请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
* M4 N: D, P, i2 k; L( j' mglobals9 `$ _2 Y$ E& W7 q# O
[
1 Q' S+ x- w% w/ N% X% U- a- J max-grain ' g: y m1 W! Z7 b! n
/ ?( r. v+ @& t. k7 n
]
5 g, c c* B+ {! s3 T. J7 x8 {5 E7 V9 u6 t( z. S" R
patches-own) j; k7 R! y& d! r( ? B3 f3 i
[9 z! Z) r `+ H" y
grain-here ' e+ T3 b3 k5 n3 Z5 L0 A
max-grain-here , r o2 a: ~$ |8 }( K' F
]; u4 d" ?1 Y6 J5 p7 \
$ ~) Z; z& G0 jturtles-own
9 L) l6 ~7 Z' c: r8 \[& q% y4 q: C! Q+ s4 ]0 [& i
age
. o- w" K2 |) M+ x wealth % x+ g3 [+ F6 l% B# x+ X! e6 `
life-expectancy ( i( C; }. s- O1 e6 s
metabolism % f0 @% l; j' X7 ~
vision/ k, J. Q- r/ k! U) N! V8 L; L5 L; N
inherited # v, x l: s: T- ^" ?0 @
]3 p! e% a: ]$ h3 [$ `$ S
7 k( d- p3 A3 Z; X @* o) e8 r7 s
6 {5 b; R/ n# u. P
to setup
a( n; a) H' B ca
) Y' o2 q, f7 c- R' V5 H set max-grain 50" C- }- }$ c. O" d8 L$ p
setup-patches4 h# f* ]/ C+ r4 ]
setup-turtles; w1 C( ]: U) D. ~% H' }
setup-plots6 n3 ]8 g: h1 b/ P/ Y8 A
update-plots
1 l& [$ d6 t( n) B3 Cend
) u3 c3 |. f3 L6 Tto setup-patches
' |" r4 o/ }" h; X- K) V: h ask patches/ b4 e) }+ Z% v0 i$ `, m$ _
[ set max-grain-here 0
: L6 F1 f2 ~7 T8 Y; \ if (random-float 100.0) <= percent-best-land
& i6 y# _: l. U# X# n [ set max-grain-here max-grain! p" ?0 B3 U) D: h' j0 d& I
set grain-here max-grain-here ] ]
+ I8 r" f: [) x' V: D5 R" D repeat 5
* w& m& a' o6 m [ ask patches with [max-grain-here != 0]9 l. ^8 O) a8 G7 U& o6 u! F
[ set grain-here max-grain-here ]
; [0 C& ^, F* g& f' o" @- d diffuse grain-here 0.5 ]+ p, ? S' [1 H( I( h$ Y# i
repeat 10) m9 X* z4 F' j& s" w2 o1 J
[ diffuse grain-here 0.5] 0 H; E% k2 M$ H4 |1 h5 \& Z
ask patches
8 A$ Q+ r0 [! @, v8 H" s" B: h) S [ set grain-here floor grain-here \8 I) T. H- O
set max-grain-here grain-here
6 |; Q0 o# r% H0 z recolor-patch ]
' {* f' V$ O ?. D$ _6 Xend1 f2 B& G% y. I6 v3 W. G$ [
to recolor-patch
$ T' u5 z/ j4 R; _1 T: C9 Z set pcolor scale-color sky grain-here 0 max-grain
7 v; ? \4 k' l1 W! Y- Z0 Jend9 m4 n% w* M( n0 S
to setup-turtles4 t3 U# p; t. M- w4 H
set-default-shape turtles "person"
$ `7 u' w6 @8 ^0 \" a& e crt num-people/ i; K9 p' B f2 ~
[ move-to one-of patches : P4 t" N, G2 ~( K
set size 1.5 / ^. \" q! r5 R( R; R* ~
set-initial-turtle-vars-age
$ T6 T3 y' C# _6 O1 N7 a set-initial-turtle-vars-wealth
8 W Q1 ]( {! q! u. D8 r: | set age random life-expectancy ]* T9 j' e$ H+ R$ I) h6 z2 y
recolor-turtles
! D. ]* b( L- K' gend; [. w* S$ g# ?% B
+ X( e' N! P% Z/ y- E; j. W
to set-initial-turtle-vars-age
4 P% X4 @+ q; j# H let max-wealth max [wealth] of turtles8 v, w8 E. s- n+ g
/ X: g3 o6 D& Z+ ?" k/ ~0 z l
ifelse (wealth <= max-wealth / 3)' H4 ^, G4 J! o" ` y
[ set color red 9 ^" F0 n6 u! q' a: o
set age 0
1 ^- _* f& R% q+ m face one-of neighbors4
Q) e% l( i: ^ k5 d4 d set life-expectancy life-expectancy-min +
, J1 C W9 A* v% U$ g# m0 }; b random life-expectancy-max * R5 }7 x. [+ _
set metabolism random 1 + metabolism-low
6 p# j5 c! t T5 ]1 f2 V* V4 | set wealth metabolism + random 30; [! h$ N1 X+ _" h
set vision 1 + random max-vision% W& U$ U" F2 Y9 s+ v
set wealth wealth + Wealth-inherited-low ]
5 v, I- c$ ^) `2 H [ ifelse (wealth <= (max-wealth * 2 / 3))
. g( N" o9 y' o1 O4 _8 W0 Y+ T; S; j [ set color yellow
7 `/ c$ Z5 }. j: {6 c2 d set age 05 Z+ g. C# w( } V! X
face one-of neighbors4 # M3 c z" t, i( r+ d1 @8 l
set life-expectancy life-expectancy-min +) G+ a5 W6 d( r$ x" E
random life-expectancy-max + 1
; Y$ Z8 O" T$ H set metabolism 1 + random metabolism-mid
8 |. o% A- I" ]0 X/ ~3 ~: j/ G set wealth metabolism + random 30
# R/ L" ?# ^: H- e) u set vision 3 + random max-vision
0 W0 ]- a9 |6 Y2 C# a& Q" s set wealth wealth + Wealth-inherited-mid]3 V8 x& k% G8 U7 t
[ set color green
( `4 w4 ]: T' {- S6 }% E set age 06 @$ W5 X) I+ ?% W L3 T
face one-of neighbors4
4 m# I) s \. k8 Z set life-expectancy life-expectancy-min +" J2 N8 k0 l) n, b5 d y/ E
random life-expectancy-max + 2. R/ Y) m0 T( |
set metabolism 2 + random metabolism-up- i) o8 m) @6 o2 U; z6 g l
set wealth metabolism + random 304 S; O& H! d; w# P9 t
set vision 3 + random max-vision
, J ~$ r, v8 m6 G' V set wealth wealth + Wealth-inherited-up ] ] 9 L3 g8 e; j; B
( R% E1 ~0 E. z1 W* w% h$ O
end" B% D# J& y0 F' A1 @
to set-initial-turtle-vars-wealth9 K: ^6 F! X9 P1 Q
let max-wealth max [wealth] of turtles. W0 p1 |2 U' a, t* s, ?
set age 0
: v9 n2 a3 [% v+ }$ T face one-of neighbors4
; x# N( y, i5 y: r( p7 `0 o set life-expectancy life-expectancy-min +
/ W/ _2 y1 p/ N: M random life-expectancy-max . Y. C! J5 Z8 b
set metabolism 1 + random metabolism-up
- v) V4 w4 \- c9 y# {" @) r1 O set wealth metabolism + random 30
- E. [* O7 b0 w4 H& w. ]) X set vision 1 + random max-vision 8 J$ S7 v0 b" w7 Z
end3 O: E! H# C3 @7 n" w
to redistribution
0 p8 R3 Q4 W" U$ |8 r4 A& llet max-wealth max [wealth] of turtles
& Q) T3 l8 C5 A) w# m8 v0 V& H* Glet min-wealth min [wealth] of turtles
# l! [+ F" e- D- Eif (wealth <= max-wealth / 3)$ O; C' Q/ @1 ~- ~6 ^" Q7 u* C" R
[set wealth wealth + Low-income-protection ]
1 P ?4 L3 {- i: h- c+ R% Kend- [% [8 J. @ L% N2 v
: b- p3 c/ }! Y) u
to recolor-turtles1 l) E& a/ X- a3 j9 e
let max-wealth max [wealth] of turtles* ]& f$ g) z( p
ask turtles
5 N+ x0 x( l5 x6 ^% `0 n [ ifelse (wealth <= max-wealth / 3)# X- k) l0 d5 y0 ?, z3 t4 A2 f
[ set color red ]
8 m2 U0 `/ ]4 [: a& b- F [ ifelse (wealth <= (max-wealth * 2 / 3))
# D: D) G8 o- I, I/ Z [ set color yellow ]
* x6 P2 v. d5 P3 d3 c& T+ H3 A [ set color green ] ] ]3 B. @- c, J0 V1 |" I
ask turtles [ifelse show-wealth?
9 |5 M% ]+ R; A/ h) S [ set label wealth ]# I+ K4 h, d. j
[ set label "" ]]9 Q6 u. Y0 j4 M2 j" k
end- H; L$ N5 M0 S2 r
6 w" v: x! \# u7 S& }9 i# E% eto go
7 S; y) A/ }" c. P# c. t ask turtles
: |7 @+ F! }+ o4 [ [ turn-towards-grain ]
`% d# x; J5 |& e E harvest6 d( |0 i$ u" w- w4 O
ask turtles ~2 t' i! o6 o
[ move-eat-age-die ]* m1 L- o) K8 y: `$ {& L0 s
recolor-turtles
* j' ]1 b9 ? h. d if ticks mod grain-growth-interval = 0$ w# M0 R4 _- V
[ ask patches [ grow-grain ] ]
. K# J3 N3 t' b6 Q7 W : I1 d3 W4 J1 p {" F# C
if ticks mod 11 = 0
, @" S9 K) V* b3 y, {2 m3 C [ask turtles7 c! [. E$ c& l' U4 V. A$ B5 M* C" z
[ redistribution ]]
$ j8 |# y$ T+ ^/ |- h if ticks mod 5 = 0/ l& Q0 k! X% @8 Z. H4 h
[ask turtles
, i" d! v f7 v/ G2 ?8 U [ visions ]]
+ @7 @, \% X; `% ~ tick
! A/ ^/ U& S- c: K. d A update-plots
: F1 q! g! \1 A4 [$ e( bend
3 W D1 R. u6 A% o. h& ^to visions
7 n2 P. p4 {- `) D) O3 C set vision vision + 1 9 z9 ?/ c; N2 j# h+ Z+ o, Z
end
; K( f) L8 u0 v5 ^- r1 Y. s# b# J; i3 S9 @2 v! Y5 o
7 j( h; }) V' e; f2 ~
* z7 f9 Z+ x+ Fto turn-towards-grain
2 I/ Y2 l3 |4 i; R" O- a set heading 0
! e$ x7 `# r( i# i1 x8 p" v g let best-direction 01 s( M4 u- V3 W# d
let best-amount grain-ahead
0 s0 h1 f0 `6 Z3 E' Q/ D) B1 R set heading 90+ ]# g# b" _$ ~& p
if (grain-ahead > best-amount)
W7 j8 w1 O1 x0 a' a [ set best-direction 90
~. ^ ~( E0 q$ r! K set best-amount grain-ahead ]* ?3 ^$ H) n& H1 g4 W
set heading 1806 m9 q4 n$ c+ I* y
if (grain-ahead > best-amount), `! f8 k! P9 T/ B6 b
[ set best-direction 180( S" ~$ l7 Z, a# g8 t
set best-amount grain-ahead ]* X% }2 n/ q1 Q8 u# z" F3 |6 o0 @
set heading 270" i: K+ u/ P; S! o% H
if (grain-ahead > best-amount); l. f& ]7 u7 A/ t' Y% T
[ set best-direction 270
% j5 z) U) |+ ~* m9 p! M7 s( X set best-amount grain-ahead ]
/ s2 A' C( f [7 T$ N7 M; l6 | set heading best-direction) A, M$ b! f V. G' g+ A6 \
end
1 p5 E9 I. V' o! |$ O1 v8 m" Q2 B" k- w) _4 t
) v5 m+ H+ M( D5 c+ b y4 g6 \to-report grain-ahead ! Q9 D/ w* A, f, F% q+ o
let total 0
- E3 j ~9 w4 S0 J# l% e let how-far 1
( A8 x' W1 J- f. j# E% l0 G6 U repeat vision' p' Z( G# L; j' a) J1 X
[ set total total + [grain-here] of patch-ahead how-far- n. m+ u$ ]0 q' h$ M! ^
set how-far how-far + 1 ]( b7 ~ u* Q1 r: E+ v5 G
report total) ]" t& M) w8 G" {( ~
end4 y1 k+ N9 M( s
' g) o4 C; r) `: h4 D' a# v @( F
to grow-grain ! Q+ H' r/ a( D+ z, j1 w+ t7 |
if (grain-here < max-grain-here)
4 E6 p" H" Y8 { [ set grain-here grain-here + num-grain-grown
, |) J" l0 U; `" @' M& { if (grain-here > max-grain-here)
2 j. T9 T: U( n' f7 x7 X [ set grain-here max-grain-here ]! V; q. i5 q3 H1 O* V- s/ F
recolor-patch ]4 W3 `3 v$ L, R/ m
end
1 v# }, U: E+ R" pto harvest
, m4 V# u `( p$ k ask turtles( l0 z: F" X1 v$ h7 W
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
6 ` T/ r$ O4 @& @6 ` ask turtles
4 ^6 s4 p3 S- b4 h8 N [ set grain-here 0
1 I5 ~" P, P! p& _/ X recolor-patch ]5 k/ b. O1 m. p5 `
! J7 K9 ?% y8 Z5 q" [. ~ O! Z: ^end1 \* p+ L4 z& Y: ~
, ]% y, k8 F/ _' O* J/ n1 Kto move-eat-age-die ( a+ @) v) a" P4 a' e A+ P# [3 ^
fd 1
, q/ h0 q/ |# ]% E& a set wealth (wealth - metabolism)6 G2 E, K. K0 L: I: z& n. a7 {
set age (age + 1)+ o4 C! V. a# g! @ P8 I
if (age >= life-expectancy)5 g2 J3 c0 R: I* Q/ I) ?7 @" _) f) Q
[ set-initial-turtle-vars-age ]
+ {2 `. d3 [3 ^ if (wealth < 0)
% x. Q7 X1 ?; i1 K8 E [ set-initial-turtle-vars-wealth ]
3 {; `# A, O: I! b # G* m; Q) G8 G) u2 R7 R( @6 |7 M! I
end
1 C) |" o7 l, ]7 P3 \+ ]$ x! h
7 T1 S! ~% |1 |9 C9 G6 K8 G2 q# W1 n6 |
to setup-plots
+ Z3 O7 k# Y, { set-current-plot "Class Plot"
, R! D: y: Z3 P$ z' X5 h4 h/ f set-plot-y-range 0 num-people
' t( \" f/ o Q+ } set-current-plot "Class Histogram") {2 I- W8 g% I# L2 O! {
set-plot-y-range 0 num-people7 q% O& X2 w2 e/ [9 b
end* Z( x: A8 m: F3 a3 T4 ~5 w
( w: c3 L3 O) W- Q# Z8 \! @to update-plots
# W3 I. A; e4 ` update-class-plot% l( F1 K% ?. @1 ~3 ^0 z
update-class-histogram+ i" b2 m; b' z0 N1 H9 j6 n
update-lorenz-and-gini-plots
' a. Z+ B( U' T0 Yend' m8 {) @9 K; x/ _* [
3 B+ v1 l2 q7 _/ vto update-class-plot
5 g8 ?. x& H% C2 |7 R7 u4 A set-current-plot "Class Plot"
6 k$ z. E: J# |9 R set-current-plot-pen "low"; Q& C' @1 e) |
plot count turtles with [color = red]( a6 Z' q+ N- L! p5 ~; R% Y
set-current-plot-pen "mid"3 |5 Q+ C( w0 B2 E/ C
plot count turtles with [color = yellow]# o; `; g7 l5 Z
set-current-plot-pen "up"2 k' u+ p' |- Z* V* L7 v% ^
plot count turtles with [color = green]% T5 g* N. }7 J8 S
end0 [* Y2 Y9 @5 {3 k+ e1 x
# v4 U- q* L4 {to update-class-histogram& u1 W9 L- S, ?* M) U! m& k& E
set-current-plot "Class Histogram"% K4 U# G) p5 g3 i3 ?* p3 o) C
plot-pen-reset, }4 c: v" C u3 c- Q4 ?/ p
set-plot-pen-color red. ?& I/ j) K, X) Y4 }/ g# m* }
plot count turtles with [color = red]
! ^4 g- D5 P3 X" n+ K set-plot-pen-color yellow; \0 a& l, c1 P4 S; b9 y: M
plot count turtles with [color = yellow]
0 A: k o; y$ P7 _" e* e4 y" t set-plot-pen-color green
. p: Y- C3 A- e0 q plot count turtles with [color = green]0 v! y5 {* z5 a# u5 }7 v
end1 n7 c% C8 S: F2 m3 D% Z4 Q* ?# Q u
to update-lorenz-and-gini-plots
( k8 Y2 d @- R( A+ ` set-current-plot "Lorenz Curve"
* t; q* j* D% @4 a- A7 |% y" J clear-plot
% N3 q' n( a& E# K4 A) z% P$ w a& d8 I1 A$ x
set-current-plot-pen "equal"
/ s% y$ w7 A: O0 ` plot 0+ H( H/ N* G6 B9 ^
plot 100, X( A D9 w' Q8 |( `
5 U, j4 E: V2 \% h4 K
set-current-plot-pen "lorenz"
% h: ^, F9 a: q8 U0 n set-plot-pen-interval 100 / num-people
# l+ b2 {. `. n3 C: j1 `: f plot 0
# j& Z( y+ J3 u) M5 f+ X) H1 f! V) {, U
let sorted-wealths sort [wealth] of turtles* P9 {! e: d# `! n
let total-wealth sum sorted-wealths. U6 E n- `3 [" ?4 w; c
let wealth-sum-so-far 0& K8 p1 l+ p+ W5 C8 p
let index 0' I, l$ ~% b% w
let gini-index-reserve 0
& G# ?( v. U O/ T. V; u* [. J
8 [% b& h6 p0 o! b3 M: m) P repeat num-people [, ` R1 {! M! Z/ _. J' s, W( p F
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" t+ R0 u9 ]% y* F/ f9 _
plot (wealth-sum-so-far / total-wealth) * 1002 u( ~: r; E5 V
set index (index + 1)
4 Y( d& t# W& P set gini-index-reserve
4 S, Y, x% H2 b, n3 L2 _ gini-index-reserve +& F# ?, l. X0 S
(index / num-people) -' }! W3 h1 Z! @2 I$ e* u
(wealth-sum-so-far / total-wealth)# @+ ?/ x2 C6 [) `0 M. l T2 d, S
]+ N+ ~: @- R# v
8 }; L+ }+ Z6 ^6 ]! G# m5 Z
set-current-plot "Gini-Index v. Time"+ U, v! J. }( O) ? e
plot (gini-index-reserve / num-people) / area-of-equality-triangle8 d2 v7 k$ E) J3 {+ r, t
end
) d& x3 @: l: }( p- h! ^to-report area-of-equality-triangle4 y: c5 X9 ?2 G' M6 K" S
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)" C# C0 R6 ~, R# }) x6 |- E8 k
end |