请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
; E# A6 A1 H1 g$ o; Bglobals
3 c4 q$ K R5 Y9 H[
! A* }2 s" ]( i d3 W2 j max-grain
6 w5 o* S% u1 ?, ]
( d x5 q: t) [. E2 t]: X9 G8 V% s9 A0 P( l4 }2 d
6 q- g5 X& _) U2 N M; Q. x
patches-own4 }9 h' t6 d- S+ O; }
[1 _$ M/ r0 Q O
grain-here
) T: B N5 Q+ s- I3 i* f max-grain-here R+ N/ w: C. b) C1 m; J$ S, C
]
% @1 L5 G& B2 L9 ?8 p; p2 w+ h% b7 L
3 t2 b6 }; z$ X9 J# Zturtles-own
. d ]/ G: @. [3 E9 I$ L[6 `; a' G/ V/ M4 ?: Q
age
' \) ^9 M2 z# g wealth 4 N m( A# l: k
life-expectancy - b2 R0 a9 W; G( O2 ?* p2 c) W
metabolism
3 I, T$ ]. y" P vision
7 z5 O: Q7 a, h# q* l inherited
" V5 Q6 o) w, \+ Z, u H5 l% L. S, p]5 q; P, c* n; H' ~. G
3 c' d2 A+ A: a& _) F( Z
c5 j3 ]4 ]( \* l# Jto setup
, k5 x% T t0 P$ t* U3 b! Q8 T- ? ca
- `2 Q$ c, n( R* _ set max-grain 502 y6 d S e5 M& l
setup-patches
0 n/ X1 K& m; ]. V- c2 c setup-turtles
1 R% ]% P }$ I, z$ s! i* u. m setup-plots/ }7 W- ^) E' a5 N' N
update-plots) x N, N/ a3 P: p) f1 D
end
! P+ B d3 R0 U0 E8 Y# r0 Z' |: Cto setup-patches* ^, p# J( a* x! a" ] B& x
ask patches
: f6 {6 \* e# i8 Y [ set max-grain-here 0
* e+ S4 u8 s) v' D" _ ^ if (random-float 100.0) <= percent-best-land( o( ^! s9 Q1 X5 ^
[ set max-grain-here max-grain
! \3 ?) v6 i0 L2 v set grain-here max-grain-here ] ]$ M: _1 G+ k& b- |! p( c' y& \. ^
repeat 5
/ a5 O/ I! a$ n7 S, f5 L [ ask patches with [max-grain-here != 0]% o7 x" `/ t/ f. _9 _6 U/ ?
[ set grain-here max-grain-here ]& J3 }. y/ b: s* I8 ~
diffuse grain-here 0.5 ]
' g/ g+ M: N Y( W: k8 ]6 V repeat 10
5 [' c' ~; ^! E6 I% @* q [ diffuse grain-here 0.5]
* k4 [* m/ s# b! U: n ask patches
$ |$ J- \: v2 K [ set grain-here floor grain-here
; Q& L6 F$ C O5 g. m$ ^5 q set max-grain-here grain-here
: h8 K, L4 j4 {: e5 Z recolor-patch ]
* ?8 U- R& t4 E- [! e: J& I+ dend7 D! U, M% X& M- c1 p) x
to recolor-patch 5 y& Z3 H9 E3 }/ Y* l; C0 ?5 s G- K
set pcolor scale-color sky grain-here 0 max-grain! ~' ~: e/ x8 e, P' J3 z) E
end
% ` f( j8 o, L- q; T. d, K: [to setup-turtles- D& b( q. J% ^# f
set-default-shape turtles "person"/ \7 ^! D+ ~5 l$ w: @ B+ l8 Q
crt num-people
5 V: B) o& |! v; j y6 R( Q [ move-to one-of patches
2 E# Q9 j2 [% h( A set size 1.5 8 {+ N7 R6 n- Y+ q0 N9 p
set-initial-turtle-vars-age
, g* I/ B" E5 c6 r) Y* y set-initial-turtle-vars-wealth" e; o) w( D4 R$ ^/ w
set age random life-expectancy ]% m! B& `4 c1 R/ F
recolor-turtles9 a, j8 e& l& `# N; y* @& h* G
end
2 p5 j: D' |; G5 K! m* Q' H3 ], L$ x U. \1 t: k5 k' N
to set-initial-turtle-vars-age+ p, A/ q9 m" T1 z; J3 v% [
let max-wealth max [wealth] of turtles. ]. F' h0 b: P/ _2 Y, T3 t9 ]
/ ~. ~3 W. q3 \ ifelse (wealth <= max-wealth / 3)
- p$ k& U' c' ? B9 f [ set color red ) |& Y) j5 |: S3 v4 m
set age 05 v4 o5 N+ |1 @
face one-of neighbors4
7 r" z7 s' { K set life-expectancy life-expectancy-min +* @) O) T/ I4 K' e& i6 p; e u
random life-expectancy-max
8 F; @( @ g: ]) A3 y set metabolism random 1 + metabolism-low" g+ c! |" n* m6 Z0 q
set wealth metabolism + random 308 g# \0 Y3 D. m4 Y
set vision 1 + random max-vision
9 u- h- x$ O h m) n- \* _% w set wealth wealth + Wealth-inherited-low ]
# r6 T0 x) Z, D4 x1 O- b [ ifelse (wealth <= (max-wealth * 2 / 3))
5 h+ n' ?5 H* }. e, l3 ^4 J [ set color yellow
" A! \' q0 B$ ?5 U/ M set age 05 r: C U- N# X
face one-of neighbors4
6 D! a v* N) n% H set life-expectancy life-expectancy-min +- h" y, Z* Q3 I: K# y' f6 H
random life-expectancy-max + 1
! q' L% t7 X) v8 ] set metabolism 1 + random metabolism-mid
- G6 c# {: E& M4 v set wealth metabolism + random 30
, `, i, s$ s* g0 f! I set vision 3 + random max-vision% ?+ Q8 p7 \8 K1 D0 C
set wealth wealth + Wealth-inherited-mid]+ u6 M; q+ z6 _1 y
[ set color green 3 s( E8 D8 h/ u5 ]0 m% [' {
set age 00 P5 D% E( [* [4 I' y
face one-of neighbors4
7 l4 `$ J" d' c set life-expectancy life-expectancy-min +! E8 \1 e/ ]0 ~9 e
random life-expectancy-max + 2& t4 p( b. C: @" H
set metabolism 2 + random metabolism-up0 b$ C; B# J6 I, j' y* S0 B4 u) j' F
set wealth metabolism + random 30- M% a' W+ R" ~; m/ z
set vision 3 + random max-vision% t; n; Y- v7 _6 ~! B' D
set wealth wealth + Wealth-inherited-up ] ] 8 n& R% l" g. ]
/ Z1 @. O, ?& r: _) N; M; hend, j6 b( ^. u3 q7 D" P0 W# Y
to set-initial-turtle-vars-wealth% I+ H& c8 Y, k) t% U
let max-wealth max [wealth] of turtles
% k# q, e8 Q7 {8 C4 I6 D set age 0
4 F3 G0 o$ a- F face one-of neighbors4 5 p, r6 @8 R) g6 Q Y
set life-expectancy life-expectancy-min +% a3 c* O/ k/ ?0 H( j/ k2 Q
random life-expectancy-max & v. A& n2 C, z$ r. _5 w
set metabolism 1 + random metabolism-up' q* v. E* D: t; l
set wealth metabolism + random 308 C6 L* G7 |. [% u* ]4 d
set vision 1 + random max-vision
( t$ O+ W& S6 J9 F+ zend. H5 B0 _/ H, ~1 c7 \
to redistribution( U c6 C& P/ b1 t6 T2 S6 O3 P5 B
let max-wealth max [wealth] of turtles* O% Y$ F7 e+ G( w
let min-wealth min [wealth] of turtles: X- _% k, o, [2 T8 \: |
if (wealth <= max-wealth / 3)" ]/ J! J- [# r) C" `) P1 M! |
[set wealth wealth + Low-income-protection ]) M, N! Y& ]% Q1 _: i
end
% f9 ~+ ~6 V+ _) e) c1 y( w/ ^ : H! j5 \% s& u% O
to recolor-turtles
2 k ?9 k( I- |+ c9 j. G let max-wealth max [wealth] of turtles
8 U) I: f, f2 l ^# g* o ask turtles2 V6 X8 s5 P0 {. }
[ ifelse (wealth <= max-wealth / 3)% G& l" ~6 c; L5 p. E( s
[ set color red ]
. f5 q' H& ~/ y6 C8 Z. r. Y [ ifelse (wealth <= (max-wealth * 2 / 3))
# @3 }6 E6 ?8 L& w6 P( s [ set color yellow ]+ N$ }# s5 R. y# C# @ ^, S+ P/ X
[ set color green ] ] ]
# a% J! c x3 d% b: a0 L2 v; v$ n ask turtles [ifelse show-wealth?
! {0 u1 I& j- d2 i; @( t [ set label wealth ]& b0 n9 U7 V W
[ set label "" ]]
# O' i; |" X: p- }- _" F# V% Pend$ w; c" Y' R# x @; D
& x* e# T" a* v2 H) l# C6 S4 j6 Y
to go
+ M8 j ?+ [! G- Z; O% X, V6 w ask turtles
% Y: G z8 @( O7 S* w7 b7 M: u/ G9 g [ turn-towards-grain ]
# {" P1 Q1 P+ I harvest5 }1 w4 |3 |0 J8 b' d# k$ f' a
ask turtles
- J! Z6 [5 P6 G O7 C l7 a [ move-eat-age-die ]2 P( H9 \! n x% I: _0 e7 J1 H
recolor-turtles
6 Z q! `- \2 X- ? if ticks mod grain-growth-interval = 0% \" B n- l/ ^; y+ [5 p
[ ask patches [ grow-grain ] ]# k8 O _ O6 Y+ X; h
$ z) o' l5 a* P2 z
if ticks mod 11 = 0' d/ j* a9 S! ?: C1 O4 m' {8 ]0 j
[ask turtles7 D/ x+ q- n, x+ H8 ?
[ redistribution ]]- S; z3 A# E3 f4 ~6 {* }. x
if ticks mod 5 = 0
6 U/ E# \% s" w( n/ C8 G [ask turtles
1 X' V! `2 O Q- U [ visions ]]8 B3 ?0 p9 A3 H ~& D
tick' c4 F* ]1 x8 T* V0 h
update-plots
# R b& g) @3 n, \5 Rend; O+ S: E1 h' z* {- ^
to visions
5 h3 i6 L' q( f7 \% t' U set vision vision + 1 9 t0 u1 r6 F2 N# m" `' x
end
/ Y, S6 S: |4 `6 U+ _
, a9 _* V! g7 `: z$ o) X4 O5 p
5 V' a0 j' ]( W, g% x# o6 P. O% g- @& A; ]( C
to turn-towards-grain ) y2 x( \" c8 t1 s, _
set heading 08 g9 P- n1 ?; A7 b- ^
let best-direction 0+ h+ y2 l0 @) e: ^& W$ s8 v
let best-amount grain-ahead9 h: [. |* [9 [/ B0 g* ^9 B
set heading 90" ]( _2 D S" t, V
if (grain-ahead > best-amount)
: ~3 ?2 t1 w# r/ r4 K& @( u9 H [ set best-direction 90
- o/ u% ], c; o/ r: `, J a set best-amount grain-ahead ]( }; |; y# u+ T. ]+ b
set heading 180- G7 C3 o* }( r1 p2 d; X( C- L: ]
if (grain-ahead > best-amount)
# l9 W, r, h# p1 { [ set best-direction 180
6 V, x" x" ^. K- _' W6 S% R set best-amount grain-ahead ]
" r' ?& q2 ?) \, _ set heading 270
/ P% a/ ]' y, ^9 M( v0 X( P- u' L if (grain-ahead > best-amount)2 K) n% S, T6 I3 X2 ~2 Q
[ set best-direction 2703 @) |8 A7 h, } l* b7 S
set best-amount grain-ahead ]
! t. `& Z1 ^" V, M. W set heading best-direction
+ G2 \. d# [4 v! B8 iend4 h6 l" t( Z8 K7 d' P: c6 F
( k) S2 Q& T" i4 i# b% M/ ^ B3 T9 V
to-report grain-ahead ; T' z* b4 V( u+ U8 a8 { o
let total 0
$ F; V( z" q( B( r let how-far 1" Q3 O3 V. i8 v& Y( Y3 c
repeat vision
. P1 u5 E) o) A7 K [ set total total + [grain-here] of patch-ahead how-far! \4 I& f( w4 n4 \' b/ j
set how-far how-far + 1 ]
4 s, Z3 j" q! `' t0 N- V' C/ k6 ^ report total; y8 K. P8 F; Y- g
end; T/ D4 l* X. ^2 f2 H
. @% l' E( _/ H% n+ Y7 ]. dto grow-grain
_, H9 l4 w* _: H- z8 u if (grain-here < max-grain-here)
5 y8 e( j$ J, L! u" P5 u [ set grain-here grain-here + num-grain-grown
3 ~- e: K# N) ?- J" C @ if (grain-here > max-grain-here)
' h1 G$ o) M+ b, \6 b, j* u [ set grain-here max-grain-here ]
, t' s- U2 G. u recolor-patch ]
) r* O6 Y% R) l) c8 Yend* e# E; ~1 q1 h* F* E
to harvest7 b. \% p( _' `0 _' A" M2 c
ask turtles4 n5 b, V$ K! q8 r
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]/ p' Y- D1 C: s9 Z! b/ t2 z B- e& A
ask turtles
* q p4 t8 M( s) Y1 I7 g3 y$ m [ set grain-here 0
X6 y# c9 N4 x/ W- K+ ?+ d: _ recolor-patch ]
7 O0 X: I$ {' F* f
Z9 a& y% q& d6 m2 ]; \end
7 z' |2 r5 ~. T5 H- I# D! j3 L( a; h2 y4 S) G* ^
to move-eat-age-die
0 t. g; i: W9 ^5 Z6 m5 j fd 1
5 x0 N% _( N- G8 c" ]5 N* L5 K2 c set wealth (wealth - metabolism)' K" `$ g: n1 e1 E' \% ?1 K
set age (age + 1)) z3 \! B6 i( E* r1 F' }- z
if (age >= life-expectancy)
/ d7 O+ e4 K( O, J C) m7 ?% p [ set-initial-turtle-vars-age ]" k" ]+ d* G! y$ Z
if (wealth < 0). W$ E' A. O/ d: @' M4 @
[ set-initial-turtle-vars-wealth ]
2 R4 N9 R6 m( L: x* P$ Q & w! |4 h: ]4 e: X
end
8 T8 p R, o' [+ U5 s3 U) |; E
8 F9 ]+ `) E! L9 [$ rto setup-plots* @( ~5 _+ G& H* g& k2 X
set-current-plot "Class Plot" R& s8 S! G( p- B8 r$ w0 y! u
set-plot-y-range 0 num-people
' @& J* F x' N set-current-plot "Class Histogram"" X0 Y' Q8 T2 L% z/ t
set-plot-y-range 0 num-people" n4 S; j8 o4 u" ~ c# k* N
end) D, P; f; ?3 V/ E8 K
- w4 T& Z0 J( c/ W7 d% ]9 m, jto update-plots
' ? D2 \2 V+ W* @ update-class-plot
3 D1 s' ?. `, ` update-class-histogram( @* K* N5 h. q) y+ o/ `
update-lorenz-and-gini-plots
. B6 o2 n: F! q! C" l# kend
4 f5 W2 R9 I2 a: Q+ C9 C( R2 B
5 V* A, O# f9 Z! Nto update-class-plot2 O- a% r n7 U/ Y$ ]
set-current-plot "Class Plot"3 e, r) z! T' L9 J
set-current-plot-pen "low"
% L9 d! G" E( L: a7 t plot count turtles with [color = red]$ A- E7 x. q2 X, v6 i4 B
set-current-plot-pen "mid"
0 h+ w, w- u {) Q- C1 C plot count turtles with [color = yellow]
( {" l. q, I; g set-current-plot-pen "up"9 {, m. P" ^- r7 y' o
plot count turtles with [color = green]
7 _ T+ R, Q1 x/ I! i: Zend
" |3 i& C# {7 J) E# ?- P# V
8 Q8 D# Z6 v* E% h: ato update-class-histogram E( |' r) b# `+ C( I% b F
set-current-plot "Class Histogram"
4 A& y9 L5 U/ }- p2 Z1 n. p/ `4 A plot-pen-reset- L3 E/ |0 u4 P( K- r
set-plot-pen-color red( n/ s8 m3 `3 n1 Y6 d
plot count turtles with [color = red]. Y4 i6 q, \7 U+ A% n0 Y [5 b
set-plot-pen-color yellow
1 k% x) N, ~9 D/ h: L9 x3 Y, i# t plot count turtles with [color = yellow]3 C: A9 K: Z! {, `; F6 N7 R: x: O
set-plot-pen-color green
9 V: `0 E5 q* W plot count turtles with [color = green]
6 G! ~& T4 r! h: {end
* N" h* M2 x4 q1 fto update-lorenz-and-gini-plots
% F8 c' h7 z' x% | set-current-plot "Lorenz Curve"
# a7 b$ L3 z+ Q K8 y' J$ S/ A clear-plot5 _9 g9 n9 A6 {# Y' H
7 Q- p) v' L& X7 y set-current-plot-pen "equal"
2 {" v1 K6 _3 @0 E! a5 H plot 0- `1 _% w. J$ S. m% B' _
plot 1009 e( V/ [# O; \
2 X: d0 @7 [+ b6 P) F/ S1 v: G set-current-plot-pen "lorenz"; M( \! A6 r1 ^3 {5 K
set-plot-pen-interval 100 / num-people
; r5 J K2 \/ q) j plot 0
: n k. C; p; C: g. h- d/ {& P
7 i [1 k, S! V1 C* x1 P. X- [! B* O. e let sorted-wealths sort [wealth] of turtles1 e' e$ M) y+ L3 ]& k% G
let total-wealth sum sorted-wealths
. v/ p2 b, @! m6 W let wealth-sum-so-far 0
- x. F7 p& u4 W6 T5 H7 M# o+ ^$ Q let index 0
0 Y1 ~1 x ^, q. y+ F# O let gini-index-reserve 0
. j( \% V3 R7 H: ~ Y7 M( Q% m& f7 X# P* Q2 b2 X8 F% |$ R
repeat num-people [, \' P0 i4 f. V! f: S `
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)$ _% f+ ~1 T. t+ X) |8 K _
plot (wealth-sum-so-far / total-wealth) * 1007 m/ {9 R4 U/ P7 ]- l P
set index (index + 1)
: }& p) b! H! X) S0 o1 Z7 e set gini-index-reserve
& j8 C- l* l, N3 B$ | s; w gini-index-reserve +( `/ V [2 D8 G# G) V: S
(index / num-people) -" v7 O/ q$ {7 F3 M
(wealth-sum-so-far / total-wealth)& |: F( Q8 K9 D M1 u
]
/ f/ p% Q$ L$ w4 {$ L' x, ^- @' {' c, x: f
set-current-plot "Gini-Index v. Time"
* s: G. p* \' I7 d j6 Y plot (gini-index-reserve / num-people) / area-of-equality-triangle5 w: ?+ |- x3 Z# n, L( F7 d
end4 I5 ?1 B+ B7 W9 S% @# W
to-report area-of-equality-triangle+ ]( T5 e; x3 ?; Q
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 z1 a* o& X' [
end |