请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现' @. H: G$ P7 }! n# B/ {
globals
) y1 V# L/ \2 e+ v: y[- A7 V9 W* C) V
max-grain 1 Z' z' S% j2 V8 R7 K- g
8 k( u4 @+ X( N. q3 Z! C
]
* f {$ x0 j5 O# G& v1 M6 M# L8 u+ I+ m
patches-own
$ Y3 N m2 u, S" y* r q8 z2 p0 H+ B[5 P1 Q9 u' @( N# @0 E
grain-here
1 E# f" P/ o+ h# {+ W4 @ max-grain-here
6 M/ U+ _5 c( h* T5 ?]
- s% u% _7 V4 N7 k: m' Y4 c3 V4 P6 @( V5 i; ]: B
turtles-own- }7 T0 l1 S% B. R; w* C% T
[
, Y) T9 n+ s) T( M: |9 d age
1 Y$ x# d' C" A- X- D/ U# |1 G) m$ V wealth
" A7 B" F6 Q" @0 v4 K& x9 [ life-expectancy ' E# P3 J. Z k P4 v6 _
metabolism
/ Q+ t- |* w) X) z. C vision
5 a8 ?. b* e6 s7 B2 z7 J( P inherited
4 R6 [; P' I2 }. K! Q# T7 j$ E]
: y& v( o9 h2 @0 [3 s
+ `* \. ?* S' e, a$ K8 `6 C- H; p- g- O# }' F1 I
to setup* \% O6 ]8 X [
ca
& i; Q# e+ v- ^& \/ Z- y set max-grain 50
4 B. E/ Z' h: A9 c$ ^ setup-patches
3 H% G7 S( J {! ^/ A: W+ o9 ? setup-turtles2 o) L1 ]$ G8 H4 A0 g x- q
setup-plots
0 U* i V" w. A& f update-plots& u- b! J& s2 q! z8 t- A6 O3 S
end' |5 Y/ g0 \% u
to setup-patches+ J$ Z6 | }9 L
ask patches
" h# p4 }- H3 ^/ w ]' x# q [ set max-grain-here 0
1 | u, Y0 j8 r- z if (random-float 100.0) <= percent-best-land# o8 _, V/ E; l* F
[ set max-grain-here max-grain
3 ~* c& ?' z4 I set grain-here max-grain-here ] ]
# g/ W/ g) b# P" @ repeat 5
; P$ A7 j% I8 q3 |4 K9 L Y [ ask patches with [max-grain-here != 0]
' o7 W2 l# N; R% f/ @ [ set grain-here max-grain-here ]: J$ q/ X8 d. H5 \+ K
diffuse grain-here 0.5 ]
2 I( {% ~% C; [" v repeat 100 y* d2 G0 ?( \0 c
[ diffuse grain-here 0.5]
- q/ {/ x$ B0 J- t9 w ask patches
, N9 E& r* D8 {% ]: @% u2 K0 R& {8 A [ set grain-here floor grain-here
4 y% g) h& P: d2 h( x set max-grain-here grain-here
- V/ v$ e! z/ W5 I recolor-patch ]7 H7 U, k# U. t; J6 z% d8 s3 i9 Y
end
. V. z m# a& F5 s5 }to recolor-patch " \4 N! P4 I& H6 [, f2 ^
set pcolor scale-color sky grain-here 0 max-grain8 Q# X# y/ [1 Q% w) d3 x
end9 R9 C, b/ k, h+ H- j
to setup-turtles5 U- i+ S! I% z( j- i- x; s+ A
set-default-shape turtles "person"& P/ l4 w7 C2 \) w+ i: W8 F
crt num-people
' e: I7 x- S* \9 w' m [ move-to one-of patches ) w9 J& j0 t2 H5 O9 Q2 G2 v v
set size 1.5 7 v4 S6 M. j# A' K& m
set-initial-turtle-vars-age; ^/ \3 V5 G5 v
set-initial-turtle-vars-wealth# Q4 @% Y, {5 O! a) K
set age random life-expectancy ]$ a$ _. @/ O l1 N3 T# E
recolor-turtles3 u' b4 {/ o7 j$ l0 l
end( k) |! ^& h3 n9 Q/ P4 a g- T
0 J& Q/ p) g9 I0 k: Q
to set-initial-turtle-vars-age
" A+ w) b" D4 ` q! \7 v7 e' v3 X8 c let max-wealth max [wealth] of turtles( w: j0 }+ s' J% X
# K/ L5 @. a6 u$ _* T1 L. {
ifelse (wealth <= max-wealth / 3)" W* p( [) w" w$ H4 n' Z
[ set color red 3 K; T0 |, c7 E7 E, g) J& y
set age 0
" }7 q: t2 {. K face one-of neighbors4 # g5 c% @2 ]' E. b8 h' Q) V
set life-expectancy life-expectancy-min +) ]) a3 F: j' M) {/ {8 Z1 o a! ^* i
random life-expectancy-max 7 I8 I* N2 a5 g4 c( I' V9 j# i
set metabolism random 1 + metabolism-low
; R5 H4 H6 }3 w! \8 Y$ C- m7 I set wealth metabolism + random 30" t1 U) a; {: w* V
set vision 1 + random max-vision
+ V. e# x& u- T set wealth wealth + Wealth-inherited-low ]: U) Q# a8 C) ?0 G2 L$ Z
[ ifelse (wealth <= (max-wealth * 2 / 3))4 q* m7 ?- @+ ?+ ~3 D# w
[ set color yellow * ]+ |2 b) K* J9 B* M) m$ Y0 ?2 F
set age 0 m" d* a$ _# e- S0 {! n! l" _) y
face one-of neighbors4 3 s* D) }6 t8 n9 ]$ W# I7 E; o
set life-expectancy life-expectancy-min +1 G) Y" K" N6 ?+ c
random life-expectancy-max + 1
) A" W6 c! h: l& x4 g+ C: S set metabolism 1 + random metabolism-mid
) v# T) b% f8 `5 L! T0 o a7 J6 d set wealth metabolism + random 30
v' \0 K* W$ i. y5 ^: n0 E! k( \ set vision 3 + random max-vision
& }. D. v5 @6 j* ]. P3 k8 d2 w set wealth wealth + Wealth-inherited-mid]" p8 j& S, A& Y6 w* ^6 [7 q
[ set color green 0 s2 B5 n6 _. f9 |% K, r, X6 Z
set age 0
8 `) b' [! j% E5 L face one-of neighbors4 ! Q: c) }& S' b$ ~7 C4 I6 Y
set life-expectancy life-expectancy-min +6 ^5 ^1 Y& @; ~# ?* e; D
random life-expectancy-max + 2
: I% t, r' Q. `2 m set metabolism 2 + random metabolism-up p& B* R: E: M7 W
set wealth metabolism + random 30
% N/ X0 A3 }% ] set vision 3 + random max-vision* k- L: b. d$ S3 o
set wealth wealth + Wealth-inherited-up ] ] 5 n8 D9 m/ ?* L8 G
% {/ E* e4 ^" O4 Uend
, _# a$ M" g' t$ c% ^; P% U1 T" |to set-initial-turtle-vars-wealth
9 t8 U$ H. a* m/ S, V let max-wealth max [wealth] of turtles. E& O" A1 |/ F% ]1 Z
set age 0
2 x& P1 l1 O: W face one-of neighbors4
7 t# q# O+ r: j% j7 B+ { set life-expectancy life-expectancy-min +9 f9 \: x7 h* X' u! [; }
random life-expectancy-max
8 g# N* N! Q% W9 B( S set metabolism 1 + random metabolism-up
! n* A$ o; d6 h5 j$ Y5 R1 y5 i set wealth metabolism + random 30
2 F" j" U8 B1 G5 { set vision 1 + random max-vision 7 S1 m8 o* P% \; `* K
end
- H! Q# R4 R+ ^% ]! P+ uto redistribution
8 o1 c' n3 G: s8 k2 }8 _5 H' klet max-wealth max [wealth] of turtles
4 q) k! Y/ l) W6 p [0 O" Jlet min-wealth min [wealth] of turtles9 X" }4 d5 O8 `% A; N
if (wealth <= max-wealth / 3)
u! P! \: f% b6 U' A1 s; _& } [set wealth wealth + Low-income-protection ]3 C& [" D% Q" b
end
# n' v( F6 q4 K: J1 M9 b ! k$ o" P) Z" C) J' T% l
to recolor-turtles% {. A- v6 ?& I
let max-wealth max [wealth] of turtles
0 w( ~: L8 K% e2 w ask turtles
. ~8 O/ N7 o V' N. t- Y. P) B! Z [ ifelse (wealth <= max-wealth / 3)
: ^4 W9 J) a: } [ set color red ]
2 f& Q3 C, q' d7 K( I2 S [ ifelse (wealth <= (max-wealth * 2 / 3))
. m% j1 _/ F* ~, p3 @! \; V& ]' k [ set color yellow ]; o: u" T/ M5 n5 e
[ set color green ] ] ]
% R* h: G, }& `7 A1 I' o; [6 D ask turtles [ifelse show-wealth?% b! N) `) x; Z
[ set label wealth ]
( N5 m! m2 x; v! c! w( q [ set label "" ]]
% d/ b; a" X- l5 C0 ?* q" _end
. k* X+ j+ c& Q; ?) H
( c ^& x: T/ m8 ?/ x. h1 yto go
: P' w; _0 ^. ]9 e8 Z ask turtles- j* Y' R( y, E3 M
[ turn-towards-grain ]
) Y! y7 y5 [- A' I, t$ O harvest( I, H4 j8 {4 t0 [5 [4 K% k1 q
ask turtles
& K3 R# G- F% ^+ t- \7 ]$ K: _ [ move-eat-age-die ]" W `3 N3 t: ~0 C& \2 z
recolor-turtles; }6 t! G$ W& R, D& C
if ticks mod grain-growth-interval = 00 B- W* E r( D9 G" L% W
[ ask patches [ grow-grain ] ]4 L1 O6 T# }# D7 B" L6 l
7 m6 l- @3 `: o1 k' a2 V if ticks mod 11 = 0" \: j$ N) P& F4 c
[ask turtles- x) x$ f7 i' Q: Q
[ redistribution ]]
. E; q( f1 Q f5 Z5 x if ticks mod 5 = 03 S6 W2 }* f8 [% y$ a8 E& j, y
[ask turtles/ I" z1 V. o" x' J. C1 S
[ visions ]]# B/ G3 k# b$ N$ D* e, O
tick1 P9 o0 A- t& P5 P7 A
update-plots q, \% {+ l; z, M, s- t& b
end. n: R% C" n7 S9 R, l5 Y: A& v* s9 y
to visions/ F. e3 [/ _1 T% _2 `
set vision vision + 1
3 R& D7 w1 O5 y0 uend, B3 F# G6 A+ m* _5 M
5 j& Z- J( m2 q
- T+ c3 M. c% z! S* R% u- C; O7 h4 H
) _( M4 @" X3 dto turn-towards-grain
0 Z, ^: }4 z/ [- k7 y: r set heading 0
' A- z4 b# k6 }0 ]4 Q; e% M' d2 F let best-direction 0
. l2 X/ q0 \) `8 u let best-amount grain-ahead
" _& ~/ V( a5 v3 _: z0 C) y z0 U set heading 90
) A0 H& ^+ o/ Z9 R if (grain-ahead > best-amount)2 Z) m" _# a7 N+ }
[ set best-direction 90
/ Q- T! p) g2 I- z$ | set best-amount grain-ahead ]1 L* U4 x# h4 |2 P, t' K0 u! \
set heading 1803 W( p; |6 [- x0 y8 E" Z
if (grain-ahead > best-amount)- `; u8 i& r1 x, p& q
[ set best-direction 180
5 E: d# e* D! ]# p4 k; E( r set best-amount grain-ahead ]
4 ?" c$ g# W" Q1 f/ Y5 N set heading 270
( v8 Q) Z3 p; a if (grain-ahead > best-amount)
. q8 ^) q% Y) @: {% @: x9 z/ U [ set best-direction 270) t: ]# m# t9 B
set best-amount grain-ahead ]
* ~( D" U, Y. @! K8 E2 q set heading best-direction
( c F6 _2 V, L9 I5 aend- u1 s# s' M2 _( W" H1 [% h; r2 A
6 @% V M( t% m% Q
^- t+ @' U& ? Hto-report grain-ahead
7 Y) m& P7 o9 D5 r, T2 ?6 M let total 0- W' u' K3 L! n7 \1 s, [
let how-far 1& ~% Z' a" j+ s$ C9 V b: m( O
repeat vision4 O+ I) q1 h' [% b7 {1 \( P4 K K
[ set total total + [grain-here] of patch-ahead how-far6 I+ u" d" F, G3 U& M) Z8 E
set how-far how-far + 1 ]: \2 I# u/ n: C& V0 ^% k/ p8 r
report total
9 \3 v, B! _7 r8 X4 Z* g" m; m4 U& Tend
& ?: I C$ N5 H8 ^- g
' {' _ `- _) j1 q5 mto grow-grain
! P8 f3 H4 k: ^5 P6 R8 N if (grain-here < max-grain-here)3 ]6 Q9 h4 n. @
[ set grain-here grain-here + num-grain-grown6 h/ J, X# n2 _
if (grain-here > max-grain-here) 9 [; K+ S; j' k
[ set grain-here max-grain-here ]2 }6 V2 \+ X4 h' z- b! @
recolor-patch ]3 P N9 n5 `0 D& @- {/ h' F" C
end
% f7 \8 J, F( Y; M/ ito harvest l! b" k, H; K- {0 g; T8 r+ V6 P
ask turtles, H: A# @8 f$ o; x
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]/ J7 O. f1 [# K
ask turtles0 \7 w. W4 T/ x- b) Z
[ set grain-here 0
2 E; D; C5 V" @. x5 B recolor-patch ]
/ O: E% x9 a4 a
1 r- T% }+ p/ w$ o( l. dend7 T+ j. Z4 H7 m
' a% }/ L# P7 A# P3 o
to move-eat-age-die 0 i: N- M9 g! h, ?6 X
fd 1# i- L# i; U8 C. [
set wealth (wealth - metabolism)6 ]$ J, Z: g k1 C9 J, O
set age (age + 1)
- V( p5 }- D6 v, s: u3 C% c" G3 Y" Z if (age >= life-expectancy)
/ C, ~' Q' R8 x( Q7 a) l l [ set-initial-turtle-vars-age ]
( ^: H8 @; D9 M8 A if (wealth < 0)1 Y; z. i/ {. o4 w
[ set-initial-turtle-vars-wealth ]% B5 J+ I c' Z( N4 n
+ f' c" @5 V. b6 U( ?- d- l3 mend
* A7 ~5 R' V; k) P; N
* ?$ T6 H' O P$ X5 ?/ b {. V8 K9 B/ R; d6 m: w
to setup-plots
5 G2 b' @, |9 r$ B- c m set-current-plot "Class Plot"' Q5 g7 F* `# I+ F" N
set-plot-y-range 0 num-people+ _: P G; `9 Y' X$ h
set-current-plot "Class Histogram"+ n2 o3 C: _- U
set-plot-y-range 0 num-people
- F& c4 z0 z. _. d/ r9 B, xend
) t0 C7 X) ~) z- u A4 F3 ~0 _
f0 Z. Z( P& U: p$ @/ R/ gto update-plots* F# M% F4 \0 O; O- s4 R
update-class-plot
0 W3 X" F% U) E8 l" D0 i3 z update-class-histogram
( Y5 f0 c8 P- P+ w. R update-lorenz-and-gini-plots
0 A# y: c7 [- ]2 j, o1 A) oend+ ]; D, `+ |- q
0 f9 @- S8 `- k" \0 Y- l9 v7 Fto update-class-plot; C0 b+ m5 A3 X/ d+ x
set-current-plot "Class Plot"
9 [ g f1 v& |$ ]4 |$ V set-current-plot-pen "low"
7 j% ?. {8 o1 m( ^4 S plot count turtles with [color = red]
N# J. A- U7 A" ~8 W- [$ X set-current-plot-pen "mid"
: n, |* o4 t, }$ u- S7 J+ G7 e% J plot count turtles with [color = yellow]3 c2 R) p8 e. q4 h
set-current-plot-pen "up"7 a+ f8 z' j4 r" G$ ~
plot count turtles with [color = green]) t* B' t# A g8 I/ F
end
# o3 v1 B7 c; h. z' [5 J2 v6 t; t3 e q, G! H/ @( q$ U
to update-class-histogram
/ G; M: _& Y0 v) O& j P set-current-plot "Class Histogram"7 a$ w; {, o0 P! R/ d( k
plot-pen-reset$ C7 c5 d' {+ O
set-plot-pen-color red
, ~* O- i1 K, y( y+ Y/ I8 v& P plot count turtles with [color = red]
7 w( ]1 C1 f4 @9 l set-plot-pen-color yellow1 e: k( ]8 c2 Y
plot count turtles with [color = yellow]' k% q! q( c, r3 b
set-plot-pen-color green
" L9 e. W0 t0 L4 c% Y, Z' x plot count turtles with [color = green]9 ?/ T) ~; m( {" \
end
. O1 G. N0 M8 S; ?. ito update-lorenz-and-gini-plots& l4 }3 p q3 T8 W- ?, J
set-current-plot "Lorenz Curve"
% I' U2 B- E+ Q7 d. }. y clear-plot# c$ C( i1 W4 k
3 P o/ K# P$ j+ p+ q
set-current-plot-pen "equal"
* B! w p, ^3 M' A plot 08 @5 q; q5 I+ |8 _, L; I# M+ F) o
plot 100
+ N1 M; d; }6 P2 j, E
( O5 t9 ~9 L& C- c7 l8 A/ v! k4 X set-current-plot-pen "lorenz"* H" P- x3 C% B2 g& \
set-plot-pen-interval 100 / num-people
2 \3 d( {% b0 q0 c* n plot 0! o4 E3 P/ }( n# Y r; _) l
. i) f2 p$ W. x. Q
let sorted-wealths sort [wealth] of turtles# T' E1 g! [; N; E' F# {* ^# n
let total-wealth sum sorted-wealths
% D+ {* c- z, A9 ? let wealth-sum-so-far 0
$ j6 I) U) r3 i% L( W$ C7 Q let index 0
& e$ @" N: p' P5 x2 f let gini-index-reserve 0
' H8 I4 a$ x. c* F* J- w0 m. K
" d* s5 R, E' m7 X repeat num-people [ L& U0 R" F! T/ l5 i. u
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)' ~3 K3 l. ~0 x9 `# q2 b" k
plot (wealth-sum-so-far / total-wealth) * 1001 L& t, T8 P2 j# X8 U4 M8 j
set index (index + 1)
& S- m1 O2 ?9 a& @- Q( E) S$ @+ g set gini-index-reserve
4 D2 x8 a* P1 `4 n8 f. {" Q/ c gini-index-reserve +
5 f9 @# R+ g1 }7 _) C! S (index / num-people) -
1 N$ H) |8 N& @+ @ (wealth-sum-so-far / total-wealth)2 H' v4 i) O# p% B/ w2 I6 ?
]& K, [) ^$ f5 M1 \( f
8 y* T. E# ?2 A
set-current-plot "Gini-Index v. Time"
$ T9 x& f; F. l plot (gini-index-reserve / num-people) / area-of-equality-triangle9 e9 I) l$ s% g# _5 y& T
end
( z4 |& m* H& q! j4 T" Ato-report area-of-equality-triangle
' Y5 ^ E2 u. e. P" [5 a; p' ]$ y report (num-people * (num-people - 1) / 2) / (num-people ^ 2)& j- T) k' J. H
end |