请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
0 I9 l: y* ^! `' n# u% `" xglobals! d9 b1 B. N8 z" c/ x
[3 F3 a( E; R! M
max-grain
0 G2 e$ s4 o# c$ E" x8 V- o
4 I a8 u O2 n' ^; Z( ]]
( s6 @5 E. g6 c3 w1 S1 z
- D$ i. [& v8 b# J3 D7 G4 fpatches-own6 b3 o: {2 C4 W$ o$ ~
[
. Z( K: ~% r8 ` grain-here
2 _4 I7 [$ I4 u max-grain-here
. G% z4 L' Q2 w4 Q- t: v6 y! _]
# O, j6 k+ O# [% T, o4 e% j: A7 h/ Q j/ @4 X
turtles-own) K6 a8 M5 O8 g9 C, T. g, l5 A
[; b, h2 ~" N! b f' P6 K/ j+ |
age ! ?- T5 G4 P! ^, b6 L! r
wealth ) ~7 P. S5 s( J; Q+ Q
life-expectancy
' r4 Q& m! P% W+ l4 ] metabolism $ I) w: |1 N5 g
vision4 z; J% A: @1 f# Z" {: ?1 H
inherited 8 |, S. ]$ G3 s* ^5 N5 D# _
]& B2 l( _& n! s3 P
+ y2 D$ U2 W( q0 M
% b+ l [6 _- ]9 X4 Y# {to setup- u& s# A3 ^$ I. X0 G; y
ca
5 U' ]$ e7 e& q* V set max-grain 50
% u6 Y R- @& c" o setup-patches' j( ~& a0 f3 l! c- r1 T# O/ i! {- L
setup-turtles, I* {3 V- A/ ^$ @
setup-plots7 _4 J) t2 K* t8 d" N
update-plots
% J( \3 e+ R+ r# L% lend8 A0 J4 D6 L" b6 k" {' E; ]
to setup-patches$ ?$ a' Y" J1 p* p/ E
ask patches
+ b/ P0 U& D) ^+ K3 I3 f' @' a [ set max-grain-here 0
4 X" j- X1 d) X. P% r5 t% _6 X P# q if (random-float 100.0) <= percent-best-land) m% S# v! m) w; c$ w
[ set max-grain-here max-grain
4 i+ n- Q4 Q( g set grain-here max-grain-here ] ]
$ J5 R1 X9 C, _; U repeat 50 ]9 ]# i" A$ Z4 V* R/ @
[ ask patches with [max-grain-here != 0]( F+ e N8 Q. x1 H
[ set grain-here max-grain-here ]6 a( v4 B+ T9 m) \ Y
diffuse grain-here 0.5 ]2 G0 ]5 q2 `$ f& h! p
repeat 10; X& l; U1 h/ q) g( K6 c+ s6 ?
[ diffuse grain-here 0.5]
' W* F: O8 L4 z) S' J% |/ q; J, o- ? R$ ~ ask patches7 A- d+ s3 E! o) E( n( p
[ set grain-here floor grain-here
" t2 _) s* ~6 a4 Q+ x. ^+ S6 @! g set max-grain-here grain-here
8 }; W1 q, d Y3 T& | recolor-patch ]. L8 s5 O2 P, Q( `. x- P; C7 t* B
end. e# l, w8 O0 s. I2 O$ e0 b
to recolor-patch
C, A; m) [3 k* h6 {4 H" N# b' Y set pcolor scale-color sky grain-here 0 max-grain
: b0 ]0 K" G8 @end
/ s+ Y. G& u# ^4 N- C3 Kto setup-turtles
4 e, P) S" y6 h3 t; t) h2 | set-default-shape turtles "person"# P* Z5 c* C9 x4 s/ Z
crt num-people+ B7 j2 S; L( J; ?+ {
[ move-to one-of patches ' j7 y7 x7 I; X. M" V/ D4 H4 m+ }
set size 1.5
/ o3 \& i$ A0 G# M$ l# v set-initial-turtle-vars-age O6 _# }6 V3 G+ R: F; X5 r
set-initial-turtle-vars-wealth9 Y0 d6 R) F- }$ S: T
set age random life-expectancy ]: m/ d% G: r' L- a% K, x
recolor-turtles- [1 x& A+ F1 C; T K% j5 V* P
end R6 V' U( d, ]) O
0 n7 F( E m0 ?5 P. L
to set-initial-turtle-vars-age( O9 y8 d- P; J! q8 ?8 `
let max-wealth max [wealth] of turtles3 Q2 i- ~2 |% i2 R7 q; U. _
# ~+ c% `: w: ~; P, y. m3 i, c
ifelse (wealth <= max-wealth / 3)1 Z4 f) @- a0 T8 Y4 P$ T# g0 }
[ set color red
$ i4 D9 P+ I7 `3 t5 S" i: Q6 y% v$ U set age 0
0 I( d) t. |. w3 d face one-of neighbors4 & p2 q1 B, k1 H$ y/ ?9 s
set life-expectancy life-expectancy-min +
1 ~; T0 p& |7 l$ { random life-expectancy-max : A0 U [( v& U# f) K1 t
set metabolism random 1 + metabolism-low' \& m3 d- P z. F! w
set wealth metabolism + random 307 w. k# o- s6 ~$ O( p, Z
set vision 1 + random max-vision
6 \% D" h) ~& J- ^ set wealth wealth + Wealth-inherited-low ]
2 \+ t/ z/ E0 h [ ifelse (wealth <= (max-wealth * 2 / 3))
! ?! n7 {# h* B5 z$ ^/ I [ set color yellow ) I( U& F0 l% Z' L. F
set age 00 G( L3 t- k, Z
face one-of neighbors4
2 q! \# \( D7 ^1 u; _* w set life-expectancy life-expectancy-min +1 h: W+ X4 Z: G. e
random life-expectancy-max + 1
! l3 n- |3 X, ^: ~9 V set metabolism 1 + random metabolism-mid- o- J$ U- G0 ?1 j
set wealth metabolism + random 30
" M- F6 T6 b$ i4 A, U/ ` n0 x set vision 3 + random max-vision0 J/ h+ g0 x+ x+ I
set wealth wealth + Wealth-inherited-mid]+ e* {' _7 ~4 S3 B
[ set color green
2 x. W7 T4 w6 v- s7 w set age 0
C1 ~! A7 b7 g* V# x face one-of neighbors4
+ z; @, D2 T6 r, c# Z set life-expectancy life-expectancy-min +
6 X0 e8 D8 ~' R2 w; C8 w random life-expectancy-max + 2! l/ x M. f5 v; s9 Q7 t, z6 B
set metabolism 2 + random metabolism-up
~. ?5 a8 `; B5 K0 K- x' w) v set wealth metabolism + random 30$ t! Z/ Q! A0 M* \5 {* b3 L
set vision 3 + random max-vision5 D% o) G4 e/ B$ R4 K) I; G
set wealth wealth + Wealth-inherited-up ] ]
5 C" U4 Y" |7 r0 c 9 ]3 H5 U4 S% Y5 o2 r7 `
end2 S& q3 p: |# _" ]& ]4 V; t
to set-initial-turtle-vars-wealth: O5 A" [% }' O. o4 ]: C
let max-wealth max [wealth] of turtles
6 p) \: `1 `6 t) N2 L0 V6 W set age 0
. ]/ d& o4 A) d# K5 S X y face one-of neighbors4 3 X7 a6 R6 m5 @6 R
set life-expectancy life-expectancy-min +
, g, s, I P3 @" w" i random life-expectancy-max
. j+ R" ]$ t8 C f: f set metabolism 1 + random metabolism-up
9 s, Y2 m# u' b% m6 p set wealth metabolism + random 30" Q) m5 E5 v3 W+ `0 S# e
set vision 1 + random max-vision
4 R0 q6 `7 w- |/ a$ ]* h3 P! }end
) ~$ q1 }$ n0 c' B0 i J4 Oto redistribution
- s" v9 X. Y/ z# r& Blet max-wealth max [wealth] of turtles7 a3 b2 K* h% g Y H1 ~
let min-wealth min [wealth] of turtles
; G( w' B# q2 aif (wealth <= max-wealth / 3)
9 P2 P T; e) ~4 b [set wealth wealth + Low-income-protection ]
2 f( O2 \' l. @4 Q( [end
) @% [9 v6 B# N, P' x
% D, t1 O6 l- k0 \8 A, Q, Uto recolor-turtles# P7 l9 k: u& s5 L( e* i
let max-wealth max [wealth] of turtles; S7 a, H8 o; w, q
ask turtles& u/ _- u( i+ @2 d. R
[ ifelse (wealth <= max-wealth / 3)9 Y D! `* ~/ P+ a; x
[ set color red ]
0 }4 y6 u' S6 G* |$ l% W8 Z5 A0 A# u [ ifelse (wealth <= (max-wealth * 2 / 3))$ ]9 b. `$ n: J
[ set color yellow ]
- X; q0 M! H5 a [ set color green ] ] ]
$ C% n9 I3 j5 z4 U7 m3 Z ask turtles [ifelse show-wealth?
# ` V/ l; f* S3 x } [ set label wealth ]+ _" M% K( D, T2 G; L' [# I
[ set label "" ]]
8 T/ u' d4 C K- i$ F) g" I( dend
3 H0 h: w2 k+ K- k; h, w# v
$ N g) D/ f. u9 s' Wto go
5 _1 F4 w: \4 I9 m ask turtles4 ?: k4 ?* z k2 h6 | {( S
[ turn-towards-grain ]
. H7 N3 A. M: H" N3 f3 T harvest9 s& s0 ]. H6 \5 _/ C
ask turtles
4 q3 c% D9 Q. V [ move-eat-age-die ]6 x' d( e, e9 ]* Y5 i
recolor-turtles7 h4 \0 W7 N$ L) k8 T' d
if ticks mod grain-growth-interval = 0) @) T3 W, D9 W+ B& e
[ ask patches [ grow-grain ] ]
8 d% r1 P w: N& W! X
2 Z, b& V. e* [6 F+ C* w* U4 E if ticks mod 11 = 0. y( g8 g0 b( c/ W* y( M; V- [4 l" E$ s
[ask turtles
' M# O4 F7 S7 {: a0 M [ redistribution ]]
' q4 z2 s: y, S if ticks mod 5 = 08 [. w3 h4 H2 Y7 H8 M5 @9 N
[ask turtles) k% ~* o. \- E8 j! O8 K
[ visions ]]
* ?7 N+ I; E% D1 p tick5 ?/ v) Q [2 t) t& Y, U% m% _9 `
update-plots
; U, {6 o: w* S% o" Mend# I) q {1 f: P( ^% G
to visions! p/ Q6 A2 \% q
set vision vision + 1 ' x3 J$ q. Y4 e3 r3 A6 ~; _
end' H, |3 x( {3 a7 V$ W; y
, d! d" i# u: ^5 g: E& B9 W
+ |* S# i+ m( L0 e! X0 V7 k7 y! j
1 N% q4 k; ~% a7 T. E) e8 ^to turn-towards-grain
1 |- C7 x3 {7 q' t8 _1 Q' e set heading 0
& Y0 f6 s l; _3 X, r: }! { let best-direction 0
$ D5 P. b! F2 S% t% t; F( i+ L+ y let best-amount grain-ahead: o1 Y# b `3 e! A9 Z& d \; ?
set heading 90
* O: N2 p' d# }) z$ t if (grain-ahead > best-amount)
- a( q% n5 ]5 H7 S [ set best-direction 90
4 c; E' Y$ ?: I' v+ N j2 h set best-amount grain-ahead ]
3 Z) m9 r4 f9 S3 l' w7 y set heading 180# v# g# x9 M0 @ m; E# i, n
if (grain-ahead > best-amount). n1 J: t/ v7 k+ A. E8 t; H
[ set best-direction 180+ z$ R! Q% E d, m
set best-amount grain-ahead ]
* G4 }5 u3 y& L8 G set heading 270
9 Y; m8 B; n1 @: E if (grain-ahead > best-amount)
8 i' ^& z2 v8 v& m# ^ [ set best-direction 2705 J( f: |0 c: D, \7 k% _
set best-amount grain-ahead ]2 q) `! ]/ X+ z; j
set heading best-direction2 s9 F" b/ i- R1 O* @
end
' }0 y( |3 v5 l; q- A/ p4 W; v K" B {) ?! n4 n, T) t
$ x* k5 V* H: ]; @
to-report grain-ahead
- j; s% W! z8 I% E let total 0
' }$ t# u0 I* Q0 N let how-far 1
( r/ I* w- w4 [$ ~) {5 c repeat vision
' U* B: _: t2 s4 @/ m [ set total total + [grain-here] of patch-ahead how-far
" d# H' x( H# X! G/ u. y7 n set how-far how-far + 1 ]
: | R1 X* v5 A7 n6 \( J% H- M report total
$ b5 M8 ?! x+ I. A: a" Qend
. j. z( T( V& F, F! y5 ?! l
0 C( M' _# Q6 n. r0 m" H: I( ito grow-grain ) e9 O, H5 V0 H
if (grain-here < max-grain-here)) z& @9 n6 I* r1 G* e. v
[ set grain-here grain-here + num-grain-grown
1 x6 u! _+ H5 H0 [ if (grain-here > max-grain-here)
' H' v' g3 k) B; A [ set grain-here max-grain-here ]4 z+ W, n! Y# z+ ?/ L
recolor-patch ]
0 g% N* w4 o4 O7 {end
7 f) v% v0 @3 O# wto harvest
' ?3 Z% o" u( Q6 A @% _8 C ask turtles
$ K' J7 P9 h, D1 U Q [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ ] r* W+ w$ J1 s( q ask turtles7 m* j+ [' u c. \2 ^
[ set grain-here 08 B1 J( q* P/ n: q0 F* G* _2 @7 ~
recolor-patch ]/ Z" @3 d4 h6 v! ]
; _! |" x) D2 }7 Mend. E+ d5 a+ ?% S
9 }9 |; b% f1 E0 l+ Wto move-eat-age-die
6 n, w' W- k6 j6 C; D4 W- ^7 o( [ fd 1
" [2 [5 ?/ B9 u! E" |$ z0 P set wealth (wealth - metabolism)/ B2 J7 W5 Q6 f
set age (age + 1)
9 s1 }6 n o8 `! {6 n5 y if (age >= life-expectancy)% a- F) o! o" z8 p3 ^* c& Q! A$ L5 H
[ set-initial-turtle-vars-age ]+ ~, F n6 C- |3 R) G5 E
if (wealth < 0)) z2 N _4 l+ u% s# g5 l( `
[ set-initial-turtle-vars-wealth ]
9 C% P0 p/ e# K, N2 t
" o& ~' C/ `' y0 n. qend+ C/ V% Y; W$ [. h/ W- u
! n2 t8 _ _+ K5 r
& X x! c7 G) N2 {to setup-plots
' N% y" v% A/ o% C) V set-current-plot "Class Plot"0 ?2 Z0 x W+ a$ M+ d/ P+ q a
set-plot-y-range 0 num-people
1 X) n( |! [- F: J* f, H/ e set-current-plot "Class Histogram"
0 B$ z4 k9 p A' P0 X; d0 f& ] set-plot-y-range 0 num-people
* b Q* j7 b( A/ nend9 D0 H+ [, q5 Q9 S3 ]7 m- H+ V# ^
1 ~9 D/ f! |! {* B
to update-plots
1 f+ B# C( R7 N update-class-plot
$ l) r; @& `8 C/ N5 H) S q update-class-histogram
( L; _7 w# j T$ |' Y; g update-lorenz-and-gini-plots) [8 N6 V& E* q0 Y+ L6 S f$ f2 Q
end; k- |9 a2 T0 w
$ `; M' Y2 d' }, V9 r# d
to update-class-plot _7 u0 }4 z# O1 i
set-current-plot "Class Plot"( P- W. p9 S$ ]
set-current-plot-pen "low"
, o' @2 ?- X. S9 H5 j plot count turtles with [color = red]- { `5 i4 \+ d" B. K' h5 a A
set-current-plot-pen "mid"' J" w" x7 V$ o- o9 J
plot count turtles with [color = yellow]
B B y0 ?7 d8 B; o( ~ set-current-plot-pen "up"( d( v) L6 R: ~4 t1 z3 B( Y! |7 ?5 M) g
plot count turtles with [color = green]
1 ]) J# N4 @ `" g7 rend9 z# s& S* \8 W1 q4 M# H; C! q# }
/ b- ~% m: T. l$ yto update-class-histogram4 u1 p* X6 E' V! Y
set-current-plot "Class Histogram"
3 e/ b3 p6 N% Y, j plot-pen-reset* a* r1 A; D5 U: A
set-plot-pen-color red9 i) S- K! E; w/ u' q9 ?1 q( d: ]4 Z
plot count turtles with [color = red]2 ~6 V+ ?* \! a! l
set-plot-pen-color yellow1 I) A* S% i3 a! X
plot count turtles with [color = yellow]% f: e4 d0 B5 H9 k6 _
set-plot-pen-color green
7 i. r/ N" P) ?1 ^0 O+ ?! }6 }' f plot count turtles with [color = green]
! Y7 x8 \( O9 Z) I+ @end! }6 y& k4 S# K. l- V! O. h8 J
to update-lorenz-and-gini-plots' T2 Y N5 _6 O: _5 l9 Q0 o
set-current-plot "Lorenz Curve". A8 J d7 z2 X/ ~8 Y: W& ~; I6 \
clear-plot: R: w3 x& v8 J5 [( P
0 p( M& B) n' [' o& z8 Q7 S' Q
set-current-plot-pen "equal") S$ }+ x2 H8 e0 c0 h' y4 O
plot 0
. _! y- F6 B6 y/ e- g plot 100
a' L9 ]4 I, W
; G- p3 w0 y& I- u1 N8 F8 V& {2 q5 q set-current-plot-pen "lorenz"
2 s, z. G8 w4 d2 @& Q set-plot-pen-interval 100 / num-people
: d' b' t6 Q I# ~ k* s plot 0, V5 g& T4 e; A/ t y$ v( G
8 F: p# A& Y( m" h let sorted-wealths sort [wealth] of turtles7 ~8 d5 T* {9 e' _; P
let total-wealth sum sorted-wealths0 @4 I2 F1 u( a
let wealth-sum-so-far 09 G' C- U) Z' z& n
let index 0% J' U+ Y; H6 l6 X$ t) |' b
let gini-index-reserve 0" D% i) b1 P9 T" t( Z
$ R2 t( F6 O+ v) M
repeat num-people [
) R; [* O( r2 } set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)/ S( i ^% V9 i2 z9 {
plot (wealth-sum-so-far / total-wealth) * 1007 V% V8 ~3 c- M* `) ?; R- E" _( A# ?
set index (index + 1)$ t: X1 h' I5 u0 J V
set gini-index-reserve% p2 n: N. h1 Z/ f1 R; ~8 a
gini-index-reserve +2 D% |$ d, D6 k1 |
(index / num-people) -
6 ?4 e) V/ x+ _# Y$ g5 S. H' i+ z, K (wealth-sum-so-far / total-wealth)
& J K( T9 B! R: n" k: }# }8 k ]
6 s3 E6 b8 ~9 x5 O) v+ Y7 Z; u0 L$ E0 b* q1 S
set-current-plot "Gini-Index v. Time", ]" A; g( ~8 @/ H* }7 r# Y
plot (gini-index-reserve / num-people) / area-of-equality-triangle0 P2 Y: Q, q2 B
end
4 ^* X! a( I4 z+ z9 S @/ G- h, C4 oto-report area-of-equality-triangle0 u) z( ]. t$ X* x: O& w
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)# o& X4 E: R5 f1 |* N
end |