请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现/ ~0 A( C# @4 W k; H! C& Q. a
globals
: ~$ o) L l, w) U[
O8 q6 H: V7 I max-grain
7 ~& u, z- w& L' F, B. f$ o
3 h, c$ i% J+ @' f] c: |9 T( S# ] ^/ X
/ ^; g* L4 c7 V2 I8 @patches-own
& Z2 _1 e/ m) u; n5 u2 \7 Q. h[0 Y* t7 l, J( L' i7 \
grain-here
, U1 s! \, f1 I1 {0 _0 c. { max-grain-here & F6 L* x$ ~: A4 _2 S
], T2 L; l/ U$ G4 A, A% f
9 ^# d3 L9 O! `6 P' v2 x8 W
turtles-own
, }8 `) K5 h! E! g7 t* a[* q9 Q9 p$ |* R
age
6 M! B( a+ g/ z4 ~ wealth
) a, h9 T" i$ K9 f! q; T( w1 d life-expectancy
2 b8 ^5 J( [2 j5 P- y/ S; s0 |6 p3 O metabolism $ U) V0 N0 {5 a& g/ u9 @ w8 y
vision
8 u9 Q" }' j* u7 K6 G inherited
, u# ]8 M/ j$ ?) @) q3 `4 F]( Y0 E! F0 y, B6 k
: s; r- a/ @& W0 q, F+ I+ g
1 Z/ n0 E) U4 Z8 m6 d5 M
to setup' `+ \5 k$ _" C0 U6 L
ca
% m( ~( H5 Q: T7 a" ` set max-grain 500 i' l" G# S3 Z9 U
setup-patches
) ^# X; |) ?; W6 S setup-turtles
8 T, O& @" s" F1 a! Q+ t. s setup-plots( \) M" o' t' r% r+ d, l, W
update-plots9 l" h: S! ?. K, F
end
7 ?5 m8 ~3 A2 O/ X6 gto setup-patches
- a# d9 s" y7 C$ s. ~ b ask patches
4 K% Z% x$ c6 H" r6 n- W5 w [ set max-grain-here 0/ M7 @8 l; G0 ~) {5 g
if (random-float 100.0) <= percent-best-land4 t M' ^( x! s5 ? h, u
[ set max-grain-here max-grain* F3 D3 \4 o" n5 b" v
set grain-here max-grain-here ] ] Q2 L5 |% O3 s: @- g
repeat 5% k; ~% R) R5 x( Y G/ ~
[ ask patches with [max-grain-here != 0]% O7 L9 R/ E% |1 L1 e! s3 O7 k
[ set grain-here max-grain-here ]8 U. ]8 @. ~. b6 a* p7 G% |
diffuse grain-here 0.5 ]) p3 N, M& r' W0 r% y9 Z$ X! e
repeat 10
( z" A. }" }5 e! ^ f [ diffuse grain-here 0.5]
; P, h: Q, ]. l# I% i ask patches
: P0 e& m' W/ r9 a) d4 g4 v6 w8 e [ set grain-here floor grain-here 0 E, {1 G }! K3 S
set max-grain-here grain-here 7 ` m! f" i& m/ `( Q0 N
recolor-patch ]
" g/ j$ s5 R0 _6 L9 k& S0 N4 A& Gend4 E7 E4 V$ [7 N1 _
to recolor-patch
, m( ]" c$ U; M" b! [5 y set pcolor scale-color sky grain-here 0 max-grain
) Z" p# ]$ ^4 W* P) Aend
. J/ ~3 F: P4 T2 n$ F7 S- Pto setup-turtles; ^# f4 O. o" |3 [6 h; _3 \9 L
set-default-shape turtles "person"& {4 w+ N9 x# |# f$ Q
crt num-people
! s# _9 ^9 r$ |- A9 f# Q$ C; T [ move-to one-of patches : a+ ?; _ a+ _0 `, s; [
set size 1.5
2 C% P6 m4 R5 ^9 J, ~5 B" n% R set-initial-turtle-vars-age& l8 \0 E4 N1 K$ u( c1 `' y& C
set-initial-turtle-vars-wealth
9 b( w* ^, t. O# Q' q% u set age random life-expectancy ]
) w# X$ I5 A( b- a* O recolor-turtles0 _) Q" y( a7 Y& p2 W" X( T. U, O R, o% T
end$ X+ L. W9 W4 K2 |' @
& f7 V8 c/ q9 z& @to set-initial-turtle-vars-age
: e: @$ _# d" O; t! p let max-wealth max [wealth] of turtles; t2 G0 M @- ?/ P; t6 g. V
1 @9 t8 [ s( Z2 W# D, t- G ifelse (wealth <= max-wealth / 3)
$ v8 M1 Q* T( c1 v5 E1 K [ set color red 8 M2 _* R+ }8 B8 @; f1 q
set age 0
& z7 \9 _; [: v2 ]5 b( N9 l1 P/ { face one-of neighbors4 4 p$ m2 ~- q: Y7 Q& q0 x/ B; x- C
set life-expectancy life-expectancy-min +& f3 z2 {! k. l4 I
random life-expectancy-max
. @( D! N4 X& Z' x8 m: ? set metabolism random 1 + metabolism-low/ |% c. S3 y$ H* E* V5 ]
set wealth metabolism + random 30
K6 F( b2 D) ]$ } set vision 1 + random max-vision
1 g1 [+ ]" r/ i set wealth wealth + Wealth-inherited-low ]" h3 _7 \: W6 N; @" u
[ ifelse (wealth <= (max-wealth * 2 / 3))! @& y+ e) }% Q% S; o
[ set color yellow 9 Z5 q, f) X4 {( _7 {
set age 0
1 E) @4 |/ V: b9 i5 i face one-of neighbors4
* k: j4 p8 Y( X: H) ?! j set life-expectancy life-expectancy-min +
# _0 N6 @" d" P random life-expectancy-max + 15 G, D+ {6 q, m) c3 Q0 ~
set metabolism 1 + random metabolism-mid
1 \/ L; W3 w ^8 P9 ~ set wealth metabolism + random 305 \. j; |9 D5 @/ g/ E
set vision 3 + random max-vision, ?; {; q# b( |7 w. v d" `0 }
set wealth wealth + Wealth-inherited-mid] `& g; r! B. J/ n
[ set color green
+ c* x# f& v2 H set age 03 {0 C( J4 B3 L! o2 B
face one-of neighbors4 / E3 X! M' r7 I: r+ u, J$ L
set life-expectancy life-expectancy-min +8 e0 o" r9 B/ N P. R+ x+ `4 }+ y+ I- k
random life-expectancy-max + 2
- s: U3 d3 l" `( F/ g7 d set metabolism 2 + random metabolism-up% R9 d* t9 l' V1 o
set wealth metabolism + random 30
% \9 A, B& U8 o" f set vision 3 + random max-vision
8 r( x7 w- A/ o+ o4 {" s( |% |& i set wealth wealth + Wealth-inherited-up ] ]
E! O o' k' @; h
" z' @6 C$ t$ r6 Rend1 F! B6 w) ]" j! J
to set-initial-turtle-vars-wealth
) `* `7 k3 r: \: O m7 ` let max-wealth max [wealth] of turtles9 U9 q1 O/ ]+ O7 \& F7 A) U9 C) U
set age 0* Q0 @# B: q" x: x1 r0 K; B
face one-of neighbors4 7 r0 j/ u6 Q5 W: m+ I/ \( f
set life-expectancy life-expectancy-min +
+ s# K+ g, G. _" H7 d random life-expectancy-max
/ g* I/ e3 R% M1 T( M set metabolism 1 + random metabolism-up9 S3 }+ g- @; b* H: I7 T8 ~
set wealth metabolism + random 30: Y0 G$ |1 _* x0 B& r
set vision 1 + random max-vision , p; G. p8 M! X2 b" i% C2 |
end
( u2 {5 m, X9 \# `* ~2 S Yto redistribution5 e" {* B9 b, e6 z3 ~: h
let max-wealth max [wealth] of turtles
0 f1 I* P- ~( B% V; l* clet min-wealth min [wealth] of turtles
`- ^( h8 f% [* Vif (wealth <= max-wealth / 3)& Q, r* B1 g3 S
[set wealth wealth + Low-income-protection ]5 r+ r5 n" }) S* ?; V& ~/ \
end
3 L. e( K: ~# u ' O* g! y1 ]( c
to recolor-turtles
7 R F, d; z0 b1 \3 t, T% Q let max-wealth max [wealth] of turtles
; g6 h' P% U( \; u R ask turtles7 n% h. q5 k, E; F
[ ifelse (wealth <= max-wealth / 3)
3 X j1 @. d" x0 } [ set color red ]
1 { u6 z2 ^' h8 g- r; } [ ifelse (wealth <= (max-wealth * 2 / 3))
1 A5 J: [) [, l2 d; ~6 t# D; Y7 t [ set color yellow ]
5 h: ~" b4 ~9 Y) z [ set color green ] ] ]
* J4 G3 ]+ v1 A8 u ask turtles [ifelse show-wealth?
/ |1 X `, {/ q$ O5 y& L& } [ set label wealth ]
, X3 R0 e/ p4 c. G8 r0 T/ W [ set label "" ]]
5 J$ K8 {$ P% \8 gend
a/ L9 c$ W* _" K$ c( j+ r- v. S$ `! m: F
to go
$ o, y# h/ Y% Z ask turtles7 j$ U; A0 B% x- k3 k
[ turn-towards-grain ]
1 h: m- z! V$ ?! `/ h- v harvest
i' ]9 l. c- t ask turtles
. u, c: T& ]7 i4 I- B [ move-eat-age-die ]) l# @5 [8 a* V: e' l4 W* w+ M# I
recolor-turtles
; @. W" a/ \3 D if ticks mod grain-growth-interval = 0' l* W, S. F1 H4 Z, R
[ ask patches [ grow-grain ] ]
' w. x( y" b* Q) n
7 A1 ^9 N8 ]! ~# F6 v; K4 Y if ticks mod 11 = 0
8 p3 G7 u! T, ~ [ask turtles) N& @9 {$ n8 K" Y) `+ ?4 R: j
[ redistribution ]]5 B. y' F6 m( [/ @' ]3 |& P
if ticks mod 5 = 0
# d( {' C6 s6 ? r8 ] [ask turtles
- W! ?7 x; Q0 i* j0 q2 i6 X6 j# ~ [ visions ]]
0 ]& J; ]) |% B6 t! b3 R tick/ r* w9 P' |7 j' w1 E- T9 \
update-plots- J' M5 E( ]9 B7 W* _% z5 l' ?- e- m
end
7 x" r. c( g3 J" c" r ito visions
$ k9 t+ M4 y9 v set vision vision + 1
; p0 Q$ C8 K- \* L y; r$ P9 Rend
0 `0 Y& s# j% f+ I2 r; e6 |/ Y1 `- ~! [. V
/ g: C" }2 w7 F* _; C5 w
3 k3 O" A( u7 s* @4 F
to turn-towards-grain 3 B% E' a* S; Q
set heading 0
& W4 T4 \1 x9 p let best-direction 09 s1 a, c8 Z' f8 a, h/ [2 M9 u h
let best-amount grain-ahead
2 j* C3 A; A8 z' ` set heading 90/ c( E, \9 Z8 y% F- o& q2 _
if (grain-ahead > best-amount). G* t4 J2 A# @( r. `5 d
[ set best-direction 90
1 A* d2 x# p( K* d7 V/ I set best-amount grain-ahead ]
& M$ [; ]7 Y% A' T set heading 180
5 S& g O) D B( n2 b if (grain-ahead > best-amount)
; w: i- o+ F" r [ set best-direction 180
, X- F6 c5 N; S1 ]- m9 S- ] set best-amount grain-ahead ]5 _& h& G$ b) P- [* |, k# n
set heading 270
# y. b* I0 o5 }3 ~ if (grain-ahead > best-amount)
, f2 w+ ^& q* p+ a- q% d$ V [ set best-direction 270
2 c |( C. D W, H6 ? set best-amount grain-ahead ]8 C/ h; g1 M3 N; C
set heading best-direction5 D% b. i5 V T( Q. N
end
, Y0 \# _5 \, j, J) X: Q: n
% d% i0 C3 n6 Q0 s% A5 B6 Q% L, S. [8 p4 B; E$ s& w" n3 \- W
to-report grain-ahead 5 B) P5 m& X2 I* S* E* o2 b
let total 0
- t. W2 R8 j& Z( t+ Q let how-far 1! r" W% V7 Y5 u0 I5 u- H1 [7 m g
repeat vision, M3 s+ E; M* } _0 E
[ set total total + [grain-here] of patch-ahead how-far
* a' V" r8 t3 {# Q8 W# u set how-far how-far + 1 ]
% L5 q2 h$ L w report total
; C) Y8 X; o: f; R/ s6 T, qend. j' c' V; e7 v* ]
& _) I1 n* `" q ?
to grow-grain 8 `: o: p7 n7 ?$ H! C% L T( \# W
if (grain-here < max-grain-here)/ K* v$ o' d: E1 x5 b+ T5 }
[ set grain-here grain-here + num-grain-grown
& J4 [- h: K1 ~7 P3 \- d if (grain-here > max-grain-here) " s* k3 J" H2 }; m
[ set grain-here max-grain-here ] P I# ~' `* O5 Q4 z6 X% E
recolor-patch ]2 H; J# J3 {) k9 E1 e" O: q' Z/ }) G
end5 a) Y- }1 I: \5 t
to harvest2 t: ]& Y' D8 c% s+ k
ask turtles" I& F. W) H2 M% ~- V
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
% c6 u9 _# r) k/ p } ask turtles
7 n W0 t: x. \" W$ o [ set grain-here 0
" A1 W5 x# J8 p1 \) n5 d4 l recolor-patch ]
, p ^9 W/ O+ ^ N 5 W! V: Q5 R6 f- u. g! A H& ^
end4 d# M1 Y4 C& x! M
% w- [2 i! U- B# I7 k
to move-eat-age-die
; ` e, `; {1 H8 Q8 I: C Y0 Y fd 10 j3 a# G" Y% B( m8 h
set wealth (wealth - metabolism)! }$ m* @4 D3 R8 U; r1 d
set age (age + 1)* t- \+ a% Y( k1 `
if (age >= life-expectancy)0 F! D* H. j2 } E5 {/ m* ^
[ set-initial-turtle-vars-age ]
& m; b! ~! ?$ B# c if (wealth < 0)/ r G( n6 h1 o/ D6 d* ^$ w7 K/ D
[ set-initial-turtle-vars-wealth ]8 Z7 B5 J Y- z9 ^# f" `! \
. v8 @. c: P; y+ f! y( Jend
X) R# o( l& F: @( R; K+ |7 i* L* B0 @& i3 U; y6 u3 y. T
& S. Z9 f9 m5 C2 O4 u' m" J0 @
to setup-plots8 _; s7 h. ~9 E2 {
set-current-plot "Class Plot"
* {: z% N z7 D" l set-plot-y-range 0 num-people
a7 d7 M4 E, Z8 y set-current-plot "Class Histogram"
: p# i$ t- U- k: y( |$ h set-plot-y-range 0 num-people
' c. }% H7 K, W5 [) t9 [end( w7 O% V2 ]( c3 D% G h8 ^
4 \4 @/ i/ Y, c' w) Ito update-plots
6 W( u( ]; R/ ]$ G3 I' }. @) _ update-class-plot/ j( K2 O- _& e# n* s
update-class-histogram
( ?8 ` V. D0 D, ^; E update-lorenz-and-gini-plots
# C5 e( C( ^% I" kend
$ ^% R' U U0 w' o' M J$ f6 d7 V( X- O9 e5 T0 T
to update-class-plot6 T$ c9 M% j$ o6 ~8 x; h
set-current-plot "Class Plot"
. n0 W% Y7 I0 Q* p( B4 ^ set-current-plot-pen "low"& W4 B/ I8 N3 U; C' i' ]
plot count turtles with [color = red]: v1 L* d8 R. A1 f
set-current-plot-pen "mid"
# @2 A$ f* p% X o; X9 U0 T plot count turtles with [color = yellow]. o" k# q' R6 h9 H% z- I
set-current-plot-pen "up"
i! Q- e1 X+ C9 Q5 T plot count turtles with [color = green]. S0 u! j/ S4 l& z" |/ d
end) l. ~1 ]3 ]# [! W
) w5 O, {! q$ _ E
to update-class-histogram6 z ^% B1 k, y# V' ^' D* A
set-current-plot "Class Histogram"- w% g' l$ ?( p$ \* J/ ^- d9 v
plot-pen-reset0 {5 ~) o" k/ k5 j. ]# B
set-plot-pen-color red! g* i* ?) W* W* l2 v& V% q. Y
plot count turtles with [color = red]( _; l0 M; j7 o3 p
set-plot-pen-color yellow
5 c# N$ _3 {7 o plot count turtles with [color = yellow]3 P7 z0 I' s, {
set-plot-pen-color green
4 O4 c9 z* U" T) c6 x3 B- } plot count turtles with [color = green]/ g0 Z) z$ h8 Y! \% I2 s, H9 H
end4 P. L3 J6 K& K+ @: C
to update-lorenz-and-gini-plots2 w) L! U" r0 p( i$ v$ S+ t/ h
set-current-plot "Lorenz Curve"4 y5 r* z' o9 [" Z2 m6 b1 e/ u8 Y9 x
clear-plot( ]0 M# C5 N( S4 p( V/ Z. D
. Y3 K J; U9 b8 O5 g. H set-current-plot-pen "equal"
' p6 v" I! Q+ m plot 0
, j) }: D6 M1 e4 c8 A plot 1002 L6 i I. ~2 c- E* v u, }
5 R8 B& P( U( {! X2 E* ^% I set-current-plot-pen "lorenz"
& Q: `9 S! y; a8 V1 e1 F set-plot-pen-interval 100 / num-people6 E. d" }7 ]8 x- U( u4 h
plot 0
+ h, q, c& g7 T) \& D# r: B4 ^! Y
0 A4 I3 t& U5 y1 C" B7 m# z let sorted-wealths sort [wealth] of turtles" f; l# X* ?0 z" p1 G3 [+ f
let total-wealth sum sorted-wealths: J% c9 p! h9 ^( U# o/ N' T
let wealth-sum-so-far 0* ?( j% `3 c2 z9 B; V; B2 w
let index 0! s; j8 D7 ^" p. p9 R8 t$ K
let gini-index-reserve 05 }3 m+ T- N$ U* l3 G6 A; o5 h4 _
$ i* c. w5 i/ R0 u. e" h repeat num-people [
7 C4 h0 h' k+ p* Z- b- V1 ] set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
& a; S; E& c4 y E plot (wealth-sum-so-far / total-wealth) * 100
6 C4 C: r) x% ^ set index (index + 1)( [2 I5 y1 b- c- l& }
set gini-index-reserve4 E" H: X! n! x+ b
gini-index-reserve +: u% F2 g4 J2 u0 \' d6 m
(index / num-people) -+ x3 F& d3 }6 v C3 t' L
(wealth-sum-so-far / total-wealth)
) P C8 L, p. E+ }/ N ]
' M1 A; X% o) [& v1 Y9 D3 O
% [; y! q! N4 q6 U( Z set-current-plot "Gini-Index v. Time"
" j( ]. @+ H3 _# V# h plot (gini-index-reserve / num-people) / area-of-equality-triangle* w3 c1 t! T0 b5 H% O. f
end
5 F# g( ?- t4 T& B' N K5 H' |to-report area-of-equality-triangle3 w% t- u2 k5 G" C2 d1 O- L
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
4 f8 J( q# b4 n t" N1 eend |