请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
; P% }& d" O0 D1 w9 hglobals
2 p1 _9 ^1 ?& w: r[, ]) ^7 H) z8 b: `
max-grain
" N, k% o. s8 s9 F3 a- y7 N) n$ D2 b* l6 K# G# b2 w
]
" j2 e4 ^. T0 Y, d( [* g+ C- ?7 R% @
patches-own1 j2 j) o: F( w# u- ?9 B0 F
[% J# T6 \; X5 g$ p
grain-here / m0 l+ |) `( F0 f8 a( V
max-grain-here " ]+ \! U7 ^9 ^1 G2 _/ e" H
]
; W: T7 Y5 j, W, T6 C
3 S; ]" n: e$ R. ^5 X# W* f: mturtles-own7 \+ Z: b$ d2 g) A
[
4 K3 z' J" s" r8 p age 4 R( c7 x) v# c t" S7 F! M8 G
wealth 9 L- ^ a% ~7 C6 @
life-expectancy
- w: E. n8 f4 t# ]+ ?5 ?/ L. T6 [ metabolism . j- o! o2 |! \" Q0 o
vision& A7 y. }3 i' E' D9 U
inherited
. O, _& h' V( H. Q7 F6 \+ ~+ }]
* t9 w4 y0 f) [' o# f7 s% q. E$ ~; N% I8 M# A6 g. C
4 F: ]8 ]& A( S% {! }/ @! ~
to setup
4 Z% F+ ~, [8 w9 J ca
- [5 }4 ?& e% ]# |9 |: k* d K& Y; s8 G set max-grain 50
8 R$ @9 c) t. x6 J. i& Z! e2 C setup-patches7 n3 N u% G; a$ ~8 h. T. @2 _/ X7 @
setup-turtles
9 _# B# D* g3 F8 ^ setup-plots
3 |3 u2 {( h# b) R) X update-plots; L3 e0 ^! m: L, e, @. _ `
end M" H5 P B3 j# e$ F) n9 S5 g5 ?5 e/ T
to setup-patches: N( n* w$ o! M0 n3 H
ask patches
2 A. t/ f. Z, {" h8 i [ set max-grain-here 04 a" R5 C( {4 s
if (random-float 100.0) <= percent-best-land0 l2 d/ G/ |) L7 C
[ set max-grain-here max-grain6 N- H! ]6 j; ? x$ u0 F' @
set grain-here max-grain-here ] ]+ Z* r D2 k5 R6 O, e4 k
repeat 5
; I9 g+ @" y& L3 T( ?4 k6 s1 p [ ask patches with [max-grain-here != 0]# h8 X3 p- E2 t l
[ set grain-here max-grain-here ]# [8 T0 S9 G: F: N# C1 c' [
diffuse grain-here 0.5 ]* w7 M D& ?: g6 m0 z
repeat 10# h2 [/ P3 H" H/ J
[ diffuse grain-here 0.5]
" m% h/ O* Z! Q q ask patches# R5 G! F' Q% M/ v
[ set grain-here floor grain-here R- N* w" z6 T0 p# |' a$ J
set max-grain-here grain-here * w+ A) Q; `$ k1 Z! q9 ^, j
recolor-patch ]
, G0 x1 n5 Q6 ~8 Cend+ X# n0 q# d3 k- c+ _3 L e
to recolor-patch 5 \! J& q5 P: \; g% o
set pcolor scale-color sky grain-here 0 max-grain
" o- K3 E$ W' c+ g5 Bend! y Q( ^5 q) P E& V
to setup-turtles+ i! V i0 e( i! Q0 v, Q& Q- o; {
set-default-shape turtles "person"
& I! ]& [! k9 Q2 @7 h! q# ? crt num-people
( k2 Q- Q3 A" S0 W# ~( ?2 c [ move-to one-of patches
' L7 c7 K# a; y8 b set size 1.5
) ~, @8 y E+ _# d3 r set-initial-turtle-vars-age
$ A9 g& t. v6 w- b R% o) Q$ T; i set-initial-turtle-vars-wealth
% |& t9 F* f! |, p2 y$ S5 j set age random life-expectancy ]
: q4 |# e/ J6 F/ ` U7 r" K% L recolor-turtles
. e, H0 |' A* \) f# ^3 Zend1 `$ w( z6 |# T+ Q
1 D% ~4 e. K$ o& {% f7 E: w
to set-initial-turtle-vars-age7 h8 r/ ^8 Y% P3 O0 M% ^ r! o
let max-wealth max [wealth] of turtles( M1 a4 s9 p8 z& u3 J
+ l4 O2 C. s4 \* q4 C
ifelse (wealth <= max-wealth / 3), ~! v V" B5 {2 Z; U6 W
[ set color red
( v; s2 P* M! X g# S2 l3 [ set age 0
: R" G3 R) T) {" Z) ]' o face one-of neighbors4
, X, W% ?$ \5 L set life-expectancy life-expectancy-min +
5 e2 e- @) ]% [: g. j- n! { random life-expectancy-max 9 w1 ~: J. x- t/ K7 r
set metabolism random 1 + metabolism-low
2 n" G* d& E, f$ O set wealth metabolism + random 30
# Q& Q3 N$ D9 h; X$ v# s set vision 1 + random max-vision2 b$ Q n" v5 J- @
set wealth wealth + Wealth-inherited-low ]
4 p: O2 c5 G4 f$ A [ ifelse (wealth <= (max-wealth * 2 / 3))7 m: \( z2 g, K: q) m
[ set color yellow
5 W$ h0 a; G4 b/ S3 ` set age 0
9 ?' P- U9 t. J7 r/ g face one-of neighbors4
0 s, c/ J g8 y* \6 {- Y. ` set life-expectancy life-expectancy-min +6 U* f, [, ~; c9 z( H3 j
random life-expectancy-max + 1" k L3 [8 U6 P2 \2 f5 t' ^
set metabolism 1 + random metabolism-mid
6 T7 v+ i7 O! X% V- ~" p set wealth metabolism + random 305 c( \7 K* T4 X/ P( O9 d% z/ F$ |) e
set vision 3 + random max-vision
# r w/ o3 z# h9 S9 c9 F set wealth wealth + Wealth-inherited-mid]' c3 i" f7 _& f* e( O
[ set color green ; l8 g6 d% u& I' [) A
set age 0
# ^& U4 d9 {9 E2 ~5 s face one-of neighbors4 3 ` j8 Q' V) S# d% s
set life-expectancy life-expectancy-min +/ ~1 P4 e" L" g% {2 X0 b' ~
random life-expectancy-max + 2$ n( P4 [0 f. o! ^/ ?2 T% E
set metabolism 2 + random metabolism-up
& E- X) T8 J# Z U$ p set wealth metabolism + random 306 f" ^; D, f1 {: ^
set vision 3 + random max-vision* a/ ^8 n0 j- E6 L
set wealth wealth + Wealth-inherited-up ] ] ) h$ D0 o5 V: m1 E
+ D; C$ j8 s9 X5 G# \% Send
: G0 `5 c. D4 g5 s0 Rto set-initial-turtle-vars-wealth2 x' f9 L0 c3 |7 G1 O0 R
let max-wealth max [wealth] of turtles
# \+ {- A6 v8 A' T* Q j set age 0
+ L d' R, T: A; }: V face one-of neighbors4 " e$ {) z! b: Q/ g' m. ]/ @5 W$ e
set life-expectancy life-expectancy-min +- t Y/ ?, N. h: `, y
random life-expectancy-max 8 B* Z ^- e. G3 X
set metabolism 1 + random metabolism-up
& S8 z5 D/ F2 S, v set wealth metabolism + random 30# E9 l" a, S, d# W5 C! ?
set vision 1 + random max-vision
u5 L" W* B0 o3 T( h8 N5 e3 |end* D' W( [2 ^/ @' L
to redistribution
" b9 y( v; M4 f2 ^% mlet max-wealth max [wealth] of turtles/ S6 y: z& F+ {- H: i. n9 U
let min-wealth min [wealth] of turtles
/ e' A+ k8 M( s. E1 h! Oif (wealth <= max-wealth / 3)
5 C' b5 i; X4 {" f$ F( {. X! |, k [set wealth wealth + Low-income-protection ]2 f1 ^! g4 C7 e- Z6 d4 s
end
5 S& p( }& E7 b% y4 {$ N
- q7 M+ p C1 X. m- Pto recolor-turtles$ D S1 C [( u4 \7 n* ^
let max-wealth max [wealth] of turtles" I$ q- L+ f1 j- X s L. r2 ^
ask turtles
2 [, w3 U, o) G1 @: [& Q4 | [ ifelse (wealth <= max-wealth / 3)
2 c1 l" x$ g8 A6 l; d+ j8 P; K [ set color red ]
" h; h9 D3 ?1 K) l7 X [ ifelse (wealth <= (max-wealth * 2 / 3))% H' L& F9 o3 H2 {
[ set color yellow ]" r% c7 ~5 ~' r4 p
[ set color green ] ] ]
6 t. T' | n. g; s/ h ask turtles [ifelse show-wealth?
. T: P3 u& z7 ?: y( r+ d8 D5 v [ set label wealth ], r0 o) D$ s6 E8 p4 d/ X6 z% ]
[ set label "" ]]( w5 b: y7 d2 M: H* g( Q
end
" j$ e5 M, m K: D/ x) I! L4 {9 T& ~( R) M8 u. B+ E
to go- C0 c/ I. p- z' U& _- B
ask turtles
7 g* m( |1 u; Q( q! s [ turn-towards-grain ]
. c! B* z: L/ @* u7 `$ O- N3 u) Z* Q3 ? harvest
: \0 _4 E" [- X) X# h `3 A! Y" G ask turtles$ E5 u- n, k5 d/ Z
[ move-eat-age-die ]8 X$ z2 P( B$ o1 l; @7 ?0 I. X
recolor-turtles
- M7 D0 ]( c3 B; {: A5 t. O7 Z if ticks mod grain-growth-interval = 0
$ Z0 q) u) K0 P: l [ ask patches [ grow-grain ] ]
% {/ ?& Q( q) g3 ~8 }$ \ p7 x # |5 W/ A1 M9 _' x7 {% \' {
if ticks mod 11 = 0* \2 k; H3 ~& T1 Y
[ask turtles6 [8 r8 J) e( |+ s3 O9 n$ z
[ redistribution ]]- D2 n1 ~' h0 j; C5 S `
if ticks mod 5 = 0
# p. j* k8 p6 P0 f' c7 ?. | [ask turtles( `8 k C% g8 c
[ visions ]], i. }2 x) O+ E0 A6 D
tick
0 B* n/ R9 ~6 P% [3 O. H update-plots
4 {6 t" |- Q/ m. J% }end
0 U& x2 ?9 ^# U+ M& R9 G2 Pto visions
% ?: S4 d4 d" ? set vision vision + 1
! I! w% _+ N8 e: N# Fend- N- u. }4 z" T$ t
" _* C" r3 N0 a( R9 U2 ?$ w
' h& }+ s) ?; O( r0 m8 g. W2 T5 H0 S2 T( R1 r3 J* e. P
to turn-towards-grain * ~ c+ h5 K7 r2 u6 K# x! c
set heading 0- K9 |# v- y5 s9 j/ D
let best-direction 0. D0 z) L# }4 J* T
let best-amount grain-ahead
" j! a4 `- ^ D% I3 v set heading 90) P8 U# M: c6 S+ s" @ a5 M
if (grain-ahead > best-amount)
' V$ G* u) W9 |6 E* q. \ [ set best-direction 90; Q! b' {9 `, _ i# w( r
set best-amount grain-ahead ]
6 b" {# u) S5 u- ` set heading 180; k' @- k: S9 y* F2 G4 h
if (grain-ahead > best-amount)
3 o8 e, f7 Z1 O% h, A, j4 [ [ set best-direction 180$ M/ E) }: V6 O5 E2 v
set best-amount grain-ahead ]
+ ^. w/ k& @9 X8 f set heading 270: ^ @0 w! E( B
if (grain-ahead > best-amount). ]. Y( N% R5 S3 b3 y6 X
[ set best-direction 2706 z7 j& r/ q/ g5 t3 D- e7 q
set best-amount grain-ahead ]
+ W, [5 U* L, h( n. g; {2 w set heading best-direction
0 G3 }& p# D6 Y' S' Jend
3 s4 G c' U* y4 B
8 q7 e" r. f* Y. Y
f& G; w. E$ }/ ?5 @to-report grain-ahead # Q2 Y5 |* u1 }7 y
let total 01 H4 B+ w7 ?, r. I! l
let how-far 17 { ?' h. k6 F7 ]
repeat vision
& M9 X1 M8 G3 { [ set total total + [grain-here] of patch-ahead how-far8 _) k/ _8 I' h) O4 g/ \
set how-far how-far + 1 ]3 V, }5 Y, ]# n# c9 E9 E5 z8 f: w
report total) C! g6 R6 x2 o0 g
end
0 X, N* Q# m6 {. @0 }
5 {7 [7 {. y% I+ L! Cto grow-grain
* P( ?. V* r, v2 q if (grain-here < max-grain-here). K' |( }! `, Y/ G
[ set grain-here grain-here + num-grain-grown
Y5 u, J/ n" K) l% b' F2 k' o if (grain-here > max-grain-here) 0 {, O; l+ z4 l" v9 T
[ set grain-here max-grain-here ]
3 a% {6 _- s* ^ recolor-patch ]+ @! h# A( X1 |
end
6 z2 w' f6 I6 _' ato harvest4 c2 @! K% u( M" v% l+ ], ~1 Z
ask turtles. k% p5 }6 h; l* t
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]# q+ E; k4 S4 K3 a' Q4 x
ask turtles
& c% P2 R' X' \ [ set grain-here 0
- N' `+ X R2 v8 H* G recolor-patch ]
9 ^, @, o7 f M' H , V' j# k! n+ p b* G
end# S( J) N+ d- n% S% ~
3 A: ]5 H4 x( |' v& gto move-eat-age-die , [: f' ~" N. O' ~. n# T
fd 1; A) I7 ?4 k' a$ D' L9 n/ @% D
set wealth (wealth - metabolism)
0 ?1 q, K% M$ P) z" D/ D$ y2 {, ^ set age (age + 1)
6 ?4 V6 ~7 C7 l if (age >= life-expectancy)
0 _' ^& |# g( m+ U4 b) _" E, h [ set-initial-turtle-vars-age ]
( O9 F' b5 v1 C) T0 F if (wealth < 0). [- c* n0 H% U) l& m0 Z
[ set-initial-turtle-vars-wealth ]
+ c8 y8 ^# t4 R3 G% U
. d, r6 y( ~/ C: I$ Pend
}/ D& p& Y$ w( J V! O1 x0 G9 S# o
/ f* e" z+ n: t# O. ?
to setup-plots
N! G# I7 U: e. f" E set-current-plot "Class Plot"
% z( l, c$ ?5 N1 n* S9 D7 ? set-plot-y-range 0 num-people
# U3 I- n7 c. {3 h5 g set-current-plot "Class Histogram"
`7 d! d' _# x' r set-plot-y-range 0 num-people
+ Y: {' W6 _0 q& Tend
1 c) C( i2 U5 u# P% @0 X! C+ Z8 s" H: J) O7 y9 z, g: D5 {
to update-plots( d( ^7 Q. y+ U# i2 o1 C& d
update-class-plot" T) o3 Z2 E. X8 F( |5 @
update-class-histogram
0 q0 a6 D& z$ G' g4 R8 X" @ update-lorenz-and-gini-plots7 W+ Z u% q0 G- L) c' M
end! |( `' w1 Y: |% K( d1 p
& Y+ b9 r, ]1 H" P; j$ `0 i
to update-class-plot
& p) E( m: V. v% y set-current-plot "Class Plot"
6 i7 L' R* L7 \$ K g4 V set-current-plot-pen "low"
+ q4 m+ D6 {* m2 i- L! u plot count turtles with [color = red]( J( _: Z' _+ X# F
set-current-plot-pen "mid"5 c5 V) A) f7 \# ~
plot count turtles with [color = yellow]' ?5 ~$ \( l- J" T
set-current-plot-pen "up"8 v3 R1 p8 `( ^' [
plot count turtles with [color = green]0 [# O" M+ ?) D+ d+ `1 B
end% O! U1 p7 t% u( g7 E% V
+ y% a9 |! D' U2 n2 E
to update-class-histogram
; {9 }5 m3 g$ a set-current-plot "Class Histogram"
5 f0 w+ Q) p$ O# R. J) N plot-pen-reset+ _2 y# [+ v6 u3 }, I- }
set-plot-pen-color red# ?. F6 K5 p5 _
plot count turtles with [color = red]
9 h8 u1 ]( u9 d; l7 Y set-plot-pen-color yellow
# [: B' ~) A; A0 D/ f7 b plot count turtles with [color = yellow]
% L& ], z! j: V$ ]2 ?8 |4 \( W set-plot-pen-color green& z6 K" s* Q$ \
plot count turtles with [color = green]- b$ k! _, Q7 p0 r
end4 B0 X5 M& E9 W7 O8 c
to update-lorenz-and-gini-plots
- W" L8 s. x+ T% V0 {" Z- e' d! i set-current-plot "Lorenz Curve"
5 e/ U' F2 y. B# z( k clear-plot
1 T) n0 t. |& O9 e% y
$ n: y9 h" a6 V/ { I, h$ z set-current-plot-pen "equal"% y5 ]0 n# A2 G( w I2 f" H
plot 05 P& Q8 R. j# t1 t8 s! g
plot 100. K& `8 K- j/ K" W5 Q; \% B/ N
. W# B1 @ G9 W1 U
set-current-plot-pen "lorenz"; G1 k% w& n( P* n
set-plot-pen-interval 100 / num-people9 x5 p3 N/ F# U8 z; f
plot 0! h7 S8 W* D: R
3 M7 |& @- f$ q6 S let sorted-wealths sort [wealth] of turtles* z# {0 r. I z E7 L7 I3 W5 @
let total-wealth sum sorted-wealths: s! M# j* p" r7 |2 E) `( N. q2 G
let wealth-sum-so-far 0
9 p( L& ^- C7 Z. H/ b- ?, `4 `* v4 M let index 0- q, H7 T* a9 D/ a# I, G9 w' L
let gini-index-reserve 03 W1 \1 `! x2 C* C, a% }% R9 }
- O7 T( H, Y7 m
repeat num-people [
4 J; a$ B- v; ^1 a set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
. ]' i( z& a a5 g" @8 \ plot (wealth-sum-so-far / total-wealth) * 100 ?/ @% t5 M6 V5 Z' r
set index (index + 1)5 t9 a( ^0 V+ P% J0 o: Y' O
set gini-index-reserve0 P! ]. J5 `6 v8 x2 q: y
gini-index-reserve +
, G/ E& G; C( b0 \9 E8 R (index / num-people) -- }* H; C+ ^7 J; \" s
(wealth-sum-so-far / total-wealth)' `. L0 L- D) E! q4 Q' p. }
]0 ]5 }0 c) ^, ~' S7 c" o7 H' y: I
/ X. v9 X0 \/ \1 I; @( F7 m1 N set-current-plot "Gini-Index v. Time"
7 K3 m, u: d6 n7 j% P/ h2 \/ q9 Q plot (gini-index-reserve / num-people) / area-of-equality-triangle1 f& @6 H3 \9 K4 c6 D( b+ a
end
! s z# v: C6 I3 s1 J! ]' M; gto-report area-of-equality-triangle
. Y$ W0 b+ w, g0 f$ \ report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! n! L. B8 j! S5 V# O: S
end |