请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
0 U8 u) ?9 u( S9 A j9 X% z! yglobals' Q7 Q- D' M% C" L$ R( ]
[
, Y' m9 T9 s3 q& U9 H max-grain
! G6 |1 D& ]" S$ H
; r% Z% b0 [3 z+ W/ v]
$ c* N* X! M+ i* R" n, @- `
9 i8 U1 R, l; Ypatches-own& n) S) I8 m# ^5 S, `' }
[
$ O+ E+ N7 p1 |& T3 F) S grain-here * z0 G6 M( V* ?+ K
max-grain-here
: M4 S$ N* D4 d]& ^% O6 y* i: X, I9 G1 P( R% w9 K
+ t% G! t, d0 `turtles-own! K7 a m! ?4 D
[
. E. ~4 Z5 @# i+ K1 N0 x- d7 [ age . b& ^: `+ I/ }% b: d( C3 K, n
wealth
0 w4 A; I) ]( M4 Q4 s: O0 e' H life-expectancy
; F$ R8 h3 ~& d+ P metabolism 8 V3 u% o4 V; F% v6 W! U* z3 _
vision
! }2 I: D) q' Q( a% _7 O+ X9 z inherited
3 _+ E% z( Q. d/ l' K; D( e]
8 a: O R: F6 U: F$ l6 {6 |4 `# j# T6 l# w
- w( L3 e" k6 |9 k- d% u# {
to setup
2 }! {# _0 X. J. f ca- J) j1 F7 r+ T f, _
set max-grain 50
4 ?6 B& I1 q7 B3 y9 T1 j/ G" { setup-patches' f4 a) d, G0 p! l+ M) h/ k2 ~( W
setup-turtles, o' O3 A2 @5 C4 t. h
setup-plots
4 _3 e% U0 G3 c- F5 `, ]" j t. G: K update-plots) t8 i) C2 L4 H, n$ }
end2 V, C3 W* e. X
to setup-patches% H% C. @. B m
ask patches$ A- {8 a1 E5 ]
[ set max-grain-here 09 J/ r; t1 @3 E1 h% [3 {: |
if (random-float 100.0) <= percent-best-land
' ]. N, t& m- { D* F6 \2 X9 K [ set max-grain-here max-grain
% E% S# a( z# x set grain-here max-grain-here ] ]
- s. s. A n+ `1 z8 j2 l, l repeat 5 g8 G, D# i- H2 x5 `
[ ask patches with [max-grain-here != 0]% w/ `5 X. b7 l% h5 u1 O" P
[ set grain-here max-grain-here ]
. I% u' Z7 [9 ]" F diffuse grain-here 0.5 ]
3 f/ V0 {. M2 U% P: ? repeat 105 X3 \" |8 V# x! t
[ diffuse grain-here 0.5] " `$ N- t2 T% X
ask patches
7 ^4 }8 o; [5 v& e [ set grain-here floor grain-here
7 `9 O' `- A$ u3 c set max-grain-here grain-here
! Q! S9 M1 b( W5 T recolor-patch ]/ l; m( z- ?+ w- R8 U/ z( q
end6 L8 u3 z# E" P! `2 z: H/ I
to recolor-patch / u K2 r4 D. [, h' o
set pcolor scale-color sky grain-here 0 max-grain
5 h9 M' r+ g) |. n& nend
& y, F4 N) G% [to setup-turtles7 I( B* k3 |8 _# Y# O. O! u
set-default-shape turtles "person"
% u& A* B; h, ~) t crt num-people
5 f7 h3 f1 M, Y5 i [ move-to one-of patches 2 N, \. P, V, k- @ s. t# y" @
set size 1.5 9 ?. j* P2 N8 N9 y' y
set-initial-turtle-vars-age8 o5 q6 n* W2 V- Q
set-initial-turtle-vars-wealth
& ]$ B a' o, b- m7 O/ T7 ? set age random life-expectancy ]
5 b. i# P0 Q2 p3 | recolor-turtles
6 p0 g) k; D9 d% g# I0 T& x* Rend
( y+ B: ~4 H) W% ?
; z# L) o) W1 Z* i0 A) _ ^# D: dto set-initial-turtle-vars-age
. p$ Y7 t5 d- R let max-wealth max [wealth] of turtles
, G, @" g, d* D9 \ # T% A' s" N" K
ifelse (wealth <= max-wealth / 3)
' ^5 C) g" K" l: |, c0 z2 N [ set color red
; f7 J- s# @: Q+ G0 y. g2 L set age 0& Y/ \( z) o# U/ L! t! v$ q
face one-of neighbors4
+ z' [7 X; N2 ^; _- `: g( H. X: @* r set life-expectancy life-expectancy-min +
! L- |4 i O* P, F @' r random life-expectancy-max # z& M9 @* J3 @' \& w( V
set metabolism random 1 + metabolism-low
+ Q; Y7 ^% }0 r& @" U2 e8 v set wealth metabolism + random 307 W7 b6 U) m9 e" k# ~1 x
set vision 1 + random max-vision; h: i/ S, M2 _. E- I4 Y3 Z6 y; `
set wealth wealth + Wealth-inherited-low ]
' J* Z* f9 Z& d4 m" O [ ifelse (wealth <= (max-wealth * 2 / 3))
[. S- B# U. ] [ set color yellow , I# o) R: c' t& p% A
set age 0# r) i, |/ V: L, b$ L% b3 H
face one-of neighbors4 + D' D/ X$ G1 l) m5 D3 w
set life-expectancy life-expectancy-min +# P `8 B; L5 P6 q. k8 d
random life-expectancy-max + 1
+ x" P K. Z! ?/ l4 M( q; ^9 ?( P set metabolism 1 + random metabolism-mid3 J& p: d, e3 }1 [
set wealth metabolism + random 30
/ I* u/ n" p8 j$ r1 f# P set vision 3 + random max-vision
+ d3 i" T; |, _' {+ R- f2 l6 k p set wealth wealth + Wealth-inherited-mid]
+ R$ x& t+ C# w4 [ [ set color green 5 ^" Y* A! z; G$ R& w: b
set age 0: S1 ~3 {% [2 q$ j. F
face one-of neighbors4
4 r' t. z: m8 y3 x5 Y& ~ set life-expectancy life-expectancy-min +- V7 \1 U. }( C5 d* J6 D/ S
random life-expectancy-max + 2
# V- m' w: ~9 o% y( c9 I4 a0 M$ b2 ] set metabolism 2 + random metabolism-up4 X8 W' P# e1 _, Z4 z
set wealth metabolism + random 30
* q4 ?' {3 |$ x set vision 3 + random max-vision9 v/ {4 W* T. j. O4 M" I
set wealth wealth + Wealth-inherited-up ] ]
& {0 U' P( l7 R3 v( W, t
, l, L. M- c! A4 Zend
2 `4 M$ W* n. o& X1 o( vto set-initial-turtle-vars-wealth$ e2 D& ?! m6 J$ F, _
let max-wealth max [wealth] of turtles9 J: p1 {1 j5 [- K% _
set age 0- z" X6 J# q" }+ I; I5 k2 ?% ?
face one-of neighbors4 l5 i, E! @! Z6 T0 a7 b0 r) X
set life-expectancy life-expectancy-min +
0 r* V; m0 S1 \( V0 @/ W5 Y8 P random life-expectancy-max
. v$ v( \7 W& D, m& Z' w& i/ a9 [ set metabolism 1 + random metabolism-up
, g' Y% ^& t( N2 T% o: k set wealth metabolism + random 30, [# } K. c/ }, j7 \% Z
set vision 1 + random max-vision 7 e' n4 a" @( ^6 D: Q0 y
end
3 y W0 M, D pto redistribution+ @; N% C& Y/ S- `
let max-wealth max [wealth] of turtles
# r+ E* d6 q/ ~9 flet min-wealth min [wealth] of turtles
) K9 p7 j4 d, T- j, lif (wealth <= max-wealth / 3)
1 K) K, y: d2 R$ B2 h [set wealth wealth + Low-income-protection ]; U6 w Y: y0 r7 U) m
end
7 v. _0 L' D8 r m2 L
2 E/ M4 a, T5 H7 n) a! Uto recolor-turtles# C' r8 z- S( J; o- {+ X8 K c
let max-wealth max [wealth] of turtles" _; K7 W# X8 `( e
ask turtles
3 H" c. m& O, M" }4 l' y, _ [ ifelse (wealth <= max-wealth / 3); q' o' W+ _# C
[ set color red ]& N5 E5 w3 h6 k. |* w' x$ I/ |# W; p
[ ifelse (wealth <= (max-wealth * 2 / 3))
1 D5 \( J2 T; e3 u. u [ set color yellow ]) a' \6 s' S6 S3 W5 U" Y9 c0 G
[ set color green ] ] ]" I& F7 S6 R- {! N7 K
ask turtles [ifelse show-wealth?( y( o# Y& `( _2 b8 \8 E+ r
[ set label wealth ]
* V$ l+ M( R, k. v9 a- G C- X0 h [ set label "" ]]/ a! c$ u2 L: ^9 o$ Z/ X
end4 x+ j" E2 N i9 v- U% D9 i
4 I* T& P' W0 B; q8 R. n; C
to go5 s: }/ M: y) H8 O( K! P" v: ^( V" J
ask turtles: [- ?, N4 O" U; K
[ turn-towards-grain ] ' E E Q% ~. N: U; A" t p
harvest9 p! u, U/ N( ? C
ask turtles1 v( M# s. O/ k3 X5 E
[ move-eat-age-die ]
2 y H. @$ H5 L( V: F q, Q recolor-turtles
/ \$ M0 d0 o5 h/ d if ticks mod grain-growth-interval = 0
" L9 Z a! m ` F) i/ R) b E [ ask patches [ grow-grain ] ]
& O `% U3 t5 R & p- G3 G4 [, z5 R
if ticks mod 11 = 0
( A6 k2 e0 _% p+ Z [ask turtles
# @& s- o4 @2 f, `: Y* P [ redistribution ]]
- ?3 I: x- f2 `0 [8 ? if ticks mod 5 = 0
! Y, f. E( U, V5 o7 C) a [ask turtles
8 a6 P8 W6 O4 w/ U9 z [ visions ]]
+ Y2 r4 G7 Z: f n7 p; g& S B* W' V tick1 J$ ]) t0 \6 F5 S, l6 _4 U
update-plots3 K5 l0 R8 ?+ K! l- _
end
/ u1 {5 Y& {3 I3 o2 T6 s) Q3 \to visions
0 A* {; a- {4 g! H2 L set vision vision + 1 " f& t1 w, ~* ~) z
end+ |# Q* @7 \ l6 z, ~
" {# i2 | D% b7 T1 @# U) g9 q" h6 ]
$ A n& x2 D2 q7 a" a; }
, L) R* `4 ^( e$ [: b
to turn-towards-grain
# J0 t$ v: `! V5 ^6 E/ O( T set heading 0
7 H: e7 R& i2 c, e' Y let best-direction 0 y! i* Q" P4 J# A2 n5 z. N
let best-amount grain-ahead# C: [" z F+ D1 O# g0 R
set heading 90
1 Y# G/ i" B4 }: d if (grain-ahead > best-amount)
: E7 F8 H5 G5 E+ `* f [ set best-direction 90
* I" E# t5 Y5 D# c8 @ set best-amount grain-ahead ]3 M. U5 d+ i9 `4 q; T" e4 A' K5 F
set heading 180. R+ \ x5 E2 T9 v8 L/ S2 J, g
if (grain-ahead > best-amount)9 K# T0 T) n9 B" X, ^1 L
[ set best-direction 180
) l( K% U7 M* o) f' B set best-amount grain-ahead ], n! b! u/ T/ T
set heading 270
( D: q8 {8 H7 J# a if (grain-ahead > best-amount)
- A( \; Z* ?3 R% p [ set best-direction 2708 Q+ X# u/ Y1 E9 c3 _0 X
set best-amount grain-ahead ]
' {: N, W5 O+ c5 M- K, b% i set heading best-direction
% i, t. a+ [/ g9 [end
; r. a; }: l k1 ^( N7 P/ ~# ^) n5 i( C' n8 i: K
5 i) y/ P% U( G8 p" y7 h: K
to-report grain-ahead
4 { N6 x' |6 X* s9 q3 r) C: c let total 0
) F8 C) Z2 c w7 p let how-far 1
: i3 d6 S' z. S2 u+ L e9 G# {" } repeat vision
6 m% P$ Q p" q7 }& ~ [ set total total + [grain-here] of patch-ahead how-far5 h5 q4 P: {$ I }/ L
set how-far how-far + 1 ] j* L' u2 d% C. K7 {
report total m5 ~/ P4 P0 G: N3 N6 `# ~
end
8 g7 {% h2 F, c. ~
' S* |6 H; I& J( [9 u; p( Nto grow-grain 3 \, v6 a% g( v% u3 ^: t) m5 N g
if (grain-here < max-grain-here)
2 q- P, D) a9 Y: W! ] [ set grain-here grain-here + num-grain-grown
8 a* c6 u& V* s if (grain-here > max-grain-here) ; k: r4 e% z0 o
[ set grain-here max-grain-here ]5 R1 O* G' k% ?; c
recolor-patch ]
$ `$ |7 i. e/ @8 D9 Y. k4 ?" @end V( q1 |8 ?1 ]# D; b
to harvest
+ n" ?: ~7 R& p- h ask turtles
* Y/ |+ _, P( x T7 @$ c, [' K: Q [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
5 Z. c# f9 [- t+ Z* Y% f/ c0 t ask turtles. f) v* D2 y' I" r6 J
[ set grain-here 0
$ v0 T6 Y: C) Q/ @5 H% E- Y. p; S recolor-patch ]0 V4 {6 o& I; D- F% `& b
# X; H" u$ l- \, u2 v
end
# u* ] b3 Y0 K* y7 a9 k; Z1 C4 N- k3 w3 g- k# A
to move-eat-age-die
1 l5 t5 U3 v2 L' Y- s fd 1
* S( G. U, L7 B2 g& l8 a set wealth (wealth - metabolism)
I! v; f2 s3 k set age (age + 1)
* D; d: s. x6 N8 o! g if (age >= life-expectancy)
A3 ~" k) p( `. b/ l2 Z: F6 D [ set-initial-turtle-vars-age ]% Z# X! b# l( C1 d9 H, q
if (wealth < 0)- x0 i3 s" {# x! s# ]4 v% ?% I
[ set-initial-turtle-vars-wealth ]4 s4 o4 ~, F/ m4 U f9 p5 g" }" E
: U T! U+ Y' ?
end
L! ~/ d+ V, V+ N7 l
3 q, B+ ?3 C3 K, O* w: r7 `
x! z; t) a9 `2 X' V* Uto setup-plots
0 y' o5 S! \" u2 ? A- J set-current-plot "Class Plot": s5 W, A; A+ _- Z* Q
set-plot-y-range 0 num-people
" u& z' p7 _" J+ W* V set-current-plot "Class Histogram"
9 Z6 N- | |2 a; A set-plot-y-range 0 num-people8 X; Z+ v( v% h1 s$ z) O: W0 Q
end: `& G+ F: p. K! }) U- ^
/ b1 N+ m2 r% D0 q; }. H: h. m
to update-plots6 B" }; U2 O+ k( @+ L" w3 X
update-class-plot3 A3 N' m2 X6 ~5 F
update-class-histogram2 [0 T* n4 g& y1 a
update-lorenz-and-gini-plots" a) p+ M( i8 T- ]
end
4 C7 ~' j8 S. l" C/ p
$ X8 T3 i; r' O' M" O0 Ito update-class-plot7 k2 A* q/ O' v& u6 S
set-current-plot "Class Plot") k+ B! j2 A9 w
set-current-plot-pen "low"7 `5 w/ F6 q% f- R% F4 l0 r5 x
plot count turtles with [color = red]
5 N/ T" A0 X- }& W* d set-current-plot-pen "mid"
! A" X5 W+ U7 s I' g$ w( _4 ~ plot count turtles with [color = yellow]
: J4 H& e+ _: A) a set-current-plot-pen "up"
# l' L: H- R6 s9 O o0 O: n/ B plot count turtles with [color = green]
- o8 W8 f1 _" hend
3 R- a: P* O; a/ e
. l1 w* k, f; b6 o9 K: ato update-class-histogram
) [, K' g) {7 }: g( k4 i+ ^5 } set-current-plot "Class Histogram"+ V# j( F; E; q" b
plot-pen-reset$ E) x v* X( a
set-plot-pen-color red
# ]) ^" X0 e& z% K: j4 c0 ` plot count turtles with [color = red]+ v9 ]" q" M: |& ^- Z
set-plot-pen-color yellow
' b3 G" N9 t6 V( ^, U plot count turtles with [color = yellow]
! v9 x3 V+ `& t0 u. k" R+ b set-plot-pen-color green
* ]9 B7 }/ g: T% W9 H plot count turtles with [color = green]
: ~2 H5 M1 R5 B3 `0 Fend1 O. ~: L, d8 ~+ Q8 H
to update-lorenz-and-gini-plots8 X6 R) Y) E+ `
set-current-plot "Lorenz Curve", X) J/ I; q7 w( \% h) m" M8 j. h
clear-plot
. `" ] C3 G' Q2 t! _$ u0 {$ O1 _' @ e% p; n
set-current-plot-pen "equal"
: X8 |! z K6 p' r/ _: _ U plot 0
3 k0 Y ?+ j' w8 p plot 100: @3 C2 ^' |4 h" t: _5 H Q q8 b# `
; y- A2 B x, U* n" r( J
set-current-plot-pen "lorenz"- \) ]8 |% L' w' I0 [
set-plot-pen-interval 100 / num-people
7 A5 j5 d% O9 \* T; y' E' Y( b plot 0' K: B+ A0 f2 T* _
: c% B' u7 D& i* b: k let sorted-wealths sort [wealth] of turtles1 r! W" a7 X& S" S5 i: w9 S
let total-wealth sum sorted-wealths) T$ ^* ^ _9 s7 e; g. x
let wealth-sum-so-far 0& W; p! H0 [8 ]! p9 E6 K
let index 0
7 Y* T1 u" Q' W3 x p let gini-index-reserve 0
3 M- F! R1 w7 ~# a, e7 S$ x0 X3 k3 @2 w+ I- M4 p
repeat num-people [
' k- u, T: L L3 }% w* i set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths): f, R/ B+ [- w& _$ D
plot (wealth-sum-so-far / total-wealth) * 100
. h* p5 ]5 \6 U set index (index + 1)
* J; y) z; f3 x7 { set gini-index-reserve
# O/ t* E$ y% l6 K$ C9 j gini-index-reserve +5 K+ |5 s( c: z6 c, ~ P/ ~
(index / num-people) -" e: `4 D' z8 g' H4 t$ k! R
(wealth-sum-so-far / total-wealth)
; E) [4 q2 L w7 C3 T' ?; } ]
# i6 X# t% w' l' d6 w2 U M3 w6 Z0 H1 J# n9 ]5 V
set-current-plot "Gini-Index v. Time"
0 S; O D8 x" o1 f7 R) f plot (gini-index-reserve / num-people) / area-of-equality-triangle8 R! i% t/ h- z7 ^ R5 n2 Z
end
3 K/ s# f! @. F& i7 O1 D# s( S5 sto-report area-of-equality-triangle
' C) b9 M x0 e report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! K9 h) C' d0 I( M! @7 l
end |