请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
2 g2 [8 d0 Y( d7 Q- n8 h q/ ~- {globals
! ?) V# R7 g7 z" }- N4 g[
/ X2 A0 a/ b; L( \3 U0 T$ T max-grain
9 z- G$ x+ e' S p; X# x+ ^0 o3 C8 N0 a' [
]* S, L" W; N/ i* e
9 r4 p u- C" V( o: t! s) t7 Tpatches-own
! R2 s" T8 I! b7 p. i[
; t# |: X: J. p, m grain-here
2 l7 ^3 ]# _$ A; \5 p max-grain-here
2 D! ^( E. h$ _, W% d5 G]
( E7 v* j3 C4 w3 L+ R% f3 c K5 H; J( d( s5 M7 W
turtles-own
1 a9 v5 ^9 X) i/ h7 a[
: X8 r6 {7 t4 d( ]3 F/ T3 N age 0 R- V. {+ O% `9 B6 J& s7 Q. K
wealth 1 x6 i, _) r4 _8 ]: z
life-expectancy
' l. T: L, n. X3 I( c9 h; C+ M metabolism
7 V( `! [! C* G6 Q) x1 j" @9 b6 v% |2 N vision& l3 b' U% m l# |
inherited 0 G- f8 b3 ~* m! [
]/ i# o* r. _7 m, e O. G; r& ^4 }
1 B- h3 }& S: u3 ^5 l# O% n
) k0 R: k1 G3 E& f3 {3 Vto setup
" t% C z) y$ ~( u3 U' I* r5 { ca
1 t6 V; [1 r, I$ B set max-grain 508 \" H; w! r3 f1 T0 S7 r+ j
setup-patches
' [; u: c" c& P$ z setup-turtles1 @4 D/ w/ T. R0 Y" Q$ Y
setup-plots+ Q+ F; [# I+ h/ I
update-plots
; Y. Q& G# h) E2 Fend
9 a" _( W& N" M1 G. t5 G+ fto setup-patches. y- i5 i- H" u1 S- c8 E8 D( \0 }
ask patches
. m! Z: H0 J& j$ r6 C( L [ set max-grain-here 0# C5 | e- s2 i! S& c
if (random-float 100.0) <= percent-best-land$ z1 |! X9 ?! ~! Y# m) P5 R
[ set max-grain-here max-grain& c. x' d3 E" i/ t
set grain-here max-grain-here ] ]
* O$ a7 {( d! g3 D+ `! b repeat 5
0 [& H1 D( u. G' v7 y: n+ g. g [ ask patches with [max-grain-here != 0]
* \8 H( x7 Z+ ~, f/ y [ set grain-here max-grain-here ]
9 j" H% N1 p! S% u4 k9 t p diffuse grain-here 0.5 ]
* h% k8 R( X2 v' d# A% ?, @1 Z repeat 10
: S3 y; h+ m& ~/ u, `9 ]" m [ diffuse grain-here 0.5] 8 [" r6 f' o3 i$ i
ask patches
0 Q. u' K% F E! Z8 L* Z# @ V+ r [ set grain-here floor grain-here # a% b [& s" U4 f2 Q
set max-grain-here grain-here 8 `5 Q7 v3 i# R+ ~6 n# f# O
recolor-patch ]
9 G/ e: C# W' X. i5 E+ k; @end
/ E- s# Z, ?5 D3 P' k& Uto recolor-patch
5 i( S( s( G8 M e( z6 |4 N set pcolor scale-color sky grain-here 0 max-grain) l- [ @5 p5 B. G7 Q- ~' E7 p
end
1 }" a" a' f; Z, e, [1 Qto setup-turtles3 @5 ^6 G9 c; A' _4 z. V
set-default-shape turtles "person"
5 T& I* V, e: t! L( H0 k crt num-people. I! y; H. d! k7 W- n" E
[ move-to one-of patches 6 s4 n, d% g" H) z1 U. |
set size 1.5 $ }) ?1 r- T ]9 T/ Y( [
set-initial-turtle-vars-age# D( w- A5 ^/ ^- m$ g3 T9 R1 O
set-initial-turtle-vars-wealth1 A4 G( ~0 X4 l, ^: `
set age random life-expectancy ]
0 j5 \5 J! M, y5 \; O6 \1 v recolor-turtles0 p/ e3 b, J0 ^( P
end
% ^6 L- s' _ M
4 \* O- M/ |; O) mto set-initial-turtle-vars-age
; \# x: `1 A/ x+ B) q2 H$ Y, f let max-wealth max [wealth] of turtles
% }8 g2 R2 p) ?1 t& G
) O$ _8 v1 u$ B N( t ifelse (wealth <= max-wealth / 3)
: E1 F6 z/ P& ~, I [ set color red ' A% b$ A, f* H3 q& q( w% {. o
set age 0) j& X7 Z0 x8 I$ k
face one-of neighbors4
/ F2 f. F, o2 v* Z set life-expectancy life-expectancy-min +
" M2 N1 A. a! ~7 P: H3 a% M random life-expectancy-max
9 S- ?- o |' n U set metabolism random 1 + metabolism-low
% @0 F' H1 D9 o# R; j9 p1 @ set wealth metabolism + random 30
$ H* H7 E& W% l: i( e set vision 1 + random max-vision
5 g3 A4 _) ^: M) F/ H) b set wealth wealth + Wealth-inherited-low ]
7 [4 B7 U% I" w [ ifelse (wealth <= (max-wealth * 2 / 3))
4 } s$ v6 p9 h; I+ O' n [ set color yellow ' V2 o5 E! I- Y6 q( a
set age 0
& U2 ~8 U0 U& y$ b face one-of neighbors4 " s: `* c% V9 {; c& f9 v# I
set life-expectancy life-expectancy-min +; ?& X& p' @. D x+ d" c6 K
random life-expectancy-max + 1
* f- k r; u8 N set metabolism 1 + random metabolism-mid
" V/ K$ a4 ]7 f6 _7 ^. G set wealth metabolism + random 30: X# I2 ]+ W1 ?2 c7 ?- s
set vision 3 + random max-vision
/ _% [& Y' J4 k( `2 j( Y set wealth wealth + Wealth-inherited-mid]! v3 Q# }7 a/ X( \
[ set color green
$ X5 @4 u9 q+ u5 c set age 0! G, R( h4 L* V; Q$ i4 Q
face one-of neighbors4 0 O2 o6 [3 C% c" r( a1 l
set life-expectancy life-expectancy-min +# m+ z4 A7 b3 n5 B3 {2 g
random life-expectancy-max + 2
8 ^8 b& l8 T `4 F+ t set metabolism 2 + random metabolism-up
8 K" @2 H' {) z f0 r5 X set wealth metabolism + random 30
4 z- X3 @) q# F2 B- V) m set vision 3 + random max-vision
- D8 Y! C# n' b7 }6 u; o4 L set wealth wealth + Wealth-inherited-up ] ]
& A) t- ` t% y9 x, c
" e( c) ]. I3 G, M Bend4 C6 }, P0 w1 Z& D( L% K! `# x
to set-initial-turtle-vars-wealth( `& b; Z3 v! z+ C' C
let max-wealth max [wealth] of turtles
: Q, q/ i3 Q9 N/ p: C8 y7 h set age 0
% j4 I m% j' Z$ F face one-of neighbors4 . C p" |( N* ^3 R( w
set life-expectancy life-expectancy-min +
& y4 B4 T5 g4 n3 `. w" R1 x G random life-expectancy-max + J* I0 K9 ^) {1 W
set metabolism 1 + random metabolism-up4 D0 b* q+ P; v# U: Y
set wealth metabolism + random 30
: O: X0 I' P3 A% O set vision 1 + random max-vision $ P+ B; x7 j/ T9 O' i1 K
end
7 F8 W% k$ [% q8 i. rto redistribution: T3 t% ^) \0 a1 i
let max-wealth max [wealth] of turtles$ u9 u8 o2 ?/ n3 H5 T
let min-wealth min [wealth] of turtles
8 x$ Y A* |- H# Kif (wealth <= max-wealth / 3), k! |: {: {( b9 e* [
[set wealth wealth + Low-income-protection ]$ X3 x: x* X$ S' e$ ?4 k
end- `$ A7 N/ G! v& v9 C
' m# n S" C1 h. p$ [/ A$ O, m$ Lto recolor-turtles
% E W* Z4 p" u5 w/ W1 u7 x3 g let max-wealth max [wealth] of turtles
; }% B ]* k8 Y2 G3 [& @ ask turtles
2 A2 Q( ~: U9 d1 ] [ ifelse (wealth <= max-wealth / 3)
# i9 Q3 m& i5 J* N% V: F [ set color red ]; l' \% x* k5 j( e$ e2 [/ C
[ ifelse (wealth <= (max-wealth * 2 / 3))
, E3 j# p3 D5 h/ D& B, s1 { [ set color yellow ]0 n$ Y' x N$ z# `6 w% @
[ set color green ] ] ]# O5 I- U `, L( j; T ]
ask turtles [ifelse show-wealth?, v+ n! ]3 `" R: k, |: ]: Q
[ set label wealth ]; x j' H- u; O4 X5 O
[ set label "" ]]$ W; [4 C m2 f
end$ t8 Q) E, w. s8 B% l9 s7 `) ~0 ?3 m7 e& \1 Q
" f2 j- T# A: Q7 d# I- \- Zto go
( v! f$ v9 q& }, P8 k# i8 w ask turtles1 p, E' r. T5 W0 U; _7 N
[ turn-towards-grain ] ' z$ k7 Y( \, _+ F3 x/ W8 K
harvest
3 N- H$ C5 L' T9 ^' A( w ask turtles
- a/ g6 t- n; D1 ]7 P1 L [ move-eat-age-die ]
) J4 i4 k5 Z. F$ r* `8 U recolor-turtles9 C; D( \( u- B
if ticks mod grain-growth-interval = 0
% D" G( j7 I7 u2 ]8 x' e [ ask patches [ grow-grain ] ]
& v e! g" _* I2 Q- L
$ Z% M; J% r) [/ n1 p3 a. j if ticks mod 11 = 0
, T2 K+ B- r, U' d5 F3 u% m j [ask turtles
. v' Q6 k4 C$ X& j& j+ _9 A. D [ redistribution ]]2 `/ e' M; W; R, K3 }% _
if ticks mod 5 = 0) P/ c/ D8 s& X x
[ask turtles. M! h# P4 A; s8 V ?
[ visions ]]
; V! l. ?' U7 w& h J" w L/ r% s9 v1 e% ` tick! N6 o1 w, ^/ e
update-plots* j3 o6 J$ h3 |: B1 Y W
end$ ?; E# R+ R& _& ]
to visions" j6 X: i$ X, t7 A
set vision vision + 1
3 V# N. ?& ~9 x) h" L$ K9 Bend
: y5 s6 O$ n- t# s& p/ u i e, l
9 p5 l+ a# v5 w, W+ b8 y
~( S, ], n# Y \, {
7 w8 ~4 g; x! Zto turn-towards-grain 0 Z5 l/ U6 p3 v3 g% Y+ v
set heading 0
4 a5 i0 Q6 p5 d3 o4 P& G let best-direction 09 [' F# O. Y; ~3 l4 u& ^
let best-amount grain-ahead
0 J7 b- |- p, f2 x set heading 908 j( z2 L+ C7 q2 N* r C8 a
if (grain-ahead > best-amount)' y/ h8 l( [7 q& `7 Y) C
[ set best-direction 90
4 ?9 Q% T# p# m- B, s4 U- ]; g set best-amount grain-ahead ]# c6 n# y! u0 p8 F- a
set heading 180
4 K; b+ u( a1 W+ ~ R& `8 k- F if (grain-ahead > best-amount). I9 p' z% O, R. F+ m$ |
[ set best-direction 180. v Y2 a- F: D8 Z
set best-amount grain-ahead ]& s9 m% c8 D) s u S% T8 ?
set heading 2705 U& a5 B8 _4 y' v" z, W) r. y
if (grain-ahead > best-amount)
0 o, C( F5 f7 e( L: M [ set best-direction 270
+ k) |2 g9 A F set best-amount grain-ahead ]5 Z Q& y1 z3 _, ?# Q4 w! A
set heading best-direction
& w7 w7 ?% { ~' Pend/ {3 h, P0 X# f9 [& N$ w9 j
1 j6 o" Y6 f6 y ]* ]0 z, b8 a2 K
7 [4 H) O2 {8 k, i q$ R5 T* S# [
to-report grain-ahead
6 K7 K8 h/ f, N( B0 a, B) C. _$ Y8 c let total 03 m- b6 |3 W9 {! S
let how-far 1+ Y" F; M+ o" h
repeat vision
8 P0 y2 n3 ]' K y- c! o* y [ set total total + [grain-here] of patch-ahead how-far
6 p4 P# F8 @# Y- l* v set how-far how-far + 1 ]
`' @' P# Q \& Y7 G report total
0 y' Q, J$ W' f( K/ A* jend6 s; i$ f) v5 Q) j( ]1 w: S
' i/ D% |$ F% J! Y! p- N5 Eto grow-grain
! U9 k* z3 F2 ?' {6 }% Z if (grain-here < max-grain-here)
5 w) @9 k2 H8 @) h% Q [ set grain-here grain-here + num-grain-grown* y$ F6 K2 s, C# }; X
if (grain-here > max-grain-here) , w! i' }) J% r) r, M" A
[ set grain-here max-grain-here ]8 Z' Z/ \: m$ k' v& D
recolor-patch ]
* i5 x. Y( v2 r$ v1 y, Fend9 h- }9 \$ A7 o) S
to harvest
. |. u/ W8 s9 H ask turtles
: j, d3 j7 W# t [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
* A0 ]# ^& Y7 p3 ^' E2 s5 } ask turtles
6 p) o# p6 ?) R [ set grain-here 0
% @: B7 J, A& u6 q5 t& @ recolor-patch ]
3 e- a0 m! W; ]/ z 3 x& A9 \! ~9 t* U1 {' S
end
; d( J, c& l6 \/ F* b5 {, y3 J+ E# U$ n, p5 v) E
to move-eat-age-die
8 E: y5 A( M) D, G fd 1" [7 w" P% [& I) _7 u7 G+ y' x
set wealth (wealth - metabolism)
h! r: I, j* w. t0 {) e* e set age (age + 1)
4 f8 b8 ]/ ?) k4 r- [0 I! ~4 ] if (age >= life-expectancy)4 }6 n2 ]4 m" L( H* d$ u
[ set-initial-turtle-vars-age ]) ~. p# r- v% ?8 L
if (wealth < 0)7 ?: E" q4 _% b( m
[ set-initial-turtle-vars-wealth ]# R% q2 S8 ^( N/ i) D. m S& J, |( Y
. ~6 ?. P2 _4 ^9 {, ^end
% g* r& ?% {, [2 f; c: D
" x( r9 N4 Q! H3 f& L! a8 X2 v
to setup-plots6 S/ e! c& r/ Q* m0 J& l' A
set-current-plot "Class Plot": C( ?3 P4 w* ^' `: G1 o/ _
set-plot-y-range 0 num-people
# F. w j( @* S set-current-plot "Class Histogram"
" @8 A+ @9 |3 Y1 e set-plot-y-range 0 num-people) d' d$ P& _+ W1 A+ t; ^0 }9 |
end
8 ^' x9 G, o! _- e5 P$ {: H3 Y6 p# m6 }# Q* z& ^" v0 C% V
to update-plots/ o5 c' C/ T4 y9 [5 a, [
update-class-plot
' k# _6 ], z$ k, ~$ V3 O) {0 R% }; O update-class-histogram
2 r* S- j a$ e3 x update-lorenz-and-gini-plots
$ R0 Q) V7 w9 [end
# @1 @3 C/ B. c; m* j E" `* O
to update-class-plot
n7 C) s% f7 h$ W2 \% U4 h7 b set-current-plot "Class Plot"
( G0 V& f5 U7 }3 s, d |5 j; h set-current-plot-pen "low"
0 d! G0 }/ z6 [3 V% F plot count turtles with [color = red]$ l2 l# J8 d: G+ W6 ?# [7 w
set-current-plot-pen "mid"
/ [4 H" H7 \6 Z& w( G& X0 z plot count turtles with [color = yellow]
: y! o' \3 S: I2 X' P2 z+ b set-current-plot-pen "up"
3 A7 V* e: M g1 u2 [% ?. G plot count turtles with [color = green]
! P' R! {& F# A8 j4 D+ uend
) g' Z9 L( E' ]' M6 h% E8 @& x) @
9 D& k. }7 g! rto update-class-histogram
$ O% d* v3 A( ~/ `% e set-current-plot "Class Histogram"
0 s. \; V0 D- M6 K plot-pen-reset- E; N0 G% ]( L! H! v/ K# d
set-plot-pen-color red7 T8 q q/ @/ U$ d* t
plot count turtles with [color = red] o' X U. p8 X
set-plot-pen-color yellow2 y0 c+ B- p$ ]' C% S# t! ?
plot count turtles with [color = yellow] L) m! o5 m3 D* n/ ]
set-plot-pen-color green
3 v% f8 v) R; b4 [/ ? plot count turtles with [color = green]
0 H3 |$ m P- tend: f! Z; J6 [9 I2 {# r* \" C( x
to update-lorenz-and-gini-plots# ^2 E8 N1 |( _1 u) g9 ?
set-current-plot "Lorenz Curve"' E2 @1 {) P6 n+ R$ x; k" G
clear-plot1 e# q: G, H. H2 j& z5 [) w
8 p' P/ l8 j& a8 Y* ?' N set-current-plot-pen "equal"# x) `2 W/ F! L$ m8 i
plot 0) [' _6 f6 A. C
plot 100/ l) d" Y \) q, e: Z8 W0 G: d
, q9 v$ `. [2 a, c5 D8 N1 o
set-current-plot-pen "lorenz"7 x- ~2 d; ^! f _6 V8 H8 Q
set-plot-pen-interval 100 / num-people8 z+ g/ q2 |/ M6 I0 l7 i
plot 0% q# v- R8 f5 x# P& V. c; m
4 r" }/ F6 V$ \( r
let sorted-wealths sort [wealth] of turtles
5 `+ O. B; U' _/ ?& D let total-wealth sum sorted-wealths! r- L( g1 j! J0 \" Z6 L7 ^' @
let wealth-sum-so-far 0( W9 N0 N( J* ~7 ~5 z
let index 0
: ]: B& j( d4 u4 z; E' i& s let gini-index-reserve 0* C! d. f# I! N' I7 G! P
/ v0 v, C, J: y5 ?0 i, G repeat num-people [6 D* }1 n# v6 |6 `
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
& e7 Y3 X+ w3 v9 H3 Y" m plot (wealth-sum-so-far / total-wealth) * 100. u$ G2 x$ s r$ H
set index (index + 1)0 L: ^/ W0 Q# ?$ r; E' Y
set gini-index-reserve
1 f- Y1 D; Y. r" q3 J gini-index-reserve +, U; U; }+ Q1 w9 i2 l
(index / num-people) -$ S0 p0 n' q3 ^
(wealth-sum-so-far / total-wealth)/ r2 T! ~5 M: i8 I ?5 e/ c
]/ B/ I+ g( s# ?. o
! x) e( N2 Y [ k5 F+ X$ V set-current-plot "Gini-Index v. Time") a* `8 S% D9 U- z, ]/ U( }
plot (gini-index-reserve / num-people) / area-of-equality-triangle7 e7 r! \8 s8 F+ J7 S
end
) M& z0 _' h) F2 V1 Sto-report area-of-equality-triangle
( f/ F% ?- ?: S0 W: N2 L2 P report (num-people * (num-people - 1) / 2) / (num-people ^ 2)2 E3 U/ a% l; E. r% T8 A4 H
end |