请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现 t3 E# v* W/ X& j
globals) L2 A5 N: V0 F( W) Q2 A$ R$ G
[
3 R+ K# c2 j( u) {/ d9 X( q max-grain 7 F- F. C8 S- Q e+ `, P
) v# C3 i$ J( S X# w
]/ h2 H! D5 E7 g4 B$ i' K8 M
1 b; A# z& S7 u7 T: `6 Xpatches-own
. i3 x, n& y& @# H/ x9 M[
( u5 O/ l. G* G! g grain-here
( q1 Z* s" b' n0 P" P0 V9 \- f max-grain-here 4 w0 g! a" ^: {3 ` g8 `
]
: C; \3 s0 b/ A% C
1 P" O# i1 q" [0 ^7 f( pturtles-own' ]' A+ d/ ^0 U! [1 u
[
7 M& k$ _ ]! S- n A age
! A7 Y" m$ _+ A4 U wealth
" F- C3 i I0 N6 p+ |" p( Y life-expectancy / l# ]6 |0 \. q$ B
metabolism " h) n! F! ~: m5 [/ X
vision& w4 D' Z# r+ t/ q( ?/ ?3 }
inherited
4 P5 v/ ]4 ]3 \' ~- t]" o1 K8 I, O* ~" n4 T3 s
( Q& K; @0 ~/ s1 N: R$ r D- H8 I0 t1 W u ^9 {+ [
to setup* }4 F$ {; F" n& F, [
ca# n X9 r5 f& Q6 o# m P! A% d
set max-grain 505 P. Q; l# |. D0 m* v9 e, E, W- u
setup-patches
1 D6 w Y0 Y& w" D7 ^3 p$ J setup-turtles: F/ Q8 O- f6 s2 y; N! C
setup-plots M N$ z+ x5 S: j
update-plots* R/ c) Z7 f s* ^: l
end; \& a% C# \5 o" Y* i. W# z- `
to setup-patches! B/ U' t; K# G, `, h" ~4 n
ask patches
I2 G" s/ ?2 A6 G- C0 e [ set max-grain-here 0
$ F7 \9 x/ ^5 f, r | if (random-float 100.0) <= percent-best-land
/ q! D6 v& r* `2 ~: S: Y6 d [ set max-grain-here max-grain
# p$ x2 y1 y9 O+ N) h3 _$ n set grain-here max-grain-here ] ]1 \+ X# H+ Z& E
repeat 5
+ a5 X' t+ O7 o, t% V4 O [ ask patches with [max-grain-here != 0]6 c0 V1 x1 q# a( E
[ set grain-here max-grain-here ]& C% x7 B: V: q2 y4 i- e
diffuse grain-here 0.5 ]% v8 L2 I- ^6 A5 b# I
repeat 108 ]8 |) }' k+ L: e
[ diffuse grain-here 0.5]
7 ?8 I& T# h8 R$ Z- a; K ask patches
' T7 H% c$ p! e: T- j( c [ set grain-here floor grain-here
% S4 U0 c! w) i& _7 \/ {, n set max-grain-here grain-here $ h+ q" \; E' Y$ x7 x
recolor-patch ]
; H$ r2 C& C" s) lend
' J4 ~5 `: V/ c/ zto recolor-patch
+ \. n- m6 X1 k1 D3 |+ X, H* Q) @ set pcolor scale-color sky grain-here 0 max-grain# j0 Y$ d t* x; B* V- }( N# u; y
end
# j, j6 P- B1 U4 r$ u* o, lto setup-turtles" H. X) e) \- z; v* Y- c. G
set-default-shape turtles "person"7 n2 |# v( A' t! L2 I! }
crt num-people7 ~5 r$ a/ f. g7 ]& \
[ move-to one-of patches
2 k( Z- b! J9 c) b4 P* p8 l set size 1.5
+ r# G! Z: g j' V# X6 t set-initial-turtle-vars-age+ w; k6 z- y! l; I, A
set-initial-turtle-vars-wealth$ E- F2 v% n% D) `6 y0 [) A0 T
set age random life-expectancy ]
8 ^% k$ r% a/ t; r, t Y( @) X recolor-turtles
9 R2 ?' F( s& ]# ~4 a& D! Dend7 l' t d8 ?* M( l- ?( P
5 }5 o" p" E, k) ~2 S) t! {
to set-initial-turtle-vars-age1 Y- `9 Y& n& R+ Z
let max-wealth max [wealth] of turtles
. u' a. D7 l+ R- c, E+ `- {, C & z( A [7 P" A9 |0 S6 z
ifelse (wealth <= max-wealth / 3)
( K; r" b' X }! ~# Z: \ [ set color red 3 M0 p8 t% _( F7 s5 L
set age 0
: C& }. m3 F0 H# B. }8 v face one-of neighbors4
5 d$ {* Z8 q5 Y+ ] set life-expectancy life-expectancy-min +
2 S, C B8 G9 D0 u% J random life-expectancy-max % N9 i1 t% F; w- w+ \
set metabolism random 1 + metabolism-low; C3 o$ d5 P$ p8 x0 \/ C3 l
set wealth metabolism + random 30& n& g% Y4 Q+ m6 I
set vision 1 + random max-vision
+ p5 r- @: E9 l v set wealth wealth + Wealth-inherited-low ]
y" V. M! L- i3 g0 {8 O [ ifelse (wealth <= (max-wealth * 2 / 3))
, v- T$ n& p* I" d- K [ set color yellow ' @" F' {1 V T5 _, B p
set age 0
5 h7 b" m2 d3 b4 ^8 P face one-of neighbors4
# U' [( Y* \% v$ [0 L& I9 v set life-expectancy life-expectancy-min +
k j: w! w4 T random life-expectancy-max + 1 j1 H2 ?+ v. J: l
set metabolism 1 + random metabolism-mid$ x2 ]& [: v/ R6 _' y& ]: t
set wealth metabolism + random 307 v$ |: p( s1 b" N' N0 s) t
set vision 3 + random max-vision
& O6 @9 {1 t% x2 Y# f set wealth wealth + Wealth-inherited-mid]- Z1 v% u! _( d) ~
[ set color green 0 n) J$ V+ K0 l: \- m2 a5 @
set age 0
3 k# a0 K! Z2 W" {1 _# R face one-of neighbors4
* S- w @. b5 h; T set life-expectancy life-expectancy-min +
" q4 _/ o9 { c3 [" i$ _# y random life-expectancy-max + 2
/ P% Z& q9 E* @ set metabolism 2 + random metabolism-up
% q2 _; v2 U' f- t V! P7 z- C" F: r( h set wealth metabolism + random 30! p% H. y! k8 U8 N
set vision 3 + random max-vision; y- W1 k O. h2 F4 @& \; g
set wealth wealth + Wealth-inherited-up ] ]
3 [# M- r% X. X1 p 7 A- q' G: G& ^
end
/ f$ b6 G' B2 O tto set-initial-turtle-vars-wealth( n1 w9 I/ E. v' d( L6 p3 M. f
let max-wealth max [wealth] of turtles
' {8 P7 Q8 O7 }4 ^ set age 0
7 w% R" t& w( n/ }; Q6 G K face one-of neighbors4
# ^( `4 ]. Z; u1 X set life-expectancy life-expectancy-min +
- S6 x0 |6 B: f random life-expectancy-max
( c0 b: N& R$ _8 o. \8 [" q9 z7 l5 D set metabolism 1 + random metabolism-up* ]; ?5 n: l6 Z l9 B4 v
set wealth metabolism + random 30
4 I: d) E( i- Y, U set vision 1 + random max-vision
6 b' S7 H# {; G+ q/ D0 b1 B, t$ I: Lend
0 z% k) n g1 O5 B3 L6 oto redistribution
7 A6 w4 A% h- c5 wlet max-wealth max [wealth] of turtles1 w0 z1 v% n% I7 R" h& y4 j% u0 {% @
let min-wealth min [wealth] of turtles+ T( B! m; f$ v4 C
if (wealth <= max-wealth / 3); {& _6 {. V( Y6 ]! q2 q! _
[set wealth wealth + Low-income-protection ]- d! u' M9 ~; W3 s: H
end9 A. Y* @* x4 l* ~) W# c2 b
) V* g; E' [- {
to recolor-turtles
! z q2 O r1 n3 A) V let max-wealth max [wealth] of turtles
9 m( M' r: W# \3 L ask turtles! ^$ g. j. _7 z/ f' f: }( o Y' p
[ ifelse (wealth <= max-wealth / 3)
) j. E, Z; m" Q0 ^+ \ [ set color red ]
: f% r; a8 f' e- d [ ifelse (wealth <= (max-wealth * 2 / 3))% y/ M n0 A( J: l; a
[ set color yellow ]
/ Q4 I! }/ X* [! b [ set color green ] ] ]. u4 v: k, o& S9 k) I; P# K7 C
ask turtles [ifelse show-wealth?
7 O$ c. a# M# ~! ?2 i [ set label wealth ]
: p/ s& |* R5 k. N$ w C$ ^ [ set label "" ]]
+ g& w9 y) y% A# P5 |# d A* dend
& ^+ Y! I) R$ w$ f! {; h! p1 \7 O8 C
to go
- Q* H% l0 D. k1 [% G, P4 c ask turtles
, l4 d" L/ y6 B' f; o7 ]# W2 u [ turn-towards-grain ]
. v |1 {0 e8 U, m harvest
, F7 y4 X, r" C% q ask turtles
) O' |9 g0 D, C, r' J [ move-eat-age-die ]
( Y0 J8 L6 {7 |/ C* m' u8 ^" h recolor-turtles
% b: @ C% C1 a2 S if ticks mod grain-growth-interval = 0 }$ I" {9 z# C9 J+ }" a6 V% C+ I
[ ask patches [ grow-grain ] ]
. p9 L0 R1 j% C5 r# D
1 D& k A2 p& P5 |5 ]4 y if ticks mod 11 = 0
- k9 M' N9 ]. M [ask turtles3 C/ p4 ?5 G/ }2 }5 k( G9 c
[ redistribution ]]
2 B: e% |, k) n- t& ] if ticks mod 5 = 0. _: ^2 n- U8 y0 g O' y8 r1 R, u
[ask turtles
. s: y4 l2 P6 i3 e [ visions ]]
3 w8 I4 u# Q+ E% `1 ] tick
8 `% M" S( s" u$ C update-plots
. w/ \0 @$ H" Pend
$ X6 H' i, [+ L7 c" {! {to visions
2 J2 K6 a. e0 _7 |+ B set vision vision + 1 - ?0 M9 N8 \% V; K* M$ T0 V
end
4 o) J5 N* j7 D' o, E5 J
2 l& v- H9 p" x J& Q6 X; C* `
! n( y- Y# y" l8 S$ J+ B2 \2 {3 W; ^4 I- N
to turn-towards-grain , E& w6 m. y8 z2 Q+ V" V [$ o" B
set heading 0: G2 e' r' l) t: l& A5 d
let best-direction 0
9 J9 v& y: `3 T) w ]; t let best-amount grain-ahead' M @5 L9 O. y7 z, q' C7 D, ~! N
set heading 90
! p" E; Y; b, Y* K. J2 g if (grain-ahead > best-amount)' a/ Z0 U1 r( e
[ set best-direction 90- }1 H8 Y W. G1 c2 }1 H! c$ K
set best-amount grain-ahead ]
A! i7 K4 J% S set heading 180 g9 W8 _, Q+ m3 D+ }
if (grain-ahead > best-amount)
' N4 {1 P# p5 q& @1 W' z) }# G [ set best-direction 1803 @* z& j& q& F" A
set best-amount grain-ahead ]
n% r9 S* D1 ` set heading 270
" U) E k9 P! n# p- ^ if (grain-ahead > best-amount), @6 z3 J* ]! k9 U8 P/ L1 L5 i) h
[ set best-direction 270
K: b9 ?: e: ~! T+ Q& W set best-amount grain-ahead ]
$ U7 o! c& F1 w, c set heading best-direction- Q* Z' E& {' k( [" l% K" P) A5 P( r
end# M2 H8 T8 H& ^2 x
. {7 D" ?4 D/ _9 \; |: X: o
( F6 f3 d& W% z& {$ y; xto-report grain-ahead $ \+ ] x7 F) ^2 r( n, c0 p2 q
let total 0/ r- c8 [/ U+ M1 B
let how-far 1
8 H l" A. g# G7 Z repeat vision
) I) w2 o' \ [1 K [ set total total + [grain-here] of patch-ahead how-far
7 x/ o1 z8 v& S1 }" e2 [ set how-far how-far + 1 ]& o1 p. a% w4 T5 `7 ]/ b8 N- t
report total5 J) j9 @. b2 k# ^
end
5 W; G, c3 ~9 c1 p
; n$ u' t4 O/ d3 r8 L2 g0 e9 L; Sto grow-grain ' k# f: [) _0 o- P8 \% q5 S& i
if (grain-here < max-grain-here)
7 K6 D. q* x6 W. Z [ set grain-here grain-here + num-grain-grown; O$ ^( g: r& w
if (grain-here > max-grain-here)
: f6 \0 Y1 G; k3 K6 M0 w [ set grain-here max-grain-here ]/ W2 u; [; p; B) ~1 V& }' L+ e6 {
recolor-patch ]5 [4 E5 E* }4 u
end. u; F$ M k$ W) U
to harvest6 |7 `* V0 q: T) U7 I
ask turtles
/ l0 m( T( \& w [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]4 W- b/ |2 O5 N3 N5 n5 Q: T V
ask turtles
6 K) } H$ o$ t7 t; g [ set grain-here 0
& Y! k' a. H' q0 R @9 V' p3 c: T. O recolor-patch ]
4 B& s8 P$ }7 C 7 E& n9 i9 o; ^" ?
end @/ G, A5 \" ?2 ^8 I4 J
8 g, S. t& V% w, a6 K5 o- P% g0 ato move-eat-age-die
3 l3 w. W) N, ?5 S fd 15 W% E' b) f+ L8 Q, C. c" b
set wealth (wealth - metabolism)
' E6 M; j5 ^' ?3 K8 u1 ]4 ^- ~ set age (age + 1)
0 i/ H& K8 w* Y2 c7 X o if (age >= life-expectancy)
$ R7 k8 k- O6 c8 u3 Z0 c4 N [ set-initial-turtle-vars-age ]' c2 d5 x9 P2 x3 ^
if (wealth < 0)5 F- O- a$ @# ^* Z. h. v
[ set-initial-turtle-vars-wealth ]
/ U% d- k/ \2 c/ I! e- @ 8 G( r6 e; ~4 p
end
" E4 ?/ U( a# N" b. T# h8 L Q" C/ @( N" d2 M2 B4 {/ G
8 O" I8 d$ n( bto setup-plots! @2 O5 R) V2 q2 e) n& |
set-current-plot "Class Plot"5 V# e" J4 E( G/ Y* h
set-plot-y-range 0 num-people" z, e7 J4 f5 \' f
set-current-plot "Class Histogram"
, F C/ E/ c7 u$ J( ?+ ~2 @ set-plot-y-range 0 num-people4 J: a, u5 |# [2 o+ X7 x# {
end3 |. K; E" }" T7 S. k
1 f- _) @. {- ]9 o( r* ^) g4 A; l
to update-plots$ B; c( S( l9 ~
update-class-plot
/ H: T7 a3 @! u3 `. {- Q1 k) \ update-class-histogram& q( B D9 I3 _3 r5 h
update-lorenz-and-gini-plots
8 d: \! c. s; g( m- z }/ xend& E" A1 X% y8 c( ?# D
' e3 j! e' Q6 r" L' ]4 ?
to update-class-plot
& B' J+ F( B1 n) ~8 F set-current-plot "Class Plot"
. O) |/ B& g: }, ~5 h: Q! s$ a set-current-plot-pen "low"+ z5 S$ I; v* `2 \9 D
plot count turtles with [color = red]
$ Y6 {2 ^5 ?9 B2 Z5 d set-current-plot-pen "mid"; ?! D3 v$ u; h9 d& z) S0 H2 P4 A T
plot count turtles with [color = yellow]
5 p9 Q9 r# [5 u5 e" \1 M4 N1 n set-current-plot-pen "up"1 Y% N5 q: c- `, D2 T5 o) a
plot count turtles with [color = green]
/ S1 l n) S1 vend
: ?# K2 H' Y& C% G" q+ z/ ^7 E* V( ~% Q% y; o% z
to update-class-histogram
, l _3 h/ x. ~$ P% J& b set-current-plot "Class Histogram"0 W$ R; T5 A& m1 O( o
plot-pen-reset
+ {( K1 z+ J6 ~" W; U8 ~ s set-plot-pen-color red0 m+ D0 X( N, E2 ]
plot count turtles with [color = red]
; z( V2 @- E% J4 ^3 y8 E set-plot-pen-color yellow) T# A6 r) t1 p! E" P3 c
plot count turtles with [color = yellow]* l- d4 |; o, S7 T9 w u
set-plot-pen-color green! [. F d" ?8 e1 w$ T, b
plot count turtles with [color = green]/ _: {8 z' |* N+ Y
end
; p g' {6 E+ V% T) uto update-lorenz-and-gini-plots
7 {; p) H: ?7 n& k2 ]0 t, I set-current-plot "Lorenz Curve"6 U$ [9 P' ^. u& o' g: i
clear-plot
, y7 |2 T. `6 G
) X u2 [; G4 D! K% K& ?0 |7 `0 l+ E set-current-plot-pen "equal". i6 H8 w. r* v5 H7 S! G
plot 0 }9 m; B8 {% E: c3 l( p
plot 100
p5 I0 A3 u; t W+ }5 f5 M
1 e+ m$ U" @$ C k: [# `% [ set-current-plot-pen "lorenz"
0 X+ i2 [% O( G+ }' J0 i8 n% C set-plot-pen-interval 100 / num-people }/ D( E5 v; p( \$ _4 B$ |+ l4 c* J
plot 0
, R1 l4 l1 c: X: |# |3 B) V4 ~1 A* P) q t2 b2 D
let sorted-wealths sort [wealth] of turtles; ~) `6 a* }* j. K" t) E# N
let total-wealth sum sorted-wealths) U& r5 {% Q2 o6 F) ?
let wealth-sum-so-far 0
4 \7 Z4 W% }. t) r3 a, }# r let index 00 `0 r/ |5 L. y/ s' p6 j
let gini-index-reserve 0. |+ b1 Z! e/ Q. a+ T
4 z1 x$ @+ T" S) z repeat num-people [0 o+ W- }/ j- v% ?! w- E7 v
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)3 J" D, ~( e5 M: B; L- ~
plot (wealth-sum-so-far / total-wealth) * 100
+ R3 o' G4 s8 B0 d, e9 M set index (index + 1)8 ~1 s* j' r9 Z- G1 n, t
set gini-index-reserve8 \! y1 y! o( M& w4 ~ I( ^
gini-index-reserve +4 S4 q* {# M. ~( n5 J4 M. j
(index / num-people) -
# k) q5 D$ B/ q (wealth-sum-so-far / total-wealth)' n- n+ b' N C0 H# w
]
: v1 ~* _3 i+ y6 _- |$ m5 v$ Y* i
set-current-plot "Gini-Index v. Time"! o* o$ @$ Z# y& ]0 G
plot (gini-index-reserve / num-people) / area-of-equality-triangle
$ _8 w( _4 g2 S( w, t5 O$ h: Eend- p0 E6 A U6 V; |
to-report area-of-equality-triangle
- q& F/ b2 C R6 {4 e" W2 V! U7 v report (num-people * (num-people - 1) / 2) / (num-people ^ 2)' a/ z5 {. z. R- Q \: S5 `' `
end |