请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现" f: ?: y7 Q# z$ g- [! p8 k
globals0 C; S' q! s: [) c1 g3 N0 G9 J
[3 b) t+ v( n1 l4 E
max-grain + V0 r; }: u) C$ r
; x: I, I1 D u
]
% s" }1 R2 M! ]7 @1 F' w7 ~0 b& Z+ l7 d, l, C
patches-own
: g: R1 f. a/ H8 A" @[
# c# q% U, b8 O4 r; M9 `# s grain-here
2 k( c; Q! S$ U8 M C max-grain-here $ O& `1 l0 \# B3 j) B0 o1 K
]0 f# F- E5 i! `6 P1 z
S3 t; o$ X3 v* _0 k* l' @* f
turtles-own. S# Q0 B. J* N4 n) I
[
- T( Q* F3 T7 v! {5 u7 u9 x" J age 7 R% J" x2 M! A
wealth
9 b; Y T0 o$ b life-expectancy
% c7 y. X( c1 m/ ^( ? metabolism : ~) d5 d* l& K
vision! v% V A, y8 |* y9 \
inherited
8 n# b1 S; N8 O& l" _2 i]0 t9 u$ f! n" I# ^/ c% T
' E0 S+ T2 Z# s8 [& s# f3 Q3 [$ c
to setup# b' L: x4 A8 |3 d3 G
ca. r0 w( H5 h+ L& ?$ m% C
set max-grain 508 P( _; [) J9 B4 R1 T3 ]8 w
setup-patches
5 Y7 W; H; K8 V0 A1 |7 [ setup-turtles& ^# z9 J& t" U" K; [
setup-plots
+ U' k/ c7 O& n4 b: m0 q update-plots
& g7 h, x2 H1 d/ V% J# L- _' nend
8 c0 m& }/ P, ]+ zto setup-patches% F' l8 |$ Z- b8 q( t& C
ask patches
1 F4 k( g" ]+ a8 `( r9 ]4 ^& V [ set max-grain-here 0
& }$ r5 G/ i% F# n/ E if (random-float 100.0) <= percent-best-land
& G7 V! |7 s$ {# N: _' s [ set max-grain-here max-grain6 a+ e7 l& v& ^( X. E) ^3 ~
set grain-here max-grain-here ] ]
) e3 z* f: s' o5 B+ h" u0 R' R. h repeat 5
5 w3 l. S% H! w5 M [ ask patches with [max-grain-here != 0]: D. M$ W, T" a8 o6 r1 K- O+ d
[ set grain-here max-grain-here ]
5 y U) J0 p; k! g* G diffuse grain-here 0.5 ]
0 F' B4 m6 ~/ Y# |; W repeat 10) b- ~+ D' a7 ^& P9 g
[ diffuse grain-here 0.5]
- x" K% K$ H" d ask patches
: F3 Q, N7 h$ B; D( @" Y% H* m [ set grain-here floor grain-here
^ u) i0 S5 e set max-grain-here grain-here 1 L* ?/ X2 h1 N1 m6 g/ [
recolor-patch ]
" m; d9 p5 b9 [, S* Z: j& U/ h% Hend
0 a. O0 j" h. h Eto recolor-patch - s2 ^- j! s# } U' S! P/ a
set pcolor scale-color sky grain-here 0 max-grain! I1 L$ M7 \- r6 d3 |
end' D& P/ ]$ i3 ^
to setup-turtles
- R; v" \3 ~$ e) _! V set-default-shape turtles "person") g; }+ O2 o$ |0 ]
crt num-people& C8 Y9 b- U1 p2 y m$ P, E
[ move-to one-of patches 4 F# K: u. Y; L c
set size 1.5 % C s4 y( R) k
set-initial-turtle-vars-age
5 o/ u7 c, b/ ~' K! G set-initial-turtle-vars-wealth
/ U! k, V1 ?5 |/ q" U- ^7 y set age random life-expectancy ]6 t# a% q; r$ E- V( J: y
recolor-turtles
" \; G! q8 j6 A0 w! v1 {7 uend
7 s- g% N, s) y7 w' R% v9 m% X) Z( m) w. J; n0 i5 p
to set-initial-turtle-vars-age* j( m) u7 i1 }8 G( B
let max-wealth max [wealth] of turtles
/ K% {+ j, s- I/ C
" S3 a8 `) W: \6 ~9 U1 G; I ifelse (wealth <= max-wealth / 3)9 X9 b" L5 {2 H
[ set color red + Y& {, X8 h8 m c" d4 l
set age 0
1 f6 u3 U& ?! [0 X. t4 S+ J face one-of neighbors4
6 @4 f9 r5 t" s5 \6 N set life-expectancy life-expectancy-min +
) _& d! K1 o, Q4 C1 _ random life-expectancy-max
; \+ r# S+ l- @" O set metabolism random 1 + metabolism-low
2 u, J4 D6 j+ v3 F& [# a V set wealth metabolism + random 30 J2 N0 y7 v& C. V3 L! a
set vision 1 + random max-vision
! S0 |; I, x' R# q7 o* Y set wealth wealth + Wealth-inherited-low ]
+ o" n: C6 |! ]1 ^: x: n9 B9 [1 z" z) K [ ifelse (wealth <= (max-wealth * 2 / 3))' o& t% m! R9 r/ C& d8 T* m4 F
[ set color yellow 1 q) S5 X% r% ?4 B0 o5 _8 H$ Z
set age 0( _; }; T& F( ?) M6 P. k
face one-of neighbors4
4 m7 N/ {8 U+ N* _3 i set life-expectancy life-expectancy-min +( x2 f z: E8 S* A
random life-expectancy-max + 1! e, _6 E# L3 \6 B c% A4 f
set metabolism 1 + random metabolism-mid5 ]9 k5 j/ F, y
set wealth metabolism + random 30
! `9 [' k/ L( H& ?6 x/ h set vision 3 + random max-vision5 h9 A& O( F8 v2 w( W
set wealth wealth + Wealth-inherited-mid]
/ n9 C. G! {4 E* r4 c [ set color green ' w9 t* }. e- Z; m4 K
set age 0
2 Y$ ?7 K& Z5 O4 o face one-of neighbors4 2 U" J& t. Z+ {: r. I& C
set life-expectancy life-expectancy-min +
# T. W, h! x* W1 ^; z0 R u& O' p random life-expectancy-max + 2
# d" M6 T- n( Z set metabolism 2 + random metabolism-up' T; b9 x N* [4 G v5 j
set wealth metabolism + random 30
2 `4 T% Q/ h) c A set vision 3 + random max-vision) q9 X: b+ R" k5 E9 h
set wealth wealth + Wealth-inherited-up ] ]
3 \- A- X6 @' [- n6 B0 H
z8 S j1 l* wend- W7 Z0 @, u6 q! F
to set-initial-turtle-vars-wealth' Q5 t) _6 ]* F5 w1 `2 f
let max-wealth max [wealth] of turtles- ~& i1 `8 o; I' w# W1 j
set age 0
$ E8 G& I& _9 W' }1 n8 ]2 Z face one-of neighbors4 - Y0 D9 F y% e2 J/ k) m% |( n
set life-expectancy life-expectancy-min +9 U( b- L9 x9 Q. O. \) w- c
random life-expectancy-max
: Q- e( W/ W$ V1 l: O' A0 B4 ` set metabolism 1 + random metabolism-up
8 e Q; m' y; W/ I/ p set wealth metabolism + random 30
8 E# x) y9 M* l$ ?- _ set vision 1 + random max-vision
4 R; w) Z. s u iend
( d. T5 T" U, N# [to redistribution
4 H0 k( \; \2 ^1 i8 M6 x: d w7 [% vlet max-wealth max [wealth] of turtles2 c( e# y2 v: x f8 U/ d/ e$ D Q
let min-wealth min [wealth] of turtles
& F2 K! l6 {- a9 f% ?if (wealth <= max-wealth / 3)& a; s9 u: ^7 m/ h! H
[set wealth wealth + Low-income-protection ] y# L5 v9 q* g
end3 U; q1 x0 o. t w, P
, M0 p- a) W! o P" _% r- L( k4 v
to recolor-turtles
a: |3 C+ @: |8 @ let max-wealth max [wealth] of turtles
$ ^6 G+ u3 B, O7 R& E. T ask turtles: A, E$ ~0 n/ e$ l1 x2 F
[ ifelse (wealth <= max-wealth / 3)% L6 ~5 p( K- {7 ~
[ set color red ]: [+ H2 m2 n& ]$ Z
[ ifelse (wealth <= (max-wealth * 2 / 3)). X3 \* b: N! F( ^0 x. F. K6 Q
[ set color yellow ]2 l5 s% z' A: y: F, _# {6 K
[ set color green ] ] ]$ I# C# X* U* S+ \2 ?% t& K
ask turtles [ifelse show-wealth?8 \" d8 ?7 T7 I" o7 G
[ set label wealth ]$ G- P4 l% e9 N1 X+ V* q
[ set label "" ]]' E6 X& r6 \) y: U! z
end5 u ~( ?9 @, X) t, I$ ]4 M& N/ f% H
% p$ l; x! Z; q. Y) Pto go4 @6 f% p" d* z4 a. @$ m
ask turtles' n/ u0 m7 s" u. P
[ turn-towards-grain ] $ t, w( r: q) @1 p" e) y d
harvest8 _; c. L2 k& A
ask turtles
# A6 b) [ y+ l% K/ X [ move-eat-age-die ]- {- y: B$ I" }% i; G
recolor-turtles0 u5 f- I; Y1 g
if ticks mod grain-growth-interval = 09 S2 W# O9 r F2 G
[ ask patches [ grow-grain ] ], u$ g1 O$ O) m: M# D
. x& _ k' J( \0 d7 s$ }: r- k0 Q* g if ticks mod 11 = 0
* v: d4 D/ A+ \ [ask turtles
0 \- H Y/ n$ B0 Y3 i [ redistribution ]]* \$ }1 o: i2 v: k8 ]
if ticks mod 5 = 0) E0 \$ W$ J- r# }$ Q7 l) ? Q: u
[ask turtles
# N/ [7 P; p+ b/ P% f$ c [ visions ]]+ D" k. |3 S$ v; U4 A- [7 K* q
tick# _- L" g2 o. w6 K
update-plots
( v$ Z: \) S( [& {2 ~end" Q! m. y9 x8 [! Y A
to visions# T" z) U3 }0 d
set vision vision + 1
. L. p( r1 C4 E7 z* eend
$ n5 s8 U; Z1 \) K/ M2 v% f1 l1 y/ ^& {$ Y: t
$ @4 t' z4 r+ j6 f
+ X9 Q9 H; M) S0 c$ `/ Hto turn-towards-grain
7 s8 {7 V' `$ o9 d2 N9 F& k set heading 0# X0 v" \! x; { o4 i7 j
let best-direction 0( M' c" g8 D5 |! E) L) q
let best-amount grain-ahead* R! B) b( M! |7 M
set heading 904 j1 L2 A' x' J& ?& h
if (grain-ahead > best-amount)) G5 d' a+ y% O ]# q! }1 P, p
[ set best-direction 90
* o7 }; j) P2 p( _/ n set best-amount grain-ahead ]
: b* z+ |9 d% ]- | set heading 180
$ o4 S( e1 K' c# u3 N6 Z if (grain-ahead > best-amount)
, E+ G$ p! M' q) K [ set best-direction 180! d; o' G" y7 V: k; h) s; g6 `% b
set best-amount grain-ahead ]. @. N( v0 z r: l* Z; i1 P: P2 ^
set heading 270
/ a1 b- Y) S" f9 ]9 x0 o if (grain-ahead > best-amount)
- X" K5 y9 ]5 Z8 S" q0 }! H [ set best-direction 270
& z1 E1 v. Z. r! L set best-amount grain-ahead ]
4 s$ W$ g. B: i4 y set heading best-direction8 M" c8 M' @" f9 C/ I" m; L' F, N
end. y4 _; e( X4 _) d
% y* {0 ?+ N/ R! `
1 `# X" m. e) B0 _; ato-report grain-ahead , f. x' X) s3 v$ a0 u3 {
let total 0# l- t* X8 s1 `/ Y" i& Q4 @, }" I3 u
let how-far 1/ p# e8 d: M& L! l/ {
repeat vision
7 Y: u9 M/ G8 ^4 @1 v: I0 } [ set total total + [grain-here] of patch-ahead how-far2 y0 Z+ U1 U+ z4 ~
set how-far how-far + 1 ]
" I' \ \3 u/ u& V+ y2 \, _# p1 f) G+ |# ^ report total
% D& a7 T" C, Aend, v& i" _$ M6 Q& i" d
f& l* s* n9 n& I7 G
to grow-grain
* p* }' Z/ a9 p% G0 e- q- m/ P0 x: X if (grain-here < max-grain-here)
' c- x1 A( B1 ?: p) s; ?$ D2 d [ set grain-here grain-here + num-grain-grown- S" |& F# w' v6 Y
if (grain-here > max-grain-here)
; c! v/ Y5 n- _) |9 h2 k [ set grain-here max-grain-here ]" a2 S) y! S1 U/ H6 U, q
recolor-patch ], C6 x G k' b/ x+ E
end
& y4 I& `/ O: E( X5 dto harvest) S9 ~8 y2 I( B$ W* V1 U
ask turtles; b8 b9 u2 [ B& j$ `
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]5 }- p- @# b9 j
ask turtles/ z! m, @" `6 [7 t! b- e9 a7 a
[ set grain-here 0
; Y* g2 Q( E2 z( ~8 t) G k recolor-patch ]$ J9 n) I( V2 _# W0 P9 m
! _: Q' t& ?# g8 ` [8 zend
U* Q& N' g2 D9 Z
8 s. E2 ]/ j4 x9 s# N; ato move-eat-age-die 9 w0 g& R5 i$ b* T( d, ~) X
fd 1
5 v) ]! A% x# k7 o- h! L6 a set wealth (wealth - metabolism)9 v; q6 j8 T1 Q$ A P- Q; x# b; g
set age (age + 1)5 y& Y2 @; e( L7 i
if (age >= life-expectancy); R& m. _, m; ~ S
[ set-initial-turtle-vars-age ]$ x) s- S( ~. ]
if (wealth < 0)
1 s5 u/ L! L9 i& j+ T" Y [ set-initial-turtle-vars-wealth ] _' E3 n+ [" w5 _: e G
+ ~/ } S1 g( c. y2 Y6 {
end
X" q. k6 L* |) n3 l6 R1 v S$ v7 n3 j. Y* D
^; w3 V& U* e! t, d9 \
to setup-plots
" ]. U$ \. t2 z% D set-current-plot "Class Plot"
r5 V' o N+ T0 G/ B( H5 R2 i2 U set-plot-y-range 0 num-people
\0 `: m& N4 z9 Z! q' D set-current-plot "Class Histogram"
8 V! O9 e. f- Y/ z set-plot-y-range 0 num-people
$ @$ }" t8 ?- p! k" }' dend3 t7 q/ |- U3 e6 c2 K
4 K2 _! k, n7 [( x+ X
to update-plots
9 l2 S* F2 I- }, n0 H0 F7 k update-class-plot& r1 `! c# F" {5 q
update-class-histogram
+ N: [4 n- x- Y& K, r, f update-lorenz-and-gini-plots6 P! I+ }* A8 Y, [6 g& o2 W
end
2 i" I; {4 v( M' I5 ?. @) K/ x( [% Z9 B$ I" |
to update-class-plot R' N& D: e5 c0 t# H7 P3 Y
set-current-plot "Class Plot"
% v3 m9 _* o4 x" S( k( o set-current-plot-pen "low"! A6 _9 a/ ~8 X' C
plot count turtles with [color = red]' _& j s2 n& ]5 O& j( C. k
set-current-plot-pen "mid"
# ~! w' y( C* ]+ I, d2 a) o6 B plot count turtles with [color = yellow]/ d6 T7 s4 D$ g. V, V' Z% R
set-current-plot-pen "up"4 U; o4 n# e' M: k+ p6 z9 M9 C
plot count turtles with [color = green]
7 b; X6 V7 C( m3 `/ Send0 p1 Y. g1 {+ q) T' g* [8 G
" @, R) I/ g. Ito update-class-histogram
: ?3 K/ A0 Y9 r+ {) f$ t3 h set-current-plot "Class Histogram"8 Y1 t; O. h2 W4 F9 n4 r
plot-pen-reset! d9 B, t" O+ U" o
set-plot-pen-color red
# e ?; H, a1 q6 [ P plot count turtles with [color = red]
8 \8 @8 g" |6 _. W* n9 f- h9 A set-plot-pen-color yellow
6 n# O. J+ Z1 n! [" C plot count turtles with [color = yellow]
' V5 c% j; w. M2 N1 j$ w set-plot-pen-color green4 i: Z- E0 H: _2 q6 K4 k
plot count turtles with [color = green]
( Y4 u' [# Z2 t" Uend
# s3 X+ e4 ^+ u! T- tto update-lorenz-and-gini-plots" b9 K' A2 R) r- S* Y4 R* `& ^
set-current-plot "Lorenz Curve"
- i0 f* _' ~# S! q7 x% u6 x clear-plot
- t& O# M! ?( ~
6 }: W/ F: j2 j: x; e, ], z set-current-plot-pen "equal"3 }. I# \2 M6 M. @
plot 0
% r' q0 _" N6 [* { plot 100- B# Z a, x, c; o& |% ]
B" r! F7 n! P9 K9 w' f
set-current-plot-pen "lorenz"
+ Q R* `2 A, T$ M1 a set-plot-pen-interval 100 / num-people
9 N) `. I( l. X7 [* ~3 X plot 0/ }& X }, K7 h( i, t+ h3 L
1 a% Z' u9 d3 p; J; E s let sorted-wealths sort [wealth] of turtles# k" \/ @, ^: `7 Y% v
let total-wealth sum sorted-wealths
" `" P: p; @) I- S+ \6 b" O let wealth-sum-so-far 0! f4 e3 E3 m/ V. K+ |* j
let index 0- Z) {6 q, N1 Q- Y! A. u8 N
let gini-index-reserve 03 m7 H# d4 k+ R8 z S( N
" D( m( W6 O+ c* V$ c- i
repeat num-people [; d- H R+ W4 c7 A; O, n/ v
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths). }* N; Q5 p z8 {1 a1 a% A4 m
plot (wealth-sum-so-far / total-wealth) * 100/ n3 J" u: Q2 S7 {( \- v) l, E7 x/ ?+ c
set index (index + 1)
' z3 D) W1 d1 x" |$ I" _/ ` set gini-index-reserve# l; R4 v7 Z# p+ N) d! Q, l
gini-index-reserve +7 U- m3 x' t5 n: v! S
(index / num-people) -
( n+ m6 Q! X. d' D (wealth-sum-so-far / total-wealth)8 F ~1 e; f& O2 i( |$ r; z
] e" C* k$ P9 n- A& R7 h. P
Y/ p1 z0 n) ^& e9 F- _
set-current-plot "Gini-Index v. Time"
" l# b3 G) G3 [2 {) ^ plot (gini-index-reserve / num-people) / area-of-equality-triangle
9 Z! d9 ]* I% C9 `& d g uend) F8 [3 N! Y5 }9 d* c$ ^
to-report area-of-equality-triangle
! _* M* f; y. Q- X; v! k m report (num-people * (num-people - 1) / 2) / (num-people ^ 2). H( f0 u" Q4 B3 A
end |