设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7517|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
/ }0 Z( P1 ^; [: @6 pglobals
, T3 w# ?& J6 J8 O[
- d1 U; [& `, }/ u  max-grain   
3 w  {% j2 E) X6 k" \! u/ _* P( D/ |5 [" r( W$ P  l
]3 Z- t% k" J' F* m- S6 o" q2 T

2 l& ~4 a$ W( x( H2 g& \patches-own
6 X  o9 a  \/ @[4 i# i. \% ~6 t1 e  \6 `1 M( r
  grain-here      
/ O" l. B. k# D- Q  max-grain-here  , s! {8 X% L4 e9 M* U: T
]
: v/ Z7 s) P% H2 c
7 Q0 T$ _, s% d( Mturtles-own
( I& @5 G9 g( G8 F) K8 _4 c+ r[
3 Y* _. Z  l, I2 `4 i9 {1 R% c  age              
( I3 i: i7 m9 f  wealth         
6 Y& k9 T8 o4 ]6 ?/ E5 D# M  life-expectancy    U4 `& X" c2 Q
  metabolism       ; g4 A3 g0 f. V. P0 m) l" J
  vision$ o8 b3 J. F( J; o8 k
  inherited         9 E) S0 l  @% R/ n: I
]$ p  Y8 O& l) a% u3 ^4 x- _
" ?4 S$ q! t  O& V

7 P. \  L( s5 b6 P& Ato setup0 }7 }( L/ J' D$ |) b1 p' \+ m$ B
  ca4 l3 Z0 k6 z9 M' C2 A. Z- ?6 M
  set max-grain 50& B' P9 ^8 R3 i6 D" k) d' G5 Z
  setup-patches
9 X, L; r2 H5 E; p% J9 A  setup-turtles$ z; z0 F% G+ o, e  `3 ^4 k& e
  setup-plots$ p. j& J* S9 i9 P& |2 f3 z
  update-plots
) e  v$ V7 X+ |0 g8 h. q( rend
! H" s/ Y& F6 `3 x& b$ T. G+ wto setup-patches6 {' C  u! G2 r6 k; Q
  ask patches* V. O- u# z$ }) @0 ~1 Z
    [ set max-grain-here 0( F4 ~* Q4 f* t- V
      if (random-float 100.0) <= percent-best-land$ V- t' ]/ A( J# D* s4 c& {& X8 M
        [ set max-grain-here max-grain
  g3 i6 F+ I3 D8 b0 g5 k0 b          set grain-here max-grain-here ] ]
4 I# }" P* r% P3 a  repeat 5
9 M" ]8 W& K) X0 H9 M8 ^    [ ask patches with [max-grain-here != 0]  I6 U$ Z3 `/ f' |5 _& h/ O
        [ set grain-here max-grain-here ]5 d$ d. u4 L/ i6 F: }# v
      diffuse grain-here 0.5 ]# k: ~. [" I8 Q( c% c# S" M! m
  repeat 10
+ m2 W- I3 ~+ L" T    [ diffuse grain-here 0.5]         
# D* W  h) a- t  ask patches8 a, T4 j$ Q1 \1 g+ ^
    [ set grain-here floor grain-here    $ R* T4 z. U% X* @
      set max-grain-here grain-here      ) e( I4 [* J4 d7 O- o
      recolor-patch ]
, M( \3 W1 y/ N- A! m3 U# Hend
, c( X/ z. _5 Q/ F; F% }to recolor-patch  . L5 p0 y4 o( k: ^4 D
  set pcolor scale-color sky grain-here 0 max-grain
8 N* R* g* ^& C7 p8 \) Q# k0 r& E% Bend
3 s/ I% E' n: O3 b& [! |# r8 k: }to setup-turtles8 J( m& X  ~6 @1 y# D8 L! Y) H
  set-default-shape turtles "person"
& l/ r5 z  F. R! l! k& ^  crt num-people
$ N2 A8 W, V) l' I0 w( ?    [ move-to one-of patches  " B$ e- q1 L2 Z' {7 F1 [
      set size 1.5  / q* N' H9 X/ i: Z
      set-initial-turtle-vars-age
- I2 B% r3 p+ t  ]      set-initial-turtle-vars-wealth
* L9 U  G- S- Y1 l4 L      set age random life-expectancy ]3 H& u5 H$ m8 e
  recolor-turtles4 m2 X! U  e. g
end
% b4 c. {/ e# C) p. R. R" P
3 J4 t: j& n$ N" tto set-initial-turtle-vars-age
( O) t/ t1 `; { let max-wealth max [wealth] of turtles
& x( Y. `  \$ g    ( u$ V) {5 P- }- B4 \
     ifelse (wealth <= max-wealth / 3)# B% p, s) `4 N9 g) j
        [ set color red
  b' S. M7 y/ e3 y' z5 Y          set age 0
( v; G/ `. v  Q9 s2 p+ Z2 S          face one-of neighbors4
, p0 T9 }% f7 Z5 ?/ E9 j          set life-expectancy life-expectancy-min +0 j6 C' I9 {- r+ n) ]
                        random life-expectancy-max " g" X0 T8 Z4 w5 m6 K
          set metabolism random 1 + metabolism-low% T) ^' d' W$ r- X2 K/ f9 L, M
          set wealth metabolism + random 30
; v2 f5 {, ^+ O; e2 k) s5 p1 R* B          set vision 1 + random max-vision( G' e, T2 c: r( k6 p& D" _! G
             set wealth  wealth +  Wealth-inherited-low ]& H  B% {; \+ Z9 _9 O: I+ _8 Y  E
        [ ifelse (wealth <= (max-wealth * 2 / 3))) ^$ E, [" k% ]" H) Q! y2 m5 j
            [ set color yellow ; Z" s( b0 O1 ?( W7 j
              set age 0; j4 D' i. O" z
              face one-of neighbors4
" W  a6 V& f1 s9 |, k7 v" {              set life-expectancy life-expectancy-min +/ ]! N1 p/ Y4 n8 o2 g7 K
                        random life-expectancy-max + 1
) y3 M  b8 ?$ [: }( @5 B5 v# i6 b9 d              set metabolism  1 + random metabolism-mid
  B# F1 Y- ~- F; _3 E! B! r& I* m              set wealth metabolism + random 30" ]9 V" @$ |6 w" ?" N& }
              set vision 3 + random max-vision
* o5 A  y: t; ~3 z, [                set wealth  wealth + Wealth-inherited-mid]
- Y6 g$ {6 r( G            [ set color green
$ ^6 o: e2 ~) t5 d              set age 0
1 J3 A% K' E$ c6 y) Y# _6 \              face one-of neighbors4
( c; i! ~# {! _' j; c  ]# R              set life-expectancy life-expectancy-min +
1 H4 k* v4 G% G* [1 ]                        random life-expectancy-max  + 2/ {/ T) ^% L$ Q# u0 \
              set metabolism 2 + random metabolism-up
- P: S* r! C# y' R3 M              set wealth metabolism + random 30
& }& f: U4 r/ P% a- Q              set vision 3 + random max-vision
  R  E  G5 q$ x( [8 D8 n              set wealth  wealth + Wealth-inherited-up ] ]
4 V$ Z6 h) y4 B5 c3 Y* u: F$ R : t1 I" T3 q, t/ G; J. }% y* D
end
& K* V1 e/ F' y8 B+ f4 n1 b* Ato set-initial-turtle-vars-wealth$ j6 \7 ?9 B* \8 w) u5 L5 E
let max-wealth max [wealth] of turtles
+ m. T/ ]; s' Q* Z/ _7 F( W          set age 0
+ K) Z( y* ~, o3 z          face one-of neighbors4
5 `7 J, S# Q( {- c          set life-expectancy life-expectancy-min +
) y5 b2 |! S4 X5 ~3 i                        random life-expectancy-max
6 O+ T" t: n5 e          set metabolism 1 + random metabolism-up
6 W7 `, ?- h/ P( |$ I          set wealth metabolism + random 30
; P. o4 V  z% D& l8 B. D( B/ A          set vision 1 + random max-vision
! g- @# K8 e4 h% t- ]end
, y# h9 t9 U( d0 M/ J4 ?0 q% gto redistribution1 x. k% t" a9 O1 P% j
let max-wealth max [wealth] of turtles  _& ^3 P3 @# S! s6 O
let min-wealth min [wealth] of turtles
! h: M3 k6 c' z3 h. W# J# Eif (wealth <= max-wealth / 3)4 i& M3 U% y; W. J# @
[set wealth  wealth + Low-income-protection ]: N" v7 [$ ~' N9 a6 v7 Q
end" l! o- V' _8 o: @1 ~: U
          4 }% z$ m, _) z
to recolor-turtles' O% _; A8 p- l: ~. @$ d7 ^9 W
  let max-wealth max [wealth] of turtles) D6 S5 }2 f, V
  ask turtles
3 m' z9 R6 g; {9 L! W   [ ifelse (wealth <= max-wealth / 3)
5 T, h* i3 S9 R$ i        [ set color red ]
* z  J; ~/ j5 S, P% [) P        [ ifelse (wealth <= (max-wealth * 2 / 3))/ |. `: j' t: l$ }$ r$ n
            [ set color yellow ]# s. N. y) |1 r3 l9 B$ r
            [ set color green ] ] ]
/ G6 P0 A( M" o" [( e$ C/ K$ `  _9 d ask turtles [ifelse show-wealth?% d/ W' a' y) k) x. M& H4 f
    [ set label wealth ], t$ N3 G& m: c, }; ~# P' E
    [ set label "" ]]
" r5 a; a8 f: s, `& Rend: V( [- }3 {) _+ {3 F7 z% K2 D

2 y* J4 M! x, U7 `- O& k7 C! D. mto go  l- h$ @' Z: |1 r  @& `; j5 r2 }
  ask turtles- G, Y; C4 P8 p! k
    [ turn-towards-grain ]  
& e$ N0 E& I4 F  harvest
( a; i' e4 \, t# N! q( B/ x( O  ask turtles3 U+ ~* [( R* s; I. ]$ j' }
    [ move-eat-age-die ]) N7 i4 T6 L1 T, t- _6 M: J
  recolor-turtles
2 q% \# W# |; T  if ticks mod grain-growth-interval = 0
) N: `* \* k' V- B: H4 n    [ ask patches [ grow-grain ] ]
2 m! m1 Q$ v; Y4 B   ' i, G: d/ |$ D
  if ticks mod 11 = 0
1 v8 h' A& A3 u  [ask turtles
) P$ _6 N/ \" J: L  [ redistribution ]]
3 V0 x- p) l; g2 E5 k( {  if ticks mod 5 = 0
/ F6 z5 D2 z9 I8 R, U   [ask turtles/ X4 S7 B! ^  j& |: M0 M" i, J( Q
  [ visions ]]+ Q* n- @$ i8 M/ y3 X; m6 o
  tick2 W: a9 i% O. w! o1 U. ~2 \  }
  update-plots4 A2 r! o1 }3 x% c: B- g& Y
end
- `+ ?2 O& {+ ?1 Zto visions
# ^5 t' L" H6 E; l: @. D% ?( v set vision vision + 1
- O, E7 m# B; l$ dend2 {; K: [" K) a

' Q' s  ]# l& H. ^; x1 o7 c$ I
$ J: J/ y/ T1 S
8 `- H0 B; z3 ito turn-towards-grain  
2 r0 t& P9 t! i8 Z& g8 g  set heading 0% w% P7 H: g+ A4 ?$ j7 e0 m$ z
  let best-direction 07 U/ ]$ ~$ [% }+ y& ~
  let best-amount grain-ahead
' j1 s) o' G* ^+ g6 U  set heading 90* \% N% Z( U2 }7 Y# }
  if (grain-ahead > best-amount)8 J0 b3 G& j1 S
    [ set best-direction 90
$ ~) e' v7 a2 q      set best-amount grain-ahead ]# _* {8 A* Q1 O. s4 [
  set heading 180
% u/ F! c$ ^& a) G9 b  if (grain-ahead > best-amount)
* @0 T0 n* v/ c- ~! M) t. P, }    [ set best-direction 180
+ Z9 ]4 d2 D& O" ?# |! b  ?      set best-amount grain-ahead ]+ X+ d/ s7 j, G4 S
  set heading 2705 ?1 H( a7 e8 L4 q
  if (grain-ahead > best-amount)
/ K' L% W5 F4 x    [ set best-direction 270
# U5 K! J. h6 U+ a* Y      set best-amount grain-ahead ]" G  P9 W, P$ K3 q
  set heading best-direction7 F- D, V4 d, ~5 v. `- T2 t! x
end/ h; n# p# U$ o- I

& B# t7 B- u: C3 s6 x; d( Y/ }7 ~
2 h, P  Q' Y- ^' y7 zto-report grain-ahead  
" w8 k8 y" n) A( y. L( A  let total 0
" D3 M, O7 b: a1 F2 L( H  let how-far 1& V3 f' y0 N; e/ i8 S$ O
  repeat vision: v- x4 Z" r6 f0 q0 f
    [ set total total + [grain-here] of patch-ahead how-far
5 R, K. Q- Q( u; j! \      set how-far how-far + 1 ]
) E5 I8 o& D/ S3 q  report total& p! Y( W1 ?7 \
end& i9 h9 J# e: l3 [' N5 q. p

- Y* I# {+ U, W* {, `% `2 Cto grow-grain 1 R  `, _! o& u9 v' p# G
  if (grain-here < max-grain-here)/ @' @; }1 h4 p+ V8 n4 _/ {4 Q
    [ set grain-here grain-here + num-grain-grown
. s/ D/ ~$ e1 D' S& L      if (grain-here > max-grain-here)
* ?; `: ~& ?5 ^7 C2 D; c. D        [ set grain-here max-grain-here ]
; R  L' h+ N: d      recolor-patch ]
! a% m$ G3 s& a! lend. L7 D0 ?% m. g: w. F; [) w
to harvest7 X3 g- p7 {: E; e
  ask turtles. u0 h2 ]- q. c8 i
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]) E* q3 z1 u& N* L" D
  ask turtles
" e: X5 Z; }3 h$ @: `8 ]    [ set grain-here 0
3 [; T# X% Z6 i0 u8 s3 X      recolor-patch ]
) F! }, l4 P( [0 g  8 Y) N; V0 i6 Q% e3 ?
end
- S  I) ^- G$ n1 ]
. L( [2 ~# x# Wto move-eat-age-die  
( k; q+ q& a' w  fd 1: c, P% j/ t7 s  G. c$ |5 \
  set wealth (wealth - metabolism)4 d2 K" v  T  R/ y5 A
    set age (age + 1)
( T& ~  R) w  q7 k8 C/ {, i  if (age >= life-expectancy)
  D0 }9 B$ b4 v* ?( u% t4 X& A    [ set-initial-turtle-vars-age ]
) f6 [9 a$ E! [+ O2 B; A  if (wealth < 0)
+ F/ f7 i0 h, B# k% v) d2 w    [ set-initial-turtle-vars-wealth ]) {! i6 Z9 j$ W
    9 X% s' k! w' H% m4 Q
end
' c! O; e* C. x" t$ b1 H: U) W' K2 g  P3 |7 s  J# p

2 K( f9 G5 d! Y3 pto setup-plots- F5 E4 i8 g8 m6 ?6 u9 o' E  f& q
  set-current-plot "Class Plot"9 Q; a: C4 y4 E! p- A
  set-plot-y-range 0 num-people
0 n- ^- C& w. ]3 r  set-current-plot "Class Histogram"1 O& a* [2 i& g% T/ d+ o* R5 [
  set-plot-y-range 0 num-people
! {$ R7 h; `9 |8 m! g; Q  Mend
, `8 a( }) e% [$ f7 o
8 {2 V) o2 Y5 d& W# F$ vto update-plots# C+ D# d1 t. n; L0 f7 D, A. J
  update-class-plot) D  {' L9 i6 C& G/ |
  update-class-histogram
& o! w6 E9 n6 M# _" c  update-lorenz-and-gini-plots
  l4 m5 H1 ]7 W3 s* Yend+ U, v; _/ }& d2 A; o6 u( T
2 G0 _& [/ ?, Z
to update-class-plot5 {; F. u) a6 E# ~7 }0 N
  set-current-plot "Class Plot"- N0 A/ Q5 M0 T" Z3 O+ W+ D% ^
  set-current-plot-pen "low"6 n- V) D) `" i4 B* R( l
  plot count turtles with [color = red]
1 n7 ^+ Q, j* }4 j8 O  set-current-plot-pen "mid"
0 y" H2 H, `5 \" X; M8 o  plot count turtles with [color = yellow]0 Q: u5 Z) d2 D0 N7 F8 h
  set-current-plot-pen "up"1 l" T1 A3 m" L& _2 ^. o! k
  plot count turtles with [color = green]$ d1 d5 ~$ I  n5 a3 J0 T( Z6 f
end
+ @% [3 {! L% N' @7 ?/ {6 L4 G9 M
to update-class-histogram3 `; [* s1 f: ~4 w6 I
  set-current-plot "Class Histogram"
% r* D! [' g7 P8 d; k- V5 {9 q  plot-pen-reset0 W7 x6 X- H7 h0 S1 [9 L8 {! O
  set-plot-pen-color red
2 s( @2 S1 ~7 m# T' H  plot count turtles with [color = red]
2 c3 Y& Y( h% p) @: A; b* j/ P  set-plot-pen-color yellow
4 Q+ \- f% s2 ]: m! X2 Y/ L  plot count turtles with [color = yellow]
$ O1 l5 _' L6 I8 L" F  set-plot-pen-color green3 o$ }, M% q0 Z) `7 d) Z
  plot count turtles with [color = green]% T# M5 o* T: e. a7 I* {0 Q' ]
end
2 V  u* O* g9 J) I2 Ato update-lorenz-and-gini-plots, C: B9 g; Z" S: ]* K
  set-current-plot "Lorenz Curve"
& S, h" Z6 o4 \, Z% G  clear-plot
9 K/ d" x1 p  ]8 H; [8 _. K; ^) D, R: O6 X2 R
  set-current-plot-pen "equal"
5 A) R& s. r, G) Z$ Y  plot 03 t: W: X+ v, t9 w% ?
  plot 100
2 O& w; i9 U' U  B
4 F5 H4 J+ e" _1 i. s  set-current-plot-pen "lorenz"
: o% m7 H- K, [& y  set-plot-pen-interval 100 / num-people$ d( v; _7 @4 J, a+ _
  plot 0
/ R3 C) A9 X% m3 F$ b2 i8 Y% b* Y  F4 w" L) C/ c8 I6 v8 ^
  let sorted-wealths sort [wealth] of turtles9 p# l/ k9 C9 J6 @4 Q2 H! J; ~
  let total-wealth sum sorted-wealths, \. i$ Z! l3 P/ r6 R
  let wealth-sum-so-far 0
3 b4 h& i1 F5 f# b4 I8 ~  let index 0
# f6 c8 S) m1 ^9 {+ K: |# u  let gini-index-reserve 0: l* Y! Z) P. f% N  X& k) R* \

9 D4 c) [+ P$ J& z6 Q3 l1 B  repeat num-people [. b5 a* \& V; L. a4 _
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 f! F; c' e$ w7 ]
    plot (wealth-sum-so-far / total-wealth) * 100# _. |7 q/ c' ~* ~2 I/ ]$ t& E* z& u
    set index (index + 1)
/ Q3 ~  E) M1 H4 O5 e" w; \    set gini-index-reserve& ?6 K. W( q" o( Q, D# ]
      gini-index-reserve +) w; b- u  |' v* q" y
      (index / num-people) -
9 O$ O* h6 c: n4 W0 @7 n2 X      (wealth-sum-so-far / total-wealth)
: F- o( O: ]7 p0 _  ]
" X- e5 d( z) N+ C; W
( `/ H) N0 k, L  set-current-plot "Gini-Index v. Time"
- O7 l+ o( i: r1 f  plot (gini-index-reserve / num-people) / area-of-equality-triangle& v& [. Z2 n( }, E+ D# Z8 N
end
& P# G, y# J3 x4 A7 E) F$ Q! s/ Bto-report area-of-equality-triangle3 \% h  F5 J  H9 M, Y8 t" M' m' f1 Z
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! ]$ K& F  [! T8 B5 E. N
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-2-6 06:42 , Processed in 0.024915 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表