请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
/ G9 x8 W% F. e; C4 t: Pglobals8 W' C2 t% K: p5 q. k8 H& l( _7 j
[( _$ P5 L9 d1 Y3 R' v; Q. A0 E
max-grain
1 j) L8 J+ @: M* F# ~+ V$ j0 x5 n C5 N5 K+ s
]
3 W& w& U& u; o+ ^+ F: L5 \$ @5 x- t+ Y& j% D2 Y
patches-own
3 e. _3 [9 c% b[9 `5 T9 |) \/ q! n) I8 G
grain-here ) N0 R3 J# p& s+ s% {0 }
max-grain-here
7 ~, H7 o9 U4 Z, T; k]
6 C! F+ E5 e- \! a
, M& `0 |% [: Z$ g$ b* P5 qturtles-own
; G2 p' a7 v& G0 |[2 d5 W5 h! ?' |% @( s6 v
age
/ _2 v6 l9 v J- Z# `3 q: N wealth 9 C( L7 v2 w6 _0 H
life-expectancy
$ I0 B. D n$ N4 n+ W metabolism
- K$ s+ ^- K7 n0 |/ j vision
1 E2 ~4 D" _, m# v4 f1 l inherited 4 s& S! [% e& r3 |
]7 X# ?/ L! u# b; ]
; f, W! u9 K% ~' l# Y
" O( M# N8 A( _7 H( b% ]4 R
to setup! e* Z; G) J6 Z! g! E) i
ca1 f; e7 P+ _9 b% k
set max-grain 50
& f4 b* i! Z" Y p5 C' R! h setup-patches
0 ?$ |8 d `9 `- M( e( s setup-turtles
: W2 k% L6 A& I) U t+ M( @3 s/ U, H setup-plots
. r9 V4 B) |& ~ update-plots* |7 O( t5 ^2 P7 s
end% Q2 B2 O/ q+ `# P
to setup-patches, R* ^, [9 C3 @
ask patches
2 p. t9 N2 l/ Q) p8 g [ set max-grain-here 0; Z5 [8 f' Z1 L3 A
if (random-float 100.0) <= percent-best-land+ v9 a: X! A2 c5 F1 o5 Y, r* Z
[ set max-grain-here max-grain
% B H+ m. r* k3 s3 o set grain-here max-grain-here ] ]" W4 U x$ `1 p2 G
repeat 51 L7 m/ W, o) ~/ D E0 s* m
[ ask patches with [max-grain-here != 0]# V# B r# d9 }7 s
[ set grain-here max-grain-here ]
$ _# O+ E$ H* Z" t0 H diffuse grain-here 0.5 ]( K6 F1 s& ~* N0 Z# |7 ^' I5 `
repeat 10
" B. l" l, W. ?) O1 o+ m1 Q [ diffuse grain-here 0.5] . A( s; \& E6 r- J( y6 q" c3 \
ask patches. `" [' ~8 g8 S6 E& L1 j/ L
[ set grain-here floor grain-here ) \9 d- b/ j: z# d ]' R
set max-grain-here grain-here 2 h- D. r% S* V& s& h+ N1 p3 F
recolor-patch ]
# |7 O9 L+ T$ v2 W* Jend8 h) \" R& f) [) v1 h
to recolor-patch / W# P' v( Y" y0 p# W9 A; d
set pcolor scale-color sky grain-here 0 max-grain1 v9 s6 ~$ L$ S/ K
end1 m0 q: n0 R4 L, b7 j
to setup-turtles
% E; j5 P, [' Q3 ]$ E set-default-shape turtles "person"
8 z& z# ~$ y$ M* N$ e* Y" m( R crt num-people
( {( W; F, Y4 y0 j3 `+ y [ move-to one-of patches 5 `( B0 m- |7 Y( X2 w, O
set size 1.5
; I& c! m1 s: @4 V2 t. [+ r set-initial-turtle-vars-age
1 z) p' m' ?( P' H, ? set-initial-turtle-vars-wealth5 u+ y+ r4 i, E# I: Y x6 C
set age random life-expectancy ]- O0 ^4 g0 M7 Z' u8 |. k
recolor-turtles
9 f& l/ g( r* B$ {+ |" W! V" l+ E: Kend& }; n, h, g3 T+ y' u0 ~% ^
4 @5 U' J2 \: {6 C* [to set-initial-turtle-vars-age
" O* _$ }1 F% Q3 x let max-wealth max [wealth] of turtles
- g1 H' @' b! a# r1 d- G$ v, X9 _) L
& O( I6 B9 Q- z, X7 } ifelse (wealth <= max-wealth / 3)
5 P6 I' T; r0 S* P* p- ]) k [ set color red
9 p$ g8 M! ?# Y* d V* u$ U: p! s ` set age 08 h7 O) }/ Q1 I
face one-of neighbors4
& N0 E' t% ~5 a9 c4 p8 n& Y set life-expectancy life-expectancy-min +
" T9 O+ b4 r6 |, ?) z' @4 }! Q( { random life-expectancy-max 0 G' k* d1 T7 Q# c' P. X" _
set metabolism random 1 + metabolism-low
' Z. M$ b- E+ l$ L" V* @ set wealth metabolism + random 30
' H. y4 w9 V' y! }( N set vision 1 + random max-vision! Y& E4 X$ T& ^$ Y6 S1 }$ G
set wealth wealth + Wealth-inherited-low ]# x6 x7 c6 a7 u. H
[ ifelse (wealth <= (max-wealth * 2 / 3))
( w4 u. @8 g" n; Q- a+ x, I& b [ set color yellow 4 g e/ S" A. c8 G; ^- y
set age 0
1 F1 R" P$ M F# N face one-of neighbors4 8 o( o+ u# T7 `- v$ J
set life-expectancy life-expectancy-min +5 Y& U( M" F" W! x+ h0 k0 J N
random life-expectancy-max + 13 b# g( k, B1 J% e
set metabolism 1 + random metabolism-mid
# v9 |- Y! @* k5 D* }* s: x set wealth metabolism + random 309 J' @6 y) @3 J2 i5 Q# w; p' }5 V8 j
set vision 3 + random max-vision; q z* [+ k+ z/ |
set wealth wealth + Wealth-inherited-mid]. }7 X. V0 G$ C) |
[ set color green ' c; E e+ ~% V7 z7 i: K& ~, h4 B
set age 0
- e! T3 g. l R5 n% p; Q face one-of neighbors4 0 t" G h1 G8 z
set life-expectancy life-expectancy-min +' f2 F* x, Y$ K$ ^! Q* m9 M& B5 H
random life-expectancy-max + 26 O l* f: R7 w) E& e
set metabolism 2 + random metabolism-up
1 G3 y0 `) j" W" L! N set wealth metabolism + random 30/ f$ y- F4 B: L9 ?4 {% E9 k4 C
set vision 3 + random max-vision
9 N% S3 V! A- u0 W7 B set wealth wealth + Wealth-inherited-up ] ] - h5 _/ C0 p+ \3 k3 F3 j6 R
: J6 q8 f0 T5 K% T' dend
+ |$ J( N/ \4 u! Fto set-initial-turtle-vars-wealth
0 O! a* Q" G- e5 P! Z. }8 Z9 _: u let max-wealth max [wealth] of turtles
: w% x* u7 K- X% I3 ~3 Z set age 0
! C5 @2 a# o* U face one-of neighbors4 / Y5 E4 f, M% L2 G
set life-expectancy life-expectancy-min +
7 h4 i3 V) v4 p9 _# H7 c random life-expectancy-max
9 g6 F) Z8 n9 t) c3 P set metabolism 1 + random metabolism-up
1 d% e2 L" s% ~7 K set wealth metabolism + random 30. y- f* A$ g0 p# |( r. n
set vision 1 + random max-vision k2 y) e0 L. Y0 x/ V* P: M
end+ \( @4 S' o: T0 u+ C
to redistribution% \+ E- v3 y: R7 Z
let max-wealth max [wealth] of turtles
) s) U% Q1 Z) Ulet min-wealth min [wealth] of turtles5 R7 B( m3 Z( h, d8 @% [7 [
if (wealth <= max-wealth / 3)" ?; w. r) `, M9 g9 i+ M( L& ~3 {
[set wealth wealth + Low-income-protection ]
' x) }2 Q4 c. x/ u" Zend
! x7 M0 T" g# C* x + Z. \, Y- E. A
to recolor-turtles ?! t; W( T( ]. \: G" {
let max-wealth max [wealth] of turtles
* K! a. k0 A6 S6 c0 f3 u ask turtles
3 {8 X5 X) A- z: U) x8 `) e3 \ s$ L [ ifelse (wealth <= max-wealth / 3)
$ B9 `. }# x1 B) t [ set color red ]7 d% X2 [$ A' q$ `
[ ifelse (wealth <= (max-wealth * 2 / 3))8 T! `" c, A9 a9 L. K5 Q: h% Q H
[ set color yellow ]
9 g6 E7 k P$ `& T% p) Y j [ set color green ] ] ]
5 a! y. w0 C# E% Z/ U ask turtles [ifelse show-wealth?
6 C f8 \# c5 ~, R [ set label wealth ]
# O1 ~/ Y5 B j7 ?8 P [ set label "" ]]
1 d; |3 ?+ x1 m8 g1 }: @end
1 g% j0 P7 K' i
3 H) j9 ^+ a- x( _% K& ato go
8 i0 U- U' ^6 j3 _5 w2 ~, X ask turtles
0 `$ x, U1 ^3 \ [ turn-towards-grain ] + N9 O0 b4 J" g" F+ Q* K
harvest: k9 @3 x `# r- A+ o0 |
ask turtles
) F' f; ]9 a" G* g [ move-eat-age-die ], l* j) Q2 v0 t: r
recolor-turtles
& M0 A' i- q3 i6 I1 K if ticks mod grain-growth-interval = 0. N, c" T8 q* m" h8 b5 F
[ ask patches [ grow-grain ] ]
/ t/ J) {" \8 V
6 G/ H: }* P9 ?7 ?; z3 g* k if ticks mod 11 = 0
# \( p, Y% q8 d& _* Y* D* ?) H, Q) M [ask turtles
/ ?( T- b% ?- g; L0 Y [ redistribution ]]( d/ Z, q V2 M- f, p
if ticks mod 5 = 09 ~; K9 C; i# E7 N( V
[ask turtles; \, N4 _$ k0 ~) W5 z# d# s
[ visions ]]( p- l" Q& Q# O J6 V/ y5 S
tick
3 x; z' Q6 `: Z3 Y0 }( S- ]* N2 m update-plots
: r. @5 O' o% K+ qend5 I8 T5 b) ^" I
to visions6 ^- y7 Q8 p: I( L' V8 w
set vision vision + 1
4 T* r' L0 N/ Q; [end
: I( y' B: G& ~: ^7 X9 a! J, ~
$ [/ |8 f% X9 c0 m& m3 C
3 x, h# G/ j# S" K
! M. O/ f- R- S4 Zto turn-towards-grain
) Q8 q+ z1 R: Y) ], N$ m( ? set heading 06 Z7 i( H4 |1 A% y: |
let best-direction 0
( P( j! U5 N, O* j1 Y let best-amount grain-ahead
; L, a4 u y* j+ Z" B2 M9 X set heading 90
& V( p3 g4 H% L% T A5 t7 U' @ if (grain-ahead > best-amount)) I, Q- Z* D+ l( { e" ~
[ set best-direction 90. h9 u, g3 f4 Z2 c& q9 R" o( h
set best-amount grain-ahead ]; I. g+ V0 v1 ?* L% @( Z+ K: Y
set heading 180
& q% A2 U& _" `7 q if (grain-ahead > best-amount)
$ \3 L2 s( M+ F4 Q [ set best-direction 1807 `" h! j/ ^, [% |3 S/ h
set best-amount grain-ahead ]
# c2 K" ?( Y8 @5 V8 E% _4 O) `! j set heading 270
9 e0 U1 M# w0 h) O if (grain-ahead > best-amount)
' A: g6 | s$ y; n [ set best-direction 270
) e& z6 v' l* |, o7 a set best-amount grain-ahead ]
3 C+ _* d5 J6 b0 [. A7 ` set heading best-direction
6 N& f/ m: j; X& u9 Y7 b3 k! w; uend
) O& }2 g3 G3 T+ c: F
) _) \- N, t* e/ K) l& l- Q) d- n' _6 ?7 w6 T. y+ `* U
to-report grain-ahead
: B' d9 x8 P4 Y% U2 c" e& @ let total 0
Y9 j3 R: f6 r1 b let how-far 1
+ y9 `' U+ C" M repeat vision0 z4 `9 H/ R U9 b
[ set total total + [grain-here] of patch-ahead how-far; ]6 k7 Y3 r6 t& f# a' D
set how-far how-far + 1 ]$ l( \$ [: g2 i! T d
report total
* a W' j3 B t7 rend
* Y2 h% B0 k8 X2 J3 p
) r U4 y8 U8 G U/ a" Oto grow-grain
. N1 e! Q4 w+ w7 k! | if (grain-here < max-grain-here)
8 L: t3 B/ ~0 p6 y8 Y1 Q [ set grain-here grain-here + num-grain-grown
% |9 z& n! j1 `3 A0 k% v5 r2 ~ if (grain-here > max-grain-here)
: c' l4 |8 _' _; O) X [ set grain-here max-grain-here ]
) K3 T& b4 F, l4 C7 g$ r' q recolor-patch ]
' r* c. n. _( M0 U- J- Cend
# ?4 N' o% `; Rto harvest0 Q$ l$ W, J- \
ask turtles5 A' m* o4 _+ X& F( K* c2 x" N
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]2 @# Q9 q. {- N+ O1 B+ o0 R# ]
ask turtles5 ~9 f1 `- V" B$ b
[ set grain-here 01 p0 U# c' w+ r
recolor-patch ]
' p7 w2 g# U& z; \4 l9 J$ D/ H ? $ V$ _ L" T4 @+ z9 Y5 M: N
end/ X2 _& N3 R* g
" b! J$ y) T# i. T
to move-eat-age-die
( D1 r8 `# l6 H: }# [1 a/ s fd 1/ H( N5 n+ W7 A0 n) `1 F
set wealth (wealth - metabolism)
9 |1 q# P& Z8 p8 f+ t set age (age + 1)
0 r3 Z# M0 h7 r$ ~) B, c# r' G if (age >= life-expectancy)
7 p9 T/ S! s4 g- @ [ set-initial-turtle-vars-age ]
) ~# [3 L7 Q9 e if (wealth < 0)
0 G: i4 P- K% }3 u$ d [ set-initial-turtle-vars-wealth ]
: K9 x3 e% F k( p
! |4 u& q$ C# U. B- f1 p' O( iend
! Z: A, O7 y. `, {) X9 _) o: z b) R
3 x* T7 o G% f$ k5 O. K
to setup-plots# O( C9 r+ R" b U' Z
set-current-plot "Class Plot"
7 Q- m/ ^ k& N8 X1 e: z9 O set-plot-y-range 0 num-people
% B' |5 M+ Y( B2 ?4 X# T }4 Q) E9 c" A set-current-plot "Class Histogram"( d) Z- `+ s( N# |! _- t
set-plot-y-range 0 num-people
- v2 ~/ J0 r X6 Hend# f. t* |* n% X8 \7 l$ \
w8 Q K1 h/ [& e2 F" oto update-plots
5 M5 W u: {, u; f* h0 ` update-class-plot
5 K' ^! y X7 f0 a update-class-histogram
D- q& B# g' s; D: B$ [, K update-lorenz-and-gini-plots
* S) ]5 a Q( n7 ^. send
+ [4 [- p& Q; j+ W5 j5 [5 D
5 V/ V# g+ e5 |$ y5 e" Qto update-class-plot
2 _/ n) U6 @9 p0 z7 _ set-current-plot "Class Plot"& [2 k- v$ }. }: q
set-current-plot-pen "low"- M+ @# G1 @) Q% L" x" V
plot count turtles with [color = red]
' u9 K) h! p& X' | set-current-plot-pen "mid"
, w- ?1 _# M$ @ plot count turtles with [color = yellow]
: Y9 w' q' V. F( e set-current-plot-pen "up"8 w& ~2 N8 X+ P$ \( C8 W# [
plot count turtles with [color = green]
# v% u: A0 E9 Y! Yend% J: R% O( o: n1 W5 l
j# q7 m7 F' F5 F2 r* H
to update-class-histogram
8 E( V# E) G/ v- |/ U set-current-plot "Class Histogram"3 v7 Z9 G; Z6 ?% D/ ^4 N/ \5 f& n
plot-pen-reset6 v$ t3 X0 j6 |5 q. v
set-plot-pen-color red
- B+ |: C) N* ?: H x' L; }0 k% I plot count turtles with [color = red]
7 D+ Z0 ?5 V0 W4 p! A6 z; R- w4 k7 a set-plot-pen-color yellow0 X* I) r$ J1 I* K
plot count turtles with [color = yellow]9 J: N& b% B, o0 L5 ]* K& k* p
set-plot-pen-color green& q+ H& [$ H ?% j) |9 q
plot count turtles with [color = green]
# @8 b, J1 w% a/ I# G {0 @end
9 g$ X3 V7 e# G5 X1 |% @to update-lorenz-and-gini-plots( l/ d2 t' {; S- f, ?$ S
set-current-plot "Lorenz Curve"7 g- ~$ Q( P$ d- ~( p1 N* s
clear-plot
; f9 X% s( U# r
% V, T+ }+ _% d r( r set-current-plot-pen "equal"+ o* L/ a$ h: y6 B5 z8 q
plot 0
5 q8 C7 b+ b$ o3 B# T plot 100
0 D1 C5 P/ C$ d! H' w+ Y% ]
6 V6 F6 j& R" j, B3 w7 | set-current-plot-pen "lorenz"& l0 F& y; \0 g
set-plot-pen-interval 100 / num-people! e3 W$ E# T v' a
plot 0# o0 y3 Q5 ~5 t" y. A
+ G. n& L; _6 y2 d let sorted-wealths sort [wealth] of turtles5 |; G/ h; m& [5 p+ A6 L$ @/ L
let total-wealth sum sorted-wealths& i0 m, ?/ p A4 X* g
let wealth-sum-so-far 0
2 x8 o4 @1 r6 W& g let index 04 G @/ `5 \# ^ y
let gini-index-reserve 03 q% G7 H% ^- {4 d; g" H
% K7 G, }" d' K8 i5 z7 N repeat num-people [/ z% {2 z& I1 q
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)0 P) A( [- z3 [
plot (wealth-sum-so-far / total-wealth) * 100
7 L( t' z n; G5 ^ set index (index + 1)
! j8 ^8 R0 x! R1 a" `! m) R# d set gini-index-reserve- f- I, D9 d! r4 G4 l J- C; i
gini-index-reserve +
4 I0 O, o) v, P/ F5 i' L# l (index / num-people) -
5 |) `" N& S( | (wealth-sum-so-far / total-wealth): D" Y, c9 a5 N l
]
8 j$ ]7 p6 k+ v! ^4 k
: x8 K6 O _. e' N" R u8 R ] set-current-plot "Gini-Index v. Time"$ U: ?' a" `& m: Z" f7 y
plot (gini-index-reserve / num-people) / area-of-equality-triangle- K2 l& g- Z0 x
end
& ~3 O& X1 m1 L) q @- g0 v5 yto-report area-of-equality-triangle" y( b' {* \" L+ e0 Y5 c
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)2 z; @6 }3 t n. X; D! h4 C6 l
end |