请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现+ e1 H' m4 e7 e" a2 u
globals0 c9 @# B3 d% Q; Z
[
: A! K; I7 ?' i( T% x) X1 I max-grain . s9 x. j: B5 B {4 P5 V
( X ]* k2 J% l, Z D. u6 \" t) E
]
- D5 p! k2 h! c/ a3 m: \: w$ Q
$ n3 W% x4 x, J: apatches-own
& X4 n9 q' F; t1 ~; \[* r# f: c# M' ^8 {( b
grain-here
4 ], E5 l8 ?; m, x+ Y4 | max-grain-here / ]8 ?7 i! R5 H* {+ f5 o& I
]# F% T$ U8 c K9 F
# b" {! E2 B' B4 C* Y$ l
turtles-own
1 a8 T/ z3 Y5 i; o[
- Y% P6 _$ h7 Q/ q3 | age + C R& v( X- Q9 X" X
wealth
l$ i8 P4 F: L life-expectancy
& r& W* y' y" a$ R* ^- z metabolism 0 g% m* d5 ]) N/ X/ c* t8 |
vision
- h* b' c4 @$ @7 c0 W inherited 8 [, R) o% T( ~/ [! r1 b0 b/ P
]4 ]7 B% w1 [( F2 z1 B
$ y. E. q# t. ? b: A1 D
, \$ N8 e8 l: P( {0 lto setup
+ B3 ?2 |2 U9 e% s ^1 s M) w ca
" H9 Q; A* n) @7 D: }6 r set max-grain 502 @# K4 r: \* U2 p3 @
setup-patches' W- O1 L! V! a9 P" _# v
setup-turtles
4 X5 R0 p! ~8 M- Z; s setup-plots
9 [$ y* o s* x H update-plots& h m$ C2 J% o' k
end0 e$ J0 d) K" {( \0 P
to setup-patches
. p k. K9 ~5 l) l/ d ask patches
7 q C1 `* Y+ A5 B3 E: h. S [ set max-grain-here 0$ b1 k: c6 W, |9 l
if (random-float 100.0) <= percent-best-land0 x8 c s7 Y- o, Y0 h$ a( C" x
[ set max-grain-here max-grain
' v' G. X- ?6 { set grain-here max-grain-here ] ]
7 f( V( I3 O0 _$ q4 C9 K! B5 j4 h repeat 5/ s7 f; m5 ~& w# H
[ ask patches with [max-grain-here != 0]
. @# R0 q6 K+ W7 N [ set grain-here max-grain-here ]
* ^+ v2 e/ E8 }: ` diffuse grain-here 0.5 ]
o8 r- A& l) ? f. Y repeat 10; A A0 h" ` |% V" V) a4 t6 O$ W
[ diffuse grain-here 0.5] $ Z9 Q$ Q1 P0 D3 V
ask patches. B6 q( ?* {4 ?
[ set grain-here floor grain-here ( [, d) D5 I/ l) r/ D/ Y, ~
set max-grain-here grain-here % C; t' o4 e2 ~5 m) D
recolor-patch ]0 w& I- I( W; F6 i5 _" f# Q
end
; L' w& \- l) I* L4 ?. q2 [( ^+ Jto recolor-patch
, ]: o( J, i. z3 ] set pcolor scale-color sky grain-here 0 max-grain
; y. U8 L) Y5 p1 J2 N$ ~# }) ~end
3 k. e0 D/ [- Rto setup-turtles* d7 k* y8 ^( ~* m$ O* Q( p7 N5 b
set-default-shape turtles "person"
/ |. e. y5 ] Z1 x6 a. T: e0 O- N crt num-people
7 x' R' ~0 l1 G3 m3 G4 C3 D [ move-to one-of patches
' a6 t" |0 w0 t4 m& O set size 1.5
; N* J/ K! B) B$ N set-initial-turtle-vars-age$ q- m, ]% f3 l. G
set-initial-turtle-vars-wealth
; Y- w' ?! W( F" n0 G set age random life-expectancy ]
& [4 N2 N8 y' f/ \& v/ z7 ~* r recolor-turtles
+ a* U) O+ e" h9 e& nend( r+ o0 |2 j+ E* L( |
, u3 k4 V' j% uto set-initial-turtle-vars-age
1 {) {9 |6 c# S; v$ a2 V let max-wealth max [wealth] of turtles
1 d' b2 w* n+ \2 B7 p ( r% d5 J% \+ |/ q+ e
ifelse (wealth <= max-wealth / 3)6 ?9 a) v+ s5 a- A& Z
[ set color red : j9 n) V3 B0 F: ^& Z
set age 0
3 I; ^3 H% [; y' V face one-of neighbors4
) }* E# o6 _$ u- {( U3 k1 { set life-expectancy life-expectancy-min +& l& P' `1 F$ E8 R7 O: T
random life-expectancy-max 4 q/ u; [) P* f+ O
set metabolism random 1 + metabolism-low$ X6 j6 E4 V) B- U
set wealth metabolism + random 30' x! {$ W: i c$ V" I
set vision 1 + random max-vision
/ |/ d0 Z0 E# C set wealth wealth + Wealth-inherited-low ]- j: ]5 ?! q" W' K% R
[ ifelse (wealth <= (max-wealth * 2 / 3))7 a6 A( O( K: j" K! K3 ^4 l, c
[ set color yellow % P. [" j5 r! u* f; m
set age 0
: d4 M1 P- C$ \) }6 I% t face one-of neighbors4
) \+ O7 i+ a( A3 R5 P* f set life-expectancy life-expectancy-min ++ z7 D7 I4 ?5 p6 q, q" L
random life-expectancy-max + 1
9 G# `! L+ a r7 {) I set metabolism 1 + random metabolism-mid7 w0 t# Z: h) k
set wealth metabolism + random 30. B5 W, b5 @1 G2 O" E9 `! p
set vision 3 + random max-vision8 n' [2 n" C; T/ B
set wealth wealth + Wealth-inherited-mid]
- v% g7 |+ {! b" Q$ ] [ set color green * Z0 ^* k! P% Q4 [6 Q+ \/ Z
set age 01 L# [; n& Q* e2 q
face one-of neighbors4
1 J C1 v4 j$ M1 ^7 D set life-expectancy life-expectancy-min +
9 [9 |& p. j5 z( w; Q p random life-expectancy-max + 2% u) W2 V5 h% |0 z! j
set metabolism 2 + random metabolism-up$ b. B* J3 j6 W- t+ r: ~/ f
set wealth metabolism + random 306 V w: v/ g4 z9 q( s2 u/ J; K
set vision 3 + random max-vision( ?6 \9 P& r, _! L" D0 ?5 N$ o' x
set wealth wealth + Wealth-inherited-up ] ]
3 x2 n- b+ @) N) `$ m9 m
+ C- R! O7 L; Z Iend0 H# _6 o; o9 j
to set-initial-turtle-vars-wealth
: Q3 ^4 H9 R) g2 J: l+ C let max-wealth max [wealth] of turtles4 Y3 Y$ e* F9 f
set age 0! s1 x( b) y/ L* \- H
face one-of neighbors4
# ~* \! L' B7 C8 @3 L& k6 }! d set life-expectancy life-expectancy-min +/ C5 f! m; t" J2 X
random life-expectancy-max . Y( j4 v; S0 F C2 ~/ w
set metabolism 1 + random metabolism-up, f0 j3 T" g; G q* `; \2 q
set wealth metabolism + random 30: n( s* T& ` t- F; c; n3 V
set vision 1 + random max-vision : z$ o; f& v7 m
end
$ B7 Q* u( p6 x% u4 ?, K, pto redistribution
, [8 |3 E2 Q# N5 e8 Tlet max-wealth max [wealth] of turtles2 n' d( K m v2 r1 r+ n( X/ |
let min-wealth min [wealth] of turtles
! t2 D) X) ]: X" ^3 F m/ hif (wealth <= max-wealth / 3)6 \- _7 X3 H( s. c; H( G% k5 k0 q
[set wealth wealth + Low-income-protection ]* o: K3 D) l/ M# o1 ~
end7 j- `& {: `+ L! ?- \
2 ^" u* T1 ^% P0 W ^+ T, D% n
to recolor-turtles
5 |# m% y5 y, U# B8 ] let max-wealth max [wealth] of turtles: Z0 S4 }* z# s( q( R# ^
ask turtles* y- m# ^6 Y( T% s
[ ifelse (wealth <= max-wealth / 3)
$ b; J; U8 J" E- O3 G1 U [ set color red ]. S" V" v) Z* M | ^
[ ifelse (wealth <= (max-wealth * 2 / 3))/ z& a( n7 p" m
[ set color yellow ], @- Y. L5 k L$ ~! t
[ set color green ] ] ]
3 s% F1 L2 H3 V! m2 Z ask turtles [ifelse show-wealth?
. |9 y) r" r& O [ set label wealth ]
, F, h& L. r( R3 p# A+ S4 U$ E [ set label "" ]]( c0 |: f6 h5 E$ a
end5 D% o0 Y( I4 w9 U, _
1 j8 J. P h2 c! g x/ jto go! \) s3 T* `9 E7 _- m% r$ q
ask turtles& t/ w- P8 s1 z1 T
[ turn-towards-grain ]
1 D" ^* B2 ~5 A6 q harvest( x( r+ w4 T" }7 G0 F- G
ask turtles
5 O. o' W* i! d [ move-eat-age-die ]
. t& H1 s. ?0 g* J recolor-turtles9 L2 W9 ?, }$ h% G/ o
if ticks mod grain-growth-interval = 0% c0 ~ G$ v9 M5 m* q4 r
[ ask patches [ grow-grain ] ]
* E% [% w1 G& t+ I1 O! f
- c }* m. C) a% q. O! z9 Q7 F if ticks mod 11 = 06 F! N' i/ a% ?+ J' `! O
[ask turtles* b& _# S5 O" V- y6 N
[ redistribution ]]
" i z8 Q, M% }( W' b if ticks mod 5 = 0" N4 G ]9 v6 a- W
[ask turtles8 I, Y, a& h, g! k a, r$ w
[ visions ]]
6 R# x1 r' Z, w9 X7 Z) T3 w4 c- L tick- ~ |" _/ B$ u
update-plots
5 S$ W. Q* c1 R; ~end
, F2 S" q, Y# Z/ |$ jto visions
( c: y( G/ _, d set vision vision + 1 ) w4 U) x5 ]" Y# U
end
7 V! L" ]: B# [( q& E# [ _' I, Y' t. W$ I- I x1 v$ m0 F3 E v
- Q- w: c4 g) u p
: h' }: h6 U9 E: U
to turn-towards-grain
5 g5 n; k7 F9 s) n set heading 0/ y. Z5 l) U3 T+ k
let best-direction 0% }) f ?( O( ~! a2 @" K. m
let best-amount grain-ahead
! _' Z" C! m5 u0 R set heading 90
+ C9 P8 X' N$ F3 j+ G$ f0 i if (grain-ahead > best-amount)
: u& i+ T: Y3 H) V# n3 V* Z [ set best-direction 90! @ @. B+ i* `! M
set best-amount grain-ahead ]! C, Y! v, l4 |% W3 f. {( k8 P
set heading 180
* a2 c- C$ ^9 b if (grain-ahead > best-amount)+ E# a' o+ B. Q
[ set best-direction 1807 {6 H( e, W: M) \7 E" K7 e, ~
set best-amount grain-ahead ]6 o) @2 A8 ?( k# k/ |& _
set heading 270
6 x& n! _0 C3 g. b% p$ E if (grain-ahead > best-amount)
: X$ Z% M# h% {; F [ set best-direction 270! R/ t0 ?; a, x+ a" g7 [9 R
set best-amount grain-ahead ]) a7 f& @7 g9 P; x9 Q# P8 n: h. w P
set heading best-direction
/ X1 P% T+ z. G2 s; |% G3 I6 kend
4 G, z0 f$ j9 G- U% m! p6 V6 p' V; G% j% w; ?: [
; @/ R- h, e5 i7 _4 f, _2 E, [
to-report grain-ahead
, t6 m6 Q4 z0 o5 N G5 D% T let total 0
4 {# U8 i/ _0 x; j+ K let how-far 1
6 M0 [1 Y- _2 l8 j9 x! t( b repeat vision7 }5 G V: u6 Q$ {: U- a
[ set total total + [grain-here] of patch-ahead how-far: c. d( y# R: g, W2 j5 ]) G
set how-far how-far + 1 ]
9 o% z ^& ]+ r$ K3 r0 _ report total7 b8 |, Z/ ~$ ^; z. z6 g0 }" L
end
* e/ q6 x8 ~* X1 ?/ d5 ^, s
' ~( V! y3 d# [" k' B! e( r; M% Q( gto grow-grain 0 H/ f2 H& W+ }
if (grain-here < max-grain-here)0 Z( B6 g( n5 W
[ set grain-here grain-here + num-grain-grown' }0 _2 \$ t) y8 Z
if (grain-here > max-grain-here) - a* p: ^: ]% Q
[ set grain-here max-grain-here ], q' E u# |" B8 A2 `
recolor-patch ]$ Y5 h7 A5 Y" ~8 B9 v
end
! t" ?$ `2 [. A$ Y: \* Tto harvest
+ J, m3 w: K, Z; W) v ask turtles
% t% w. A4 @% v! L [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]: n. E3 Q+ C/ B3 [9 r" U
ask turtles
2 m9 ]# |+ f5 \9 U& j [ set grain-here 03 w1 \- {1 I9 P' v: R+ s: V
recolor-patch ]5 m7 y* U$ u+ z
# \8 F0 T4 Y1 I7 m8 |$ _
end* d. m- m1 M; S; }5 m2 |; X; P5 u
d9 X9 a; i( b7 _9 R8 v% N5 u1 U
to move-eat-age-die 4 v3 Z7 E8 t/ a1 D$ t+ N: w
fd 16 z8 |* ]) b* _) J% B" C; w* w
set wealth (wealth - metabolism)
. Z' c3 ?; y& U# l1 a2 t T set age (age + 1)/ ~4 }! f C% e- g
if (age >= life-expectancy)
/ V2 i1 h( C7 W% t! U( ? [ set-initial-turtle-vars-age ]
/ L, x/ x* o6 x if (wealth < 0)) S, W' o! V2 c( R
[ set-initial-turtle-vars-wealth ]5 s7 X3 o, N" J1 \8 \
" z' t5 {# U: s" E1 }( p
end
( e+ Q* G5 A1 r3 ]" @4 t
; }8 G. `1 B' |7 l4 g* @) C; L) q8 n: J( A! M
to setup-plots" S! [' J1 b2 k+ T9 I2 s
set-current-plot "Class Plot"5 T3 Z8 I' S H3 b7 n8 s* P8 F
set-plot-y-range 0 num-people
! v# i0 X7 \& i4 v2 l3 z set-current-plot "Class Histogram"6 R# u* \: u0 p; `$ B
set-plot-y-range 0 num-people/ u1 P: ?6 ` R/ V8 c
end
' \2 e! ]7 M7 V5 f, g0 \- U5 F/ G! g: g, k3 K2 {
to update-plots
) K7 ~& g6 c0 A, C0 X" H' M" i update-class-plot. j/ P9 v/ o2 x
update-class-histogram7 ?: g' c& U- ~! j( @
update-lorenz-and-gini-plots$ t l2 w: B4 t/ J
end
& {* M) P' x* R0 i( b1 x; s3 B! Z; f: L
to update-class-plot; ^4 r2 t: ~3 Z' W. \" q& Y* L- P
set-current-plot "Class Plot"
9 P4 S' G) c, b7 ]& ]# b& L' A set-current-plot-pen "low"$ W2 l$ D3 n: K$ ~, K" C- x. ^
plot count turtles with [color = red]
+ q' r9 S7 U- z! c- I set-current-plot-pen "mid"
; B8 I/ H# ]4 X* X plot count turtles with [color = yellow] J3 D" G4 ?) |0 s6 k* m3 |
set-current-plot-pen "up"# @* P( k/ _, {5 j4 K5 A( L
plot count turtles with [color = green]; K- M) \/ x: G: Z2 s
end
+ q: M# t' Q5 \0 l% `; F+ }( I; h, O# r8 g: B. W
to update-class-histogram/ z3 ]* O9 \5 Y' F" I8 H
set-current-plot "Class Histogram"( q0 L/ K4 L: p8 k
plot-pen-reset
, |9 F8 O `% ^ set-plot-pen-color red- ?& Q& @0 i$ j
plot count turtles with [color = red]
2 I' K8 ]4 g6 \1 h7 m set-plot-pen-color yellow
- F8 [# v, }2 @" i+ C plot count turtles with [color = yellow]
- E( F/ D3 \: p# I* y1 ]% L0 w set-plot-pen-color green) l$ F4 P5 K2 P) |
plot count turtles with [color = green]. @. g$ F6 } V+ B( `
end* K; J3 Y1 U) _9 H$ t3 a
to update-lorenz-and-gini-plots
- E, m) y* \& c0 w, y. C1 y set-current-plot "Lorenz Curve"
+ K# ~" y1 a5 }" b( M& q9 V clear-plot
$ z* ^) @, m7 P+ p. u. e& Z" C1 m+ c7 X+ H
set-current-plot-pen "equal"
% I3 u/ d, H' g) z plot 0- V9 q5 |+ }2 Q& n! C
plot 100
- X' o! p; s( s0 h. {# d- ]2 j! w6 c+ q+ M; B } Y, C3 \7 q2 P; w x
set-current-plot-pen "lorenz"
/ E* X0 i6 g, P4 G3 f# G! p set-plot-pen-interval 100 / num-people
5 x/ J. e* S( `$ g8 l. u5 l plot 0
, I, y. \- X1 {8 F9 z9 O
: y* ~$ H; l" H a$ P let sorted-wealths sort [wealth] of turtles. i) w0 r0 u# z% F" P5 e
let total-wealth sum sorted-wealths
' ^# U& Q; J; t. q- c0 i* ^; G let wealth-sum-so-far 0
3 |: y/ T# j0 C" c4 @ let index 0 ]* @- ?% q# h7 {, S
let gini-index-reserve 0
/ ?6 Z, l; D" k. _0 _+ E1 R$ w. b- j! d; V, V2 g1 x7 t$ s4 v
repeat num-people [
. X f8 r$ \- V* J [# t set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)8 m; L( ^5 M" B5 G/ _# O7 b
plot (wealth-sum-so-far / total-wealth) * 100 D" f; \+ h+ y3 r% [0 \
set index (index + 1)& H0 ?4 o7 W, w7 F, Z
set gini-index-reserve
# r# {) e$ C/ Y gini-index-reserve +
5 v1 }, r- |) r# p* B- V# W# ? (index / num-people) -
6 ?, e4 u# e7 X) R9 m) a (wealth-sum-so-far / total-wealth) D& r6 f3 r+ L; D) Z
]
) s( e; c- F- X5 e( z% w% C8 n, o4 ~3 G. O C+ c
set-current-plot "Gini-Index v. Time"
7 k2 P1 U* j) o& { plot (gini-index-reserve / num-people) / area-of-equality-triangle
+ K& ?2 o* R# _. nend" n* g& P& p& d- l" G
to-report area-of-equality-triangle
0 u! ~% Y9 P/ V# L+ `+ [! n) w; } report (num-people * (num-people - 1) / 2) / (num-people ^ 2); Z2 u5 {! E9 E+ [( A/ b
end |