请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
i% k7 ^. [- O2 Tglobals9 f% V9 e2 O) X! w/ {
[+ O' \6 Q0 A$ r" t9 N! v. y
max-grain . g/ h4 g5 X5 x) u; W- ]( X: h" E
. v" I ~& y9 s; y/ H
]/ r5 J, \' J& N4 {& o6 ?- _
- K' Q; L; a' S! ^ v" J) }patches-own0 ^+ S |8 `6 g9 }+ L: t/ y
[
6 A& L) [/ r! U" b grain-here 7 T3 I5 r& c/ ~8 t* U" t
max-grain-here
$ V5 h2 k) \' O* k6 a6 @& l/ _. k]/ m7 |4 I) }# [5 V) T
# y2 X) O5 _7 @! d: x# zturtles-own! b7 J T* b, i9 u
[
3 I2 y3 J! i. a8 M& q4 k age
! _) {( M% \& d+ k( h w wealth 3 g. H/ P5 d1 |: }& G" W- a5 T' x
life-expectancy . j l& t0 ?: @% G- L
metabolism ; f9 V7 l; i4 ?* g
vision6 b9 g$ v" G1 O% S
inherited
% n: _- q1 }7 d# k, X e5 p]
! T3 X) _$ z: j
9 ~% r3 O) x3 p/ N' _
1 B/ G. W/ v# m( L! hto setup
+ U) f1 E+ a8 D, I8 E9 D2 K ca; g7 f# M, Z5 q% e6 h
set max-grain 50
, s8 w+ Z3 h, \ setup-patches
9 G& [9 Z+ V! v, R setup-turtles
; R. W2 h$ ~+ e# k% D* T setup-plots
% @% _' J2 D4 T, q+ [$ J update-plots( Z1 @% l; M6 S h
end
, x% \. V$ e; V ?to setup-patches
7 c& s/ h2 q/ T7 g ask patches# I4 _& d4 x( T6 {/ F, S
[ set max-grain-here 0: T4 a' ]& b/ J- u/ Y. Q
if (random-float 100.0) <= percent-best-land
8 t: v, r1 e- B4 l# k5 y( C; e [ set max-grain-here max-grain
+ s3 b: p! G% k- E9 o9 V! d set grain-here max-grain-here ] ]
) X1 k5 X8 `$ M$ [8 U5 X repeat 5* R7 M; Y" O. m7 l6 D2 u7 Y
[ ask patches with [max-grain-here != 0]
2 h3 h i, w$ p$ y, ~4 |( u* e [ set grain-here max-grain-here ], p; L6 |. m0 ~6 ~* ^9 J! u. z z
diffuse grain-here 0.5 ]
) }+ L( Q5 \* U& L: S6 _ s7 C repeat 10
% \& S( |" ?" {" l1 m [ diffuse grain-here 0.5]
' J% J, e. {& g3 ]& N ask patches
) R3 ^/ z ^# L2 T [ set grain-here floor grain-here
$ `4 [ C) i! ~, t, b+ ~ set max-grain-here grain-here ) [) r& `9 j+ N6 S% j
recolor-patch ]
' u4 B' ~# O0 [! g) K! h1 K0 mend
9 l/ K2 v& G/ g- l1 N2 {7 hto recolor-patch , z% _; _4 j4 O: G4 j+ @
set pcolor scale-color sky grain-here 0 max-grain" ~# [6 X- l7 y/ Y
end
* s y3 b, V& K- s$ w+ rto setup-turtles
/ G: ~0 v2 G4 U9 z# r9 r set-default-shape turtles "person"
4 Y% A9 J% Q$ {8 o# I: U crt num-people
" x& a" S2 a# f& j+ \) j [ move-to one-of patches ( S0 w$ F3 ^9 _# Y
set size 1.5 4 A1 u5 ?1 _8 G
set-initial-turtle-vars-age
- e! p1 U. _( h. n7 e4 l set-initial-turtle-vars-wealth8 f8 Y e" [3 H ?4 R
set age random life-expectancy ]+ B; i1 Y* `. c3 c- f
recolor-turtles( g# R9 l5 z$ V0 T1 k
end
( H' ~; V. G% f5 Z: h7 ~3 G8 t$ D" n
2 z2 {: _0 Y7 d% B# p2 yto set-initial-turtle-vars-age! R- G- e. p0 Q1 q! E. ~
let max-wealth max [wealth] of turtles
u% y7 g& I) f
* g$ L# h: R" R+ ?, U! C ifelse (wealth <= max-wealth / 3)3 V$ @; A J; \2 V) M7 r/ P7 l
[ set color red , i. A9 k* w" g; @2 F) m* R) f
set age 0/ e& _7 y: D; n
face one-of neighbors4
2 C& ]$ u$ ]6 Q q N5 a( l9 c1 P set life-expectancy life-expectancy-min +3 y+ X% Y. H9 F7 H3 n" d; F
random life-expectancy-max
8 g1 I% L5 x9 P1 \$ J R$ \ set metabolism random 1 + metabolism-low
+ K# P2 R3 c+ v/ ^ set wealth metabolism + random 306 c% \( W9 c. P( k# c- j
set vision 1 + random max-vision
% \# Y5 P J6 {" v: M. z set wealth wealth + Wealth-inherited-low ]
, w, J- {' n/ M9 P# t; B2 { [ ifelse (wealth <= (max-wealth * 2 / 3))
( w% V+ n7 G: t4 H [ set color yellow 0 G1 ]. L+ g2 t8 @
set age 0
. L2 W+ l) | D) C: A face one-of neighbors4
& U$ M+ e3 h" D6 f W3 {+ z. E set life-expectancy life-expectancy-min +
0 c; O0 R' Q5 U" s. O1 D random life-expectancy-max + 1
; \. s C3 [& c% g set metabolism 1 + random metabolism-mid
/ e6 }' } s" v' V% T0 A8 I r set wealth metabolism + random 30
/ F6 b3 V! M9 s7 y set vision 3 + random max-vision3 o( J" E! \+ }
set wealth wealth + Wealth-inherited-mid] k @* y V5 Z4 ]4 r
[ set color green
! N+ _; m4 |: V$ Q# N8 |/ F set age 09 _! c y5 U) ]0 K; ~) W9 r' G
face one-of neighbors4
+ y$ _, P& m' S, Z" i, O# V) I7 o set life-expectancy life-expectancy-min +
/ h7 N5 b; `- n3 R9 Z B/ ^% M random life-expectancy-max + 2
, E+ o/ D! r$ ^& b) F5 j9 \, ^( ? set metabolism 2 + random metabolism-up, P5 p" G3 P& m
set wealth metabolism + random 30
f% R1 b) F6 `5 w1 O, C set vision 3 + random max-vision1 I; x$ o; `* D! T3 U8 Y+ m
set wealth wealth + Wealth-inherited-up ] ]
+ Z4 K) z2 c+ M
+ ^8 C- v+ H/ N5 S7 I. gend# u1 X: ^% E5 _) T
to set-initial-turtle-vars-wealth: c+ H( }7 o$ L* S: u# d
let max-wealth max [wealth] of turtles
9 |. W0 U7 Q5 @; x set age 0
: o6 `! R# d% R face one-of neighbors4 7 t' ^- i* q' d, E: c: `0 e
set life-expectancy life-expectancy-min +! m: j! Y; ?2 h, k
random life-expectancy-max
/ L* j) E4 p& h set metabolism 1 + random metabolism-up
! O6 u- \7 x3 |$ f2 i6 t" y set wealth metabolism + random 30
" B. |9 k2 B9 `( F0 s) F set vision 1 + random max-vision
" D F; z" e% V$ J7 J/ Z& aend
% M5 d% n3 l1 H4 |; D& oto redistribution
5 N/ v+ e) H* q1 w, Llet max-wealth max [wealth] of turtles. X1 L* @+ T6 j% u- L/ n0 c
let min-wealth min [wealth] of turtles3 L* o0 i+ w+ p% t6 O+ T- X* z8 D
if (wealth <= max-wealth / 3)
2 Z2 R8 j3 t! q2 ~ [set wealth wealth + Low-income-protection ]
/ X+ j. x1 P% }4 u* |4 [8 eend
8 Z* t. M f: h1 [
0 r) I) O7 {3 @: e |* `3 A4 Z9 xto recolor-turtles: h) s, N0 F5 R, N- X# N
let max-wealth max [wealth] of turtles2 N, e* r' }' ?" [# }8 I$ D/ a
ask turtles
3 V8 d, N3 x; R" {3 Z! Q# ] [ ifelse (wealth <= max-wealth / 3)
" K/ A. y" p7 D, E [ set color red ]- n; ?- g# q4 [
[ ifelse (wealth <= (max-wealth * 2 / 3)); k& _: N/ _' `( t4 S# a2 j. r& c
[ set color yellow ]* m* I8 }" d ~3 M! n/ q
[ set color green ] ] ]. v* Q( E% m3 @6 `1 Y9 y) |
ask turtles [ifelse show-wealth?
2 a- E) W' h( ^8 b3 {2 l% t [ set label wealth ]7 D2 [7 b m0 ]2 D: G8 W
[ set label "" ]]/ {' ^: [" k( l
end
8 ~& s9 }* ]7 t j9 x6 T' W
1 K9 J6 l9 ]) L8 t* j2 W' [5 Ito go& r' {+ Z7 q! G! u' D
ask turtles
: R3 R5 z; E3 W1 [6 ^! H& O [ turn-towards-grain ] ) m- I- _1 ^& q+ o. l
harvest
9 G7 ?# \; T4 Q+ q ask turtles
3 M6 c- k/ u5 m v7 B [ move-eat-age-die ]+ u' L) i, g& g5 d/ \, T6 Q" n' q- k
recolor-turtles
4 V3 t' a7 D4 b9 y" v# p if ticks mod grain-growth-interval = 0
5 q! Z) {& v$ `/ g/ g9 l [ ask patches [ grow-grain ] ]
5 U) Y9 K9 e) f/ ?# {0 [
8 p9 W6 K, J- K if ticks mod 11 = 0* n; A1 e5 U/ J0 q$ x( d
[ask turtles
& u. \- t& c2 Q8 y. p4 I3 m$ J0 a [ redistribution ]]
5 V6 b5 j, e a if ticks mod 5 = 0
% W4 Q T1 G; a4 C* z$ s [ask turtles
3 b, q8 G9 G$ p [ visions ]]$ ]* J) [& [0 _7 q6 K( v
tick) `2 P* x8 N4 V6 J
update-plots& G$ R8 O x# S4 o
end
$ v1 c1 V6 h+ I. L( B6 @& Jto visions3 F, S7 f% J7 q
set vision vision + 1
8 P9 b: r7 D, ?/ nend" q, v8 B( L: N% { _
: d! O! q1 s5 q
6 T1 |+ I; l1 D7 m, f
2 L5 m W5 v; l% B% w2 g" R: Rto turn-towards-grain
5 q; u" E" m/ N# w, ?2 l set heading 04 j8 S M$ u: y6 `+ ]1 k w- Q/ J
let best-direction 01 U- |! h4 W6 i- X2 `1 C
let best-amount grain-ahead
0 r6 A2 p: ` n6 \: o7 a6 Q set heading 90' u( a5 s' d( m5 X; c
if (grain-ahead > best-amount)
0 ^! K( }( F1 d. [3 Q [ set best-direction 90( r, ]3 m* T) T; U/ E
set best-amount grain-ahead ]9 W$ R* E- \. Q" E* C& H' J
set heading 180% E6 y0 m8 H7 T
if (grain-ahead > best-amount)1 Z! w1 x9 Y, q& ^0 }
[ set best-direction 180# @5 I, _: E2 ]0 f+ X, d
set best-amount grain-ahead ]
( i. s j5 N% K set heading 2707 ?) z) |: x5 }, A& T
if (grain-ahead > best-amount)& R) a6 c8 H- Y- w
[ set best-direction 270# T' v3 A( p' j6 X7 O$ E
set best-amount grain-ahead ]
# z. J7 {8 o; g set heading best-direction
; ?; j* V- H1 Q1 W: Z+ r) L( `; Eend
# W( \- a3 W/ y. s; I) o2 H* W& @' e) [
3 y4 O4 V7 H9 Z3 S' E+ d8 f
to-report grain-ahead
" |; y" ]& A" {7 }' ]& e' E) ~( X- p let total 0& V# C4 v- t/ z
let how-far 12 x4 _* b! E$ N$ ~
repeat vision" K% G* }' ]2 ?1 u2 ~
[ set total total + [grain-here] of patch-ahead how-far
- q2 u+ L- }0 b) u8 }0 [1 d set how-far how-far + 1 ]- @4 b3 e& x2 O4 N' d9 b( }$ V
report total
2 z) @: N4 R m% w" Zend
. G! m4 B$ w) W8 i: s% X( a) V+ ]! U% _9 i
to grow-grain
|* J: b/ H" U n, d" [ if (grain-here < max-grain-here)* v8 f) e# w- Z# V7 s; m
[ set grain-here grain-here + num-grain-grown. @* c) B G9 _/ k
if (grain-here > max-grain-here) 5 G5 S2 Z1 R5 h7 S
[ set grain-here max-grain-here ]" D* Z% }. r% @
recolor-patch ]
2 s+ X5 q7 G+ ^0 lend
: r$ A; Z; k/ o+ hto harvest- f. U2 J& k9 X' T) k- ~
ask turtles- U, H5 {4 V0 c. t4 M7 P
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]: K: `* S6 J# ?6 S1 Z/ w
ask turtles7 @; K0 m" y5 _
[ set grain-here 08 m7 _: w9 o& J9 r+ G0 r
recolor-patch ]
0 J) \- d2 p; i4 ~. ?' j + O4 R+ E' n# `" H& a: j
end8 `5 s: J1 D3 p& p; P# K
) M: u( { m [( r
to move-eat-age-die 1 h. s" e# l0 m7 H1 y" J
fd 16 y, ~' c# B2 y9 Y" k7 S
set wealth (wealth - metabolism)1 {' m2 O3 R+ H1 @* O
set age (age + 1); G* G# b: y7 G; L, S$ @
if (age >= life-expectancy)- y6 F+ \: g. A! l, {, j
[ set-initial-turtle-vars-age ]
; y- ^ F% \- x6 i( M1 o8 T if (wealth < 0): ]) n: n5 t8 `# O9 z* S! j
[ set-initial-turtle-vars-wealth ]( i2 c0 C, ?, X8 K D3 r
* u; \3 V4 [$ ]* ^: cend5 {. l, Z8 H- j$ @ x
+ F. H2 n: ]( s. G8 i/ ?0 B9 L: s- n3 q k3 Z- Y$ [
to setup-plots
4 s- l$ N+ T+ x set-current-plot "Class Plot"
# e8 U# K) h; P! U9 j: H set-plot-y-range 0 num-people
, c: P5 q) T1 e, f& B set-current-plot "Class Histogram"6 t2 ^5 b# t: ?0 P i; y4 m
set-plot-y-range 0 num-people: @4 u9 S* {. L8 w8 {
end4 v( W# Q5 Z( a% `! E( _
) d$ M% O- p* E6 }' m e+ x
to update-plots
4 a; ^2 H/ w( Q K update-class-plot& l0 U( }" }' t+ K) `2 n4 e
update-class-histogram( m' j+ }2 ~2 ^4 t: E
update-lorenz-and-gini-plots
7 Z5 q7 G; M( |end( S) a J6 l9 f1 u, S" r
9 c c! J: I/ O( u7 Ato update-class-plot
7 M9 [ K& O8 [' k' b; @' T set-current-plot "Class Plot"3 \7 h) F+ E" N5 D/ J S1 C& X% l! b
set-current-plot-pen "low"
2 T! J6 C. z( {( S3 R1 v# | plot count turtles with [color = red]
# m7 g- o( {, M3 H: s$ u% S$ G- z* {; g set-current-plot-pen "mid"; H4 O# B0 X& \* V+ ?+ X' Q4 ^& {
plot count turtles with [color = yellow]
' S9 y5 ]& a6 {/ G; i+ k set-current-plot-pen "up"$ T1 _5 V( h& |' H$ ~7 u
plot count turtles with [color = green]
1 z) q( g7 H: N. Jend
) ^' F2 b, a( @$ D! v
; ~/ i; \9 Q: {! S% j. A [6 o$ oto update-class-histogram- y6 L4 R/ K$ Y9 O/ ]4 J9 q. Z
set-current-plot "Class Histogram"
0 N) j0 O* m/ R- X0 S% { plot-pen-reset! q9 o( u0 j# S" ]+ K5 u: [) x( F
set-plot-pen-color red, |3 r0 e3 o7 X( j( h9 g
plot count turtles with [color = red]
0 y5 g% Z% y' y( k/ j3 ] set-plot-pen-color yellow: y5 ]& {% p- m
plot count turtles with [color = yellow]7 M: Q9 \3 e6 D7 g2 {6 P
set-plot-pen-color green
$ F! w/ x% y& x$ w0 ~, \ q plot count turtles with [color = green]' u6 u5 S8 L1 C: x
end& `) e6 R& t; B' ?: J. |
to update-lorenz-and-gini-plots0 R5 R+ u' L9 [0 H& f
set-current-plot "Lorenz Curve"- I p2 }- ` J- h0 T) [1 m
clear-plot7 D3 `% u4 V" z P6 `& h
; E; c* [1 @' c6 ^
set-current-plot-pen "equal"
9 k6 B) _+ M/ s3 z" F* F plot 0! W& m6 i# y- M% n
plot 100
# x/ h. L/ N* \6 z/ |: X0 d
- @6 P3 y' y/ v% a: A: C6 o$ R set-current-plot-pen "lorenz"
7 w+ M8 g! y# p+ B& R: N set-plot-pen-interval 100 / num-people
/ L- C2 ?" i9 I9 `" y3 H) S plot 0
: ~& Y! w, q7 i' B$ C! u
* |( Q4 }: V% R+ a; D3 ^ let sorted-wealths sort [wealth] of turtles
' _3 R# o3 Y8 N: w( D- @ let total-wealth sum sorted-wealths3 v% u# T% W1 Y6 ]$ @3 K
let wealth-sum-so-far 0
, Q% O9 z P, j8 f% v let index 0
% V* q; J9 o- F7 F& A) g; Z7 c let gini-index-reserve 08 l0 Q3 ^1 S$ x# |: k9 Y
9 v _0 E* I0 e4 l6 z- n: e repeat num-people [
( M! k. ~: G" k/ x7 ]. {( L set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
, P! F0 P& R. r4 u! f. P/ i plot (wealth-sum-so-far / total-wealth) * 100
7 V- i8 s: a7 e4 @; B8 [% u set index (index + 1)% B7 ?# K4 |+ [ T" M! d
set gini-index-reserve) |) r8 V7 t2 @+ n) x, l* M
gini-index-reserve + n) Q5 j& b. W+ j5 @! k
(index / num-people) -
( j$ i/ k0 Q/ V4 q (wealth-sum-so-far / total-wealth) m% F, N! I+ c* R2 F: C" N
]7 [- M- f( s) U& C( c5 A
: h! m/ h+ f$ ]. y8 S- n
set-current-plot "Gini-Index v. Time"8 Y$ _- u/ t$ A. H) M' U
plot (gini-index-reserve / num-people) / area-of-equality-triangle
/ U' g# K& l! x' @! p4 [0 U Hend6 \1 ]% e# v. A& Q3 n5 Z* f# P& ^9 t9 W
to-report area-of-equality-triangle
8 O% Y3 ?7 ]8 H. x report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
- Z( @7 F& A% V) E$ r3 R" x8 l$ fend |