请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
9 U" l! k% o" {2 S, pglobals6 q. T. G2 I; b. \
[! d0 n3 U! _2 U( [. \
max-grain
. y, l/ ?1 l- F% ~# N" {: G) l R, s8 s4 p, G
] C( ~$ {4 s8 ]( h- B7 s) f, P# P0 ~
8 L& Y2 n5 [& k. M' [# `7 j( p
patches-own8 S' U& v6 M7 E/ v
[
, x. y$ M! N( u grain-here
. f. M7 n; z v# d( W max-grain-here
! d- X( @, y% g5 u! P) P]9 i3 _* Z% G u+ X
! v" Q1 ]$ S; [- Z/ C
turtles-own6 ]' |9 e; R& Q! j- w/ d
[
, a! X7 a& R. T: c/ p" ~ age
& Y8 l4 w: e/ Q: m, l1 ^ wealth
, D* D6 L% l5 [7 U5 P( F life-expectancy 4 V+ {: D7 @4 Z F$ {4 X
metabolism % k, t& n; O( G, r5 P# {% t7 r
vision# M0 \% f- R& Q5 S2 S
inherited + [& z6 b1 |! A) U! x h4 y- d
]
V& D: O% W7 c- @) Q( ~
0 _/ f1 Y7 H" W, B9 U' a0 c/ S5 G- ~5 T/ d
to setup' \! K1 X" B& c2 m
ca
+ L! _( c! m7 E8 t9 T8 u0 b set max-grain 50 x4 A9 I9 a" ]; [8 B1 x/ J
setup-patches9 Q* |; u4 g( s6 \5 [
setup-turtles T2 ~3 @# h1 S( R" A
setup-plots
) I1 u/ i/ N) o" F5 H* K update-plots3 R2 c2 [ {: o/ J; O; n' D! W
end- J- a+ ?2 D: F: a
to setup-patches. }( }( u5 e. A; K/ b' @' W
ask patches- \9 B7 p4 @3 h! n% ^8 m( Q
[ set max-grain-here 04 S" o! k& y G
if (random-float 100.0) <= percent-best-land6 C6 R( {# }5 G
[ set max-grain-here max-grain
, x: ^+ M" b* A7 O& _9 P set grain-here max-grain-here ] ]4 t1 o2 o0 u) V7 v* {$ Z
repeat 5
& y t! x- C: H: i9 T3 V [ ask patches with [max-grain-here != 0]* y! x1 \" Q0 G; s* n' j& V3 M
[ set grain-here max-grain-here ]% g8 |6 D" W* m7 s% C" a. y) e
diffuse grain-here 0.5 ]
# J8 [0 h/ U ~ repeat 100 |( A1 f w$ m% Q$ n7 l
[ diffuse grain-here 0.5]
4 x% p$ `: n# t. H7 W2 N* v ask patches
- ]0 w* Q8 @# H+ x7 x [ set grain-here floor grain-here : `$ T& f" _: I) D s+ C! e" J
set max-grain-here grain-here , `) e" |# p, ?0 l
recolor-patch ], W( A0 D# [- N2 {6 V4 W
end
+ a3 s% ]0 N2 V; xto recolor-patch
1 t8 k' j% y/ {( P6 C; n set pcolor scale-color sky grain-here 0 max-grain
0 P( B. g/ m( b8 J1 J! N- B6 aend
& k* R' c' H o0 Z; uto setup-turtles
) `7 A1 S0 `3 U) g set-default-shape turtles "person"
8 @4 z7 F1 [& L+ V9 u crt num-people: P- m( L' B! H. p
[ move-to one-of patches / I+ o9 j4 w: W. o }
set size 1.5
5 ?9 [( \0 M# |4 d; b. H0 l set-initial-turtle-vars-age7 h" J6 {1 K# E* B' r* B
set-initial-turtle-vars-wealth
2 ?+ x% ?- H) w# s set age random life-expectancy ]2 v) t. J* O8 s# _ D
recolor-turtles, @0 P; J; K; c& _
end
# ]8 q6 I" g7 X! |) W: }- q7 d' ~8 [$ o3 ?/ E& ~# s8 V/ ^
to set-initial-turtle-vars-age5 K- ?" f+ L9 ~5 D$ V$ ?3 m
let max-wealth max [wealth] of turtles) e2 Z3 w1 N: d1 d7 K
7 m1 M. Z+ u& b8 m
ifelse (wealth <= max-wealth / 3)) M. m# O7 J0 u# |8 h; U1 s! r
[ set color red
4 | J3 H" {4 T' f+ j; p6 P _. _6 F set age 0' y y2 Z. x- e1 W
face one-of neighbors4
- K4 i% Z, n; J2 f4 {; C set life-expectancy life-expectancy-min +$ a7 _! {" \, A& H
random life-expectancy-max
0 S% ~2 P$ U& o+ L- V& u set metabolism random 1 + metabolism-low1 k. N( Z0 {* a$ ^& t X' E. |
set wealth metabolism + random 30
/ A# Y6 H) f0 T: ?/ d set vision 1 + random max-vision
, q# D, W9 q7 n: E. C set wealth wealth + Wealth-inherited-low ]2 N8 e8 n8 r- u1 N, L! Q
[ ifelse (wealth <= (max-wealth * 2 / 3))( N, g( P6 g! i- j0 M( ]% i) s
[ set color yellow
9 x3 G) ^9 J. L9 R$ Q: q' l2 U set age 0
0 @4 q! H% b7 d8 \! l7 P face one-of neighbors4
8 J2 D+ A5 `, U( p6 }, _ set life-expectancy life-expectancy-min +6 a0 V5 X, m( B* ?2 q& o
random life-expectancy-max + 1, h9 l- h! r4 Y6 m
set metabolism 1 + random metabolism-mid
( o) U; }4 e- H set wealth metabolism + random 30
- Q" N7 u% m" G set vision 3 + random max-vision
/ r! u" b! `. C4 y set wealth wealth + Wealth-inherited-mid]2 u) K8 `, |% [* p
[ set color green
2 E: @ u+ `( d y& T& z set age 0; }7 M. W5 \ ^
face one-of neighbors4
+ n+ p- ]* [1 {+ x3 c/ R set life-expectancy life-expectancy-min +5 \) v1 C2 u; s5 _7 x5 g$ y
random life-expectancy-max + 2
3 I4 d d8 ]/ t+ ]) Z- {, |1 h( D set metabolism 2 + random metabolism-up9 V5 K' |/ T; a& G/ e+ S: C
set wealth metabolism + random 30
1 }) A1 G, e# O4 E% [1 F, t W, ~ set vision 3 + random max-vision! O6 G0 M, z/ u7 ?! z
set wealth wealth + Wealth-inherited-up ] ]
" D1 U: i8 c1 B6 Z ! P- Z7 i0 E; l: \4 c. G1 P, R* _
end
5 H7 C6 D' W4 s% P9 Xto set-initial-turtle-vars-wealth
* Q* N& ^9 Y' c, k4 p2 [# i$ x let max-wealth max [wealth] of turtles
/ }+ |: N- \- a0 o2 M$ H set age 0
9 C7 [+ c$ |- F face one-of neighbors4
2 G' q( G2 A% U8 s set life-expectancy life-expectancy-min +
' z$ }/ B; a! u! I( B random life-expectancy-max 8 c( M; z; i1 z; g5 t8 v
set metabolism 1 + random metabolism-up
- x& l6 ~. \* R6 p9 W( E* d! n set wealth metabolism + random 30
4 d1 I" O' y& X! A set vision 1 + random max-vision
& f5 e' b( m8 p/ \& a( X6 k W2 Bend
$ U% m9 `/ @5 O8 l9 H% Tto redistribution
2 i( z9 W2 _2 E1 {9 C* m, r# Hlet max-wealth max [wealth] of turtles
4 P9 `1 R$ ]* W* g. ?4 t- S" \let min-wealth min [wealth] of turtles+ r+ f. d# ]7 a6 ?
if (wealth <= max-wealth / 3)4 z j N' j% \: q" q+ K* P' _/ b
[set wealth wealth + Low-income-protection ]7 k _- q/ ?! ^$ l
end( G, ~- `6 d( t3 g" K4 N6 X6 w
( M( w! u3 U( C) i( w' `to recolor-turtles( c: k- l6 w1 I" S4 {9 c! |! ^
let max-wealth max [wealth] of turtles
. c# y+ D: S2 h% G+ ]1 S ask turtles
/ `2 M( \, o3 P/ O [ ifelse (wealth <= max-wealth / 3), }, I, _& d+ g* @! W7 p& y
[ set color red ]' v& z7 H( `4 }% i1 O+ \$ y" G
[ ifelse (wealth <= (max-wealth * 2 / 3))
! Z! E1 }( B0 P1 `7 m3 g [ set color yellow ]
. C- F: c8 Y5 X+ }) B [ set color green ] ] ]0 x. z) g5 q: ~8 Y
ask turtles [ifelse show-wealth? z& o6 V. A9 {: j& |' C$ {6 ^
[ set label wealth ]
4 X8 @5 _; Q+ x# R8 v [ set label "" ]]' V" C: _1 C$ N8 V
end
9 U( n8 ]# h/ l1 m
2 z% O5 Z3 M. Q( e0 Yto go0 q8 |, U2 g3 E, w/ }( r; d) H9 n8 t
ask turtles& ]9 F4 z% o& \# `5 q8 O
[ turn-towards-grain ] $ _; W6 W5 M9 F5 R, V
harvest
2 T/ J/ O" n7 ]/ | ask turtles
$ C2 z. e) q3 m' B# ^ [ move-eat-age-die ]
) J# X1 N& u5 {7 Q- o* _' x recolor-turtles
" g* R$ |& r5 v2 P/ |) I d if ticks mod grain-growth-interval = 0
' O7 H4 T; P; v c& W* S, Y [ ask patches [ grow-grain ] ]0 Z ` D# \$ Z! N7 H& ?9 ]5 m
$ H2 c- H+ R. A& X" ]
if ticks mod 11 = 0
4 C9 V1 m0 k, Y N, c F g2 M/ Z6 B- d [ask turtles
) i" e* A( K4 V; i( c [ redistribution ]]
/ ^4 i$ s3 X, ` if ticks mod 5 = 0
0 i8 _0 }6 B7 t& a- f) o [ask turtles
# s5 N8 v0 E q [ visions ]]- l9 ~1 I6 d* C* `% x
tick
' z) F x2 N4 U) B update-plots
' \! y- ]6 |" ^6 p6 ~2 nend; {; t7 N/ l8 M, M; |4 D* [6 Q
to visions
. N" ?1 D! O% j# T1 l set vision vision + 1 ) }7 G* W, n0 m- n
end3 w K6 \& Y0 K
0 O* M, I( }8 A0 [8 d
! x5 o4 C4 ]9 l- V1 F# S# {$ H( A# s; P4 ?/ h% I4 W- W
to turn-towards-grain
1 o" _7 ~4 Y' o' } set heading 0$ P0 P; a/ T4 k+ Y# W% i
let best-direction 0
" c$ C3 ^# h8 n6 M' G let best-amount grain-ahead
# v. V, v2 U2 S( j w: Q set heading 90& _, Y# L; h) E, v! l
if (grain-ahead > best-amount)1 X! N7 B- q4 U) M3 U8 ?) c
[ set best-direction 90. D t2 l- u7 i' Y
set best-amount grain-ahead ] u* k$ s0 x6 s5 B0 b
set heading 180' U$ O H2 C( H" c2 m0 Z
if (grain-ahead > best-amount)
6 `" _+ c/ d0 k! H( i3 |9 P& U6 L8 t [ set best-direction 180; ?- H, h( k, t2 ]8 x( Q2 G: @
set best-amount grain-ahead ]
( E" `$ t+ R! u9 ?6 o5 H/ k3 _ set heading 270
; h% t* n5 {( w if (grain-ahead > best-amount)
8 W! D2 |% \# i1 o: [$ A! Z [ set best-direction 270+ {1 f4 u4 ?, y! C2 Y0 U6 Z
set best-amount grain-ahead ]; Q/ |; K) q, z. H4 |, i
set heading best-direction* W/ O: V( m# ?8 x L
end% k7 A" [7 l5 j% _
- E) D1 {5 C4 `: U& C- q) X
+ f" ]# _# c' Y' sto-report grain-ahead 9 y2 A0 M6 L! c5 K& W$ \
let total 0) m- H! J; s* c! \9 e% b- v
let how-far 1. o1 B2 \1 E0 s, X. c R( X& g6 u
repeat vision
M; r h7 g# N; R7 U/ h [ set total total + [grain-here] of patch-ahead how-far3 j3 t7 Z! C4 o I! l
set how-far how-far + 1 ]7 [/ L6 I H+ N, S" I$ G# D+ i
report total
) {3 n3 \9 l8 s1 @4 Wend
& L/ P. @( f+ k, l3 m# R0 @, @8 E" G! b1 w, ?
to grow-grain
. n6 y8 `. f* k* c7 P if (grain-here < max-grain-here)! v( `; b$ T0 E; I1 L( ]
[ set grain-here grain-here + num-grain-grown, ? L) i: n9 Q+ {+ W) U
if (grain-here > max-grain-here) 7 [5 `+ }; D& W u( v* Q
[ set grain-here max-grain-here ]
5 _- U T0 b: L+ F. G# W1 N recolor-patch ]
* q+ u/ P. A$ e2 jend
, ^2 j. I7 {3 n) l4 ~to harvest
9 N: F0 s9 E9 o' u; s& E ask turtles( K" ~$ |! G4 N0 j0 ~ u
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
2 _# P* e( d$ E2 R2 n+ Q' E# { ask turtles* o9 K7 l# f' t/ j" w1 Q; s
[ set grain-here 0" M! j5 A" A o+ F9 Z( X. o; i
recolor-patch ]
' X+ E4 J+ x0 a5 T1 t) G( N- \& K
( l' E7 K2 l0 ~end
, L8 R, @8 p6 A) | V+ W0 w) P$ y; q, d6 v1 i1 G$ L
to move-eat-age-die
4 K; Y) b e' b! r- \6 g fd 1" o1 G& m# J9 c3 {3 D
set wealth (wealth - metabolism)
! |: i1 n; j/ u5 |- Y# }% n/ G set age (age + 1)5 e& V; F+ T4 J, _- H' G# v
if (age >= life-expectancy)
3 T0 ]! L/ ~. R0 W0 y [ set-initial-turtle-vars-age ] I: r) J* Z4 H) A, d$ ?
if (wealth < 0)% H, D6 r, h' Q# z* p. z, z, Q, r
[ set-initial-turtle-vars-wealth ]7 `8 Q6 ?9 B0 B% G. d. W6 Z
1 D0 ], r% _1 F& N% w4 @: f2 ^
end+ [3 I& A& w( R# U. `
7 J$ V$ V: w8 Y6 Z0 q0 R- _
; N: y a! Q6 S- [to setup-plots
* o; |% f3 H4 V4 V' L0 N set-current-plot "Class Plot"3 _3 [0 O/ V; [ C3 M) n
set-plot-y-range 0 num-people+ I& d6 r9 i. K4 Q0 G
set-current-plot "Class Histogram"6 u1 P; y+ B, T
set-plot-y-range 0 num-people
2 |2 {& m; y& y! Y5 ~, j" Dend
/ q# Y! G: A+ \7 r4 _
# z: y: G* @+ E7 S4 X& _/ bto update-plots
" }! @2 C6 u, Y9 ?3 M! u4 } update-class-plot
; p0 }' x/ V5 D update-class-histogram
1 d6 f/ x0 w( t: ? X update-lorenz-and-gini-plots
2 P$ K$ p, A s j! t% cend
- t* e( h' B+ s0 B+ ~- V
4 I( s8 o' P( @3 ^ m) j* qto update-class-plot
2 m a8 M$ Z4 P/ P5 C4 @ set-current-plot "Class Plot", R" _4 [& t# t' ^$ Z
set-current-plot-pen "low"
6 t) X+ t# t$ \/ i! ?# H: \ plot count turtles with [color = red]
3 F, v8 T+ e$ `7 z6 q9 _ set-current-plot-pen "mid"
) |6 E: t, ?2 o0 t plot count turtles with [color = yellow]
2 t( `: l: V/ n! x set-current-plot-pen "up"
) U/ u7 C h4 l0 Y0 b$ F) `) X plot count turtles with [color = green]
+ k3 G2 u+ ~3 W7 l* u2 Tend- } z7 V" q8 a0 V' J* j% P
0 Z2 G0 t& Q2 U+ p& Q% B) Eto update-class-histogram! t4 R3 Q( I6 A
set-current-plot "Class Histogram"' E% @& ?6 p$ P; z* s
plot-pen-reset
. r% p. m& F* |. p# G set-plot-pen-color red
5 P, |2 j* ?0 a* m7 L plot count turtles with [color = red]) @1 Z$ L& g& n
set-plot-pen-color yellow
/ w; ~4 @; g; @7 Q; f9 ~7 m; w K8 F/ A plot count turtles with [color = yellow]
* B- k8 N9 h5 f; u$ a: g* G8 r1 l K set-plot-pen-color green/ Z( ?& [' S, o/ \0 m0 V
plot count turtles with [color = green]
( C$ J3 a8 y2 g6 i$ i0 s! Tend p) ]8 ^# Z9 |# o( ^
to update-lorenz-and-gini-plots" d$ X9 N! ^9 @: |2 x( L, F
set-current-plot "Lorenz Curve"' k% W: Y# d3 s" u: P
clear-plot
1 p5 t& e3 n$ x
* S# n- d# ~2 t; F! y# h6 ?& G5 ] set-current-plot-pen "equal"* n$ W K& R: s) [
plot 0- R3 B( i' p4 o, S2 L$ O. h
plot 100
6 W, n$ E2 S4 x8 e# R% f( f$ A" E/ K+ n, ?1 [8 c
set-current-plot-pen "lorenz"0 y! t5 u5 y4 m+ N+ R+ j1 T, Z4 H$ N
set-plot-pen-interval 100 / num-people
8 l, _* U$ X4 \$ [& t# S( h plot 0 o+ s; O/ x9 U1 \0 y
; y Y8 C q/ I: Z5 i( e let sorted-wealths sort [wealth] of turtles3 e$ c* b5 C0 m- S/ l
let total-wealth sum sorted-wealths) c3 d" q" J. P; R4 ]# Q" C
let wealth-sum-so-far 0- y2 J) o- l- A- x
let index 0
0 ^9 V ?- o2 D7 t+ h Q let gini-index-reserve 07 O9 R0 U% F; R. ]
# b+ E+ S- Q! P3 F% f
repeat num-people [* Y. `, x) z- L# i$ ~& Z
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
8 }, D+ M1 D8 y( r plot (wealth-sum-so-far / total-wealth) * 100) H3 A& @" w7 e! r7 c6 L
set index (index + 1)
5 y+ `0 W# c; F/ ^ set gini-index-reserve1 @2 A( o8 T3 v+ M; \
gini-index-reserve +
, E& T5 k1 K4 O (index / num-people) -' q4 g% {1 a+ k
(wealth-sum-so-far / total-wealth)/ C; u# _" T( d2 N$ |
]
8 Y: Z/ l& n+ H2 m- C, S: C& r1 K4 n( A. b
set-current-plot "Gini-Index v. Time"
- n e1 u9 t- y) M( Z plot (gini-index-reserve / num-people) / area-of-equality-triangle; h+ x$ j8 p5 E- ^' F* ]6 F# u% q
end' e$ Y9 p& ?* _8 m
to-report area-of-equality-triangle
" t& D& H# m8 D y. g report (num-people * (num-people - 1) / 2) / (num-people ^ 2)" G( c% L. N; t/ Q
end |