设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7426|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现* ^! e$ K( S7 c; p
globals4 m( a1 ]" a2 I/ K: x
[& x3 D# w; W4 e  v% n' [- U
  max-grain   
) k9 `* v$ Y' M4 ^9 b% a3 v; }' p+ w4 m0 q! b* H
]" {1 V; `  b! h/ s/ t

, N3 X# B9 s1 n, L/ m6 m: Ypatches-own
4 e/ B( w6 p5 o4 _6 Y2 U[) Z# d. B: G5 w
  grain-here      
" I" ^! N! W: m! R+ M7 ~  max-grain-here  
1 `/ c; B, Z, y( w  u( F3 T]
; r0 l0 O0 E* g5 R7 E. C8 L2 O. l! k8 E* i8 S2 r: z
turtles-own' ?* u1 `8 G% q6 c6 ?
[: z, \9 G* _3 U4 z' ^* Z
  age              
: z& C! @0 y& ?8 M6 G' }1 F  wealth         ' r0 I* m; H: H0 ^* G' K
  life-expectancy  . D/ R% B3 g5 S7 i
  metabolism       . F4 Z7 s: Q( U4 G1 t- F9 h7 }
  vision9 H5 J& Q' a. s8 s! T4 |2 I" `
  inherited         
' T+ _* L% H+ ]; @1 g/ c; c6 c]6 @, A, O5 G6 l/ O2 b) @* y% F* v4 J9 H

9 o6 D9 g. Q1 `: L6 g) m9 L, s& n; |/ \
to setup; }- \& {1 G6 n6 W
  ca
# l( j; o. ?: ], X& M  set max-grain 50. o+ v1 `7 e$ F1 C7 @% [& y
  setup-patches
  k1 ]3 j$ b- _9 a; V  setup-turtles: M: ?) B; M1 W3 @$ I4 r" ?# i; c6 O
  setup-plots
1 n9 w) z5 A# K( i; t; G0 R  update-plots) M# y( }2 H. N& D# e
end  f8 G$ I7 B' ~' _; Q- v( s
to setup-patches
! `) U  v5 j! h* s0 c  ask patches# n! y/ G% n; @6 p
    [ set max-grain-here 0& W! A& R) v! h- J& s7 G8 |; N
      if (random-float 100.0) <= percent-best-land
3 I7 _6 U/ k7 d' D' `% W1 V$ z        [ set max-grain-here max-grain
( V  y+ N# _' `, {' f0 u/ m          set grain-here max-grain-here ] ]" O" i4 e' e' K; Z' O$ e$ o  m
  repeat 5! [# Z, W6 n& ~8 Y+ e
    [ ask patches with [max-grain-here != 0]) b1 e5 j& K% Y4 J8 l
        [ set grain-here max-grain-here ]
0 k1 N9 h3 _$ U- }. E) a0 K2 l      diffuse grain-here 0.5 ]  m$ q# p$ W: w# A( f8 j
  repeat 10
' O+ }: g$ a( j0 P$ |( X) a& E/ B) Z& a    [ diffuse grain-here 0.5]         
. g7 k# r  }/ x" @+ n  ask patches/ p9 j  F. y0 F( E5 q. U% ]
    [ set grain-here floor grain-here    9 b' H% J7 ~4 }. h6 s) R
      set max-grain-here grain-here      4 ]  X# _% |2 V' C! r
      recolor-patch ]
  L' ^! h. t4 kend0 N4 h# s! |5 L9 m
to recolor-patch  . u3 M% b8 l6 `. W, R, c
  set pcolor scale-color sky grain-here 0 max-grain1 q+ T" r7 ]0 s: n. K7 ~
end* m4 y, u1 a0 C2 ?. c# s7 \; \+ v
to setup-turtles
" L' P6 k: r9 a: l  _  set-default-shape turtles "person"
$ o/ `- b4 |3 e3 m9 ~8 P8 \/ _  crt num-people
9 ^, @2 T* p) z: E& }4 b4 |+ N; y    [ move-to one-of patches  ) H1 y5 d; O1 Y9 j) E
      set size 1.5  ( h; i% ?5 b' Y7 N0 }/ I
      set-initial-turtle-vars-age
* v, ~+ _$ Y2 o0 X4 D9 N; }      set-initial-turtle-vars-wealth
+ b/ p" p$ m3 j5 L2 O      set age random life-expectancy ]8 h+ u5 x7 Q) s) X. g  R
  recolor-turtles4 d% [- M7 ?1 f9 H& [" c, D
end7 z' }9 s: y& p
3 @) i3 ]( s0 A  v5 g+ F$ d
to set-initial-turtle-vars-age
' w5 S! L. Y6 Q6 W4 ` let max-wealth max [wealth] of turtles
1 d+ W; ~  u! L: n) x    ; O6 G$ a( n& t* _- p: L- b* F! q
     ifelse (wealth <= max-wealth / 3)
" ?6 T+ J. [1 i7 m8 e, {  R        [ set color red
$ `/ I/ k$ B  Z/ v- h6 A6 K          set age 0$ Y9 g& J1 m2 t# L' {. x
          face one-of neighbors4
) v* y+ y; s8 O0 X) [          set life-expectancy life-expectancy-min +" x' B. [+ g) N) ]! W
                        random life-expectancy-max
( B' {, Z  E+ u4 B& G6 a' N/ O          set metabolism random 1 + metabolism-low$ k  B( ?2 ^5 l# Q+ r
          set wealth metabolism + random 30- C- n1 b. a. u, u
          set vision 1 + random max-vision
; \, w& P7 t' g: \& A' e             set wealth  wealth +  Wealth-inherited-low ]
( _$ a2 k2 C' A7 X1 m4 [        [ ifelse (wealth <= (max-wealth * 2 / 3))5 f6 W* V* P7 _, H: H
            [ set color yellow
% g6 @- m; y8 l+ @: M3 \              set age 0
4 ~0 u" H0 @8 R/ q              face one-of neighbors4
6 j- E. V: w/ @$ Y& L4 l+ e6 P              set life-expectancy life-expectancy-min ++ q( j, X' {. ]% N
                        random life-expectancy-max + 1, I/ ^8 J; @- |! h
              set metabolism  1 + random metabolism-mid
* {& S% O6 U1 o9 f" ?5 t              set wealth metabolism + random 30
+ h, w' m( i/ D  B2 P              set vision 3 + random max-vision9 i) F; b2 S0 @! S" E4 a2 E
                set wealth  wealth + Wealth-inherited-mid]3 M' e- B! I( J2 {& S
            [ set color green
( Y0 [# Z. \% f4 k( p  x              set age 0  Q( ^+ E# ~' Y: S0 \3 H) L
              face one-of neighbors4 . Z8 ?; L0 W  R  D
              set life-expectancy life-expectancy-min +
4 `  g2 a" F" t' q; Q                        random life-expectancy-max  + 26 |% d* y* X! K/ n+ t5 b, H
              set metabolism 2 + random metabolism-up
$ c. C  v6 w' C7 K              set wealth metabolism + random 307 _: i! }& X( v& _% l
              set vision 3 + random max-vision
! D! ]$ G( v) M1 w" @9 Z              set wealth  wealth + Wealth-inherited-up ] ]
$ F+ _7 [( M& i1 V8 t6 y4 _ ) _- T+ H/ i: F+ ?6 @& E& W5 |
end- X9 ?3 U" a3 p8 ?+ X* Y0 \3 A
to set-initial-turtle-vars-wealth
5 o4 U# t$ G1 J& w  K8 @ let max-wealth max [wealth] of turtles
! ?2 x& y7 D, a          set age 0
$ V- b8 c+ [0 b4 a) @0 _# G! M          face one-of neighbors4
4 o$ m, e9 D& p9 R& R' G& w          set life-expectancy life-expectancy-min +; g6 j9 Z# m( K6 a; ^
                        random life-expectancy-max
5 W& g% s" N2 i          set metabolism 1 + random metabolism-up. G; {/ e4 M: ?
          set wealth metabolism + random 30
! I, ]) Y* J& h          set vision 1 + random max-vision
" c1 d% a8 C5 s1 bend* w- S9 |, d% a3 a' t. a
to redistribution: F* g( ?$ V1 Z/ V* o: ^. k
let max-wealth max [wealth] of turtles
2 o: x6 s- I2 ^, M- d7 f4 klet min-wealth min [wealth] of turtles4 x% o( \$ r# R$ c: I( s" C% M
if (wealth <= max-wealth / 3)
9 }5 j/ ^% M! X [set wealth  wealth + Low-income-protection ]
( E) T/ A# @6 g6 P9 \7 ~end/ c8 E. j- W. ]- R$ v! W! F+ G
         
1 I+ ~, l# J4 |! s$ p* vto recolor-turtles
0 ~5 [6 @( T" L6 X  let max-wealth max [wealth] of turtles
' _- J2 ?7 R4 [! |; Z' j3 R; w  ask turtles
( M- L1 }9 T% O/ l! M; H   [ ifelse (wealth <= max-wealth / 3)
4 `+ C8 s8 J; q+ n& l! R        [ set color red ]3 L2 Y, P8 {- C  A6 n
        [ ifelse (wealth <= (max-wealth * 2 / 3))
1 ^0 P! f/ i) \: w            [ set color yellow ]2 \, T/ [$ z( J+ T" H0 B
            [ set color green ] ] ]
' z% q4 }9 Z/ ]7 c0 {  u4 r/ } ask turtles [ifelse show-wealth?6 f$ x6 w. {- |/ z
    [ set label wealth ]& |) \9 ~5 a  a  I, U4 I4 Z& f
    [ set label "" ]]
* m  A: x5 M' L$ V4 y3 D- {- e0 b+ iend* o4 n. O: b3 F$ q* @: n

& u& @1 M; j$ f( Nto go4 P1 _7 b& M% [! a- m
  ask turtles# ~# c- U2 G/ I: w% q3 ^: Y5 T, _
    [ turn-towards-grain ]  4 F. J  F3 Z( B9 w, b0 W) }* _
  harvest. v' n* b! Z& W' {% T
  ask turtles9 C" B: n) o) W' }$ ^( g
    [ move-eat-age-die ]
' _7 t' W; c/ ]# S  recolor-turtles
2 K1 e/ m4 k# {( g8 y# t9 }; L- g* Y  if ticks mod grain-growth-interval = 09 C" n) b, k  [
    [ ask patches [ grow-grain ] ]8 k2 U4 i; R/ L9 M3 _
   : L( s; M; ^8 l+ P4 U" z
  if ticks mod 11 = 0
( {) V1 ^. v8 |0 j  [ask turtles6 H  B- E$ W# v& e
  [ redistribution ]]
" N2 {5 e9 e9 V& x$ t4 P  if ticks mod 5 = 0; {5 l2 L* l/ e1 V- M" m+ u
   [ask turtles6 \, C7 E! M7 F& P/ E: D5 `
  [ visions ]]
+ t, H# J; ^/ r: Z  tick
( e& V6 F: U% h( e: j$ q, g, p) B  update-plots9 O% w; v2 i" C( S# I0 G% o
end* v. B+ C# g% |
to visions& n6 h8 b- M8 w
set vision vision + 1
# n, v- ^- I( C8 n7 _4 U3 Qend
: _4 v" A# i0 S3 R" {0 @. j0 C8 B1 P2 i
+ F7 y8 {; `" @  t: u& t: T4 E

) z/ A; L! T2 a! ^; E2 kto turn-towards-grain  
% n1 T3 Z' v3 j4 G! n- y  set heading 0
' U7 X, [+ X3 l/ ?5 b+ q# s2 T+ k  let best-direction 0
: A: J5 }9 ?0 u! k) b  let best-amount grain-ahead
. Q5 s* Z8 E' ^4 N' i8 a" {  set heading 90
0 p5 k/ z$ f; h" ~" n  if (grain-ahead > best-amount)
9 z2 k$ t( j2 |' }' }7 ]    [ set best-direction 90
" V" M+ _1 ~0 i3 [      set best-amount grain-ahead ]& _# L! ?# w1 Y$ C- e
  set heading 180  r" V0 @" A5 V+ ?2 I) V
  if (grain-ahead > best-amount). K8 U/ }0 [1 S/ S; q- ]
    [ set best-direction 180, u0 m% X; |7 I& l3 s* |% o
      set best-amount grain-ahead ]
. s' u' ?% e8 I  set heading 270$ \' W9 R0 S9 r$ M8 d5 l' o1 O3 D
  if (grain-ahead > best-amount)
( x, U% s5 U8 ]    [ set best-direction 2709 W8 q% h, x7 z, a( _
      set best-amount grain-ahead ]
% ?: c0 k/ h4 U5 X! p  set heading best-direction& `, g" t, ~6 g3 f
end
2 Y/ y$ v0 ^9 _- Y: U7 J1 K; \
* ]  D( n  b! G( K4 [/ ~
8 f) u0 M* v3 E' x& m* t: Yto-report grain-ahead  
/ }9 i  ?$ ], K$ y, y. Y  let total 0
) v) @, F) ?8 I& q  let how-far 1
$ \$ ^  l, ]8 G. f' Q  repeat vision# U- R. W- |! \9 ]/ o8 A* M7 c
    [ set total total + [grain-here] of patch-ahead how-far, F; j: g7 D3 S0 }+ O; @* h
      set how-far how-far + 1 ]
8 q, Z2 e) V$ Q. E, }, g8 ]8 P  report total7 M! J9 M/ }6 V7 B0 H
end5 X% ^3 X, _* ?' U* v2 w4 H( Y& x

7 }9 e3 I6 Z% H- o8 M; L8 oto grow-grain
1 e$ Z8 I% l% ?: q6 I; X. u& Y  if (grain-here < max-grain-here)6 s% ?5 T, r+ n6 P
    [ set grain-here grain-here + num-grain-grown
( ~" j! @6 k# ], B! E, ]      if (grain-here > max-grain-here)
+ X0 W- Q% U) A5 M; r) v        [ set grain-here max-grain-here ]
  M0 E2 k& f& d/ q+ T, ?      recolor-patch ]0 I/ b9 J2 w9 E' ?; h# q
end' O3 s2 y6 |9 C) r0 p5 O0 |
to harvest4 [2 J# f# i, ~, a  q) k
  ask turtles
4 P7 A# N9 L, k: O* e& q    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
! b# c! l: B) _# r  y4 E' m0 ~  ask turtles
1 |! A7 N! O; }0 u- m" @( B    [ set grain-here 0
, h3 ]+ V) C  e      recolor-patch ]8 b8 C4 d4 M% b
  . Z( q% R2 I, x$ R
end
8 ?1 Y0 h& u% _& \, N0 {' q
0 q. f$ r6 ^& U9 ?: A3 q! Ito move-eat-age-die  - `5 D* }0 ]+ B5 P( k; \
  fd 1) F3 z$ r% M! y& e# N: N7 B/ y7 ]
  set wealth (wealth - metabolism)
8 U6 v4 X- u  ~* k6 u    set age (age + 1)
2 X' s5 D! ~/ R. f1 e  G1 t  if (age >= life-expectancy)
% I8 V. |$ a: K0 }! H    [ set-initial-turtle-vars-age ]
9 I$ l* @& d) ~9 b$ y7 V( E  if (wealth < 0)
/ N, _6 c% v& G9 \; `, {    [ set-initial-turtle-vars-wealth ]
& O, `3 q) A" f* `( h   
. f: T: c( C) j( v7 \end
( V1 [$ v1 o; p
8 k: G% A( ~! |4 {$ q9 h: f
8 \8 c4 q0 ~3 m: `to setup-plots- e! D' T) K2 q+ T9 ~" Y& I9 R
  set-current-plot "Class Plot"3 L. h5 m! Z% y/ }% Y, E' C  w
  set-plot-y-range 0 num-people
0 ~- m# T' I5 I5 N6 L  set-current-plot "Class Histogram"
5 ?, ~1 q6 C# M% O& g/ Y8 Z0 u  set-plot-y-range 0 num-people. }; l* m7 v" \- n; E
end
" K! Y: `; w; c
- A/ R2 e- `7 O; o/ W8 W8 Jto update-plots; z9 {5 @8 y4 D0 Y. Z+ e
  update-class-plot
; y# D' T4 p) x& D# H3 }  update-class-histogram0 j" i0 ]& i, r' x* Y
  update-lorenz-and-gini-plots
+ P) {1 ]7 D1 M% n1 R% e: ^4 gend
) K: c# a6 k1 l! y: @4 j6 s; X# M7 O
! |( F" L, v% L( b7 j8 Fto update-class-plot( V9 p: X4 x4 G8 a4 x
  set-current-plot "Class Plot"
3 O2 ^! S) O+ C  r3 e- c! }  set-current-plot-pen "low"
$ ?- Q$ k7 B" x( y  plot count turtles with [color = red]" o; U' @5 j- B
  set-current-plot-pen "mid"
3 t+ q# |. ~. W* ^9 d8 V  plot count turtles with [color = yellow]# f" \2 E8 E( ~: l
  set-current-plot-pen "up"/ Z. ^- p# u. [: c
  plot count turtles with [color = green]
  m% p$ Y. t: _5 n) h2 M9 }% ?end4 o. D: Y* H" S) {5 A
! e. N. d( f8 v9 Y$ _- R2 u
to update-class-histogram
2 t3 P  S+ e( P  set-current-plot "Class Histogram"
, ?1 k- _8 j+ N8 B# w. s% ^8 ?. ~4 V  plot-pen-reset/ I" T1 K  u+ o9 c7 v
  set-plot-pen-color red6 B, o& j1 C' H2 N) V
  plot count turtles with [color = red]
) g2 G# ]& K" V  N7 [! r  set-plot-pen-color yellow
/ x, b) v0 E7 X- P  plot count turtles with [color = yellow]
4 i: t! l; \8 r; Q: {1 h  set-plot-pen-color green7 G; b( e, M- H1 _$ }+ T6 J
  plot count turtles with [color = green]8 s" V' Y( C, Z: I
end
4 b, I/ ~4 N' R, Kto update-lorenz-and-gini-plots
) u2 }7 L, H+ J( z* }1 d; n  set-current-plot "Lorenz Curve"
) }$ u& _' `1 F; _8 ?. ?  @  clear-plot# P) ^7 g1 H  n

) ~# G- \# Q9 L. u2 Y" U  ^  set-current-plot-pen "equal"7 r( y! w. k+ _- y, I- j
  plot 05 [" `) N* R  @. \$ f
  plot 1007 Q% y  [  v7 E6 S  U
% A3 }$ r" K; T. j
  set-current-plot-pen "lorenz"2 u9 g% s  z6 u) }4 K1 c6 K- Y
  set-plot-pen-interval 100 / num-people. j% I4 F+ Y2 f; B8 c9 J
  plot 0  M! n7 ]( o) X8 ~: w% @/ W: R

% I% @4 f* p- N5 |2 r7 W" H0 t  let sorted-wealths sort [wealth] of turtles
. D7 _1 R8 L' j$ v# @  let total-wealth sum sorted-wealths
' p- I  ~* ~- O* a3 \  let wealth-sum-so-far 0
6 p4 X2 W) T  ]" Z" H  U0 T! R  let index 0
/ Q- S; d1 \  {% o7 y, e" v  let gini-index-reserve 00 f7 M9 b( i/ T! K9 M

0 J! w6 S5 I! ]  repeat num-people [! a* u' y8 \+ a
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
+ M, z8 b3 l7 z3 K5 z1 X( a2 J    plot (wealth-sum-so-far / total-wealth) * 100
$ C' a6 h& B$ v5 Y0 s- d    set index (index + 1). C1 E6 |1 L+ o8 C
    set gini-index-reserve
" G" j4 n( U0 n. y      gini-index-reserve +6 d1 p: P1 r; d% T% A5 Y
      (index / num-people) -8 n* V- P; L. e* V) ]7 I
      (wealth-sum-so-far / total-wealth)
6 _& \4 o' r8 m8 x& S* ~  ]
& k& x8 K% G; r* t# F5 h6 R0 ?% o7 V, w/ N( M* Y2 L
  set-current-plot "Gini-Index v. Time"6 N! k) C; Q2 B8 X, k
  plot (gini-index-reserve / num-people) / area-of-equality-triangle/ i& B9 o* k8 ]+ R- c3 L) V- D* Y
end- s7 L0 d" h8 J' X' X" z
to-report area-of-equality-triangle
$ q8 \9 C& z- X/ r* j  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)' h8 A" T7 N5 `
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-1-25 00:02 , Processed in 0.017168 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表