请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现- Y% c8 `6 q! `4 A) s
globals
) N& E4 u9 C2 q C! ^[3 ~8 A4 H$ ]3 F6 } w
max-grain
# \1 i; x" T, C- D/ h8 X
5 R& r* s" }% S" @; P4 C% Z- h. y! \]
9 H9 b" r: s1 _% b7 R* I: o- }, [1 Z& ]6 Z% V. y+ O: S4 _- s
patches-own
0 q. M' |, C: \2 ~8 K[
' D; y E3 p; r: S+ d5 y* L grain-here * C* o) a5 P$ }; Y$ }7 f
max-grain-here
0 G9 Z, f# D2 k$ m]; C4 J% h. ^* P7 r; y" E0 m6 U
" o o9 b3 H! h5 `
turtles-own
9 z! ^7 G8 [( ^$ b" ?: f[
T! C, @- \7 g age
% t* N$ Q+ h& z* L' c. }. R wealth 8 W: A8 G! X! ~, W7 Z3 w1 H
life-expectancy ) w" f( o {5 {5 h7 K* x1 i4 {
metabolism
% ?6 @. B" d( M k9 I+ E8 j, X vision
; I# Q7 J; y8 z5 W* q* v1 H inherited 3 x3 N: M/ A" m: E# F: v
]
* O' V4 ?, @# {" L' u7 @( a" ?, R
; m* G* C7 f5 ]% e& \ ?9 a. v5 Z3 g+ P8 H1 \( Z$ V% S3 T
to setup' n) p/ S' M8 s. H& ]
ca" y; g0 s1 B0 u# H* o5 p6 E i( T. I
set max-grain 50
0 c. C: ^7 p: ?+ [( { setup-patches1 R O1 d: Q+ g
setup-turtles% Z( I9 A. s' H# e0 y
setup-plots
4 H6 {/ G$ V' U4 P0 G update-plots
- b# ]" C6 b7 d3 O6 i% Jend' u9 a6 C6 O3 I
to setup-patches# M. o; `" A- q& G
ask patches
% k: ^) w1 B7 w- f: l5 a [ set max-grain-here 0
" E( a% l4 i2 r* M# D2 b! B if (random-float 100.0) <= percent-best-land% `& V% `& ^# ~5 T% W! ^
[ set max-grain-here max-grain
& U% `& p+ a2 F( Y set grain-here max-grain-here ] ]
+ h1 `& ], z1 p# F+ }- Y, c repeat 5! U. z) ^9 G) i7 @4 H5 `9 t+ H
[ ask patches with [max-grain-here != 0]5 d$ j3 G8 u6 |3 ] F
[ set grain-here max-grain-here ]. H- J' s: `/ L8 w2 `
diffuse grain-here 0.5 ]
$ U1 s; o6 I) v1 N/ w3 @4 | repeat 10) L4 a# G9 [% c! H& s8 _$ Y
[ diffuse grain-here 0.5]
1 W$ u# g; Y6 Z8 ? ask patches
" H/ m; K; D* O6 F [ set grain-here floor grain-here
8 X1 V8 D3 t; S8 D: r0 h set max-grain-here grain-here 6 a+ P* d+ u) P" E9 H; a
recolor-patch ]" Z! H8 I" |, S, |- x% h
end
; u r/ i, L, {3 U: s" b2 pto recolor-patch % D0 ]6 W( L! w$ i4 w+ ]5 [/ b. p
set pcolor scale-color sky grain-here 0 max-grain5 \2 l. _. e( G3 A- }
end' C8 o# A: \2 R& Y
to setup-turtles R' ?5 z4 q8 B2 k, n2 O
set-default-shape turtles "person"5 f' |* I0 i- [# X4 ?" M8 \; ~
crt num-people+ x* x4 W O( n5 a4 `3 d& G
[ move-to one-of patches . w6 c+ W' w2 D2 q
set size 1.5
! v+ l, ?1 D/ A" Y: n set-initial-turtle-vars-age
/ I5 f+ {! D5 u: y set-initial-turtle-vars-wealth
5 I& f* L( _% Y6 d1 ]$ n. Y) K set age random life-expectancy ]
1 Y. B5 N% |2 L! x recolor-turtles3 ~ R6 ^5 n8 o2 Q0 z9 ^ B! T
end
1 h+ U* x: i( J! M( u) G+ r+ S( h$ _& ^$ e' Z6 \6 _( K& Z
to set-initial-turtle-vars-age
) A% [; k, B( r let max-wealth max [wealth] of turtles( n3 I2 O( R/ _2 H: d- j" p- Z4 M
' T# |9 I7 Q$ i1 O. v& T ifelse (wealth <= max-wealth / 3)
. ?. k7 W1 O5 Y/ I1 O; E3 G [ set color red
7 B( ?) D$ O f* j$ k! ?8 A set age 04 I4 n1 r& z+ \- ]% k8 E$ E' f! Z" L% K
face one-of neighbors4 3 g& |: |6 J1 J. \+ ?1 n8 d @" R
set life-expectancy life-expectancy-min +) [1 e3 o3 d* ?9 F4 G9 F: K" Q9 c
random life-expectancy-max
3 y: ~; Q0 A" Y# c3 r& ? set metabolism random 1 + metabolism-low1 {" [( y! [. |7 f
set wealth metabolism + random 30
. ?) P8 r, j1 o1 S set vision 1 + random max-vision
/ X `! V" E; P" }. c8 f. B set wealth wealth + Wealth-inherited-low ]
1 P+ ^; S& u1 H8 y/ H [ ifelse (wealth <= (max-wealth * 2 / 3))
8 C4 y3 r: K, O9 p# L2 ~- Q: s3 ^ [ set color yellow
2 Q" O) I. G5 a7 n set age 0
/ p. Y6 f* O2 L6 Z face one-of neighbors4
+ I: X9 J* C1 C; W: n5 [) Q set life-expectancy life-expectancy-min +! {; a8 a/ x) j. P( T
random life-expectancy-max + 1
. t6 l9 `$ @" O6 y set metabolism 1 + random metabolism-mid
i+ X# d$ f" M A2 |9 e set wealth metabolism + random 30; I( }5 k' O/ P6 x& }
set vision 3 + random max-vision! f' d& M" r% D; m: S' K+ M0 {
set wealth wealth + Wealth-inherited-mid]+ R8 F7 x" |( J" j
[ set color green
: s* c G6 N, _( T set age 0! n& g0 h4 f. n5 }) }% o
face one-of neighbors4 $ D6 X! ~5 U0 j
set life-expectancy life-expectancy-min +
6 [* k5 {: ~* T" D random life-expectancy-max + 2* l1 b; ]: p# M% j2 Q& o: B1 B
set metabolism 2 + random metabolism-up
. t$ `' M& x3 x0 W, D! ]4 q; D set wealth metabolism + random 30
" q; Z7 `$ Q* i* r set vision 3 + random max-vision: [/ U9 D( h" S3 g
set wealth wealth + Wealth-inherited-up ] ]
2 L2 R2 W- m5 q% [) a; d, D( O
' n* f- I- `! k iend4 U/ I# ~3 j1 a# b6 ?
to set-initial-turtle-vars-wealth( ~% b- y/ d0 e j# M
let max-wealth max [wealth] of turtles
+ }: g: t1 j9 E. w* W set age 0) B* m2 Q) {9 i9 e5 c6 Q4 L
face one-of neighbors4
) \' L, T/ W% T( B6 `- g5 X6 b set life-expectancy life-expectancy-min + O* u0 A2 T$ @. R
random life-expectancy-max
9 w) ]! f+ @! _ set metabolism 1 + random metabolism-up
2 t5 h c" T7 j9 I5 [; q! ^ set wealth metabolism + random 306 L7 h4 t2 K6 D; n: H' b7 |
set vision 1 + random max-vision 4 M$ w( {0 ~1 X3 r: u; y8 Z( J g
end& A2 U7 d, B6 X0 X
to redistribution
4 A1 |4 g3 o6 D8 l( F! Z; \. z4 rlet max-wealth max [wealth] of turtles. V" w/ k! u/ {. `5 e$ E9 u5 Q* g
let min-wealth min [wealth] of turtles3 {" U$ G2 c. i. U/ ?
if (wealth <= max-wealth / 3)) @5 t" S& Y: t# T l
[set wealth wealth + Low-income-protection ]; F% R/ d6 @& Z3 W
end
2 |* D% m! w O: p- f$ H/ ?
$ X, Y$ e8 B' ~9 A5 k+ sto recolor-turtles: w( K$ a1 X9 {; U' m5 Q/ a
let max-wealth max [wealth] of turtles
& r' C2 |+ q: P& N m: V* S ask turtles% F' s! [ D+ N+ Z% ~' Y
[ ifelse (wealth <= max-wealth / 3)
" _4 l! l$ f) M3 r [ set color red ]' Y: k6 b6 e3 E2 r
[ ifelse (wealth <= (max-wealth * 2 / 3))2 E# I, H6 x. T# p z
[ set color yellow ]
$ S3 R2 H# v1 m1 M h3 p [ set color green ] ] ]
0 i& Y" w0 i0 k6 m" p ask turtles [ifelse show-wealth?/ O+ g( o8 b0 f
[ set label wealth ]
3 M7 y: l, [1 h* a [ set label "" ]]
3 |2 b7 F$ T0 uend5 |- g, T( g' O; a/ {6 {
. I+ H2 x! ?# h3 G$ r% B5 l; yto go8 f2 I6 M8 }3 Z4 X) | L$ ^" B- U
ask turtles
5 U* }+ B1 z: C* h [ turn-towards-grain ] # z$ [, H; M# S7 Y& j9 \6 k
harvest
7 f$ a7 Z- h g0 ~- h ask turtles
4 l4 Y# J1 r" B8 i# I! F" G [ move-eat-age-die ]9 g, Y' O B6 U: [
recolor-turtles
6 o2 b8 M$ R: T& t8 n if ticks mod grain-growth-interval = 0
$ w/ u& _% ^# P! s/ T [ ask patches [ grow-grain ] ]
8 \, b; z8 B6 j/ }) A- Y
2 `; A6 G2 d. A# Q( z if ticks mod 11 = 04 {+ ?4 V* l0 `: W+ z& E) T7 x
[ask turtles
2 g/ a7 F, d9 B- O! Z% Q' T [ redistribution ]]6 C6 g5 Q# ~; A5 H, P
if ticks mod 5 = 00 F/ O' J. q5 c. { A: u i
[ask turtles3 R* X4 L7 p" j( j' T$ m
[ visions ]]
' j q6 W" h/ }4 K tick
. q9 ~6 y2 }% w e: N; {( n& \, z; } update-plots
- {' m5 N! ?; ~( Q8 tend* O9 E" s( V& i+ Y# M; ?
to visions, x2 v2 P( p3 R
set vision vision + 1 5 @2 w( {/ U3 C0 U( @
end4 t9 g9 `' B) M# ^7 H/ Q( x9 W, H
' N9 Q2 D2 b! g1 V: n, h8 j6 z
/ {! N( x4 x# f& @# | U( k. C) ]
+ J5 p+ o" \5 Oto turn-towards-grain 2 l4 D* m7 J( Q8 J, G: X
set heading 0! ~) A6 c1 y- M" k& m& z R! h
let best-direction 04 M% e! k5 s# u3 W
let best-amount grain-ahead( s. l( I. i7 d7 ^
set heading 90
2 R' u* p! L9 h' { if (grain-ahead > best-amount)
) t; x8 ?! b F4 V: ? [ set best-direction 90
- m6 _) G n8 p5 ]" C+ P+ E set best-amount grain-ahead ]
& u5 a3 v4 E( x3 }: | set heading 180
& G2 e4 x. x' K! M ?7 P* j1 B* `/ g if (grain-ahead > best-amount)3 U* D! w) L# l' |
[ set best-direction 180
. t$ Z; U; C) p, d' ?0 g set best-amount grain-ahead ]( J+ M5 Y( l0 g$ E) Q
set heading 270
! j" E5 ?1 h8 n# Y* e if (grain-ahead > best-amount). \- L1 W' P0 r# ?
[ set best-direction 270& ]0 s, P7 ~( W) m1 J5 `7 p: z0 ]
set best-amount grain-ahead ]& ]4 q4 V6 f6 W
set heading best-direction
5 h1 _0 P( N+ F! i2 M6 q" dend: e' i1 U0 g8 R9 _
3 f' b$ \5 B" Y! o5 O; @2 \" C- I1 F9 p9 d
to-report grain-ahead
$ L# y7 O4 T4 \& T3 U6 { let total 0
; T3 W# w9 }8 A6 a" g$ _2 D let how-far 1+ V( T% Z) h9 e! P
repeat vision* u5 J9 B4 t$ T$ X
[ set total total + [grain-here] of patch-ahead how-far( o8 _0 R1 Y0 [
set how-far how-far + 1 ]: R: Y4 l( t/ a/ l1 W1 d
report total
# b2 Q; x1 n: v2 @end
+ R* k" U- E( R6 x
% ?% r; P% s6 |( Ato grow-grain 5 V% r) Q0 V6 L( P- u
if (grain-here < max-grain-here)
7 X5 N5 Q: Q" |2 i7 r [ set grain-here grain-here + num-grain-grown# a2 X: [& V$ Z5 T7 n& P
if (grain-here > max-grain-here)
; T- {8 c" _8 f5 z7 u1 o. o( x [ set grain-here max-grain-here ]
0 H5 V% q9 _/ r3 j* C recolor-patch ]# H+ T) _ x4 r# m/ C) `
end
- A. p6 H7 L* [3 B( Wto harvest
* L: @8 n/ m8 L( Q- U; n- H ask turtles
w. Z) ^2 R& }8 ?- _ [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]% c& Y+ a- |$ o* F, Z7 ?* u6 t& S
ask turtles6 Z& I: D) B* T3 R
[ set grain-here 0' W) V8 n6 e' @* i/ g; W
recolor-patch ]
/ l7 f2 n, V% h2 @' W% A6 [5 l2 d
8 A. v6 J6 q7 o+ G9 Cend
. S4 X) H! H. ^% k9 H% G- z1 G" p+ g
- `4 w8 Z* v' Y5 l+ {0 K$ G5 ]) N4 {to move-eat-age-die
J7 ?9 D' j. X, @8 F fd 1
% |8 r! D' X- e$ w set wealth (wealth - metabolism)/ k+ {+ W8 d" _2 b3 [- u0 O) y
set age (age + 1)$ [0 i/ n' A( n; @8 L2 F0 J
if (age >= life-expectancy)- H+ {; F) B* ?' V
[ set-initial-turtle-vars-age ]" W+ q! c9 ?6 m. e2 `% z
if (wealth < 0)
( v6 ` T4 U% a7 B& ]4 ^ [ set-initial-turtle-vars-wealth ], r" P! A8 z9 R1 [
# y# I0 d1 d7 v' N- O4 C0 l. t: U1 V* Iend% G1 [! E- Z+ q' O% H/ T" [+ j" P
: {5 I% p" ]4 Y
j0 K2 u- D8 j6 z
to setup-plots& \. p) m6 U" v" i1 |2 M' N* ^+ E
set-current-plot "Class Plot"
4 O. z) N6 ^1 j- p3 c& Y0 I* t set-plot-y-range 0 num-people: Y& r. j3 N% S6 j4 c f$ N' Z
set-current-plot "Class Histogram"& h r& v4 X' U1 J- m7 l
set-plot-y-range 0 num-people" j6 c, \9 E& U/ @
end
3 H7 r; q/ n$ `; ^. N0 J! S9 g3 O( _! K3 @
to update-plots
Q7 S, C7 T4 X _! X& q update-class-plot, A; n; Z" K) t7 k4 D( [
update-class-histogram. G! M* t- w2 Z4 u6 u
update-lorenz-and-gini-plots7 d" M1 s2 t$ }2 p& o
end, v" Q( {6 X1 ?) N4 l8 ^0 n
( C; ?) d' Q. p7 qto update-class-plot
* L& L, G& M- X set-current-plot "Class Plot"! i! U" |( P6 H
set-current-plot-pen "low"
% H/ j( x+ i4 \( ? F: E7 z; M4 T plot count turtles with [color = red]
& d5 K0 z4 u" ] set-current-plot-pen "mid"
/ a( i- i& k0 {" g& R: | plot count turtles with [color = yellow]
7 x3 s/ K) w, H' d set-current-plot-pen "up"
7 f9 I; r* R9 I1 z plot count turtles with [color = green]* D" m7 [7 u2 L" f5 K) r6 ^# U0 w# ^5 U
end
( }3 p8 P& r" W k$ \/ l( n) C9 ^% V% e0 W9 Q( I+ |5 ^) D& @0 `0 o
to update-class-histogram
3 |) p% G: t9 R% Z3 R8 x set-current-plot "Class Histogram"
$ t, i! j( P0 M0 s plot-pen-reset r1 \. r, z% i% ? w2 ?
set-plot-pen-color red
( F" T4 F+ Q9 Z. p# X- H plot count turtles with [color = red]
+ a* Z& f6 K3 a6 k; ` set-plot-pen-color yellow
& `6 k4 a; g6 h3 G7 ^ plot count turtles with [color = yellow]
" B" n* h" g8 M set-plot-pen-color green8 h) c2 L0 P& m; p+ l+ D
plot count turtles with [color = green]. s* r$ D. ] D, f; b
end2 @) m. K5 t' a
to update-lorenz-and-gini-plots! e) c8 q& \6 L% P( }" I% {* o
set-current-plot "Lorenz Curve"
! [' u# B* h, n9 A5 t clear-plot3 q0 `' R% X. l7 W: u7 ]7 D
" _( e% j# g! ^) u' v4 H+ W, } set-current-plot-pen "equal"2 c: K- i1 Q% w, k
plot 0" E: W1 Z- Y: b) ~ Y
plot 100, z* s! x+ y o: X6 X8 |+ B
4 n6 B0 x" w# _2 z* u8 Q set-current-plot-pen "lorenz"# W9 E1 Z: V6 @ {' D$ e& x# k
set-plot-pen-interval 100 / num-people
5 N `; a) P0 K& X plot 0
: X* d J& a! B. Y% |# C% G
4 N. @6 q, ~) b let sorted-wealths sort [wealth] of turtles b- c2 t* S7 [8 s
let total-wealth sum sorted-wealths8 \( v* i& c3 ] z
let wealth-sum-so-far 0
i1 G1 u+ H7 R q2 ? let index 0
( Q& M+ _' ?" G+ ^0 o* q let gini-index-reserve 0
1 n& Y0 f5 x% r) X6 u) F( O0 ` ?, X R3 D! y! }
repeat num-people [
+ S7 u& G7 u+ l: u set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
" b2 z% V6 K& v plot (wealth-sum-so-far / total-wealth) * 1008 w1 Z8 {. B! }
set index (index + 1)
9 j9 J6 F3 i& e, H; Z/ b set gini-index-reserve
! `2 \, y9 m# F* o gini-index-reserve +
% ?6 _& @4 s0 w (index / num-people) -8 M5 w/ x8 \$ T5 |, h
(wealth-sum-so-far / total-wealth)% l, y; X3 s4 \
]
6 v3 D% `! T7 z# b0 K& u: V7 [$ c8 ?" k1 b9 ^/ H6 t- v# C2 {
set-current-plot "Gini-Index v. Time"
( u/ x c6 Z! `9 W1 ^: |' f1 s plot (gini-index-reserve / num-people) / area-of-equality-triangle
: X! C6 S5 Q: S' L/ @9 o! Jend
. e2 G7 e/ O1 }5 X1 i* ~to-report area-of-equality-triangle) }! v" C, U7 d2 U
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
+ n. l4 O4 ~2 D! d9 f& uend |