u, _4 r( M3 S' w$ D
set age 0
4 c: i1 I0 \4 W face one-of neighbors4 7 Q4 A5 s% G( @
set life-expectancy life-expectancy-min +3 T7 e5 g0 s5 j% \' ~) E- t! v4 D. b& ?
random life-expectancy-max + 1
* l) P$ e5 s/ U. B! y( t set metabolism 1 + random metabolism-mid D3 |: r4 z1 A$ R
set wealth metabolism + random 30
1 z' Q5 J/ b' C; | set vision 3 + random max-vision
! @6 ]1 i+ T0 m' c% c% G# S) d6 r set wealth wealth + Wealth-inherited-mid]0 e0 g* _3 S' L& D, J% A, ~/ y
[ set color green 8 w d! D" v, z6 C8 I
set age 04 k% J$ E1 d; j+ `: C+ O
face one-of neighbors4
9 N5 O2 x7 o* I7 K* Y9 O4 { set life-expectancy life-expectancy-min +, O; p0 j+ ]- `; D3 k _# a7 I+ o
random life-expectancy-max + 2
/ C4 `! X/ b$ d set metabolism 2 + random metabolism-up6 ^7 t, O+ V( C0 A3 \
set wealth metabolism + random 30
$ e0 ~+ O3 ], Y) l) z set vision 3 + random max-vision
9 Q F8 A, N& a5 F# }, l% k, K set wealth wealth + Wealth-inherited-up ] ]
9 o( ^) u& U+ K' \" x$ V+ }( E - g x8 t# P* }
end8 \% l: o# H1 w( x
to set-initial-turtle-vars-wealth
2 H0 u. p: _7 e0 w! A2 K0 U3 I let max-wealth max [wealth] of turtles6 l& }& e) P/ a1 N8 n: B
set age 0+ a0 f* v/ g+ r% U, |; p9 V
face one-of neighbors4
- G+ L4 L+ G9 c! b set life-expectancy life-expectancy-min +( A, I- j1 q2 c) M( M& f8 t( z
random life-expectancy-max
# J, X4 K% e" w2 \ L% P2 U set metabolism 1 + random metabolism-up% C) W N; S" R, \
set wealth metabolism + random 30
# d8 B5 k8 W* o4 j" \) L set vision 1 + random max-vision ' ]+ g) x& K7 P5 K) l$ X {
end% F, V- |& x9 u
to redistribution4 n3 d; o8 G- _! }5 N; ^- d
let max-wealth max [wealth] of turtles0 b; |( l8 X: v' G
let min-wealth min [wealth] of turtles0 [4 t6 v: O& ^. s/ n2 z" j
if (wealth <= max-wealth / 3)9 b' V6 Y6 v8 L" q! Q& B
[set wealth wealth + Low-income-protection ]3 F% g1 z8 C2 T- \1 ~# n# f$ `; l
end
5 Z' B9 X* U$ J7 U8 c: @0 L " I$ T$ v6 e4 J. [
to recolor-turtles
" E# h: B6 g$ q+ y$ Y# Q let max-wealth max [wealth] of turtles0 ^; Z) B8 A( c# D
ask turtles
! L4 N! b1 I- [9 e [ ifelse (wealth <= max-wealth / 3). I! l8 U& v; h; e0 T
[ set color red ]8 ]: o$ c5 _& }; U7 q& D
[ ifelse (wealth <= (max-wealth * 2 / 3))
X0 j; I/ d, G+ o L1 E [ set color yellow ]
, l1 b# Y6 f9 K1 P [ set color green ] ] ]
9 D: Q4 a$ {! ?: O% @ ask turtles [ifelse show-wealth?
( N1 y H- f/ N; v' L: q5 S& T [ set label wealth ], F5 Y- }0 w+ v) A1 q6 e
[ set label "" ]]2 o/ d- v, R$ A& {" D
end
5 I( \% k0 S5 _ q% G0 L- b7 c% I) F9 b% |2 A# z
to go
+ q) C: }7 A0 H' {6 j ask turtles
: B/ P$ D8 ^( l( b/ m [ turn-towards-grain ]
) V$ g$ G9 L+ a$ t harvest) O5 e% Y2 A' g6 q
ask turtles$ A; O5 @* k; t# X8 f
[ move-eat-age-die ]
4 O. c& g+ E; n( h, n' j [) h' J recolor-turtles( f# X$ H: }# O9 k- j
if ticks mod grain-growth-interval = 0
" X6 i+ n4 c I/ M* x0 ]: U* U/ R [ ask patches [ grow-grain ] ]
; e3 p' W4 J. z & G9 o) a+ d" N# L6 f
if ticks mod 11 = 0* H: ]1 d: Z# d: q; }
[ask turtles: F2 U- ~ n* j3 s
[ redistribution ]]
+ p6 k+ ~+ p3 ]" T& J if ticks mod 5 = 0
/ W/ y0 u! D/ z% G6 x [ask turtles
4 X: V7 `& s6 j [ visions ]]
) k( L. g6 ~* L% \) ]9 W tick$ o5 F a4 Y( p% e' @ T$ b* y
update-plots& t* R4 l% Z/ o7 \3 g
end5 M8 s+ h$ g- D- z
to visions
% i( B( e$ q) r" \ `. V c K set vision vision + 1 # w5 l4 n% u2 {6 b" _
end
8 ^& t+ T6 Z" a) n9 N; Z$ p! e) f" f% O) a* ~9 e; n
$ p/ [7 V. J3 n4 O* n3 Y, {3 q1 w8 f
2 F- s8 ^5 I8 R5 q! E; P
to turn-towards-grain
6 ?+ [ `0 a- s) i G set heading 0
% S; j$ ]6 x6 l" w8 U let best-direction 0' [; m) G4 V. ^6 \2 \
let best-amount grain-ahead
4 I* `) K1 F+ U$ E3 M1 K set heading 90$ x% h3 f5 n2 Y# b5 Y- l* T
if (grain-ahead > best-amount)
4 u6 k2 |, d% E& S [ set best-direction 90
* C Q& I% ]. X& n" s$ c set best-amount grain-ahead ]
- D% y# N# g5 _* V9 K( d9 G set heading 180$ }6 Z$ e G! |3 m+ L4 _
if (grain-ahead > best-amount): O1 L9 \5 a s5 O5 q
[ set best-direction 1804 h% J/ O1 x# S+ a' i
set best-amount grain-ahead ]4 x. e+ g; `" Q2 {; f* L- H+ o
set heading 270- k' \5 S" h( W( W+ i) D
if (grain-ahead > best-amount)- S1 m0 Y# j; d* |- p5 g; T
[ set best-direction 2702 ]+ v8 G5 x. }$ w6 P5 N
set best-amount grain-ahead ]
9 r$ ~) J* J: ?7 }4 L set heading best-direction
. J" y+ U: S, `0 Z6 A; q; }end+ D5 @6 t H+ b/ k+ i' Q
H3 i* {1 v2 o: B; d7 |4 V6 i' y& o$ g! g4 Y( l6 d
to-report grain-ahead
9 p! q( W- E* V4 y7 Y1 E7 `$ e4 O let total 0
( w) z! U1 D6 D' i7 h2 C" S let how-far 1+ R3 o* k, N3 `# i* ]
repeat vision: _3 C, ]/ B9 U! c$ M
[ set total total + [grain-here] of patch-ahead how-far
- R/ C# `1 N" D$ ^9 V/ o1 E2 ^ set how-far how-far + 1 ]
& P' _/ V& J( ~( e report total) z; x6 @5 L3 @+ f* ~7 I
end* N) V! Z- O, a' y
3 Z I. O3 B/ @& o0 d$ t0 y! W
to grow-grain ' Z' u" c# p- t
if (grain-here < max-grain-here)& O4 u6 {2 |) l
[ set grain-here grain-here + num-grain-grown- E3 [/ ^' Y' p5 e J/ o
if (grain-here > max-grain-here)
, f% F$ x1 P. J [ set grain-here max-grain-here ]% x' O9 E8 l. O, ]: e
recolor-patch ]0 L& v' P2 C# r/ z& ^9 N
end- D* p# n1 R5 K
to harvest7 f# c& k& r& [& V! X4 c0 H
ask turtles
; y8 p7 U( u) J( l. F9 b# O( ? [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
2 t& o, L8 a/ N& S2 P/ X ask turtles
" K. Q6 A! ~! _5 v0 c# C7 C [ set grain-here 0) o2 C4 c. D t& ~* V2 n& a/ J
recolor-patch ]9 r' s8 b( ]# g O
% ^3 ?* p& _2 F* B6 s0 e' M: o) k
end7 a U+ [' t; |9 o5 U
3 X1 N' `) i& k/ U$ E9 V+ uto move-eat-age-die . w$ k: s! O! L
fd 1, E2 C5 p0 d4 D/ v
set wealth (wealth - metabolism)
% p/ D6 F& F _' o set age (age + 1)
6 Q+ O- @+ \. ^. K3 ] if (age >= life-expectancy)1 `7 ]3 \; _0 q0 O J1 g# F, p
[ set-initial-turtle-vars-age ]4 F7 Q; t- K6 J7 b( g! m4 S( g, ^
if (wealth < 0)
( H( [2 ^) B5 J- a& q) g [ set-initial-turtle-vars-wealth ]
3 ]1 j9 @1 m- Y- R% v, d( r& b
5 C3 ]7 }$ `) ~6 l c3 h# Z" s7 B- {end& S8 n/ E0 k1 ^% J! }- g
4 F# ^+ C. \# g7 c4 `" E! c6 F! {
' U; W( t+ V3 N5 |2 v/ Z& Y3 n1 q
to setup-plots6 \7 z/ B% W: D7 d3 c8 j
set-current-plot "Class Plot"3 o( N$ g/ z% F* N) r
set-plot-y-range 0 num-people& S: d* P, p' C' B( l7 y/ `
set-current-plot "Class Histogram"
; O$ a9 L( ~/ L/ j; p set-plot-y-range 0 num-people
4 \9 {6 x& i* `) g0 j7 l% t0 Yend4 n' T- |3 u( H, K; I6 \$ Q/ v
) { S/ |9 j4 a! v- tto update-plots
8 N' h( s4 K( a+ B& F) o update-class-plot
0 c$ L/ u' h. b$ ~+ \/ ~ update-class-histogram2 ^/ M/ E# G; ]! T- X# V! m" V
update-lorenz-and-gini-plots* K( I- o' m1 i! w1 J; L; i
end0 L/ q7 D C1 D9 A" \ p
& d6 ^! f& n& A% K( [: W) F+ Q3 Lto update-class-plot' `% ~& p& y; V: f3 d5 j6 Q
set-current-plot "Class Plot"
' h; Y& u/ Q* g* K7 o" t set-current-plot-pen "low"& `- {& f2 V/ v( }) N5 N V
plot count turtles with [color = red]
- [) m9 S/ }/ P set-current-plot-pen "mid"( d4 J1 K0 M( F5 ?# U2 k$ P; G
plot count turtles with [color = yellow]
$ M! L( e$ r. c! F set-current-plot-pen "up"- N9 W8 Q# k3 a: |9 \9 j/ i
plot count turtles with [color = green]
4 S3 g1 u- B1 ~* ~3 I7 iend0 U, P- l% T9 j
6 C6 t, }1 p+ P G( Nto update-class-histogram4 N6 r! [/ Z5 Q/ P
set-current-plot "Class Histogram": i- w1 l- @' S" _4 `! t2 y. X
plot-pen-reset
" k! N" u* `' T# d set-plot-pen-color red
* V; I9 q7 ^+ |" Z% |* N) w plot count turtles with [color = red]
. i: H( m ]& v* \: { set-plot-pen-color yellow
1 [( s( f8 P1 p+ l plot count turtles with [color = yellow]' |* R8 F5 r: M
set-plot-pen-color green. S. i% b! ~5 y, n) @1 q
plot count turtles with [color = green]
9 d! h. `7 |4 k* U' J4 _end
* Z' J, }3 U& Oto update-lorenz-and-gini-plots
' t- y; _0 d6 ]1 n. ` set-current-plot "Lorenz Curve": k8 J6 I% P9 E; t7 {
clear-plot* c$ n M1 F, H; P c3 S
0 {4 [2 u9 A4 M* F set-current-plot-pen "equal"
+ `6 X6 q8 w8 c9 K$ G$ l5 y plot 0
- D/ P9 s. N5 f6 p plot 100% {+ [" N& u5 V3 T" Z/ r. Y
, ?9 r9 r! _! x3 @: E7 l: Q
set-current-plot-pen "lorenz"
2 [& H. j" F4 F8 [ set-plot-pen-interval 100 / num-people
, v8 k m0 t& Q1 f/ C- V8 d plot 0
9 F! {" Q! c0 c" k% N- b3 d
2 Y8 J2 d. l! O3 `" r- M. u let sorted-wealths sort [wealth] of turtles; ]" m! ?: U( ]' x# Y
let total-wealth sum sorted-wealths6 f0 V& A, e. U/ d" C4 M. P* \1 r
let wealth-sum-so-far 0
7 y# s+ p) g9 B let index 0
% p+ F2 y6 z6 B4 ? `; I8 Q let gini-index-reserve 0
2 r. M% C5 y$ {1 D; H. c, ]( ^: r$ h+ {% H+ c! _
repeat num-people [! A) @1 ~# k: y. q R n6 D. s; T
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" L# _! w, J5 x3 V: _, I) ]
plot (wealth-sum-so-far / total-wealth) * 100. s+ V6 m/ ?( Y% J. V0 D0 n& j& e- {& R
set index (index + 1)( w5 @. L! A0 G$ `
set gini-index-reserve
# I/ ^0 S5 B; b) e) P gini-index-reserve +
( S# I! `" W! B& u/ j5 @& H (index / num-people) -
% y8 t/ ~, k9 }/ h/ D4 T9 A, P (wealth-sum-so-far / total-wealth)/ @& F% I% Q% ]7 V
]3 z2 t! r& K+ g/ G6 B
! g' D! m g- B5 E, O3 Q- J r/ b+ p
set-current-plot "Gini-Index v. Time"
F- J7 K5 D8 X# N3 e( P# q+ L$ O plot (gini-index-reserve / num-people) / area-of-equality-triangle
. w' B4 o. m5 p( \. f8 o5 V0 W7 bend" v5 I @; T* z
to-report area-of-equality-triangle ?# V# z: V7 N% T# n# F: G
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
! b. W6 l1 b7 x+ a l* t6 `( y9 E0 Xend |