请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现1 j* g3 j$ y m0 h2 B
globals
k/ d: t5 b. G5 _( z2 h[
2 t- d& l3 a- A: E8 M max-grain
u& i# N6 E0 ~' j' `! {# u% Z2 r% H+ Y# n+ O; B
]6 A1 G. w5 z) s3 U
1 V: W p# [4 y0 O
patches-own# {: b9 r- M/ ^1 {
[0 j1 ?- i, {+ r I% K* z$ ?
grain-here
0 e6 R2 g8 m% p: F' ? max-grain-here
5 O0 i5 o' `0 e]8 l- e! X" M; d* W. Z8 q% A0 f8 L
. M0 V! b6 X1 @4 U. b" D( e' wturtles-own
7 Q0 Y! \" d; Q! I5 T* z[4 c8 i: T. u& g& D* ?
age
$ T3 f3 O7 ~: c4 U wealth . A% q. N2 k c) U+ G/ d
life-expectancy
2 {9 k4 n* d1 k7 v" G metabolism
. V0 U% V. f3 b1 R0 Q vision3 N# @$ G! @3 S
inherited
# w" y2 A. n, S9 v1 S% a]
1 W% E9 f: b# B/ ~% b4 z/ d. R3 X1 e" }! B7 f h, i3 [) v0 t
; \. o% k# g3 w$ w4 w5 U* ]; q& C; f
to setup1 y% R- H/ v! `& o
ca2 s: ] M# _) J T9 h- a
set max-grain 50
1 t6 i b, y/ M! R( B setup-patches' S0 L# d! V0 D
setup-turtles
+ a. E- s+ o D5 n setup-plots0 m% `9 P! K$ j$ G# e
update-plots
% e1 ~, v9 `4 _1 Wend& H1 t$ B, o- o! p
to setup-patches- a# {: H7 p8 J/ I! w, P" }+ @" O$ {
ask patches9 B' U K6 {- W0 `) N" A }( G
[ set max-grain-here 03 ]" ]! j- d( Z% R% k. d
if (random-float 100.0) <= percent-best-land
6 J( Y% G5 p7 [6 m m [ set max-grain-here max-grain
; W2 Z' ]4 P) E7 ?0 J# O6 |0 g set grain-here max-grain-here ] ]
( k5 T3 M! b7 ^# T9 p+ X repeat 5
% a# b: |9 }% g! x [ ask patches with [max-grain-here != 0]
. N7 c! p% J3 _, V+ `9 U/ f [ set grain-here max-grain-here ]
0 Q8 `3 b1 x1 W1 r. }" P5 I( n: S diffuse grain-here 0.5 ]* g) g: b/ ?$ L' U& \
repeat 10
. w$ e; l6 ^+ P) K [ diffuse grain-here 0.5] , R+ u- v* D$ @
ask patches
$ z5 H, Y, v$ |8 x! F$ B [ set grain-here floor grain-here . R v5 q) w3 b8 g9 z
set max-grain-here grain-here
) R7 H2 Z/ t3 O6 c recolor-patch ]5 m% K1 S5 \6 ~0 l2 R0 l: u9 R
end4 a" A. k5 v) k) H1 G4 l
to recolor-patch
X& b' W b. Q set pcolor scale-color sky grain-here 0 max-grain3 W' @9 U G3 ^' ~: s
end
9 n, p% Z( K0 W: g4 q! s7 Rto setup-turtles
7 K, e! m2 S: h; V8 p( N set-default-shape turtles "person", a$ s# F% y- H" b3 A0 }0 {
crt num-people
! _- X# ?1 t- t( h/ W [ move-to one-of patches
: S) B [/ o' A2 x set size 1.5
! M$ Z9 h; E; B, q- @ set-initial-turtle-vars-age
& ^$ g2 \; q5 L! k2 K+ W. D5 S set-initial-turtle-vars-wealth
+ V7 R0 s' f8 Z5 @6 Q& c+ r set age random life-expectancy ]; T; l: A1 e( Y8 b
recolor-turtles
, g# v! Z$ a/ s* C9 \7 wend
& |7 }. K3 s6 j' M: s0 D/ A- o- C" J# U
to set-initial-turtle-vars-age
) f$ V3 e |0 V6 M4 { let max-wealth max [wealth] of turtles
$ y3 h% L& I& |+ v6 o 9 Y6 B% j" |, q9 n l( ]6 W2 h
ifelse (wealth <= max-wealth / 3)
* g. J; e& U1 x. R* t. r5 | [ set color red
2 ~2 u& e% q9 k set age 00 C+ S: h3 ~1 M6 F, s) M
face one-of neighbors4
2 G2 @( t, ?( R+ S) U7 {7 U set life-expectancy life-expectancy-min +
( `7 @- [5 y, L) z random life-expectancy-max
; Q4 p5 Q8 `' Y. q- W( A% o- T set metabolism random 1 + metabolism-low
1 W3 o: V" t' O$ w# K! w+ h+ V) v% [ set wealth metabolism + random 30: [1 h2 u$ w7 P @
set vision 1 + random max-vision: H4 j' u7 w- s/ _0 ~) g
set wealth wealth + Wealth-inherited-low ]
0 {& D- [9 ]+ w [ ifelse (wealth <= (max-wealth * 2 / 3))* s; z: C7 l! R3 R) F6 O
[ set color yellow
# Y8 S6 ?1 B, W3 f, J5 I4 y set age 0* G1 @' n7 r" L: C
face one-of neighbors4 2 d* R$ K. N" W U6 ~
set life-expectancy life-expectancy-min +7 k; `- e5 M- O
random life-expectancy-max + 1
- N& l7 Y* q3 e7 Z set metabolism 1 + random metabolism-mid! |6 p2 I) L2 P1 q. F% y3 a9 d5 B
set wealth metabolism + random 30, E0 d8 k! t0 {
set vision 3 + random max-vision
% ]9 c2 e6 I* O3 ]) { set wealth wealth + Wealth-inherited-mid]2 e+ ]: `( w! c M. E6 A
[ set color green
9 s0 S- U. {. s0 G/ I set age 06 x7 D5 p5 [; M) y- D$ [/ A. z* d* t7 P; q
face one-of neighbors4
- r l- x; D! p8 L2 d- d/ a7 D set life-expectancy life-expectancy-min +7 C) D$ ?; @3 r( B" y# [
random life-expectancy-max + 28 t3 v. \% n; Z: ?" j; l+ Y! U
set metabolism 2 + random metabolism-up. N2 Z0 c; I3 Y% X& M7 M3 w# J
set wealth metabolism + random 305 N8 k1 g1 }( L. R
set vision 3 + random max-vision- e/ Z, [7 |2 J# p
set wealth wealth + Wealth-inherited-up ] ]
) d# X; J3 u% @% p" G$ [# c& u
; G/ u0 n/ g0 t1 t; T |2 x" bend/ J; N: }4 n9 u! y& `; ~1 t+ E6 S
to set-initial-turtle-vars-wealth# y- Q/ N l5 c1 U8 o. o* F
let max-wealth max [wealth] of turtles
: U3 h1 w( `8 R3 v5 P* s set age 06 E, y8 |+ \8 K4 H+ g2 J
face one-of neighbors4
8 E( N R: F) f3 x; g6 B2 ^ set life-expectancy life-expectancy-min +% i& [+ P' d9 f7 o- M- W
random life-expectancy-max + a6 f- P5 Y4 a: _$ U: z8 R5 o7 O: U
set metabolism 1 + random metabolism-up
# y# W: H% Y O1 g, E% _8 g* K( l set wealth metabolism + random 30% i+ b4 N+ r! o$ ?" v% v6 q( a. Y' Z
set vision 1 + random max-vision
" e0 U/ K3 @+ `end- q" Q; f. A, o3 i) d
to redistribution7 r- ~+ ^" z* K6 W9 S6 `3 B
let max-wealth max [wealth] of turtles
4 u* r; u5 \* b: M2 r5 Olet min-wealth min [wealth] of turtles% B a ]9 @2 `& f
if (wealth <= max-wealth / 3)2 `- _9 z6 \5 f2 T
[set wealth wealth + Low-income-protection ]/ p% |, L+ J. H/ `$ l& t" t6 \
end
2 o0 Z d4 o, E + z9 ^( l, R4 u1 Y9 c1 c3 S
to recolor-turtles
& c: t$ ] A* f1 J0 r7 N let max-wealth max [wealth] of turtles4 t2 M) \. G5 K
ask turtles8 x3 T9 x d. R3 a5 l' {* \
[ ifelse (wealth <= max-wealth / 3)
( K8 `4 W9 k7 m3 V! z8 f F" O [ set color red ]0 W. Z# X# T U
[ ifelse (wealth <= (max-wealth * 2 / 3))
2 ?2 B7 X" e( w [ set color yellow ]
8 t: j, p [, H; V' S [ set color green ] ] ], {* q, R% B* F* ]. s$ @
ask turtles [ifelse show-wealth?0 u8 A, ~ a0 ]3 N4 x, @/ V/ [
[ set label wealth ]
$ Z; F( ^% U0 q. o( | [ set label "" ]]3 A. \ |" _: r, [
end& Z7 N8 z' S6 ^
( A9 R4 Q, l2 c
to go
6 l( {8 P8 x s7 _% p! E ask turtles. t% m, s& E+ G1 F7 U; X) p0 `% O
[ turn-towards-grain ]
& n; \# j& R6 ^5 S, R harvest
% l$ Y: F2 ]/ { ask turtles' X- ~2 i5 U6 V2 p' B+ b0 J/ s
[ move-eat-age-die ]
% N1 `! t+ b: _% k recolor-turtles) I+ h; S1 z( m+ B+ Z/ u8 F+ ^" ]
if ticks mod grain-growth-interval = 0
. b: W4 H4 @$ P# W [ ask patches [ grow-grain ] ]6 Z, T) o$ j& ?- c+ i) [
M3 R+ P6 P- f if ticks mod 11 = 0& |( i. v' ~/ F+ z
[ask turtles
; W& Y3 W" l7 `: j* ?9 Q [ redistribution ]]$ ]$ y `/ c1 _7 i6 O7 c# } L
if ticks mod 5 = 0; D* U9 M0 J" o ]5 x2 i
[ask turtles5 M, ^) y: w- r
[ visions ]]
5 C2 p1 f4 n' G+ P" O+ l tick$ ^2 }2 |/ d8 I5 {9 `
update-plots
- G2 Q7 i$ j, ~) R* b+ s; Bend
6 d: r7 G8 {, K& z- H3 Vto visions
: k" z4 E& K0 N' M& ~ set vision vision + 1
8 g6 q4 I( G, q6 m4 Aend
- w/ n6 Y: r2 _0 j* l: T, u$ h8 k1 D2 o: p7 x, c' d2 L
) B# |; x" u8 ]0 N
& z3 w' D% H2 ?4 t- Xto turn-towards-grain 6 n1 k+ l- J# O$ I0 g% N
set heading 0
& ^. E1 |1 y- k8 ?" L let best-direction 0; H* c7 `( [3 a& U- E
let best-amount grain-ahead* S( {' }: \* W1 m# n0 }. N
set heading 90
! i( n& n; ]5 d/ J if (grain-ahead > best-amount)5 e$ n/ i; r& m2 @
[ set best-direction 90
* o1 m2 F/ T2 f set best-amount grain-ahead ]
) j5 O5 M% z. b set heading 180
) T# g4 u5 R7 g if (grain-ahead > best-amount); V9 q6 D, x1 | {6 W* D6 S
[ set best-direction 1805 n, R- K- _3 P) d; C1 U; w4 O
set best-amount grain-ahead ]$ ^, Z+ X1 ~) J1 H' x" l* U0 @* q4 @
set heading 2707 U* x* o6 F- ~) K
if (grain-ahead > best-amount)
# E& ]; c6 j; y; F$ Q [ set best-direction 270
( n7 S6 _( ?; N# D- M set best-amount grain-ahead ]& a/ R3 u4 n3 A& Q2 k4 }
set heading best-direction2 w+ G8 I9 t: r+ I
end
9 S+ e+ O- A: G# m$ q( P
2 p: z7 h$ q# \, F. o$ F$ Y& b& }% @/ m2 B2 e4 a& J6 P+ c
to-report grain-ahead # _$ @. I0 }0 ^$ ?( `7 y$ a, ^
let total 0" f7 b3 }, L4 H
let how-far 16 x) M3 \. {$ I
repeat vision1 E# h: x" j. Q
[ set total total + [grain-here] of patch-ahead how-far5 L$ l x- E5 O% l8 f+ Z
set how-far how-far + 1 ]/ Z5 a1 O6 [9 _ @
report total
) q! W3 Q& X& S2 z! q4 U0 wend
% c# C8 c- q6 g2 Q+ D% E9 g* S" t4 K {- S. v
to grow-grain , G3 G/ [4 J2 ?9 M0 ~
if (grain-here < max-grain-here)
' ]% S" S# m3 R2 X: } [ set grain-here grain-here + num-grain-grown
( w/ [3 f' r& S if (grain-here > max-grain-here) + |! l9 X( T5 j! P; w( s* f( i
[ set grain-here max-grain-here ]% K. z) O' N/ W* E6 Z& a0 N
recolor-patch ]% U7 s) {4 K/ q
end, i$ p$ P' y+ n* q1 L& m* b' Q
to harvest2 J M1 F% [7 d7 z1 d
ask turtles
+ }9 N! l z/ o1 ? [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]; R J& U; l T: `4 q9 f
ask turtles! |% A! p3 X1 }$ U
[ set grain-here 0
6 m$ Q" ^ Y4 E- |* i recolor-patch ]
8 z" u3 t! B% _; i0 {- o
! W" }. g3 w3 i" i3 Vend, D* U0 h, S$ c# _% D E9 r5 y: y
9 h- Y. R+ @3 R3 h
to move-eat-age-die
t( h( Y3 p% A+ G4 S0 ~ fd 17 \2 ~0 ^ u4 u8 r* R- f
set wealth (wealth - metabolism)1 R* S: g, ?# ]# T
set age (age + 1)0 ?$ r( x2 N6 T' Q( b, N
if (age >= life-expectancy)
- N$ H5 c l n S5 i* U [ set-initial-turtle-vars-age ]7 q6 f# ?& `5 \
if (wealth < 0)% o) q5 b2 P5 }5 |$ z! F$ _1 \
[ set-initial-turtle-vars-wealth ]2 P6 m. c( g: k6 v
4 o# b2 u1 N$ \2 \+ dend1 V% {, [8 Y" r
" k5 F2 \$ ?- W3 \9 C7 ?
. h6 l9 b) b( y$ Q' o }4 O
to setup-plots0 l1 @/ {# g7 B; R9 F" K: ~
set-current-plot "Class Plot" o- J- P+ F( x% Z+ C
set-plot-y-range 0 num-people
" f, i8 p. u% s; T$ b set-current-plot "Class Histogram"/ |- z5 b4 Y: E' m* s8 {, M
set-plot-y-range 0 num-people
5 g# y8 x6 B; E" \" ?6 {! wend* D9 H. x1 d* _0 W" D
0 n `* W1 l: G, s. z6 y tto update-plots
- }5 Q, e/ V; t9 L4 k update-class-plot* m7 |1 W, ` a9 G3 K
update-class-histogram
0 }8 W& q- ]5 X/ E+ K update-lorenz-and-gini-plots
4 x9 f6 {! s: I+ k; ^end2 y) V# a( S* O& v3 T I8 o
* t9 r4 J( l6 d% a! {5 U8 m
to update-class-plot5 c2 a$ g3 L( `
set-current-plot "Class Plot") e- j3 K0 |5 P, k! [/ B: t# I; c+ n
set-current-plot-pen "low"
" M* f: U* P( A( w8 F$ k Y) s plot count turtles with [color = red]
4 p8 C$ c: A( w1 s9 V8 C* d, d set-current-plot-pen "mid"
2 J T; ]6 j1 _) h2 p' P plot count turtles with [color = yellow]8 @& M8 f5 L9 ~2 n% [/ p8 t
set-current-plot-pen "up"4 Y+ f9 O/ j3 r4 m q# k) e- u
plot count turtles with [color = green]
2 c) y6 Y5 r& k1 J* ~/ |end
' d% o. e( N! \$ V8 H
. n# G, N& J9 Y7 g" ~- i6 ?to update-class-histogram
- t/ e3 Q7 o" c3 l/ Z set-current-plot "Class Histogram"
( u' n1 c- L* L& ~& q- |* n plot-pen-reset! F0 C9 f/ ]- n) O# U
set-plot-pen-color red/ x" Q5 t3 q' f1 t2 ^3 k. ?# K
plot count turtles with [color = red]9 o- R/ Z) g; {& O
set-plot-pen-color yellow
: V3 N' J, b/ K: k/ w( S plot count turtles with [color = yellow]
2 J' V( T& W1 `- p: q set-plot-pen-color green
7 w d" y, v6 e R6 V8 s plot count turtles with [color = green]
; |+ F# d* l; n. F1 kend
6 r+ n _- j5 z9 r* I' l. W$ P; kto update-lorenz-and-gini-plots( `& [1 I( v+ U: c: Y
set-current-plot "Lorenz Curve"# Z* A( A' W9 v x: M5 D7 _ V5 x
clear-plot
) _: E, o1 K1 k+ E- l8 Q; V+ B) B L, o5 z5 |3 f C
set-current-plot-pen "equal"& z9 u* Z2 a" P6 N
plot 0' S; C/ E( e6 d4 M9 w
plot 100
+ c$ P/ G/ w* z: }# c5 ^5 w. D: M' w0 N; w
set-current-plot-pen "lorenz"! E4 ?7 J& [. B) t5 m
set-plot-pen-interval 100 / num-people
5 x3 d7 w' a2 X) e7 y8 H plot 06 L( s# |) D- `1 `; Q: }7 K/ E
2 e9 F7 T9 I. s
let sorted-wealths sort [wealth] of turtles
+ y+ R7 P- n2 h- Z" e2 S* W let total-wealth sum sorted-wealths
# T4 J4 y% h! L, t( Z+ K let wealth-sum-so-far 0" ?% j( O' x# V. F9 l
let index 0
& g1 r% Y/ j) [ let gini-index-reserve 0
% q! E* \8 i& x% O6 N9 J6 W* ~) ~# L0 O0 L
repeat num-people [4 K7 T6 H0 N/ g& E+ M% E0 T* W4 l, B
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)$ l. F' J7 z! H" U( Z& M
plot (wealth-sum-so-far / total-wealth) * 100 Q- q P- Y* T5 \. w g
set index (index + 1)
$ h7 k4 X9 U/ {+ m: G set gini-index-reserve+ T- O2 k: R! \
gini-index-reserve +6 j2 x1 E2 v* C) k/ Q; Z
(index / num-people) -
0 j1 n- g$ C! J! d+ x: l c' X (wealth-sum-so-far / total-wealth)
: w2 g4 L$ V2 w7 ` ]% h: O5 u* n8 X% D; a9 o8 e
7 C9 J- W! A6 z- T$ y, }0 K" S set-current-plot "Gini-Index v. Time"
! G0 A' `) J a p, k' i plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 u+ Q2 B2 F, H( nend4 r1 e( p% z' P# m( t9 u, \) u. C. R
to-report area-of-equality-triangle3 u( t- F2 i7 w7 v; S4 H* h
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 } {2 L7 h$ D, l
end |