请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
8 k% Y. ]* N( ]; Aglobals, c+ h2 H, s8 O' _5 N9 s
[7 ?1 `. @" Z% d/ o
max-grain ! g& P( k: W; B/ M0 s
$ n5 f: w" r; k' W! E' M]: L$ A- e) K- u+ ?# x* u9 R
+ d1 C# p7 ?8 J/ H( v4 e1 C
patches-own
3 {7 Z5 g7 D* c* k$ U7 y, B[5 S. N0 Q3 n: h, v" q- O
grain-here 6 e/ W/ L1 c0 c9 ]+ }1 t- z
max-grain-here T' d, `! P/ ?: o8 `1 P; g
]4 a" u3 i9 ~% q2 @ J4 g7 w
e4 v1 i# H* x7 ?0 aturtles-own
. x8 |. l) l, D+ V. U[, e3 k- a, ]. {6 P
age
2 B+ w8 H( F1 ~5 \ wealth ; F% j/ j+ y. W4 ~
life-expectancy ' a( ^' b0 T( F: {$ g2 P; W
metabolism % V% H6 z7 w$ `& ?' s4 U& ^
vision. u+ W: h* s8 t6 H2 Q
inherited
) Z1 @1 \0 B# w* m4 b' v% z( h]
) o+ `' k4 T+ g
/ W0 Y5 z1 k, k# _) {; e5 u1 d" G
8 y7 N5 m N6 }to setup1 L3 X9 x* c1 D
ca
5 a. L U% z, x y/ |9 `4 c* T set max-grain 507 E- H7 W2 R T1 h. D, k' W9 L9 @2 r0 N
setup-patches
: v( q( ]$ Z5 Q setup-turtles
! k, P) G' E% {8 t1 C* U setup-plots+ k4 {4 b/ K/ T( |% E8 j& V
update-plots
/ x( K# {: a" T# p/ W0 Jend
* E+ U4 s( p$ L6 mto setup-patches1 \! f* p- S0 T+ ]8 ?4 F
ask patches
( D. C4 h; C' E: `( R: k- O [ set max-grain-here 0
5 F& ~4 r7 c5 L$ B0 i if (random-float 100.0) <= percent-best-land
3 c. Y- ?: s! X9 { [ set max-grain-here max-grain
( @/ x* z8 a$ h set grain-here max-grain-here ] ]
- Q, V Q: ]+ y/ v repeat 5
- z* A R- a$ a9 F7 x7 u [ ask patches with [max-grain-here != 0]
1 A6 T3 f% d$ e& ~* ~ [ set grain-here max-grain-here ]
" C6 T! Q; i% I) I3 U5 W diffuse grain-here 0.5 ]9 X$ M: I; ~5 N
repeat 106 }0 X; z Q6 u0 F# l" h
[ diffuse grain-here 0.5] 3 [& d1 D+ D/ E
ask patches! v, M& v( s9 _4 |
[ set grain-here floor grain-here 5 ~2 e8 Y' W2 o7 [
set max-grain-here grain-here : Y& \: L8 M: M' r% D& v( O$ Q. _
recolor-patch ]' S! a2 g7 V7 V" g2 m
end
$ l2 U- q/ r# H- T/ Z4 M$ h1 ]to recolor-patch 4 I8 M5 @; I! ?5 [% s) m3 e
set pcolor scale-color sky grain-here 0 max-grain" l) T# r0 d0 Q4 d3 T9 F5 m! p
end
# o$ W) Y8 ~; ]+ ato setup-turtles
8 C" e$ @$ \+ w5 a% w set-default-shape turtles "person"
. s7 S9 q2 D/ N0 q9 g; | crt num-people# Y/ @+ u8 }8 J6 j* Q4 F
[ move-to one-of patches ! U8 s1 k d+ C( E) F
set size 1.5
8 `$ p7 ~4 ?5 r/ H0 F% j set-initial-turtle-vars-age; P3 t4 ], L% u. B. v
set-initial-turtle-vars-wealth$ g, F2 C" y2 y3 {$ P1 P% M1 X
set age random life-expectancy ]
2 ^6 d' r! Z; y! m recolor-turtles \! G1 s" U4 K' Q2 z' _
end2 I1 i5 R) }8 u3 m" _
0 [% \5 v8 r% M9 q8 X
to set-initial-turtle-vars-age
! S% z6 |" G6 G6 x4 J let max-wealth max [wealth] of turtles1 u$ k, \% B; { n% I' H6 I1 p, S, M
8 s3 z$ T' M6 G( U
ifelse (wealth <= max-wealth / 3)5 u) {$ T3 }; w4 q& i) t
[ set color red 0 v2 |) `9 R: H) n g
set age 0
( C. [$ z7 c1 Q2 U face one-of neighbors4 $ G6 j# j z% E4 _3 U4 I$ U
set life-expectancy life-expectancy-min +3 s) d& d/ j! A) _) g, T2 Y
random life-expectancy-max 4 f1 S( t! S; ]2 x0 k2 S
set metabolism random 1 + metabolism-low
! R1 |, Z# a/ u7 U set wealth metabolism + random 30$ s( }$ ] E/ X: p
set vision 1 + random max-vision
3 U" k) D3 l. Z0 X" \ set wealth wealth + Wealth-inherited-low ]
9 y/ Q, X6 x, [+ Q$ ] [ ifelse (wealth <= (max-wealth * 2 / 3))
# U+ c7 [- x4 g7 z; o [ set color yellow 4 M" C& Z* [' }0 s. ?$ E
set age 0% J* P+ n$ ?5 M+ J' X- U) H" @
face one-of neighbors4
: `4 j( f/ V3 L+ H2 G6 x2 n5 f6 p& ~ set life-expectancy life-expectancy-min +
1 r, q/ e. h5 ]/ x8 `4 K/ p; b$ A. k0 f random life-expectancy-max + 1
3 E" S. o/ g2 X) C6 K! h1 W2 C set metabolism 1 + random metabolism-mid
' ^. b+ p* O- U2 W" Y set wealth metabolism + random 301 I, y2 W0 r9 e$ U( K
set vision 3 + random max-vision
4 K* v3 E6 K/ e- `5 |0 T- @ set wealth wealth + Wealth-inherited-mid]3 { j; G+ D D# d& ]
[ set color green $ ?6 t' G. I0 m
set age 05 H n* Y, o7 ` y4 ~
face one-of neighbors4 7 @7 u% z. i- ~2 |; f
set life-expectancy life-expectancy-min ++ N t( c, R# l5 t
random life-expectancy-max + 2
& ]0 n5 G# ~9 n) Z set metabolism 2 + random metabolism-up; l- d H/ v8 k/ f2 u' e
set wealth metabolism + random 30
0 [+ R- G" ^3 F' D& U7 V set vision 3 + random max-vision2 _, j4 L* T) W- F! I' V- F6 Y9 @1 H6 Y& L
set wealth wealth + Wealth-inherited-up ] ] : ^ I6 b5 y$ p
7 E' W. B- i& h% B6 |, R* [end
( g" y, I) v5 Pto set-initial-turtle-vars-wealth
; Q' Y5 P3 X6 A* x( T& v2 i let max-wealth max [wealth] of turtles
4 f {. m+ q- r5 t% G# s( o set age 08 y) g1 M1 y# Z3 J. `" S6 L2 H
face one-of neighbors4
9 f+ k$ o( |& O) L+ V set life-expectancy life-expectancy-min +
- J2 t$ x: e i, T. H random life-expectancy-max
! ?9 u1 g7 S3 x& r c4 u4 ~ b set metabolism 1 + random metabolism-up
3 e. L( c4 u8 d- j set wealth metabolism + random 30
! h/ b1 k6 ]4 b! h set vision 1 + random max-vision
/ k9 E5 X7 E! N3 y: iend
) U$ x! G B. a% ~% N8 Xto redistribution
- S- P( y" [4 T% G3 y E2 glet max-wealth max [wealth] of turtles
- q% g9 L0 v8 J+ K9 ~; Q( m5 olet min-wealth min [wealth] of turtles
' {+ F3 c1 p7 y6 Q5 {' |% p# Eif (wealth <= max-wealth / 3)
' V$ K# m; B7 g; j [set wealth wealth + Low-income-protection ]) I: F/ `$ [/ H' z
end
a$ A) Y) }0 d/ h% i 2 A+ h5 @) ~1 e& a a
to recolor-turtles( ]0 f: x3 @8 a* W* N
let max-wealth max [wealth] of turtles
+ T' |; a+ S, A, s a1 Z ask turtles' d" o3 e) V, A5 z- F3 p
[ ifelse (wealth <= max-wealth / 3)
2 o* a, a1 s2 j, p( S/ V; r" ] [ set color red ]9 ?( G) {, D1 H0 E/ y
[ ifelse (wealth <= (max-wealth * 2 / 3))5 Y) J: m+ u% u: f7 Q9 ]8 c6 e' b
[ set color yellow ]
, M$ `! @; S' L/ b( J! a# c6 `( O( m6 `$ j [ set color green ] ] ]
+ @( Z" r* @% D2 M ask turtles [ifelse show-wealth?
; Z4 q4 U2 W8 V [ set label wealth ]3 r# w- e5 b o+ F/ {& R- {" w1 L
[ set label "" ]]+ j9 u" ?# ^- i2 d
end
" K* x' h/ Q5 M6 w# F& v* r1 M& c9 ^0 X4 z+ J. V
to go/ Q5 ~2 ~% U) p8 A& h+ J, N: x
ask turtles6 |; Q# l Z! r9 C
[ turn-towards-grain ]
& k c v' j, T8 @3 @4 ?6 E) F1 V H, _ harvest. }* n$ O" e- W6 u
ask turtles8 L+ K, q# D7 `
[ move-eat-age-die ]0 F, _ s8 r+ j
recolor-turtles0 `9 s- ?! ~; N8 _7 E' v) P
if ticks mod grain-growth-interval = 01 S3 k; u( g* u' R% \- W
[ ask patches [ grow-grain ] ]
, @+ T: j& |' k8 M/ \8 m 3 r2 y3 `# P# x2 W$ c; }
if ticks mod 11 = 04 Q t4 \' c4 R% B
[ask turtles
2 E8 c. n) {$ e' o0 a! | [ redistribution ]]9 N" }+ o8 K G
if ticks mod 5 = 0) X1 T. d7 q; |- B' m; S
[ask turtles
- `; l0 O. m# x" p; Y9 C [ visions ]]& R% I% p4 V* C3 X
tick3 E, w% }6 S( O
update-plots
$ |2 F4 D9 ]. I9 ^end" V* |8 h! m* L f6 A5 U& y! J
to visions
3 r& q, `; Z( v set vision vision + 1
6 Q0 h, r8 ?/ W pend, G% P& s- a& m& U0 s
( g/ l9 ]6 O! Z9 a+ W2 l/ T8 ^/ w0 V: a l
( l1 U$ F: t+ f$ T8 U
to turn-towards-grain ( k8 x$ i' O: m7 g- s r
set heading 0
- ~6 P/ c) j6 T( i/ ` let best-direction 0
' t) i1 _" r. H! ] let best-amount grain-ahead
% S9 T! J3 o) h& @ set heading 907 y7 a1 n# G" T% R5 h" n. b
if (grain-ahead > best-amount)
% P1 @6 h* q; R$ P [ set best-direction 90
* _9 C- E; A4 a5 u set best-amount grain-ahead ]
: _0 y- _: Q ~: G- O& X1 I' @ set heading 180! K# F S& j6 `3 j5 c" k
if (grain-ahead > best-amount)* i$ [9 ~3 ?3 d6 Z
[ set best-direction 180
6 Y* ?! Z( ]% Z; e set best-amount grain-ahead ]/ _3 q% o, F; E2 H
set heading 270
4 q# r, r" r3 v; ^$ O, e if (grain-ahead > best-amount)$ j6 ^8 C1 O: u2 u
[ set best-direction 270
5 e, F- W+ O* Q' V set best-amount grain-ahead ]
: E2 y) ~7 k0 C0 f1 H+ U Y6 T8 Q set heading best-direction2 z+ w/ u# y; Q0 `2 b
end l5 b4 [9 h g
% i/ N6 {5 J/ X( x! M. F3 Z8 L
. N; M/ I# h) Q$ z" Ato-report grain-ahead
8 e" R r: `& w* Z let total 0
' J. ]+ |0 X% } let how-far 1
0 l- O: F7 m) n repeat vision
* E) g4 \1 I# d# m9 [( t+ J( w [ set total total + [grain-here] of patch-ahead how-far
$ c1 [" V% E/ I8 ^ set how-far how-far + 1 ]. r |: m1 X: H% x" W& M
report total
& r2 t, f( P pend
1 w% V; ^1 j. R' m7 l& h, H
9 l/ M) P% h/ Z. m4 q$ Z- ^7 |& X( Vto grow-grain
% H& C7 S) ^4 @* J, s. s, V if (grain-here < max-grain-here)
. e3 f9 A* I M, [ [ set grain-here grain-here + num-grain-grown1 z* Y6 L- z: d- J
if (grain-here > max-grain-here) ; u6 w, w% O/ ~/ m A% H# N. m/ U
[ set grain-here max-grain-here ]
3 c/ }( V- V0 i9 g2 C% w recolor-patch ]
/ I" B4 P7 X3 ^5 c( mend
/ _; {2 P1 u6 rto harvest
, o L* b, Q. L1 u. U0 J9 m ask turtles
8 B. s% t4 z/ G [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]9 {* \( `2 |* K5 F
ask turtles
: C' \7 t$ b3 V" h% w0 w [ set grain-here 0
1 G3 m' R. N' h' K# @ recolor-patch ]
2 \; m$ `7 _$ X; p
3 J( m+ K) r/ y, Qend* b1 a( `! O% Z5 c; H4 {7 N
2 C2 s/ S" G% ^7 S$ d* Z% K% A: O v1 }
to move-eat-age-die " v) B% n. a, }
fd 1
$ k! Q5 I3 b0 f set wealth (wealth - metabolism)
# v* c( L. I) p9 X' [9 N set age (age + 1)
/ P. _' R& E2 m if (age >= life-expectancy)- n; u4 u2 K, V% i& U: B# L0 [! y6 w
[ set-initial-turtle-vars-age ]2 I; `( _1 l$ p, M. J7 i, D
if (wealth < 0)5 v! e, j& e2 d) }' f
[ set-initial-turtle-vars-wealth ]
7 \) t& x% p' v r( _ ! w) g2 [. E: y* k* q: w7 D
end
/ B3 p+ o. i0 _6 Q
6 P! {$ Y( _5 N5 A' i) n
6 ?. k' ]2 G% {% z n" e" p( Dto setup-plots2 J3 G7 n9 F8 }8 f
set-current-plot "Class Plot"
- C# K2 }! j, B* e, {. x set-plot-y-range 0 num-people: B" Z* u5 ?2 A1 n, `. t, F# e
set-current-plot "Class Histogram"' h* E$ D+ r% F! ?1 g5 W6 a
set-plot-y-range 0 num-people
- O4 r. J* e( K6 }2 ^, {end: d* g' O t/ |; V
' t) f6 R& j5 @' x/ C! v3 e5 I
to update-plots
0 s' ~6 S' `$ ]* g update-class-plot
1 z8 r' o. u, b1 v& ]& d update-class-histogram
- b0 T3 s: \0 h! c0 k update-lorenz-and-gini-plots
Z0 g9 r( }7 R6 g) W1 {0 X+ Hend4 J6 X0 l e6 \: b( R
, K% L5 S, }( bto update-class-plot# V2 T& i. H, Z( d( ]* [
set-current-plot "Class Plot", v5 b3 P- E1 f; ^0 s8 p7 Y" w
set-current-plot-pen "low"2 f- N2 W4 Q" O. J5 B8 y
plot count turtles with [color = red]' X# Z) V) G& f) p0 J. v. N3 N
set-current-plot-pen "mid"
' j7 {& ~1 { x5 ]- O3 ? plot count turtles with [color = yellow]9 ]7 Q) u9 H( e8 q( `
set-current-plot-pen "up"
8 r% c2 _3 i6 E1 P- A, y plot count turtles with [color = green]7 X1 x8 y$ [" u! b9 L+ g/ X% K. R
end
% u* u. m6 h4 X! n* r
$ q! h5 J2 i% y. k, Ato update-class-histogram
$ o9 q, e' r0 z0 P/ T/ P set-current-plot "Class Histogram") Q2 ^9 k% h o) A/ T: O
plot-pen-reset' _( G. f9 v5 I6 D; `: S
set-plot-pen-color red
4 w" Y; g- M: T' d6 ^ plot count turtles with [color = red]
: o, r/ e x; ~: m) e set-plot-pen-color yellow
+ L( B# U$ x0 b0 U plot count turtles with [color = yellow]
5 X. V% Q E$ T/ L: y0 n: W/ s set-plot-pen-color green
) c+ w. I1 `" a: \1 A0 f/ u) J plot count turtles with [color = green]' I- K( w. Q& T6 N9 h M2 ?
end
, Q9 d& G5 O5 K$ A+ l$ E# S+ Lto update-lorenz-and-gini-plots
: ^, Y" A! }. |- d set-current-plot "Lorenz Curve"+ D5 l3 u9 K J
clear-plot4 l! A0 \9 u6 s' j3 C' K
5 }# _) s3 k/ l r+ l+ O
set-current-plot-pen "equal"
3 e. W* Y% H) V/ D plot 0+ y$ d b1 _ I& t+ o- e' ^* O
plot 1001 _8 i# |5 d R5 b
- F m; L, [( c
set-current-plot-pen "lorenz": Y( |+ |$ E6 I
set-plot-pen-interval 100 / num-people
, P0 W* O1 S' } plot 0
/ H( k Z- M R5 A5 [4 q2 H+ D! {2 h' Y6 h4 G6 R& y
let sorted-wealths sort [wealth] of turtles
4 K2 v6 |2 v! @* d) ~7 o9 G let total-wealth sum sorted-wealths/ @! F8 [ @/ n2 k2 a2 J
let wealth-sum-so-far 0: w. Y. b/ J: D- n/ u
let index 0
3 f. i# c& |" N) J8 S+ ^ let gini-index-reserve 0+ g6 t# K3 I' q4 r- g5 o
. C" `; j7 ^' b
repeat num-people [9 _9 m! C1 c4 g% g
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)) ]4 ^& ]; x) q1 `
plot (wealth-sum-so-far / total-wealth) * 100
1 n( t! y7 r" `7 Y }: ~7 { set index (index + 1)& [6 Z( }. l: L
set gini-index-reserve" D Q$ d$ I, f/ Z9 l3 y! c3 G
gini-index-reserve +
- G+ g2 |( T: l+ G0 `4 g( P1 t (index / num-people) -
/ W& f3 R* g O) j9 J1 [, F3 T# C (wealth-sum-so-far / total-wealth)
# A/ {' x# s' J ]
/ R& B' U% A- k; l5 I/ i/ b- q# Z+ i5 u& [
set-current-plot "Gini-Index v. Time"
r, C: Z* T" g- j plot (gini-index-reserve / num-people) / area-of-equality-triangle
* Z* {$ Z/ z7 L6 `3 A/ }3 nend4 r" Y1 ]0 e$ l% h2 O8 |3 ^8 `
to-report area-of-equality-triangle
8 v# [1 D1 ]' j$ ?" ] ? report (num-people * (num-people - 1) / 2) / (num-people ^ 2), a3 V3 i3 a b% a
end |