请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
( Y t0 A- e3 O. xglobals7 w9 f( D f7 n8 z# f
[
5 y6 v& h5 x3 A, F* l9 ~* R max-grain
' Q. S+ R* I/ Q% f
( i( O* A0 S: ?+ i( @]1 M, r; f9 X4 F& A7 c e
! `$ i: y X& _5 ]7 Cpatches-own {; C; c& J1 q! o# G3 ~1 P9 V
[
- s+ ~# `+ U! }# k& c8 I grain-here
) N/ |& ]% x9 ]9 e& d( m max-grain-here " h1 e0 z* m: G8 f
]
% Y" V' h6 S5 F9 B1 J
, L( A) n+ [% j7 ^turtles-own
$ H, ^/ h& Z( R[6 S( k4 L7 {- {$ _9 i, x' {
age
: s) q b: m9 F6 d+ u wealth
$ a' b" o" v& ~; u2 _/ v0 P life-expectancy
4 L7 g4 \3 n. C. q metabolism
" H* R9 L9 K( K/ M$ G9 f4 l( v vision6 Q" W. `# v6 a/ y& ] M3 _
inherited
0 d- S. F0 k, S, x]
% Y0 R2 U/ c6 g5 T' N* k+ \3 o4 @! a, W) J$ W4 r8 j
7 {0 X& `+ j8 ?3 qto setup: M8 ]+ a7 \. t N* p
ca
% U8 a# C; O* W, C/ a V set max-grain 50
0 e( _5 w7 L/ I( l setup-patches
3 f7 E5 H$ \: R' V: Z, I/ `! x setup-turtles
1 o- b) s9 p# \; v. P setup-plots
! J% N- Z4 `& N Y' t' Q; Q update-plots- J5 Q2 ~6 ~" B' c
end
E7 g: x1 ~0 P* Z, w& K. F0 Nto setup-patches( o, [, G' ~! X
ask patches: D' }2 K, O' k W- E E
[ set max-grain-here 0
& t; y1 S8 k2 h1 }/ E if (random-float 100.0) <= percent-best-land4 V$ N6 r* R$ D2 I3 Z3 }+ W7 O; X3 T6 I
[ set max-grain-here max-grain2 C3 b* v1 D" j' u/ I
set grain-here max-grain-here ] ]8 @9 Y- [, G6 B* j
repeat 5
2 I0 A) H# A- d2 B m# V9 \' [8 Q' e [ ask patches with [max-grain-here != 0]
9 W+ d: z. D, A" Z& H7 n ]; ? [ set grain-here max-grain-here ]6 ], X, f$ T: \ w
diffuse grain-here 0.5 ]1 s# ]9 d- q$ `1 i; Y" H; |; H
repeat 10
0 x1 _+ O7 p3 ?6 ` [ diffuse grain-here 0.5] - _+ H; T3 h6 x6 ]0 @
ask patches4 A8 R- V8 [3 B+ r( d; {0 i# x3 C
[ set grain-here floor grain-here ( j; F" b1 \; R7 M# S
set max-grain-here grain-here
$ L4 w; C3 J0 ~- T recolor-patch ]
# L' [' t1 m; F; W/ f" rend6 z5 ~8 o# Z& [
to recolor-patch ' s; l+ f7 k$ v/ T
set pcolor scale-color sky grain-here 0 max-grain
& H6 U- i; n3 Fend& G* O! `$ Z3 Q/ m/ V
to setup-turtles
7 @6 D \, A1 ` D) K* X0 } set-default-shape turtles "person"
% ^9 |% I2 E6 C4 L crt num-people
2 J" A4 @; m. T [ move-to one-of patches
$ r2 S: V7 S2 r0 M+ A/ I, { set size 1.5
' H$ K W/ u. e set-initial-turtle-vars-age! v6 k! r; ]! X
set-initial-turtle-vars-wealth- Z w# b3 ~- s! q' Q/ w
set age random life-expectancy ]) U: p7 s) Y( I6 k
recolor-turtles
8 I) f$ `9 y. o x6 xend
4 a5 s) d& I6 W5 a3 h4 n, f: c: B" ?
to set-initial-turtle-vars-age
; P& W! N( w7 Q' {+ V* Z& X let max-wealth max [wealth] of turtles
* u2 s3 _2 J+ P( R S
* K9 P# E: a6 a0 Z! X& c ifelse (wealth <= max-wealth / 3)8 V0 L8 |& S( s) M8 j
[ set color red
. Y2 P. r S6 U set age 0
9 }" y% I: A3 ?& j! S2 _4 ?0 S9 z face one-of neighbors4
9 ^7 z5 V, q2 C set life-expectancy life-expectancy-min +' m" E+ k1 O# E* J
random life-expectancy-max & {% `' @# q, z* N: @5 d- ~* z
set metabolism random 1 + metabolism-low
: ^% Z( r; B0 i5 a3 q. P set wealth metabolism + random 30% _2 a2 W! V# F
set vision 1 + random max-vision! z6 A$ x- A0 ?. j- {
set wealth wealth + Wealth-inherited-low ]' i( x7 K8 L5 L
[ ifelse (wealth <= (max-wealth * 2 / 3))- G3 B! ~/ J! L8 r: R* G* t1 e8 A
[ set color yellow
8 P `# O+ d' ~9 l, C& g set age 0
9 r5 k: C9 p6 D1 H face one-of neighbors4 3 Y- D: e. L7 e) D
set life-expectancy life-expectancy-min +
) c/ M( ?( R& `6 J& Q4 [5 O random life-expectancy-max + 1
. X: k, Y, g/ h+ P ~$ c* | set metabolism 1 + random metabolism-mid
1 W/ [2 O$ D+ N. k2 {7 Z set wealth metabolism + random 30# `5 q/ u1 h& v) t
set vision 3 + random max-vision
5 r7 N5 z' d4 ] set wealth wealth + Wealth-inherited-mid]
/ X p. p+ Q: }1 g [ set color green
' a! o- y4 i6 p set age 0! Z# G" t$ h6 ~* x
face one-of neighbors4 " A4 N: j- y% H4 _: m
set life-expectancy life-expectancy-min +4 @+ l! [8 n( d, h
random life-expectancy-max + 2: y0 P' o7 f& X+ e
set metabolism 2 + random metabolism-up6 P9 p- ^) ~1 _5 I/ \$ C, Z
set wealth metabolism + random 30% b: R, B# l1 @* R8 D- @
set vision 3 + random max-vision; q! W5 u; J$ [9 H
set wealth wealth + Wealth-inherited-up ] ] , ?+ d8 z9 P5 d( K
' ^2 q+ w" X% k6 P8 A% ~
end
. ?0 ~8 Z7 ?( G$ }/ [to set-initial-turtle-vars-wealth$ V* `" l- n/ V7 l6 ^1 G3 n
let max-wealth max [wealth] of turtles
! {. X3 H- b) R3 R, p set age 04 d K& ] r* d6 A( W5 M* ?
face one-of neighbors4
) T' \- M4 r, P! a1 P4 ?: R4 e set life-expectancy life-expectancy-min +
$ ^* U- A3 |0 B0 q random life-expectancy-max $ O/ G$ l, j' A( _2 ^2 o
set metabolism 1 + random metabolism-up
( c, j- Z% z5 x( k set wealth metabolism + random 30
& l& W W" W% |% E5 p/ H set vision 1 + random max-vision
+ H g# v, i% }, s( G: \end
* X j9 f- u) a, v3 R! ^, [7 ito redistribution8 t3 ^7 X+ U: a J# Y
let max-wealth max [wealth] of turtles; U( z4 A+ V) o
let min-wealth min [wealth] of turtles7 m& ^$ z" y8 s N
if (wealth <= max-wealth / 3)
% T0 z: a/ H1 y8 R1 @( J/ z [set wealth wealth + Low-income-protection ]8 ?) X, m1 T5 @1 Y
end
! q9 g. h' _2 r P* @1 P" m$ ` 2 n w# S3 d/ c
to recolor-turtles9 Y+ f# T+ U1 Y g' V+ R( v0 ]# j
let max-wealth max [wealth] of turtles- P: _4 m+ ]5 u5 |! z8 B2 X* A
ask turtles5 x2 H: G9 i% O$ K% c
[ ifelse (wealth <= max-wealth / 3)
* F- s" T6 B; B2 N/ a$ Z [ set color red ]. z( ] G D* J% f6 U. s X
[ ifelse (wealth <= (max-wealth * 2 / 3))
8 S, }2 l2 B% a8 R [ set color yellow ]
& N9 l2 I( z' p0 n* N1 Q) ?6 @$ ? [ set color green ] ] ]# [# e8 H( N4 m2 s, z( z+ t% b0 H2 l
ask turtles [ifelse show-wealth?
$ w$ l) \# |- c5 J9 }2 p0 a [ set label wealth ]# j/ y# {6 q) D+ r3 f+ a/ M2 i
[ set label "" ]]
/ h' E9 J2 V& h9 vend
2 {4 ?- k0 c X7 j% k3 ~% d; {
to go7 s. v9 M1 _; Z* k* p u
ask turtles
. [8 o* e& h; Y5 m [ turn-towards-grain ] , e: E' Y5 t: T+ ]5 M: F( v: J
harvest
) i% ^$ o% i$ f% L; K; |. y ask turtles
) w$ c, E/ F" u' b [ move-eat-age-die ]
5 ~- w4 k; H4 v" t: Y& v9 s: |, @* P recolor-turtles
+ _6 ^8 `& U8 V( C if ticks mod grain-growth-interval = 0
. ?2 C- o k1 {# O. C& Y9 | [ ask patches [ grow-grain ] ]) d1 o) ]; @: l3 Y5 v* q& j
# I; l2 W6 P3 j( _" B if ticks mod 11 = 00 m6 k+ F$ c% n# Y, i: [4 v% X
[ask turtles
}" b" f& t; h7 Q0 M3 l! t [ redistribution ]]
9 f) b4 H; F$ @- i4 H! T if ticks mod 5 = 0- C. b' u* o& X! O- R
[ask turtles
9 t7 v ^$ V( e" R+ y) Q [ visions ]]' o! K4 _- g+ R- t
tick
d7 L' d. B7 W, m update-plots U4 \5 ?7 S5 n3 Z, _/ U) k
end- h7 A9 }" O: ~2 }/ J, R3 @1 R+ w" Y2 X5 n j
to visions; f9 I/ {% h( _, i
set vision vision + 1
+ c1 B* z+ ]% {. C+ [end$ q) C8 L& `8 u' v' _
6 P" w' N; b2 }5 V2 `
* M& F, g* S9 w# K$ e! n- m. N. K. w5 t; A6 `1 c# k/ W, W) T
to turn-towards-grain + s6 @5 L! b/ t; \5 R
set heading 0
* x3 t& g! E% J0 u. y$ ^% T let best-direction 0
: [% ]- m7 N: S7 E$ p let best-amount grain-ahead
( y' }' F) x! [* c set heading 90& c2 K! A& W$ |" @
if (grain-ahead > best-amount)7 C/ a e2 s9 L( L3 M7 l
[ set best-direction 90" ~2 G9 W( s& Z# p: m' n
set best-amount grain-ahead ]7 X p" ~" {; B5 W. Z
set heading 180
8 }) I" j' l4 i: v9 J6 R6 m if (grain-ahead > best-amount)
) R( h! y$ ~, e% G- \# A" S [ set best-direction 180
3 l) {+ z* e, O' |- F5 D$ D: w1 M% v set best-amount grain-ahead ]
6 k4 r0 j2 u+ a, F% H3 P set heading 270
- k* l' }6 }5 Z, X if (grain-ahead > best-amount)8 g. n, @' K, K
[ set best-direction 270
! x4 }8 h( J! \& d, ]+ |5 o set best-amount grain-ahead ]
& u6 ^6 R& s8 e( f: ^# ] set heading best-direction# A, h8 |% L! H1 Q! a6 H* Q
end, x) }9 ?& P5 {" C N6 ?
' a! N# h/ X0 ?: V
* f% ]8 _6 s' ]
to-report grain-ahead 5 z. T9 a9 N. b! j
let total 0
4 x7 L3 Q# H$ K% q let how-far 1
6 n X9 @ j( t/ i# A/ u! P* U repeat vision1 |/ P8 ~! B. j% }# v8 B
[ set total total + [grain-here] of patch-ahead how-far
8 Q5 G4 E! J. N2 W/ y4 O- r set how-far how-far + 1 ]; }+ o. |( [7 `) ^
report total
6 w9 u" u4 b4 p0 j0 {/ @end
& i. V3 n9 P. a! |" k
4 p! G+ P# E0 x. U& qto grow-grain
& h- u4 p! r: n; |9 x9 {. q if (grain-here < max-grain-here)
5 u8 N) O0 B' x4 V [ set grain-here grain-here + num-grain-grown& ], _' ~! F5 A& ?
if (grain-here > max-grain-here) . K D' s, F" }5 Y5 F$ D; H8 k! f! t
[ set grain-here max-grain-here ]0 q& H' {$ E( x# _: q3 @
recolor-patch ]- b# A; R" W6 b& A9 P8 k6 m! n" x
end
. o6 a0 n z. W S" w9 Yto harvest# ~0 B" E8 |8 {0 @5 @# c
ask turtles
% Y& d' X$ y8 w1 T) A [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]0 w' _2 @2 j! Y* E9 j) F
ask turtles
) ^0 f# A9 s9 a* x' m [ set grain-here 02 f" @) ^. S( P/ D3 a
recolor-patch ]6 b1 L- p# t1 U3 b* q, h
+ t* f; K/ m/ T5 P5 Z! [
end
- j1 Q4 s, j7 m$ v0 A2 d; x4 ]( t; c- ~
to move-eat-age-die 7 u: @1 h: O8 e1 @# @' E& W
fd 1% W' D' w2 ]1 o1 X! }5 S- Y
set wealth (wealth - metabolism). n% B8 W# c. S H6 P$ S7 o- C0 o
set age (age + 1)
) q% ?" `" m% X if (age >= life-expectancy): p* F# E" y; j
[ set-initial-turtle-vars-age ]- D* G1 ]6 G5 R* t( x; {$ i! Q
if (wealth < 0): }7 W( @: [4 r9 e
[ set-initial-turtle-vars-wealth ]
, m; O. g0 ^$ R% @1 V Q 7 c3 B9 E7 b% U( L7 g, n; h6 [
end
1 r2 d) R; N; R: `1 Q: _, g9 G4 q, R$ J! @
0 U; Y6 D! o |) o
to setup-plots6 s7 p) m8 y' H% j @$ p' Y& R
set-current-plot "Class Plot"! u* f9 Q' H( [9 a, Q8 I
set-plot-y-range 0 num-people
s8 s: L8 ?- j# z set-current-plot "Class Histogram"
5 ]9 I3 Y- K1 y( Z( t P set-plot-y-range 0 num-people
/ m/ I4 s3 L4 _9 Uend: D$ [+ T" ~4 D- |* s
; m X/ A+ ~' fto update-plots
0 k' l& W, v J update-class-plot
0 {0 x% Q3 ?- x update-class-histogram: }1 X( Z5 y: }# }* Q. N
update-lorenz-and-gini-plots: O' Z! ~% `8 z' ^, i6 Q
end1 d- K- J7 X, |$ V* l
8 I; S4 D. \. m2 K* t
to update-class-plot" x# f8 x- C# u+ h+ |
set-current-plot "Class Plot"+ N' J/ a6 l" G: Q7 \* b
set-current-plot-pen "low"
. v/ U1 c' \7 d( g# m( j1 r plot count turtles with [color = red]0 g# L, r7 ?7 U/ |% V" X
set-current-plot-pen "mid"
( t) @5 }4 e. t/ K plot count turtles with [color = yellow]
7 D: q; j7 [9 \) L4 a9 f# j# o" m set-current-plot-pen "up": H, g8 v' b$ ~6 F$ }- X: J
plot count turtles with [color = green]
5 y$ L* h/ z) K7 qend8 O+ t: P% t/ Y
# f/ k$ q* L7 [+ M) ]8 zto update-class-histogram+ N; e+ V& ?2 U1 {
set-current-plot "Class Histogram"8 b- W8 z3 E) @6 x" L
plot-pen-reset7 s. {5 w' u! m1 L, ~ A" ]3 i
set-plot-pen-color red
3 t8 ?) G8 ?+ x8 C plot count turtles with [color = red]4 b% O% S1 t0 V# V# v: q
set-plot-pen-color yellow f& }8 J) I/ t- b$ _+ I. f# ?
plot count turtles with [color = yellow]
# h9 v9 d4 H) v% x% `: _ set-plot-pen-color green- [# A/ W5 |5 E! O& A# d3 I
plot count turtles with [color = green]
, ?2 `( A( E" ~* a! }5 Xend- T1 U5 a+ S+ q/ U2 z4 _+ Y0 D
to update-lorenz-and-gini-plots9 f) A" ?* C" |5 G! G. N! i" k
set-current-plot "Lorenz Curve"8 I( q( i/ y& ^' ~" Y
clear-plot, h' |& ^, i1 t3 s# [# P8 I
& y9 M8 ^ |* ]5 u: F9 Q, m set-current-plot-pen "equal"
* |- G, d- c5 L! T plot 00 R3 ~# p- k; z# [. Q0 H H" T7 U1 O
plot 100' n- H0 a2 U! j# p8 t5 G# c x: L
+ h4 S1 i7 W: N, C0 N2 Y
set-current-plot-pen "lorenz"- D! v4 l0 d. Q' a2 p" D$ t
set-plot-pen-interval 100 / num-people
, ?$ F( {2 L1 z. a* x6 t( M plot 03 J7 H+ \: ~1 K! k
3 V/ u3 }8 y# M+ z1 m+ ] let sorted-wealths sort [wealth] of turtles" H6 }% y' J' h( _5 n& e$ }
let total-wealth sum sorted-wealths( k' J+ ]! L B, c6 C2 p' I6 X
let wealth-sum-so-far 0& U. b/ u& e+ \$ ?# b
let index 0
+ P" |8 j1 r7 h R& {2 T1 o let gini-index-reserve 0+ v" a3 ]# [9 f8 i
& W! ?" l2 q0 g repeat num-people [; R2 n3 m' z9 p6 p/ K
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths). I1 U ^5 |$ Z, V5 i0 R
plot (wealth-sum-so-far / total-wealth) * 100
" ~ \+ B7 S9 c( q* _' p set index (index + 1)) H. b5 N* z% Z
set gini-index-reserve
`; l/ @; e$ P! O; E gini-index-reserve +0 R N# u$ ~' X. ]' p, j
(index / num-people) -' i! L& Q: v K+ |( | A8 W4 g1 m. a5 }
(wealth-sum-so-far / total-wealth)! |$ A; D1 r8 W |" B/ b# M1 {
]
7 z+ h9 v! s3 W1 P- p" }" }/ u( p3 ]& B
set-current-plot "Gini-Index v. Time"2 P2 I! H; ~( W4 B
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! z/ T3 ?' a+ R- D5 Y% m! t" Oend9 y% C% {8 W: s/ Y( ]# E! F
to-report area-of-equality-triangle
& N; K+ ~ ]2 b$ h2 H$ [ report (num-people * (num-people - 1) / 2) / (num-people ^ 2) o" x0 j1 s" h# G" i, S: K" ?
end |