请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
! o1 g) Y* S4 c+ aglobals; ~* p+ ]' a0 |, F6 g
[; e2 N) O/ x/ w
max-grain 1 b0 F% _9 P2 d& L! M! y0 Y; y
) N1 ]' n) L; X5 u3 y]2 u/ Q( ?/ {0 H
! L1 q6 r; R- |- l0 C H) b s; zpatches-own. H5 e" m9 y) w+ u. K+ g! ^7 D9 o
[
9 c4 G! I: {- i; {2 r grain-here
/ d- R& E# @2 s max-grain-here 5 _% W) @+ L. G; m" Y" U/ A% ?. p% A
]) K9 _/ O% J$ @4 ~# C9 E" @
$ u) T! v- }) N: h
turtles-own
1 G; g0 g/ F4 n[
1 s2 `, e$ c) I; y6 Z( z' d age
0 O! H4 p2 I) [" J, T wealth
, R& X; W3 Y6 } life-expectancy 3 {0 O5 d, O9 l! ^; _7 b/ T" I
metabolism
3 h9 g/ v/ M# @7 e2 c9 @% ?; D vision
+ r, \% |4 N$ c3 {% E inherited / ? X) t+ K( y! A
]
6 ^8 _; S% J' v$ w1 o h5 L
& s6 ~& p. j$ ^$ `6 Z5 d, P" H6 a; c0 n
to setup
! S0 Z6 U4 h9 ~- G4 I' P r8 w4 D2 z ca8 V, |: o; k" D1 D
set max-grain 50& S' W+ C( g9 n0 v& ^ Q, S; B
setup-patches; w2 j# C) X5 [ u x
setup-turtles
( G0 T4 t+ w8 i5 L* f1 B setup-plots/ P4 Q0 t! W5 m, ^5 g: G
update-plots# T8 B! y4 c7 U' Q1 D
end6 P4 K& B8 a4 ?. h9 z5 W
to setup-patches
1 V7 T3 n0 S# X$ j9 n" ^2 b ask patches+ ]7 P" C7 d3 [( L$ Q; a' T% W2 ~
[ set max-grain-here 0. g& e6 N7 H9 F, X3 t% ]8 X
if (random-float 100.0) <= percent-best-land
) i! y" w; Y) L1 p [ set max-grain-here max-grain8 C+ h/ E$ v8 u# Q
set grain-here max-grain-here ] ]
% q- d. J7 I, E4 K3 B4 Q; N repeat 5
' M0 \2 F8 W2 f; {1 Y& w) U [ ask patches with [max-grain-here != 0]' h3 s% w- q \6 Z0 {1 ]4 x# F
[ set grain-here max-grain-here ]
# Z' C( J& {- T; J7 f4 x diffuse grain-here 0.5 ]$ i3 M* K+ \( j0 l
repeat 10
* r. }3 m5 j& U& Q" y: c- r [ diffuse grain-here 0.5]
9 R! c6 a! m% A' p ask patches- N+ [- R+ x1 h; }3 {
[ set grain-here floor grain-here 3 E" F4 K6 {, s( o7 j/ \0 j
set max-grain-here grain-here , J$ Q& R9 L7 ]2 d/ c
recolor-patch ]1 v' r% `4 o0 @: @ F
end
' W' k. A! X: yto recolor-patch " i H3 ]- }- K( _
set pcolor scale-color sky grain-here 0 max-grain% l8 P- ^0 [0 l7 e7 o
end
( h) }, ] I6 r5 V! i' o# |to setup-turtles
& u3 ?( x+ k5 o- ]' | set-default-shape turtles "person"
2 G5 x1 `& N6 T8 p) c1 ]8 O7 U crt num-people
) M9 @6 d( S( X& v/ e5 l [ move-to one-of patches
: G$ _( W/ A9 @6 } set size 1.5 1 t" m, E# w q/ f/ |+ U
set-initial-turtle-vars-age
8 K* W. v U& e) l* ]" ]' _ set-initial-turtle-vars-wealth
, ?* G& `$ c8 g set age random life-expectancy ]
: Z/ x! W$ f: B2 t recolor-turtles
9 G8 I! }1 R2 T; t: k( Nend- l# d0 `* u' j( o' p7 `
9 M# B. i% R$ ^, X \% {7 U/ `to set-initial-turtle-vars-age5 }3 c$ Y0 J/ X+ v: ?1 M
let max-wealth max [wealth] of turtles
" v" j ~: q2 B9 ^0 a
' u, L7 {) t/ r ifelse (wealth <= max-wealth / 3)' i' p* p$ X7 l, ^
[ set color red
N6 d$ h! S, ~# T6 t9 e set age 05 G' U, }- A- A% L) f9 c
face one-of neighbors4 % [( V5 W' {5 I! I5 y
set life-expectancy life-expectancy-min +
9 s2 W$ u/ r$ K& g& t random life-expectancy-max
, E$ {$ Q6 t2 V( ?5 M# ?- p set metabolism random 1 + metabolism-low2 n0 E, n0 `/ \8 \+ |* T' `
set wealth metabolism + random 301 D, n# i' I; W* C4 [+ K7 |
set vision 1 + random max-vision
( w# b! h! }# W0 G( l9 c+ f set wealth wealth + Wealth-inherited-low ]
p+ K) P' b7 I9 Z [ ifelse (wealth <= (max-wealth * 2 / 3)), W) D8 a" l' c) x
[ set color yellow
& q# Z4 W# a, A/ d set age 0% \/ M1 R" o+ O$ O& k, o
face one-of neighbors4 - w( A1 G! X& Z9 n/ u$ a; A" a( k* X
set life-expectancy life-expectancy-min +
" }4 @! E1 r: L4 n4 o& |/ F random life-expectancy-max + 1
- ^; L; `: K) @" B' Z+ E7 p w set metabolism 1 + random metabolism-mid
, X8 y; Z$ [& {# `/ N% X: T set wealth metabolism + random 30
2 y2 F. P+ B6 Q) T# t; l set vision 3 + random max-vision
* I) _/ a5 h% D& b1 a8 y set wealth wealth + Wealth-inherited-mid]3 m7 b. l) g, g" J. h
[ set color green : z, V Z0 [1 @$ x! _
set age 09 Z0 d) ?) b! ?) q8 b
face one-of neighbors4
6 |$ R* y$ f l$ Q5 h4 n set life-expectancy life-expectancy-min +0 k3 F# Z* X5 d8 [& _! ^& [
random life-expectancy-max + 2+ }- |! C( i( Z+ o8 h& ~- ~
set metabolism 2 + random metabolism-up7 t( R! m4 i6 [: x2 e
set wealth metabolism + random 305 J2 u# x+ j# C1 e
set vision 3 + random max-vision
: \: l5 J. c) U set wealth wealth + Wealth-inherited-up ] ] 7 \* _* w u% ?
9 Z' r6 d. v3 v1 I4 P- f& c' c% N) [
end
' q' @1 v: H0 l0 xto set-initial-turtle-vars-wealth
& l1 h0 Y% m5 j7 } let max-wealth max [wealth] of turtles
9 |2 P7 e" F. R, e5 n set age 02 ^* x" Y* e0 T0 N5 b4 P+ m
face one-of neighbors4
) s+ E0 C+ e) M1 q4 N* R8 ] set life-expectancy life-expectancy-min +
# i& i7 Y3 o- g9 F% u) d' c+ x | random life-expectancy-max R5 o% t- x- Y5 ^
set metabolism 1 + random metabolism-up1 O) Q6 z- a$ x6 ?, W
set wealth metabolism + random 30
5 J' W' e+ y a set vision 1 + random max-vision
. d- l/ t" K& q* a& Y' Qend1 ]; P- m% R" N. K+ q# U
to redistribution
9 h/ g$ E; c/ v! h1 |let max-wealth max [wealth] of turtles
$ w- }, R. @0 V! ?let min-wealth min [wealth] of turtles% Q& F3 Q2 _/ ]- e
if (wealth <= max-wealth / 3)
! w8 V6 f7 U; d9 H" ~$ { [set wealth wealth + Low-income-protection ]4 x _# a I {1 i; p) k
end
3 A. q4 p+ A. [- P
) ?( }+ l Q( Sto recolor-turtles& I) I' L% y/ _( f) @
let max-wealth max [wealth] of turtles
' _ O; o$ a% n8 c1 i I. ~ ask turtles
1 Y. M3 Q1 l* G/ M5 c [ ifelse (wealth <= max-wealth / 3)
+ _6 Z$ x4 q, d5 | [ set color red ]+ s* \# _# R8 d# S
[ ifelse (wealth <= (max-wealth * 2 / 3))7 O3 n# n8 g+ [3 K$ [6 @( Q
[ set color yellow ]8 {& z1 J! x- c3 C: ?; k
[ set color green ] ] ]
+ _4 i% u' J+ J! z: a ask turtles [ifelse show-wealth?
& {& n, P0 ~6 k, A [ set label wealth ]+ u2 ~6 O2 R. \
[ set label "" ]]5 f$ B% I4 V! m$ p1 c
end1 F4 h2 W+ ^ C/ H
: g9 y6 ~! N* ~7 ^to go% T. V+ P" p# Y8 N
ask turtles
, Z( r8 `1 M* D; s$ u [ turn-towards-grain ] - x3 }" v3 ` T0 f. b
harvest
' ], _, ^- ^' s# Q# E ask turtles8 n) X8 R% Z) b A: \1 k8 F b
[ move-eat-age-die ]
w) J3 r& v* ~) V3 K recolor-turtles
* F1 r) r" N3 Z) X! f* c; h* h if ticks mod grain-growth-interval = 0- ]2 t1 \9 E. W) G8 U
[ ask patches [ grow-grain ] ]. J" }5 F, K/ _- |5 f+ Q1 q% S" }6 A5 b
7 b2 O v3 O9 @ if ticks mod 11 = 0
/ ?" \7 ]5 I9 u [ask turtles
W" o) V* |$ r: v [ redistribution ]]
3 S2 F; h( D& p- H p if ticks mod 5 = 0% n0 O) K' j: t3 m/ V
[ask turtles- [7 D% E' g8 c& G+ D# Z
[ visions ]]" A- k) A* W2 O4 n6 o
tick
% p1 i6 \( N- x update-plots# C- E0 r" F; H; S
end* \. Q6 g1 |0 R. i/ |3 E
to visions5 p4 m3 u' {3 _8 Y- k
set vision vision + 1 5 {) r6 t7 h. Z7 Y6 @2 A- [+ H' H
end
! P. K- d) o' ]* K, S
3 \/ L8 p; b7 k& i- L l/ x4 p1 c' H8 o! D: D# m9 g. y9 m
' |0 X/ k, [) m& y- ~9 Tto turn-towards-grain
7 m" K2 W- ]; {5 T. I set heading 0
' d: L4 A0 e/ { let best-direction 0. q8 b, p5 J7 m: v
let best-amount grain-ahead
0 u; p' B* N# }0 o% P set heading 90
, e2 v$ b0 \% n5 P# e0 H if (grain-ahead > best-amount)
" v4 O- S& E1 W [ set best-direction 90
8 b& N5 F- |# i; }$ d- m9 }, F set best-amount grain-ahead ]3 X/ `7 A4 T- q1 c7 {3 S/ y6 q. g/ _2 D
set heading 1802 J4 S0 e/ T1 T; t
if (grain-ahead > best-amount)
a; H# H% z3 I; p# `: ?4 U4 i [ set best-direction 180+ [) P- _( i% U' e, U, d* Y
set best-amount grain-ahead ]
f% V. Q( i8 g7 r4 \ g set heading 270
2 t5 V$ l1 k. E3 ~3 t if (grain-ahead > best-amount)5 o! V; F$ t( j" N
[ set best-direction 2705 }0 G) v- B1 M: l6 c V
set best-amount grain-ahead ]" o V% m+ ]5 N# E1 X: H
set heading best-direction
1 w- Q1 ]$ _" v: G$ X5 |$ |end+ n% c8 R. P. p) s
3 D" t' M* o' W3 A
. n. o# R/ A0 z! k. Qto-report grain-ahead
, n @- R. j+ r& U) Z2 f; C7 t9 B let total 0
4 X# R& f. o8 ?! R D6 q let how-far 1
; q2 i. i2 L4 P! ] repeat vision
; m1 E( ^1 u" e2 U [ set total total + [grain-here] of patch-ahead how-far
6 J; \) ~% w$ M8 ? set how-far how-far + 1 ]
. w/ ], x. Q$ L0 H6 ?& h1 V report total% y4 Q" Y/ ^, X+ {
end
+ t5 O- G, j0 o# f5 Q; {: W, O: Y1 D0 H9 a2 g
to grow-grain 3 _- V- E3 W6 N N
if (grain-here < max-grain-here)
9 N+ N9 d7 i: E3 e0 Y! O" R [ set grain-here grain-here + num-grain-grown
! t8 p/ W+ b' q" }& A# }" { if (grain-here > max-grain-here)
( ^2 T% ^$ M1 {% a# M$ F4 T [ set grain-here max-grain-here ]/ s' G+ X8 m6 z
recolor-patch ]" k& B# \* m. c/ ~/ T9 x
end$ N K. F! d0 a9 o! p+ `
to harvest
6 O- b/ }1 @! y% U* U4 [& G ask turtles
) i1 F4 u7 _0 s6 m0 O% x- X8 e [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]2 \% U" A1 I; q/ M# J8 `! F- W
ask turtles6 t5 B4 G; y0 E6 I" i
[ set grain-here 0# E( y ?! G4 u- Y, U
recolor-patch ]$ V& P4 [: M/ T; }
; L% N) k3 ^2 S2 d- [5 A$ \/ g& C
end
- `# d0 s( D1 t" s
9 d4 f x& k& ~to move-eat-age-die + I, y. i! F( j
fd 1
; o$ J& @- [9 o1 m6 P9 A0 P set wealth (wealth - metabolism)
" q" `, @$ n. g. W/ ^6 A9 U$ ~ set age (age + 1), j& W0 b* G7 ~. X+ r
if (age >= life-expectancy)# s5 \8 W! c' w) S# @+ P- o: ^, e
[ set-initial-turtle-vars-age ]
# O. F/ b# H7 l. X1 n if (wealth < 0)- k0 b# V) @# I" f4 H0 G- p; L
[ set-initial-turtle-vars-wealth ]" u% T+ _% N" f% T1 g) u7 l7 A0 i
! Z9 a0 `7 ? J2 Y4 a0 O
end! l! g# d$ O, u
- M: g4 i' Q) s
" J V+ T% P C0 Y5 I5 k" G( ~to setup-plots6 o/ X6 ]8 L1 o% o3 Y% b
set-current-plot "Class Plot"
& L a+ [" a m1 n' i! N9 z set-plot-y-range 0 num-people
7 Q8 v2 _* K; J5 x; w) D- ^# C9 n set-current-plot "Class Histogram"# F6 T" g- W/ n3 ] Z
set-plot-y-range 0 num-people
, }( I3 s: j& O# y; Z' D7 c$ Hend9 z& w& {/ O$ M4 M! ~5 O' D
" j- |& D7 V" ~5 i
to update-plots
7 N8 ?9 |+ x0 i2 U# H) f6 ~ update-class-plot% y. N$ W3 a. ?- J' j( j/ N
update-class-histogram- e% o w7 f1 M, c. o7 e
update-lorenz-and-gini-plots/ M- _9 f/ K! _+ L
end
6 m* n# n) E# J- H& c3 f( c! B9 p' U, ? A( x8 j
to update-class-plot# b) N0 r( \% q: W
set-current-plot "Class Plot"' b v" [$ V# w9 h
set-current-plot-pen "low"2 h8 J* x S$ y5 M% a
plot count turtles with [color = red]3 G0 D, q5 K; P4 N" R! O, u% ~
set-current-plot-pen "mid"
* P2 P0 Z( ]+ N7 |' l+ f' i8 f plot count turtles with [color = yellow]. \- h9 Z3 F& S4 l% q/ t" G% [& z/ z
set-current-plot-pen "up"
7 @. t+ L- W+ B: v. L' ^ plot count turtles with [color = green]- m3 o7 v. V0 Y
end
. N. r6 `( a4 @0 [ g: y: L0 I
) P1 T5 K( T8 V: b' d( ato update-class-histogram
$ M" j) m! t' x/ c& L k set-current-plot "Class Histogram"
' N. N3 Z) ~- r5 a2 @1 u6 M5 i plot-pen-reset q5 a& y3 W1 T4 M
set-plot-pen-color red6 K% V2 r& ~2 E2 l0 t4 ?
plot count turtles with [color = red]
5 I- h5 O$ e# o0 e4 ? set-plot-pen-color yellow
% k( q/ B/ m- t* r2 O% r plot count turtles with [color = yellow]
8 w5 U/ b0 g# \* {( j* z set-plot-pen-color green( W2 D1 B S0 I% a* R
plot count turtles with [color = green]
4 A! l6 N% q, P# W1 z* Hend
9 \! {! W& S9 @to update-lorenz-and-gini-plots
' O# v1 s% r& Y9 t2 b set-current-plot "Lorenz Curve"
9 q& a: `0 T8 \) f n) i9 ^0 t clear-plot
! t: h% y: }" i& u. W
8 i6 A1 K. C2 G9 b! S6 g set-current-plot-pen "equal"2 Y+ G+ t; Q# y0 `" e% P
plot 08 f- \8 M$ k k0 Z2 P- F$ t( H) ]
plot 100
( j6 W( B& q# d0 H
- f3 t1 j! L0 W+ r( f set-current-plot-pen "lorenz"& y; c5 S7 ]: q6 i) X) ]3 K0 Z
set-plot-pen-interval 100 / num-people: c& {; f$ a/ E- X' y& n% j/ }9 d
plot 0& o- L/ r7 m4 B2 v L
7 O. Q% c8 g3 N
let sorted-wealths sort [wealth] of turtles4 \/ z9 `- ?+ q: p
let total-wealth sum sorted-wealths0 u! l [0 e" M- _, T/ Y1 }
let wealth-sum-so-far 0
6 W5 h! K- t: g& N$ F; p let index 0( N. s( S' H R3 _+ `/ d
let gini-index-reserve 0+ F$ t _' F/ n3 T3 a5 x8 n2 z
1 j8 P$ Q/ c' c' L( w% F repeat num-people [) D. i8 X0 U* v3 j+ _/ B: }
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
9 P" s2 s: s ^3 X# s plot (wealth-sum-so-far / total-wealth) * 100
& z; M% O- J/ c$ _7 m7 `# f set index (index + 1)
( O% @7 L- D4 C set gini-index-reserve
6 t3 Z' G# Z6 y% o: p gini-index-reserve +# b2 D# n6 l# @
(index / num-people) -
! }' D; P! w! Q9 ~ (wealth-sum-so-far / total-wealth)% y \5 v7 g" M/ u1 J8 k
]& N- ~/ l3 V+ X4 Y
: S' q) q5 t; Q2 o" s4 Z% w set-current-plot "Gini-Index v. Time"
, t7 A v: ^- V4 b- I- A plot (gini-index-reserve / num-people) / area-of-equality-triangle% }: Y; t7 p) b5 u; n2 K2 t1 ]2 b) c4 ]
end+ `' i( x2 a. L6 C
to-report area-of-equality-triangle# s' V8 M( U+ f) w3 z9 M) D
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
+ Q* h5 m0 H/ o2 G' Vend |