请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
* k9 W4 t! C) w5 b5 i3 }globals
+ b( p# ]7 C( v9 P) V[0 m) l, i5 l4 T9 e0 K+ F* V
max-grain
# Q0 h, E7 u& r# k2 `" |' u6 C9 W6 e# e+ _% c4 Z
]
/ T' F: H0 f6 F2 y2 y. Q0 A; z+ L* x3 `' m' X
patches-own- }+ Z' g" I# K9 @6 O
[
2 W8 c, A/ Q' p$ E# n grain-here ! O- K9 R2 H% ^
max-grain-here 5 J. z( |' l4 k# a" D
]( w/ d3 c7 l) r0 I$ C3 e
7 m4 E' i! L& D! Y) O& H
turtles-own
7 [0 b3 P- R& X$ b2 y( v2 T[& {% e' i( R. a* \
age
( ^9 |, S& F8 x6 P8 F% J' u wealth
7 Z9 |+ m+ y+ T# [, c: q s life-expectancy + d2 }; O, F, H! R: h) L
metabolism
5 g5 X) P8 P2 p7 ?' w/ }; I vision/ ^ o9 s/ p2 Z! Q0 b$ ]
inherited 8 B) h, @. e8 B! c4 I3 o% H! X
]7 j$ o% C) {) }) z0 e' e" A
^, f' x7 a5 }* o% Q
! p$ o# t# Z; U+ n; g; kto setup# v$ O) Z' m& t
ca8 o3 [. h/ c* u/ c
set max-grain 503 U3 `/ E2 [/ d. N5 l$ L; @
setup-patches
- d W' c# X! ^) p9 i, |) r3 X setup-turtles
1 u, h9 @; k6 p+ V setup-plots
5 k- C: [0 M$ P! K update-plots+ L8 v) c5 |. r; _8 j% C
end- R! }3 z& O2 F
to setup-patches
& g9 ~/ y d2 j# r0 ?6 ]+ D ask patches
4 D& b' a9 ^( G3 _* U6 |6 u* n [ set max-grain-here 0
, b1 o/ d8 }$ p& O9 L' P# N: H5 b if (random-float 100.0) <= percent-best-land1 J# M# s3 h& {- W
[ set max-grain-here max-grain
5 @6 F) `; @5 ]) ]( M" o set grain-here max-grain-here ] ]
& E% _' s: ~* {" ^4 m: ^$ f repeat 5& C* L. w3 F9 z- Z5 t9 }+ t
[ ask patches with [max-grain-here != 0]7 B0 \/ g$ f# j
[ set grain-here max-grain-here ]
+ h) r/ R# ]* e) C diffuse grain-here 0.5 ]% t' Y- t6 G- S' A1 o
repeat 10% L2 \% L+ P9 x0 S" E7 a
[ diffuse grain-here 0.5] : g- v" @, l( k- q0 R- X
ask patches
# n* m( o: \) ~% _; N [ set grain-here floor grain-here 9 G' M7 J$ q/ o
set max-grain-here grain-here 3 q" u2 T5 Z" {+ L* z( w1 n
recolor-patch ]
3 H1 D! K' r) `5 lend$ }, r- l- V. Q4 j* j
to recolor-patch
, ?; G" V0 N- a4 j set pcolor scale-color sky grain-here 0 max-grain0 v6 {1 n; q: l1 @; y0 O L
end
% K9 c3 |/ S9 D! V9 B; T; N: Yto setup-turtles' p% l& z m1 ~; c, s
set-default-shape turtles "person"
/ c& B* F4 T' b) E/ z6 _ crt num-people
) {/ W# x5 d' i1 Q' K [ move-to one-of patches 2 O. h% u" T& w+ i; t, C7 W, }1 p
set size 1.5
3 h1 \0 o- K: i' K, ~/ } set-initial-turtle-vars-age
, G4 d/ W4 I' `8 Z& U) e& P- P" F* b set-initial-turtle-vars-wealth
4 j9 R9 r3 L- y3 {5 ]" E set age random life-expectancy ]; d* `) K5 o7 h8 B
recolor-turtles
; x' u: U7 x& gend
2 t9 i9 P3 X: w6 `. [$ A9 E, H# X5 |5 J5 Z
to set-initial-turtle-vars-age
8 C0 @* V* ]) ^1 h, \6 t" q. | let max-wealth max [wealth] of turtles
" s% T8 W, }; {$ j" ~7 ~' n
( S& H2 f: E" \3 B1 @7 k ifelse (wealth <= max-wealth / 3)& n; C7 _8 d9 c+ P
[ set color red 8 r# F- o B& o; c$ y* L6 u8 O7 B
set age 0
) d9 f% z$ U$ E% Z+ P face one-of neighbors4 8 I# o7 `4 J* Q% P0 E4 j2 p
set life-expectancy life-expectancy-min +
8 h/ \/ E& l6 A4 r" g7 } random life-expectancy-max 8 Z- Z% ]3 U% y
set metabolism random 1 + metabolism-low
0 O4 _3 Y# b1 e2 C, v+ a1 | set wealth metabolism + random 30
8 v) a' @: M* Q% h set vision 1 + random max-vision
$ s! G% ^& u* K' T# a8 O set wealth wealth + Wealth-inherited-low ]2 x& p2 G9 X2 Q+ W. b0 b
[ ifelse (wealth <= (max-wealth * 2 / 3))0 j8 [8 m# B- `6 R) \5 H% F
[ set color yellow / i* R# x, f0 o
set age 0
* z& g8 Z7 q J$ x- Q0 e1 Z l face one-of neighbors4 , G) A' ^2 @& U2 V. m6 V4 Y! |
set life-expectancy life-expectancy-min +: ^% O& E L1 q* X. l9 {' t
random life-expectancy-max + 16 g; j k) B$ s0 n9 W
set metabolism 1 + random metabolism-mid
; ~: K. y R# f! }% w" X" J. X, b% ~ set wealth metabolism + random 30
5 J( z! Z* C3 n% Z: o set vision 3 + random max-vision& r3 N0 s0 s+ _1 g! Q% @5 p1 _5 n
set wealth wealth + Wealth-inherited-mid]5 O5 ] P9 P' r l. b
[ set color green 8 A$ s- K) H4 D4 @1 ?8 E
set age 04 @; G7 [) H9 k' |+ `
face one-of neighbors4
& e1 v; f$ \9 x4 q- G+ V set life-expectancy life-expectancy-min +* B& J1 J8 R% P" C6 V
random life-expectancy-max + 2
4 u9 o' E" H" m+ j. l' Y L set metabolism 2 + random metabolism-up
2 d& d/ C9 N/ g. [ set wealth metabolism + random 300 [ G. m& \* {& T
set vision 3 + random max-vision Y [; |4 y9 D3 b
set wealth wealth + Wealth-inherited-up ] ] 2 G/ R3 h. `9 H& ?! I9 r( V. s
# r7 a; _) B# u/ N$ ^9 [! O3 bend
+ U0 D# _1 ?6 E+ c" a! Oto set-initial-turtle-vars-wealth. y" a% `$ l. V! C
let max-wealth max [wealth] of turtles
" y! V& K' J* R# h( t0 S set age 0
6 I3 U( Z; |, w! Q+ u3 ]' ? face one-of neighbors4
0 q! k* |6 L3 p set life-expectancy life-expectancy-min +
! J9 i' |8 N# x) c l: f: k random life-expectancy-max ) w- W" O/ ^$ }+ g! c
set metabolism 1 + random metabolism-up4 Q9 @8 | Z+ H8 x
set wealth metabolism + random 30 Y! i% \0 k# f+ ^% s3 N
set vision 1 + random max-vision ! ^7 Y7 p( `( @, z7 Z2 ~
end: q2 o/ _. {2 S9 _1 x) B! m
to redistribution2 \# ^0 u) @& v4 R9 L1 H! E9 n
let max-wealth max [wealth] of turtles
& m$ p: {/ C2 K+ b0 A0 Ulet min-wealth min [wealth] of turtles4 ^7 @" s2 z- \7 ` ^; y
if (wealth <= max-wealth / 3)0 g! G+ r3 W: }: e) G& D. j
[set wealth wealth + Low-income-protection ]
' P6 x1 T' N tend& ~6 W8 } F9 b1 Z ?* l5 I
' a" g1 i( H% o9 ]to recolor-turtles
) [" Y# ?2 U# s let max-wealth max [wealth] of turtles! W3 ]7 g: {8 N, n6 \ c0 m
ask turtles
2 E& ^% Y( z3 y' Z9 N) D7 F& |7 ] [ ifelse (wealth <= max-wealth / 3)# \6 F/ w# l4 i9 t7 J1 V
[ set color red ]$ [' @. P* O7 u1 E1 G% T' w
[ ifelse (wealth <= (max-wealth * 2 / 3))8 x2 x( g; C& k/ m2 }
[ set color yellow ]+ q' T# l% i( V6 @5 K% |
[ set color green ] ] ]
! @" g7 \! M7 D- v& X1 G ask turtles [ifelse show-wealth?! h/ E- t+ l: q6 U! i; }0 j E
[ set label wealth ]
5 k& G; g4 ]9 ^, B [ set label "" ]]
+ l' u1 b5 b- W% k+ y6 tend/ W; v! W. m& }, u$ B! A: {
0 ^+ R9 z. x8 o, _& i
to go
/ v+ F& e8 C0 Y: |- { ask turtles, }# ?4 p2 F3 I9 b1 i
[ turn-towards-grain ] - J1 S2 p; D9 S6 y$ a. v) A
harvest. H; [$ g+ t }4 _" o5 @$ z1 C
ask turtles
+ y# B( O# E( N' Y) r# | [ move-eat-age-die ]9 E! a+ E8 |. i2 q
recolor-turtles
* u+ C# B2 A( c- Q) {/ t! E4 P if ticks mod grain-growth-interval = 0
( d' ~# I3 r1 I3 s. M [ ask patches [ grow-grain ] ]) G% P+ v |- A1 @' c* {- s
0 `7 g1 a1 G$ `" A! y9 K* [ if ticks mod 11 = 0! W& A# y$ ?/ z' A# X: q
[ask turtles6 P% M) N- ~0 I+ c
[ redistribution ]]# Z7 K- a+ ~" w' h. |4 @* O
if ticks mod 5 = 0
9 e8 Q' ~4 G, V [ask turtles1 h( o) r' ~& i S7 ~) X/ l
[ visions ]]
7 g& Y s/ r& n tick
# U& l; v$ X; G) n! E, R update-plots0 i/ ^- W$ @/ S- a8 H0 D
end J5 q3 u9 f) @5 V. D
to visions
5 O" z4 V5 N4 n set vision vision + 1
* B. C/ \7 r4 {6 v# send- e+ ?: J) ~7 A Z
s1 p7 |2 O, Z) ~
% Z+ S4 z3 x! E% F) H' P' V
( Q" C) }* Z& G
to turn-towards-grain / F2 f2 }& {: y1 K; W
set heading 0: d D9 _/ r' X9 h/ V# B
let best-direction 07 s) k+ }/ y5 `7 r& `6 U ^
let best-amount grain-ahead
: O$ K* Q- l5 P; ? set heading 900 N$ l# }5 U( c, p& r6 Z
if (grain-ahead > best-amount)
2 }: |1 T; V3 U7 P. J [ set best-direction 90) P, z1 I' R; @* n0 h2 Z) o
set best-amount grain-ahead ]
: a2 p3 V/ v A* ? set heading 180
, D7 C5 @- s, L& M if (grain-ahead > best-amount)
8 i* i B' X; n+ J4 g u [ set best-direction 180% D$ K2 ~# f% _- h
set best-amount grain-ahead ]8 F" G: N% F3 L6 p+ G0 P8 i5 `
set heading 270
5 O/ n4 }$ _3 |, N# l6 j if (grain-ahead > best-amount)* Z+ ?6 ^1 h1 P8 N
[ set best-direction 270
4 x% c- S) Z: R( D/ v# U" C" L set best-amount grain-ahead ]/ B8 F7 v! H8 U6 |
set heading best-direction
4 H4 X2 |3 k& ^" E s8 gend
) o8 b( M6 K8 R2 X$ H5 _- f
' |4 A& x+ g- ?$ J+ j4 E8 C. b- ~ o; A/ v# P, T. e
to-report grain-ahead . b( ^. a& i+ y9 r1 Z$ Q
let total 0) ~ Z# e( f; a7 L2 }' H' n
let how-far 14 N7 s U X8 g! M* t: z/ B
repeat vision
9 h/ j9 h! Q: q8 k5 w) l [ set total total + [grain-here] of patch-ahead how-far& O+ n: b6 l' Q/ B
set how-far how-far + 1 ] b9 D2 y: Z$ M% j) r3 e2 I& D0 p/ m
report total0 I* M( K: v& ]2 k _
end' c) D' M2 H) M
2 I# R: p9 B6 U$ h3 ?8 k5 J
to grow-grain
) a# Y& ?! B2 d1 B/ `3 R9 }% b if (grain-here < max-grain-here)
% B. b& N0 `# G# `& u, W7 R [ set grain-here grain-here + num-grain-grown7 p+ E% R' r# M8 r% t% @8 q$ ]
if (grain-here > max-grain-here) & v* d, ~9 W, x$ G* o
[ set grain-here max-grain-here ]) `4 @. m" T5 c
recolor-patch ]
: _& }1 F( P) d( _3 gend" ?4 k: @4 u9 y" L
to harvest
2 V' V' q$ c& F# ? ask turtles- s; m0 w! h' `+ |: w' g
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]% d, f# t4 L" P& E8 k
ask turtles G' ?8 ?# o$ |$ J; d! |
[ set grain-here 0
" F+ v( G/ I, ^5 R* \ recolor-patch ]1 k' Q- S( `1 B! \
6 O7 U7 |+ Z% ~" y" l6 P. A' w5 Iend
# u% \/ I) |/ Z7 S* G. @: c
" ^% x3 V! J2 \( U: h+ E9 R. h" _to move-eat-age-die
. [& Y0 c$ Q% Z& I- @ fd 11 c% A. [% j6 U$ _+ Q
set wealth (wealth - metabolism)7 D! \; W' W5 t( `" k" ?
set age (age + 1). K( j* q& R! Q; h4 B
if (age >= life-expectancy)5 f3 [7 U* e. a# m8 Y) n. i0 ]
[ set-initial-turtle-vars-age ]0 x$ }5 k2 G8 g1 E: E! `
if (wealth < 0)1 _, ^- f) _6 i7 L- [3 M ?' Q$ c. V
[ set-initial-turtle-vars-wealth ]5 j5 T& ~" {) q& X7 g
5 y+ A* `. g7 i( f9 P$ Hend/ G- R7 {( I$ y2 o) ?& e
* s' i) u# I) a
% R* M5 E9 L8 O- x$ {% sto setup-plots
8 o8 g' @1 X/ t, N: X( r set-current-plot "Class Plot". `' Y( r! ]+ \0 j9 j
set-plot-y-range 0 num-people
) I6 n, C3 L5 m" X# y: N0 | set-current-plot "Class Histogram"! f1 I( i" [, q( G; ^& S0 R4 Y% h
set-plot-y-range 0 num-people+ ]- G/ f$ S/ y- o
end
( B! g, ^0 j$ `' b% c2 p
- {7 T2 N, A" Y; n% s( o9 S- {to update-plots
$ F6 ~3 ~6 z4 z& U+ P, T# q update-class-plot" l z- j0 }/ i( Y
update-class-histogram
" j7 n' a. V6 @6 F update-lorenz-and-gini-plots& b% l9 O$ |: s5 n
end1 _- W' C: Q3 U0 A7 e
4 C4 N* x% P( c: G. xto update-class-plot
$ e8 E' P# {. K set-current-plot "Class Plot"% u$ m1 I2 x. J- V% ?# `* {+ P6 l
set-current-plot-pen "low"! ^& E' _) s6 y; v
plot count turtles with [color = red]
; j1 g/ M! D) V3 x+ _5 ]/ Y set-current-plot-pen "mid": X- C( F3 }0 z
plot count turtles with [color = yellow]7 i* ^5 c+ V, `' @% d1 j
set-current-plot-pen "up"
1 D; }9 L+ K4 m: F9 S* d plot count turtles with [color = green]
0 X- X* k1 q7 f* t7 Gend6 b' q+ c- w5 S$ }2 r5 Z
% E6 D- _* `) S' D
to update-class-histogram+ y& L3 z; O; \2 K3 r( |, q
set-current-plot "Class Histogram"5 N. q' F) F9 p# L
plot-pen-reset* O! P. F# P6 z0 e
set-plot-pen-color red
7 D( o8 @, C9 v2 f9 c/ z. B+ } plot count turtles with [color = red]+ X/ P# a5 u" v: \$ `$ C
set-plot-pen-color yellow/ W% X5 Y( k( J! C, t
plot count turtles with [color = yellow]0 O% p0 V( y/ Z! H" _" M+ v! q; |
set-plot-pen-color green9 H2 v: c; E1 ?- t. {' Z- Y! }
plot count turtles with [color = green]
/ g7 B! k; Y2 c2 K. O: K4 Y& t+ lend
; O- p4 k: v- G. ]to update-lorenz-and-gini-plots& K$ I' z$ e: q& c' k) e/ n6 H, W
set-current-plot "Lorenz Curve": ~6 o( a2 ]* t% T" Q
clear-plot
1 u' {! n" F6 R* @" E M& y- N$ A# V% l1 `4 `: g A
set-current-plot-pen "equal"
8 q. J4 Y" C/ a0 q plot 0
7 o; t( o$ I1 g) G) a' q plot 100+ c5 i% k: D; h% {4 Q2 q4 D" }
) X0 w c8 C: q, y; f
set-current-plot-pen "lorenz"
( ]$ D1 a& e: ]6 Q set-plot-pen-interval 100 / num-people" c. }9 A/ [, `" ?. @+ I! g
plot 0
0 v4 ]0 g: S1 `7 U/ c( |2 p: \8 t4 D3 ?1 l/ Z1 C3 R& Q9 L
let sorted-wealths sort [wealth] of turtles# X2 C9 X: x* @1 Q
let total-wealth sum sorted-wealths w- f) @' n, ?. k' ]: `9 [
let wealth-sum-so-far 0
% f* Y+ D$ B% P6 V x5 m let index 09 Y& K- m3 i* {9 W$ ~2 [6 ^
let gini-index-reserve 0
' \" L' d6 |3 n: B+ ^
" v# Q% j7 ?1 ]' P; p: N7 @ repeat num-people [
9 `! {- d, |! R: b4 B set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)# z) h3 R( d ]- C8 V
plot (wealth-sum-so-far / total-wealth) * 100
2 b' W" I8 U: Y$ a- l set index (index + 1)
3 f: Q% Q% f7 d% M/ c9 E& t set gini-index-reserve; p# a& N+ A( j
gini-index-reserve +3 l" H7 \4 L( m, p5 i" d
(index / num-people) -( |3 E2 ?5 J( a) _+ _
(wealth-sum-so-far / total-wealth)
0 n) H. x& n" d# i) P7 y" e$ g ]
. D+ D/ b: ~$ N# J% B6 b1 ^% A/ E' E/ ?! t7 o6 v0 w- f" V
set-current-plot "Gini-Index v. Time"
* R# `2 y% ? m/ C* q7 f plot (gini-index-reserve / num-people) / area-of-equality-triangle2 y" j! | m% A9 I1 E9 V. {2 X
end3 o" O0 w4 i8 h' c
to-report area-of-equality-triangle' Z1 J6 s# x V; \0 x3 J
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
7 j* y+ ~4 W4 A( Y! Fend |