请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现8 n$ U8 P, R5 N4 \$ J! A' Z
globals
7 p5 @7 H" N U, y[
& x0 S/ d: E& E$ @' w+ v3 \ max-grain 0 u4 f$ @, C& C7 P
3 i' v0 e( {& v. i* w]
7 T- w2 e: e. |4 B% b8 m) Y1 j g5 i$ C% @ l4 b. Y
patches-own& Y# r4 ]& t, ]5 H. t! k# p
[$ }/ r. N6 h* n3 r8 {
grain-here
$ Q+ s4 _8 b% [8 T7 I) A k. Q max-grain-here - x9 E ]" k( v$ A5 Q3 b5 _
]7 r5 F8 B- o* A$ r6 |9 M( u1 v/ x! m
5 ^* U9 d; X$ L& L# U0 }4 J
turtles-own
' m* i) k+ g3 V3 @, J6 o8 K[6 }3 c l9 }, }% G' ?; u3 x
age ) |/ Q2 o5 G% Z) e& M6 A* ?
wealth * l% E: I g, o1 u& J" [
life-expectancy 4 [- R$ b7 u3 K
metabolism 6 Q0 _) m! F1 W0 q$ E8 |5 Q
vision
1 K; W1 L4 _. c* i6 U2 o inherited 9 `# y: M9 R( l$ f% _& G5 g
]
# V U$ O& q' c
' I. ^/ c9 N9 r7 N% J$ `2 E# J. M7 ?1 D6 c
to setup
7 ~4 S3 ~1 B) T! I! c$ M6 Z ca& H# F5 y; u0 v5 p, {+ W
set max-grain 50
: I% H7 a# \3 M" w3 S, U o setup-patches
& N7 v/ J n! S- {0 L5 A' z setup-turtles
; s! \+ h. s5 S8 W7 u& H setup-plots1 d0 ~; }" y& s6 E9 p4 e1 i2 b
update-plots' t5 R5 A" b# V1 w3 y
end
$ m4 K G5 x8 U$ W3 m/ Z7 Hto setup-patches
& Z( P' ]( G. T) l, g9 z+ L ask patches
, V4 Z$ p5 Y' _2 ~; Q, k) @/ E [ set max-grain-here 0
% G' G; }5 F1 U: \/ y. L if (random-float 100.0) <= percent-best-land
. F$ M; t) m; N( q ^: X [ set max-grain-here max-grain
$ C0 ]% ^4 Y" ?2 n+ g set grain-here max-grain-here ] ]
) A/ {' k& O$ t repeat 5
$ w5 |1 j9 P5 t: D. ^ q" k' D' V [ ask patches with [max-grain-here != 0]4 t$ I1 B+ E* {' x( O
[ set grain-here max-grain-here ]
$ f7 w. A3 s6 V; A diffuse grain-here 0.5 ]
5 {2 X, Y6 {% X- G repeat 10$ C6 B9 W: q- q. h" ]6 J
[ diffuse grain-here 0.5] 2 |# k3 @( H, {- {
ask patches
f5 Q& d4 C. q6 l [ set grain-here floor grain-here 3 H. M+ o. @" p' a! V
set max-grain-here grain-here - R n+ V, x7 O4 `2 x4 b3 {' H
recolor-patch ]* A9 A' O. F3 W2 e: [* X# c
end% }3 _9 f! U _- |# U
to recolor-patch + g/ G) l4 C m7 n5 [
set pcolor scale-color sky grain-here 0 max-grain5 e+ }. `9 D0 j9 v0 r
end
' W& s3 r. H% S. @" nto setup-turtles7 l: g' z* X8 {+ N) I, i4 R
set-default-shape turtles "person"
3 ~$ V8 C3 ~6 H5 Q1 ]6 @/ g crt num-people `( s8 m& Q# |. N2 `3 [
[ move-to one-of patches
+ m& U+ L# |2 s5 I3 G8 {; @- a set size 1.5 9 o$ \* E* `. A& m7 M9 o
set-initial-turtle-vars-age; ?3 |+ I! j$ O9 |% I; K- h* j0 q. v
set-initial-turtle-vars-wealth
' V6 t! E% G7 w+ u5 V' p0 j set age random life-expectancy ]
# f3 P" L! x: q- N" H recolor-turtles
, \+ x$ G! W4 w+ S- aend
5 E# b1 N7 d5 |4 t- C4 ?
0 k) }# a. F6 i" Vto set-initial-turtle-vars-age
$ B' M. a$ K3 C, U0 ?* j; W' A let max-wealth max [wealth] of turtles6 c# X: N, C0 e9 n. K* ]
" X& Z8 P6 r0 ]8 Q9 |9 _+ h& K1 K
ifelse (wealth <= max-wealth / 3)4 C# n3 A1 O- A" T5 s7 k
[ set color red ) }' c4 n; L0 p9 r. j
set age 07 `5 \1 m1 I% V7 o- G: {! @7 i; u
face one-of neighbors4 # ^1 _- ]% ^! F( x
set life-expectancy life-expectancy-min +( M* q% D4 I* K7 i
random life-expectancy-max
. T+ @3 l/ ^1 t# ~' o2 e" M set metabolism random 1 + metabolism-low" D( e+ u0 L4 S- U; b
set wealth metabolism + random 301 `) C4 S) o1 O4 \5 @2 P
set vision 1 + random max-vision
; y; b% s+ w4 J. h' O set wealth wealth + Wealth-inherited-low ]9 j8 |$ r7 [5 P" t4 V2 g
[ ifelse (wealth <= (max-wealth * 2 / 3))
! p- ?1 Q1 J6 |# M5 h8 [' g [ set color yellow
; P/ |5 O6 W6 Q' i. w J set age 06 z& M( C/ @$ `% Y' V
face one-of neighbors4
8 T+ p# H* F4 N; M1 a8 G( y2 a% p set life-expectancy life-expectancy-min +
# V1 i' _* d6 g random life-expectancy-max + 1
* U o+ R4 y! n! {8 M set metabolism 1 + random metabolism-mid% S$ \( E& V1 V: c: i9 Q0 B
set wealth metabolism + random 30
- M9 g0 T( \" n7 b) P n) z set vision 3 + random max-vision
/ S4 G N, z' T set wealth wealth + Wealth-inherited-mid]
1 f5 n1 F4 C9 Q1 P+ V$ m [ set color green
- B1 e3 H, P5 t9 E1 p- p' [ set age 0
9 I! J% A8 G0 A: k# [* { face one-of neighbors4
; x T9 H' L/ {& i set life-expectancy life-expectancy-min +
. b: ^* R* l: r6 G random life-expectancy-max + 2! h2 U+ @$ n/ p
set metabolism 2 + random metabolism-up
$ ^. J+ J9 @: O& D8 Y set wealth metabolism + random 30
5 e0 e$ f2 I0 Z set vision 3 + random max-vision- i5 v; L, M& V* O2 N; V) M1 ^9 N
set wealth wealth + Wealth-inherited-up ] ]
, ^' _- S- V' @. I1 T ) [' ]" T x$ {
end
7 L9 z! q! ^: E6 G. F8 nto set-initial-turtle-vars-wealth
: u$ R" l' `% P G; t: Z; ^9 r let max-wealth max [wealth] of turtles6 x+ ^& |( `6 a! h
set age 0
. L( x8 I3 u* d! T1 Y* r face one-of neighbors4
/ m4 z5 B& r6 G: Y0 i set life-expectancy life-expectancy-min +8 B3 X% c( z( |; F
random life-expectancy-max
/ A2 c' ]5 ^8 }4 Z7 ? set metabolism 1 + random metabolism-up
9 \) ~4 I1 i5 j set wealth metabolism + random 30: E! P7 f8 ?7 m) {" b
set vision 1 + random max-vision
6 M9 E! N) \6 rend2 m' z% g! y" x" d3 k% f. S1 q
to redistribution
# S( \( W: q; b; o3 {2 dlet max-wealth max [wealth] of turtles3 ^* |( M3 C5 K9 i" q9 z1 k
let min-wealth min [wealth] of turtles' ^& q' C5 [, W" p4 X
if (wealth <= max-wealth / 3) V' [+ Y/ T8 O9 K6 p; M q
[set wealth wealth + Low-income-protection ] v- @$ L% v9 I9 g2 q$ t4 Y" _
end
" h# z" {9 i. A! U3 A
+ x& M1 E. B- ], z3 l: V4 Zto recolor-turtles9 h3 K! a% Q2 w" {' ~0 S
let max-wealth max [wealth] of turtles, _( y+ k* c; L H1 M, ~% r# O
ask turtles8 w5 \9 h- O6 g$ _
[ ifelse (wealth <= max-wealth / 3)
" u& h+ s- R- n# m& ^& Q [ set color red ]
$ \- d0 u5 x6 [# _ [ ifelse (wealth <= (max-wealth * 2 / 3))
* }9 A, N n( V% n- L+ s& u [ set color yellow ]% `/ E' g* i9 ~& [8 F- Z
[ set color green ] ] ]
6 O8 Y! x6 u* Z k" _ ask turtles [ifelse show-wealth?$ j- c% Y8 u; P. p' B% _
[ set label wealth ]
9 l: y8 \( ?- w' D5 r0 u [ set label "" ]]
j5 O, f! j+ X3 [0 \end
n- j" h# b5 E5 |
: ]7 t# B5 P( ~% c/ B; w- K$ o+ sto go2 E. w7 s/ d% b+ v0 z V
ask turtles: P8 T5 O" J X5 V
[ turn-towards-grain ] / t% S7 k) q9 n/ R; U
harvest
0 X+ k& K. G5 G! D1 Y* D ask turtles4 ^$ R0 j1 H& E/ b$ _
[ move-eat-age-die ]2 m! j$ j( I# m9 G0 ~0 s1 }
recolor-turtles$ F: J, {1 ] p) W; ~ m& {$ V
if ticks mod grain-growth-interval = 0
, _5 B X+ G$ w: W [ ask patches [ grow-grain ] ]
\3 ], U5 c" J" P2 _
$ @- V& U1 |8 O if ticks mod 11 = 0
7 I% G6 d* w1 i' {# Q! b [ask turtles7 O; ^* T* \/ D
[ redistribution ]]
" e4 ~( f/ S$ M. B! V \ if ticks mod 5 = 0
4 a' Q2 c. E! i ^' m d [ask turtles- G2 O: S( F" S- a) w$ R4 B
[ visions ]]
# O$ Y$ K q* }1 v% H tick& Y3 q+ y) K$ c. [3 Q: ]. t, T
update-plots
A3 o# W8 ~" M% B: C" S; Dend$ S, ^: D& |) w2 z) Y- M
to visions
* ]! o" c, ^4 X D set vision vision + 1
& V. l0 x* e8 n! H1 h2 Hend
$ i0 @ h X# `% q( t6 B+ w% J- M! C8 J3 x+ ~
- X- V# y0 f! i4 f. c. r
7 U: \) v. P5 t6 |8 F+ L: q
to turn-towards-grain , ~; H: S8 c* T" Q T+ L
set heading 0
3 {3 D0 }2 ~& S let best-direction 0
% W+ s. B! o+ }2 P$ S0 c) H let best-amount grain-ahead
) y5 V; T+ m& S. _, L* Y: n set heading 909 a% ~( y8 h2 t
if (grain-ahead > best-amount)
. }$ X) Z3 n+ r* ^$ _ [ set best-direction 90. f: d W: P( Y8 \7 G
set best-amount grain-ahead ]
# o% M- j! V8 Q2 i( e+ V set heading 180
( p8 m: z8 F* u( ^0 Q if (grain-ahead > best-amount)
* l' T7 Q0 f3 E/ u3 m [ set best-direction 180$ b/ C2 @5 t+ l5 C! O( }
set best-amount grain-ahead ]
" ]5 k) B7 \. d set heading 270/ t7 s2 }0 z" L, A! t
if (grain-ahead > best-amount)( A' z0 y! n d/ t+ q' ]5 L
[ set best-direction 270
( R/ D6 s4 ]9 R9 V' I% W; s" Y set best-amount grain-ahead ]
^% \7 Y- }8 Z3 s: ~# Z set heading best-direction3 v) ]" u- F$ `3 J& ?
end" O$ L/ u# w# B; W) O6 a" n# F( {
8 C9 E; K) p! X. {: H9 r5 @
% x1 G, R0 x- K+ @/ w4 S7 `to-report grain-ahead % S8 W( X- L* H0 F3 y
let total 00 F: }" e+ Y/ p0 H7 L
let how-far 1, h" A# s: |4 A0 ]$ [
repeat vision
N8 V4 {+ `2 I5 d0 z [ set total total + [grain-here] of patch-ahead how-far* a8 j5 A7 ^+ }
set how-far how-far + 1 ]
! j) q0 s, q" j; m2 ~1 H report total
2 M+ w" f% U$ ^3 vend& s* ^& \' S; k* F; c
; u. o) l- y1 S1 w6 ?to grow-grain
# h# s7 d- ^. b8 w. }$ |6 P! @ if (grain-here < max-grain-here)
d7 c( W1 W* z1 b4 b/ X7 } [ set grain-here grain-here + num-grain-grown! n6 e) y9 c6 S$ a; G p# |, b" ]
if (grain-here > max-grain-here) / A) R! `+ ^. o- O
[ set grain-here max-grain-here ]
. N( f: M) W5 b9 o recolor-patch ]/ t7 j4 w# c9 n K) t
end( _9 O" B3 I I5 I
to harvest
) o# F9 }2 X1 x; n3 b* ` ask turtles3 c, j: F; V4 S
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
, c( l3 M! h- t( d8 V' g6 @1 H ask turtles2 F! v# @% k8 @0 e8 G6 _
[ set grain-here 0: U3 s0 h1 g( F; J* X
recolor-patch ]
3 h- e- E, z/ w: C 3 w M5 ]+ j: e! S& j l) B
end
5 l" |: c, s2 P' k( y& p2 V/ J- A
+ ^' v( _5 [: }* Cto move-eat-age-die
W6 n M2 a% d4 ^# ~- C' q" d0 M7 C fd 1
. V: y/ N& x0 ~7 w set wealth (wealth - metabolism)
- P9 A" i9 x+ L( H set age (age + 1)' x2 p) j. u8 ]" @3 M0 P* t& x( I9 {, X
if (age >= life-expectancy)
" `! ^" `3 B2 b [ set-initial-turtle-vars-age ]
5 I$ X/ B4 g8 p' J if (wealth < 0)
6 Y) c$ s$ e0 t [ set-initial-turtle-vars-wealth ]
, b* w ]/ t5 P6 d' x
* T" Y9 n+ e0 C! b( Eend# |. V& f7 a) `
0 |$ k* d% b$ U/ C( V: F* J, b6 i' S/ p" d) T; C: N0 |0 B; z4 d) J& U, |
to setup-plots
5 C, t& f ?; Z! Y* G' o& Z# x set-current-plot "Class Plot"
. e# I+ w# B% v! @( C set-plot-y-range 0 num-people
1 z% L( S0 H3 E/ t. F+ @ set-current-plot "Class Histogram"
# `% B- |! _2 r7 @* b! D$ q, }6 M set-plot-y-range 0 num-people; ]/ R2 L7 U; q; i1 {2 R2 \2 f6 P
end/ ~" }& a( [; _& O+ @% O! P* [4 l
: M {% J9 b( Z* u! o0 T9 Yto update-plots
. S$ y, ]& Z3 H0 [2 w! a+ }" @7 M update-class-plot
' S+ z9 V/ l0 j2 z2 ]/ K9 l update-class-histogram2 p7 {* _, V7 K3 ^" y! h, M
update-lorenz-and-gini-plots
' p1 n3 U/ i8 r6 ~2 o8 c# ?end! }9 O( G$ T$ j( `5 _! l! m
* ?; _* M) S* F* k0 \: ]8 ~9 e
to update-class-plot
' |3 i& `) j6 d set-current-plot "Class Plot"
. o C7 o* |3 ]; S set-current-plot-pen "low"
4 ?: ^7 v/ e+ t& X/ n plot count turtles with [color = red]
) ?+ f5 L+ B h) H7 \$ T6 c set-current-plot-pen "mid"
0 k9 X9 }! a5 }, H+ ] plot count turtles with [color = yellow]
' D7 S' O% S! g- u set-current-plot-pen "up"0 i( S( s9 W; }
plot count turtles with [color = green]4 y' c5 U+ b; t+ X; n
end
/ f" L: f c) o( d% I$ x/ v
& s" C7 E q! L# { M/ bto update-class-histogram: n3 v' J% m; Q- ~2 i ^+ {
set-current-plot "Class Histogram"; d) F* n, J! ?5 W8 L$ G
plot-pen-reset {0 `' H6 Z4 V
set-plot-pen-color red
& a" @ E9 O! x. G, G6 w plot count turtles with [color = red]
: {0 e; T! p6 _. G( z8 ? set-plot-pen-color yellow6 U* t# }0 @- _5 O* T
plot count turtles with [color = yellow]
& ^" \' _( m# l' y set-plot-pen-color green
6 y( @: f, @. y plot count turtles with [color = green]
/ M' \5 K1 \8 d5 eend) o, o, ^) S* i" O# D7 b) o
to update-lorenz-and-gini-plots
, x4 B' D, G; j& k set-current-plot "Lorenz Curve"7 g* L1 e! ^2 P- a( O
clear-plot
1 n% i/ j2 Z: ?7 C2 j2 a5 \- x
( E$ ^) F- W+ t4 y1 \" L; e set-current-plot-pen "equal"4 R% }; x7 n- D- z& F
plot 0+ g K6 w8 U/ z2 }8 _8 P
plot 100
3 I0 s6 O! i+ L# D, Z' k
$ A* S8 H5 R% } set-current-plot-pen "lorenz"
0 a8 O3 B, B3 a( j4 }% y( P J set-plot-pen-interval 100 / num-people j8 W- ]7 m% L1 o; B0 n* ]
plot 06 U1 @) U- T+ v0 j) ^& e
& D4 t4 G# m7 ~1 h M7 d3 t3 H
let sorted-wealths sort [wealth] of turtles
3 s! |" Q: E9 j3 J& S$ K/ i let total-wealth sum sorted-wealths
5 g6 K1 N. ~. X: z% ] let wealth-sum-so-far 0
8 D3 m! f( K+ @* u0 D let index 0% F/ x% U$ X/ }: ?# Q
let gini-index-reserve 0
( ?9 Y8 {6 M$ N8 I, @' H
1 J9 {/ M& r0 m9 d B repeat num-people [
( t( U& W3 a1 T9 X( \5 Q& S9 E7 f set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths); R- s1 m9 N) O4 y" w
plot (wealth-sum-so-far / total-wealth) * 100
! W5 `$ B5 q( N$ R+ M set index (index + 1)- O `* l" D8 {6 {4 H& i7 u, n9 @
set gini-index-reserve
0 R; ]% ]1 f4 u% H* W. ]7 b gini-index-reserve +
4 u+ A% W5 p. \, u (index / num-people) -
6 g7 z7 s) p" ]& \0 W( {& U (wealth-sum-so-far / total-wealth)" z' K9 e$ [( _/ d _: s
]
[2 [1 H& b1 A% D, b
' H. A# b, k6 e1 ] set-current-plot "Gini-Index v. Time"
6 g. b6 {1 G x; o6 P plot (gini-index-reserve / num-people) / area-of-equality-triangle% y6 z) K5 b' P, a
end
! [0 Y' D5 F. Y& i) tto-report area-of-equality-triangle h' M1 D0 h8 D8 K' S3 S5 m
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
$ R" `. I5 r# N1 O! Z7 W9 @8 Jend |