请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现2 F1 [, @" d+ n* b
globals
; M w8 }. n1 |1 b6 T6 x7 v2 e[
& G% G! |; A- d8 Z/ W8 ]6 m6 F: Y3 I max-grain . Q3 ?( _9 L( Q& E9 l
* @! B# ~; c; }- a( g]+ R# P: ^, I$ i: I6 ]3 P- `% J1 H7 u* @
# ~: N% A6 R$ R2 kpatches-own
+ u. Q) z% p6 n8 z2 O[3 q+ b, F2 Y* d* h2 w1 m
grain-here
) K: c9 ? Y+ a. _/ w) g max-grain-here 3 a( H6 j1 y& x4 N
]# w' S+ i% c9 ]% J" D! B
& h. u" M7 J$ v9 j+ Xturtles-own
# ?+ ?# L7 ~; d! x2 {7 C[
4 T2 i( { u4 n8 i3 m age ! h$ t# G1 ^$ f
wealth 4 R6 ]+ g4 t# O" v+ k
life-expectancy + t- V" u2 d* ~4 g
metabolism ' b$ a( G: M7 ~6 m* B
vision
! y+ x5 B9 i. V% T( p9 U! L inherited ; Y0 {) h" T0 c
]1 q$ f0 R, P2 n# d* B Q/ G
/ `+ b2 F' J! D( u1 ?) W' o
2 U* P0 u5 `( U* k# D9 ?7 u* m+ bto setup8 z; n% Y- W& w- S0 y/ s" [
ca
[- f- P& T3 ^6 w; ~ set max-grain 50
" P+ M9 @, {: A) _ setup-patches* ]6 s$ U9 j- C
setup-turtles( j2 s% x6 o4 u
setup-plots2 {7 h! n# }* r( o
update-plots
4 M3 C+ j: a, ]% K u+ c( m/ T7 Tend
! T+ e. e4 ]7 |to setup-patches
, g9 e# Q# b) ^8 X/ S. V ask patches9 S+ }4 ?2 s" W( F5 s- N2 b% z! Q
[ set max-grain-here 0
% \1 y9 Z4 d1 ]0 ] if (random-float 100.0) <= percent-best-land$ l; F; w( r$ [& _* [& L: J
[ set max-grain-here max-grain; c4 n4 z9 I- O9 z" r/ n4 i) P
set grain-here max-grain-here ] ]! ]$ b. r' @* f
repeat 5# ^ |5 h1 ~$ l
[ ask patches with [max-grain-here != 0]
# T- y( V2 }9 w- m- Z [ set grain-here max-grain-here ]
. Y$ q# w2 c7 n% y diffuse grain-here 0.5 ]
- @* m7 `( w# L* s- g repeat 10
- N6 |8 Z2 |2 _ | [ diffuse grain-here 0.5]
4 X9 t0 S. i, u ask patches
6 t# h, s6 {6 ` [ set grain-here floor grain-here
+ q. {. _( ]; }9 x I set max-grain-here grain-here
9 g/ u1 |- X" c recolor-patch ]
/ g2 i7 X; [) V- g! U1 k) d6 K# g% p( rend
2 j8 G7 l! X9 H: d& h' t" p1 G3 ~to recolor-patch
) _9 T9 X4 S8 a set pcolor scale-color sky grain-here 0 max-grain/ v# j+ D9 p+ Q5 }7 }, E2 X
end5 U: e5 [1 n* O! y& \
to setup-turtles
; E8 s2 R$ s2 Y3 q, K, t set-default-shape turtles "person"
6 ?( Q) i7 n) x @$ u% i: p4 x crt num-people& t5 z2 p% b9 ]: x0 E
[ move-to one-of patches
! U s2 c$ d1 M7 F6 r set size 1.5 ; L3 Z2 m3 ?4 p: o
set-initial-turtle-vars-age; k: G2 H5 S2 Z6 _8 s1 q6 H
set-initial-turtle-vars-wealth
/ e5 Q; q. _1 Q/ l9 }5 ^6 \ set age random life-expectancy ]
5 T+ P- z4 r& r- }+ c recolor-turtles
( _: Y' h5 `/ _2 ?4 s+ f- `7 Nend H, x) j/ I$ a) U* D
' M# ?/ U& G4 Z; A
to set-initial-turtle-vars-age
; `% ], S0 y8 U4 p% O9 h+ `* Z/ H let max-wealth max [wealth] of turtles" O! V2 _$ E/ R$ S$ X) V! Z" X% }" w# \
/ v! i! }/ @ p3 F* n$ j! N ifelse (wealth <= max-wealth / 3)$ S c& m* H6 c. W) d4 V
[ set color red 6 }/ _. \2 n! v- @, K( Q+ |
set age 0 k" N; Y/ C- G2 m
face one-of neighbors4 & S K! @/ |+ h7 c
set life-expectancy life-expectancy-min +* V& U! _% v, s, s
random life-expectancy-max # ]7 w/ H) z1 O
set metabolism random 1 + metabolism-low7 B O0 }; S& ]% k7 a. ~
set wealth metabolism + random 30# u! [7 I% |& v5 {+ ]$ n- d
set vision 1 + random max-vision
' |/ O' g) I: c5 ] set wealth wealth + Wealth-inherited-low ], e& v% t- C: U8 G
[ ifelse (wealth <= (max-wealth * 2 / 3))7 b7 L6 `# w5 _& u: ?- z' S
[ set color yellow
' k, H* Z% ]. W+ v6 x. J* Z set age 0+ i* [- o$ P9 v4 n ~! [. @
face one-of neighbors4
1 {7 |0 l; Z4 H2 w. z7 w. ]; E3 Q set life-expectancy life-expectancy-min +: f2 ]! L9 D3 w* }2 p
random life-expectancy-max + 1' D- U& e8 F" T" R
set metabolism 1 + random metabolism-mid/ d7 M' L0 @! M
set wealth metabolism + random 30
7 F" U0 P& i4 u$ _/ D set vision 3 + random max-vision
7 `/ l" Z% E% L) ^2 i set wealth wealth + Wealth-inherited-mid]
$ b2 W( W0 }3 ?& T2 |* L$ s. i [ set color green
6 s1 S2 r6 q2 @" ]+ W set age 0' F( {! A& o5 @4 t+ k E3 ~
face one-of neighbors4
3 `- k" T5 v/ j8 P" B set life-expectancy life-expectancy-min +1 m8 c" Z, j% U* J" P1 z8 }' _; Y4 ~
random life-expectancy-max + 21 r6 @ I5 ^7 a- f
set metabolism 2 + random metabolism-up" }! n2 l& L) m" @) e- C3 I3 m1 v
set wealth metabolism + random 30; U& [$ B9 D# A4 g8 r
set vision 3 + random max-vision+ E: O$ w$ j5 t9 Y+ H* q: v* [
set wealth wealth + Wealth-inherited-up ] ]
" E, w) e0 F K. w9 l; D, I & |2 a2 Z) J! X9 ~) M
end
$ ?/ Q" P; \' @ B- r% dto set-initial-turtle-vars-wealth( c( x& V+ K$ t: n
let max-wealth max [wealth] of turtles
3 _8 j8 d: H. i1 w( ~ j set age 0
4 q# [2 F0 _ Q( |/ S+ e/ X face one-of neighbors4
I; ?/ [# g# W set life-expectancy life-expectancy-min +( ?6 N: e; }4 Y# @3 Q
random life-expectancy-max
8 j7 Q5 \6 i( q$ B u set metabolism 1 + random metabolism-up$ w# u# ~5 `: p3 @. T4 Q
set wealth metabolism + random 305 o3 q. x6 z; I' l
set vision 1 + random max-vision
% g) K; x4 a& U5 [. e! Bend9 W' }+ g* e0 ]$ f! e
to redistribution1 u, d+ Y- h7 m+ X$ c6 [- L
let max-wealth max [wealth] of turtles
1 q r1 T7 q4 h! elet min-wealth min [wealth] of turtles# m# C- t4 i# R0 C( A. ~3 O
if (wealth <= max-wealth / 3)% Z0 t5 L3 Q) {* H" w3 \( O
[set wealth wealth + Low-income-protection ]! g( H' i% L R
end( x* P1 z# y1 J0 H
+ W7 J4 G. e/ [; N* s- {6 M- ~" Pto recolor-turtles3 J/ `2 q3 y, F
let max-wealth max [wealth] of turtles9 ^+ C! u4 k4 m* K3 c8 I2 T
ask turtles
" a a& X! d* |: t& G [ ifelse (wealth <= max-wealth / 3)9 b! j2 ~4 f- p, H* _1 e$ [8 ]
[ set color red ]
1 h5 K1 u; c- ]: W2 Y1 u [ ifelse (wealth <= (max-wealth * 2 / 3))
' o; g7 b5 Y: d. ?: q1 Y [ set color yellow ]
( X9 ~0 B# `% o) z$ `' _ [ set color green ] ] ]
( o x$ g3 ]+ J5 p ask turtles [ifelse show-wealth?# Q1 o( m# a( {5 S n
[ set label wealth ]; F0 |) R# z/ K) r3 N
[ set label "" ]]. r. t9 k7 k- A- p6 q
end
% M9 V9 y, o* F( u. C+ T
6 W+ M& _( D$ l' `4 s3 Y2 xto go
/ K ?4 K( C5 Y8 l ask turtles% _; J* |; V/ n; P6 ^
[ turn-towards-grain ] & ]" u7 W8 Y3 @1 v. V( R: @% Y
harvest
: v: t) s2 d) v, }* D# h! l- R# _ ask turtles& P- k' g6 ^; r( u
[ move-eat-age-die ]
2 Y. v" u# k- f0 W recolor-turtles
/ P8 B( c1 Q( B5 u; k if ticks mod grain-growth-interval = 0
9 w0 V- u, z& _5 `3 d1 E: U [ ask patches [ grow-grain ] ]- H8 A6 B2 u; A' Y, u
3 P! i! f9 O9 J% o8 v
if ticks mod 11 = 0
/ U3 \9 e( C: J# Q/ T, p! L. w [ask turtles& k$ k# _2 `% o4 Y7 m0 m
[ redistribution ]]
8 L" a e- f. s, `# a. H- U if ticks mod 5 = 0
$ n' t' K9 J7 ]3 y5 Z, a+ T [ask turtles
+ z% g. x) R7 h4 A; N9 _ [ visions ]]
/ C0 q$ P3 }$ R, C8 P; Y2 y' U; R tick2 z: v5 c( k. t* |: V1 f3 I/ ^; s
update-plots
p6 B1 m. R% Rend6 W+ x/ H) j7 Y" t' e P+ M
to visions( h5 C* _. V$ Z7 k) K) i+ _
set vision vision + 1
) }" {9 y, Y8 R: ~. Gend
$ ^3 @& |8 W$ H8 c
% h8 t1 z4 }2 i* Z$ q. Z. p: z" ~
2 ~, ?6 j; r7 w* ~) n, c B
to turn-towards-grain 5 O% Q7 Y! r1 e% u0 l' E$ T
set heading 0
8 U: {; o# E x7 H" V) L7 _ let best-direction 0
0 u1 H1 ~ C! n' y8 |& \ let best-amount grain-ahead
/ ^; K8 Q& k; [6 I$ j1 v( p, f set heading 90
( J/ q% m# ?6 @ if (grain-ahead > best-amount)
& j: l( ?, j: N; e5 F8 [ [ set best-direction 90; ?, z% h! ~* N
set best-amount grain-ahead ]% c8 z$ _4 q* F' f$ X
set heading 180- o0 X9 m5 e# ~$ z/ N1 ]
if (grain-ahead > best-amount)
. x! {) W, c6 a4 J2 F [ set best-direction 1802 h4 x1 u2 U9 n/ D7 k3 |
set best-amount grain-ahead ]- s t J/ y) t4 H5 B
set heading 270
. r! x% Q, }+ j1 {# Q, o4 V" j1 K/ R if (grain-ahead > best-amount)
5 X: Q1 m9 u- I+ [: ~# z8 g5 t [ set best-direction 270% ]. ~( V J- u+ a( a
set best-amount grain-ahead ]7 p9 z% ]" R ?# _, M1 t2 Z
set heading best-direction
; x; ]3 S& Z- N2 l3 o1 B& ~+ {end
( y% ?8 c- A, E* j% p# ~+ b$ `
/ J# U% l1 y4 u, j4 q/ N/ v# \to-report grain-ahead & K5 _1 \! ], ^, c
let total 0
; d3 N* X3 N0 ?) Y let how-far 1
0 s9 K v( | t repeat vision% f: s/ P0 i" n9 d/ O, Z
[ set total total + [grain-here] of patch-ahead how-far3 U( _; e9 f' @- t
set how-far how-far + 1 ]
" Q) T" u, y9 }* D report total M- K) N4 _8 D3 g/ n) p
end8 E+ F! o: d6 o: k, t# ]
5 r2 d3 F* u0 z0 j) ito grow-grain 0 y* _8 L6 r$ T. K9 u
if (grain-here < max-grain-here)
% u8 G9 N7 |, @! n1 F% L; W [ set grain-here grain-here + num-grain-grown
2 [9 ^- K$ l0 p9 ?+ S: G if (grain-here > max-grain-here) + @! m# ] C) n# K9 P
[ set grain-here max-grain-here ]
# L% @ ^6 r; P* F2 N/ q recolor-patch ]
; U' ^* r5 ~8 K( x. @) i/ I6 Bend
: {) K& ]8 T( x$ w* dto harvest
- _ Y& X O% N' P( n5 n4 r ask turtles( g& |/ ]/ X% w
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. |5 W! B! D+ S# A
ask turtles, T( S; J0 d6 Z- x7 t
[ set grain-here 0! A# l9 O/ g8 R8 v# a% Y
recolor-patch ]
4 o& Y/ w3 {9 [+ j1 i# u: s
& n H" ~; B1 O( T5 C2 Lend! X5 g1 O3 M( b p% e6 M
E D( [4 k. c" c
to move-eat-age-die 3 m7 J0 H3 e" Q8 _8 O1 y
fd 1
. N5 v& C( g: ?. P2 W set wealth (wealth - metabolism)
# \7 z7 {: I/ o+ y. h: g# V set age (age + 1)8 O( E" H; N3 g! X/ n
if (age >= life-expectancy)
7 r) z/ f( J2 c7 d3 ? [ set-initial-turtle-vars-age ]* J3 [# x0 u+ t2 B) i( j C
if (wealth < 0)2 ^* Y# @8 Q2 T) d# U* p
[ set-initial-turtle-vars-wealth ]; A% ?( v$ a$ E4 X0 _# C* Y+ P
% F8 {% V# W k
end
1 c- J" y3 M7 M' a
7 _$ r# h% h3 [, D$ }
7 D/ {( _4 ^: v# [to setup-plots
% l0 T c6 k; m0 c: Z set-current-plot "Class Plot"
7 M; E4 e+ P$ P- p: M: Q) J set-plot-y-range 0 num-people
) c: H9 M" z, h1 M# u, [6 x set-current-plot "Class Histogram"
# Q: C5 s/ Q/ E" ~ set-plot-y-range 0 num-people2 w, M$ p j; U8 [$ B
end; E! v3 _2 h \& c- s& g
( E0 s: b! B' j9 k: R5 fto update-plots
" I! {% k& e0 t update-class-plot
+ z, g4 K2 h4 C% V update-class-histogram6 A' m+ M( d, [
update-lorenz-and-gini-plots
- B2 Y p% o- h3 Y. o; q6 eend2 K8 e8 ~2 y! R
( H* |/ V4 E+ m; W+ x
to update-class-plot
/ j1 e5 A& H. o, R0 e) L1 ` set-current-plot "Class Plot"2 |$ M2 D5 Z! c D
set-current-plot-pen "low"" h4 B! M& n* e+ p
plot count turtles with [color = red]
) r4 w+ n6 g: ~- p set-current-plot-pen "mid"8 [0 I9 R3 m/ p5 D/ M! d
plot count turtles with [color = yellow]1 n8 j" |3 C# a# o- D
set-current-plot-pen "up"0 Z, {2 K0 x$ u+ H+ Y8 @
plot count turtles with [color = green]6 X1 J1 N \) \0 f3 J" |6 n
end; x: N- w; F" c4 @2 X) D" ]
' I" G* [1 A& M3 X3 y9 S, |
to update-class-histogram$ \% n# ]# h9 Q& J/ P
set-current-plot "Class Histogram"; q* P& m$ y' [/ y, I
plot-pen-reset0 O& e- h. ^" V6 U
set-plot-pen-color red" r% c1 t$ X$ c7 U* q
plot count turtles with [color = red]
( D3 m/ W* ~* k% G set-plot-pen-color yellow9 l1 v3 O* K; g" _
plot count turtles with [color = yellow]8 N: ]0 g( K$ j/ k2 l
set-plot-pen-color green
$ r1 ^. T2 T+ \. k( b5 q$ \ plot count turtles with [color = green]/ F/ W, D/ v6 [# E( c- ]
end" b" E! {4 Y( T- w9 Q/ \
to update-lorenz-and-gini-plots
: v! I( Q. `7 r+ k6 w. D set-current-plot "Lorenz Curve"
" r0 [5 r& z, D$ C2 M- g0 W clear-plot& S. O2 _% z6 o7 o3 E
; I. N; `% b0 b; U- _ set-current-plot-pen "equal"$ M( ]& X# ]! C. y, S
plot 0& x# y" D" B& o9 _% g8 V
plot 100
9 x( p+ @- n) u7 j( O3 q! P, v! O! D9 r. C" U
set-current-plot-pen "lorenz"/ n; |: P1 K7 B- I# O; W
set-plot-pen-interval 100 / num-people
, Y) R! [4 O/ z. x2 Y j, H plot 07 W6 U1 K9 n a% k
/ Y$ X, ~/ `3 w, ?* C let sorted-wealths sort [wealth] of turtles
$ F- p; J! F. i$ _ let total-wealth sum sorted-wealths
9 B7 B- v- M) S; U" z let wealth-sum-so-far 0
# p) X. a1 L0 E3 [% f let index 00 U1 @6 L4 t R) ~" v- q M6 i" ?
let gini-index-reserve 0
# ~3 p0 Z' B( E& Z2 @3 X2 F9 D/ J Y! k4 h5 L1 @ s
repeat num-people [8 `+ [, F$ l/ V! M) n. ~
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)9 L1 C$ d2 B; A8 p0 p2 }
plot (wealth-sum-so-far / total-wealth) * 100
+ E" F9 k! S1 t set index (index + 1)7 n$ Q+ n4 T5 p. Z, c. V/ X G
set gini-index-reserve3 z! e5 B! h( o! Z% Y# n8 p
gini-index-reserve +* ?* @1 D/ I4 \1 |
(index / num-people) -
) i9 T$ Y7 _1 G, m L3 D/ | (wealth-sum-so-far / total-wealth)
; w5 X# I2 g& q, n6 r8 Z ]6 o! I2 X. h) ?! Q7 x! f6 X
, M; r8 |& w; Y- B0 H& Z set-current-plot "Gini-Index v. Time"! V* z" O* [* V" R5 F* O8 Q& x5 S
plot (gini-index-reserve / num-people) / area-of-equality-triangle) P/ x0 X6 Q2 N4 ~0 s( U8 G4 [- T
end
! L o/ D% e' f5 R( f* Vto-report area-of-equality-triangle
7 P. {) ~! U j e; b2 { report (num-people * (num-people - 1) / 2) / (num-people ^ 2)- w! f' O* U% N& J
end |