请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
( K1 A+ X/ W4 Z, l8 T4 x- ?globals- b9 J8 X* Z$ f- R. w$ I
[4 }2 V; y! z- }" G' l% b+ j& V
max-grain
% l2 r, M% D( U2 d3 P( L3 r
1 e6 X- K. \0 s/ ^. B]% {) N1 e- s$ b c, C8 C
4 X! I+ T$ O& L" j( m' f# F% Ipatches-own! z6 t! ~1 e) F p# z; L
[
8 O7 N9 J( g$ w+ d9 q0 x7 p grain-here + n1 t" v. q1 \$ ]
max-grain-here - H) s5 w4 r7 V5 w3 _
]
7 o$ ]7 F0 Q# U, k$ b
; @7 s# |7 s$ T6 C" Hturtles-own/ h: T5 a# ^2 j! w8 u' _
[
% O) M) m+ S! }! V; L4 J3 v$ u: H age / w2 B2 W! j& u& j' x+ M& N- t
wealth
0 C: q5 n+ o" Q6 L; t life-expectancy % X) N1 s! o2 ~0 ~6 D5 O7 J6 ?/ W4 J
metabolism 9 D2 O; r$ X+ ~8 v; w6 o% h P
vision! n, C$ Q+ J$ a% n. }
inherited
T' ?4 t( A' i5 t' Z+ r8 p]
0 b$ s4 Z8 o) `% n) E0 J% I. L4 n" ^9 R
3 U" k; P M# P: k
to setup
3 G+ F9 |7 d# i9 i ca
0 B. C# s* u- m* Q# r" r! A+ y set max-grain 50
$ o4 `# Z- y: Y/ a- q2 k2 M setup-patches1 _* L G: Y2 X( m& t
setup-turtles
% L7 O* D; D0 n5 @7 p+ @$ F setup-plots
# A- h) Y8 u8 Z$ B8 W# f/ d) d update-plots/ j6 h* m7 i- l
end
: ]& r9 \8 S9 l- T/ X( p+ X- Yto setup-patches$ J+ M r, i0 u- b* F
ask patches9 i+ W* Z% @4 f5 u- {
[ set max-grain-here 0
. V+ U7 P- p% }1 a; K b; J if (random-float 100.0) <= percent-best-land
3 i5 ^" m( R" e; O7 q) f1 | [ set max-grain-here max-grain
% c' ~1 X, ]3 q; r: r8 w set grain-here max-grain-here ] ]
& R( ]1 L4 r1 G7 v0 }4 s. l repeat 5 B5 d* \- @/ A2 B; W* ]
[ ask patches with [max-grain-here != 0]
% M0 ?) K2 S* \2 @3 h. |5 M3 z [ set grain-here max-grain-here ]) |6 ^! P" ~5 N( ^9 Q
diffuse grain-here 0.5 ]* R2 p- v+ t' j; R9 a
repeat 10$ |* N7 d# o, M8 [1 ?
[ diffuse grain-here 0.5]
# j* ?0 k( M( N+ Z' P ask patches' ?# U/ F( g) Y W4 p8 Z) }; [8 U4 Z
[ set grain-here floor grain-here ' s4 R# j+ E g H$ y# u
set max-grain-here grain-here
4 l, ?7 B2 Z% m9 I% s9 ] recolor-patch ]% H) q% g7 T4 N! H& d2 o8 X) i
end5 q3 B( B( ] T/ M. x
to recolor-patch
- ^2 r' L. k0 Z% R/ `6 R( L- v" C: I set pcolor scale-color sky grain-here 0 max-grain
+ Z/ o |1 M6 L" e* T3 J4 m: |3 Z* Hend R8 I5 d, A2 p; C' K+ C& j5 t
to setup-turtles9 ]( W7 o+ @! ]$ u2 y
set-default-shape turtles "person"5 ~. j3 _% h r) g; {; I4 s( ~, c
crt num-people8 ?+ V! b3 A. t" _/ N( o0 x/ b
[ move-to one-of patches
" v5 n6 f' n) D: C/ Z9 D6 J set size 1.5 0 B4 N( b) U) S( R) B! V
set-initial-turtle-vars-age
9 d, R" n4 T4 X6 R+ y+ |- i' _ set-initial-turtle-vars-wealth
! Q) R. D# y e9 t set age random life-expectancy ]
/ G4 C" v/ r$ k! I& X recolor-turtles
7 Q0 i( T* u( l4 @3 o9 k3 F7 g- @end
2 i& d- k8 ~+ s8 n {. L
+ P0 q! p& w" x& n* `' w" m' fto set-initial-turtle-vars-age
4 t3 r$ k0 M5 Q9 d* X# i2 m/ T let max-wealth max [wealth] of turtles( e( Y1 L1 }/ Z6 }
X5 ] \! L+ Y1 N* i ifelse (wealth <= max-wealth / 3)
5 ^ d7 b8 j* ~4 c [ set color red * ]& [, e# h% d0 f
set age 0
6 C7 B$ |$ Y: l/ F* y6 R face one-of neighbors4 % f3 p9 C# y" X
set life-expectancy life-expectancy-min +
; a1 r6 G' l) q( o% ^$ { random life-expectancy-max
8 ?4 Z2 v7 {' M' } set metabolism random 1 + metabolism-low# Q V) ~9 b+ c7 E+ d( F$ e
set wealth metabolism + random 30
$ o" ^3 |7 P; Z" b* H set vision 1 + random max-vision
. O+ z: G% P: j# r( c set wealth wealth + Wealth-inherited-low ]& `/ Q9 S/ r" s2 C/ k4 P5 v
[ ifelse (wealth <= (max-wealth * 2 / 3)) q8 O4 S8 Z2 n) I
[ set color yellow 7 x6 f9 G; p/ I- Y8 `: O6 f: S
set age 0/ v$ B) D2 g) i+ ~: C# P' P
face one-of neighbors4
3 ?* U4 H& ]# @! J' t2 ` set life-expectancy life-expectancy-min +0 A* b$ u \, J. v3 {' E
random life-expectancy-max + 1
% q% M( m3 O# N8 o1 J$ {& f set metabolism 1 + random metabolism-mid
1 I7 n9 y Q1 Z$ y/ _ set wealth metabolism + random 30
* n ]+ A6 C8 Z: ^) ]& t set vision 3 + random max-vision
; U- W. R T/ K6 g( |/ X$ s set wealth wealth + Wealth-inherited-mid]
6 l: D( y4 T" j/ O0 O [ set color green 2 ]; ~3 j& j2 D
set age 0
- b# m1 C$ |& o6 o5 d+ y face one-of neighbors4 ( Y# {" w" l# S# N
set life-expectancy life-expectancy-min +
! A7 {* `% ~/ [* l random life-expectancy-max + 2
8 A: S. n5 v9 a0 B set metabolism 2 + random metabolism-up3 k8 z5 @4 ?( z
set wealth metabolism + random 30
# q4 \3 j0 E* R8 q set vision 3 + random max-vision
: D# `" h' G& F set wealth wealth + Wealth-inherited-up ] ] ) c* q1 }+ I; }% f4 s+ t7 f- {2 N1 y
- E8 h( j; L0 m) T0 H
end
- `7 z4 `0 t( g3 }2 ]+ Sto set-initial-turtle-vars-wealth- F! {8 |: s+ W% W3 b% }
let max-wealth max [wealth] of turtles
+ z0 f% n8 i9 c- d- s" ] K/ y5 n2 ^ set age 0
& M: U- N; j b1 v, ? face one-of neighbors4 , _1 N. W' C% O4 E( N: T. v7 @' e
set life-expectancy life-expectancy-min +* g& Q" `$ Z# P9 C0 Y+ f" s! P
random life-expectancy-max
1 G; k% P6 E/ |" u4 O+ T/ _ set metabolism 1 + random metabolism-up
' ]" T3 Z4 \. P# U0 t' r7 q set wealth metabolism + random 30( A& K# u. N# z9 q
set vision 1 + random max-vision
( Y' E6 k$ C8 N6 ]* y# ]6 yend" X( R- `5 i; H
to redistribution
, o' {$ [1 j5 r# x- m: i& ~let max-wealth max [wealth] of turtles1 H" X- k; K7 b
let min-wealth min [wealth] of turtles5 {: b: k: n A$ u
if (wealth <= max-wealth / 3), t# J5 L8 J. X6 M& p/ N3 Z( I
[set wealth wealth + Low-income-protection ]
3 z- K5 w5 b2 ?0 O/ N" j6 Gend
. h% w/ x& W! ]& ]
3 T" W- ^! L/ ?( Y5 {2 n* cto recolor-turtles
4 f' u) D- K! C: b let max-wealth max [wealth] of turtles
" P. [; s$ m5 l* G1 G3 y& l' h, N ask turtles
7 g* B5 n X; _0 }$ h" M [ ifelse (wealth <= max-wealth / 3)
/ t& p9 {6 }! ]8 y [ set color red ]* [' \0 n; d* d; Y7 k3 S
[ ifelse (wealth <= (max-wealth * 2 / 3))
) h1 m+ T% N1 z, M, f, p& ^ [ set color yellow ]# W0 e( @! K! P& j) U" Z- \3 _' O
[ set color green ] ] ]
% ^! K# ?: B2 L. Y; V ask turtles [ifelse show-wealth?+ Z2 m7 c1 y) K; p2 z+ X
[ set label wealth ]
3 @) @. S: E& v+ |& U [ set label "" ]]/ x: d( g! ~; n
end4 I/ \* m) _+ J9 m( |) E" Z
- i& O' V2 \! J% k4 Z: r
to go4 P+ n3 b; g* }# P: G7 ^1 N+ ~
ask turtles
+ ]9 S' p. a/ B5 Q [ turn-towards-grain ] * U: r" K J \- c, C
harvest
! {* k6 K2 |2 v3 O; n2 W3 | ask turtles
- q7 r9 O2 I! @ [ move-eat-age-die ]0 F8 w+ G, U7 `) C
recolor-turtles
6 {% b; j! Q1 u7 f: U$ ] if ticks mod grain-growth-interval = 0
+ h5 Z$ n5 k6 r/ V* q$ G" v [ ask patches [ grow-grain ] ]) x# y$ H3 f: p0 d7 y( `) r
, I0 U3 l* Q% c if ticks mod 11 = 09 d# h. B( H4 q" Z: N
[ask turtles
: k- C2 y i& u [ redistribution ]]/ s3 _7 d! @* J) }
if ticks mod 5 = 0' ^/ j7 B$ \: f5 x- }8 o
[ask turtles
2 g/ u8 k' |& S8 V8 l" v4 M [ visions ]]
! u' G! z( i) S# i/ N tick5 K9 v0 ^$ Z% [# v' s" T; A
update-plots3 q/ |" ?7 b0 q0 g7 X
end6 n9 H3 }& _- K! B$ I. L4 A
to visions
: ?! q) l j) g( b) { set vision vision + 1 : u6 i2 G( C6 g9 J/ e. F
end
! e+ E6 Z) X- `. J9 B9 b U3 N6 m/ v) {& D& u1 x
+ C$ }7 Q! o# V- a$ }* t' `! n, Z- r2 ?) p. k
to turn-towards-grain ) _4 U( F% T* T3 M! ] x6 B' }
set heading 0# f/ F5 q3 x' e/ a
let best-direction 0
# H( M1 J j3 G( Y1 d6 w let best-amount grain-ahead( ]4 o. e+ H" I9 U4 D5 ~4 p
set heading 90
9 [7 ]1 S# e/ T; w+ K if (grain-ahead > best-amount)1 j5 I6 t+ h" C4 ?1 j# R. {& ]
[ set best-direction 90
3 x+ |/ x, i, z/ Z8 Z set best-amount grain-ahead ]
# }- g, I% i7 @- y# I set heading 180. ?( Q. ~6 X2 ]3 j: q) v! z o
if (grain-ahead > best-amount)
# M# m6 N$ s+ ?+ a; Y( P0 ] [ set best-direction 180( {; i% u4 x f
set best-amount grain-ahead ]
; R4 j7 A# Z) _2 k# {2 r set heading 270
. ?* R) j9 E! b" ~" [& Y if (grain-ahead > best-amount)
: `/ D$ u& ]5 {! Z9 Q# g9 w [ set best-direction 270
/ ~$ H8 \% G: C. |/ h7 y+ Z set best-amount grain-ahead ]* b' U* E4 N* ~2 R8 @
set heading best-direction9 x/ i; N& f4 y1 q1 j2 G
end
1 I. g9 w) ^# N2 l; t+ g0 y, t+ R) w# q' W8 B; |0 g# g7 ?
: t2 E' m* R( h% S0 ~9 D
to-report grain-ahead
# V3 X2 p8 a. h, d7 e% `8 G let total 0
# K0 ^+ X* O* O) W0 u5 i. t let how-far 12 ~! c$ P2 |% f, }. b# ^
repeat vision
$ J- p% T( c% v( m; } [ set total total + [grain-here] of patch-ahead how-far
& {" g( e& a9 G set how-far how-far + 1 ]# b2 n. ]) s! O; Q% K9 J% M
report total$ Y: A! D0 D% J( j8 Y
end j9 R( P; b Y9 K" T6 Y
. k! ?7 O' r1 d& j V& hto grow-grain 5 Y( O/ D9 e2 f1 Y0 |, D
if (grain-here < max-grain-here)$ p) A0 ]" j( n. v6 H/ p, h% w
[ set grain-here grain-here + num-grain-grown" e" \ a% T; O6 i
if (grain-here > max-grain-here)
& i6 z, F/ X' q6 G [ set grain-here max-grain-here ]
- q8 t' B+ E; O- j, p- p recolor-patch ]
- N/ R5 O4 F z/ @end
) o5 W1 S/ d4 M" P$ t3 E! f9 oto harvest
) P* D- o; n. u9 V3 N5 F" k ask turtles3 n# D, R! t) p6 t2 y( h0 p( l
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]6 J1 b2 Q7 i# s. {$ z. C. m- d
ask turtles" x4 ~. J2 Y: H1 O
[ set grain-here 0$ G' Z9 Q9 N6 \6 u O e4 j
recolor-patch ]$ b) `/ Q8 E0 p7 y: J
* |3 S2 U6 y, G4 vend
& F# e: p3 z' F4 Q( l* h; l" Z* i+ u1 @7 t8 \
to move-eat-age-die 9 a; ^, D3 E! h# p2 K/ _& g8 d
fd 11 \" }6 c) u' ^. G
set wealth (wealth - metabolism)
- B T# P9 B# \0 [4 a( B" u6 P set age (age + 1)
/ L! ~4 h( Q+ \, w% T y' c if (age >= life-expectancy) @: N4 I$ {5 ?7 ~9 f5 j
[ set-initial-turtle-vars-age ]
) D: _$ }. Z& [, ?/ d% C9 ?. D if (wealth < 0)2 a9 ~5 r. i6 w% g0 C* L
[ set-initial-turtle-vars-wealth ]! v* m- d' c+ P$ a- M
2 s9 t( H+ ~! E" a4 i( E
end
D7 a6 k2 s3 D% ~
0 v$ ~' B3 t% [7 n: ^! @" |6 ~& J ^4 i* T1 c
to setup-plots
\9 r, I5 Z1 X! g. p set-current-plot "Class Plot"
3 L6 A) x# @( u" K/ p. O a set-plot-y-range 0 num-people4 |7 e& }: ]! w0 K6 _+ Z i
set-current-plot "Class Histogram"
# H" L7 C. t' k' Z% s set-plot-y-range 0 num-people- ^ I& w; Q; h# \ |: S6 w
end
& O' K% {' G, ^( s3 v$ y$ n8 n7 @- D% m) u% O2 Z6 @
to update-plots
4 K! B& M% k3 w5 B7 { s update-class-plot
( [1 A" ?9 ~* z. d- l update-class-histogram
! c) }- L" P5 M* j update-lorenz-and-gini-plots/ n7 G0 X1 ~8 o) q. h x
end
. P7 `( |3 y/ V2 l; }
# x, A7 |5 M$ {4 I7 ~' X! mto update-class-plot
# Z( f* c$ a. U( k9 w) {9 J set-current-plot "Class Plot"! r8 z; B$ A# S" A7 ^- @9 K9 c1 P
set-current-plot-pen "low"% S+ z: m6 w4 m, G+ Z
plot count turtles with [color = red]3 A+ D" q6 U4 {* _5 i
set-current-plot-pen "mid"
; M M: b. a W8 U, ] plot count turtles with [color = yellow]6 ~$ {( I9 Z: c& d9 k
set-current-plot-pen "up"& M, K" D: b7 `# x% t; q
plot count turtles with [color = green]
$ y1 ?3 a- b. z- a( N$ g, m0 jend. l/ ?4 E$ o, H' u3 [1 \: f$ ~
6 q3 @' P4 r+ F! B1 m& v
to update-class-histogram
+ X2 o& f I* b. u# t) |$ _ set-current-plot "Class Histogram"
! P, k2 L& S3 |& Y4 l plot-pen-reset
, Q6 R! i1 Q8 r& F2 D( @ set-plot-pen-color red
; S" Z/ S: ~. A( _8 B1 S plot count turtles with [color = red]3 x" g- V, ?9 E E9 q$ @; V
set-plot-pen-color yellow
# p2 ^$ |: ^$ j2 Z4 F+ r _: D plot count turtles with [color = yellow]
7 N1 ]3 W; G3 W) ^% s( i set-plot-pen-color green
3 }" `" _" M+ }# r plot count turtles with [color = green]
, F* R4 M1 `2 c m5 \3 Zend5 |" M: w3 B$ a
to update-lorenz-and-gini-plots6 }9 _& Y% s" U$ G& ~7 E
set-current-plot "Lorenz Curve"
9 Y$ ^' L- f# ~1 \# Y clear-plot
4 E$ P% A$ |) b0 D( h2 _8 a" q3 W( y9 P$ J/ F- I
set-current-plot-pen "equal"
( N8 K- F5 N- e$ K plot 0
! X( C- R- s$ L6 t plot 100* @; \8 B, P7 B5 a. @; r# t
& |4 S% a: M; r) @# b0 S v( V set-current-plot-pen "lorenz"
; Z- [# T$ H( O2 _2 B. y! V$ A set-plot-pen-interval 100 / num-people7 s+ S3 m( W6 E
plot 0
: x$ F+ {% S) v3 m
* G3 }5 f- o) G7 x: c( ~" h* m! X) T let sorted-wealths sort [wealth] of turtles8 ?3 ]0 y: |# @3 w: P
let total-wealth sum sorted-wealths0 `; W* i- k' k4 `& q
let wealth-sum-so-far 0
P' y* A- Z9 ] \9 Y1 l- H let index 0. m. R% G- S( L2 ^+ ~" t
let gini-index-reserve 0
. {7 A; a [1 g9 x( o" z2 q: _& k# L/ _ b4 d. y
repeat num-people [9 M, ^7 W& \4 Q3 W4 A
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths) y( @' `7 J: r" p* O; Q0 Q, D
plot (wealth-sum-so-far / total-wealth) * 1004 y7 ?% W7 e$ T" r: `
set index (index + 1)
& n( [) f/ l* Z* N set gini-index-reserve
2 p! H( ^* j& @) O gini-index-reserve +0 G% w" b: R- v/ |( C6 G
(index / num-people) -
3 P3 ]2 y! I, T4 N4 H/ M$ g$ B (wealth-sum-so-far / total-wealth)8 v0 J8 Z( t7 l5 ?! p7 P" V V' I
]
% s8 n4 _4 [6 Y$ [" D
3 a: n( Y/ j/ Y# O set-current-plot "Gini-Index v. Time"; V* ?' x( U; A" f' s; B8 |6 g
plot (gini-index-reserve / num-people) / area-of-equality-triangle4 H7 M- N& F; t6 e8 ?: `# \7 `
end/ }( f9 n) ~# E" J8 q! S4 b' d
to-report area-of-equality-triangle
1 g, K% S0 p( E. | report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
1 ^4 H) E/ \/ a% T6 k R4 [' qend |