请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现0 D' h: ~) B Q! t- t V
globals& ^. R- m# \% f. w
[5 _7 H; j; J6 l6 A8 Q' D
max-grain 9 K; h; g. l" W J: Z. G
- D* n! b+ K5 t: S7 U" z+ Q, C]
3 `/ s/ V; a! ~' r( p ]+ D4 h4 s; l8 Z- Y: w
patches-own
q! x' F( ]& o2 J T[
1 B* L9 w! N6 |# g) C grain-here 6 L8 n; ^* } |, C
max-grain-here % d" F/ x ~% H; J! C6 t3 ]
]
, ^! Y( k& ^; ?5 I
$ ?: y8 k, D$ H0 \5 g, H4 wturtles-own7 m$ @( F' V' q1 L# ^6 M: v0 j
[, w' v9 t: z; w2 k5 p
age
, L; @& a. d9 o' l0 @' b h- o wealth - H! d6 l% ?) R& m0 [
life-expectancy * o) f" A. B! ^
metabolism
$ r0 W0 F, K4 w+ |6 m8 d vision
* b8 R! G* z) F$ h4 q1 l1 E inherited / f5 b( G5 F5 G$ p/ f' ^
]
1 ]! v% @ O1 X+ v, e# B" i2 R- h! ~
* X0 e S6 |. i; H- {% F4 B6 zto setup
% V0 r6 l* X- [9 n ca
W* y+ D8 l0 g set max-grain 50
+ l% M {: S/ q( Z- T# L setup-patches
' |6 S" Q8 [, F setup-turtles
7 n- I) Q! Y. H4 Y* V; x setup-plots
` r& Q2 w# ^" W7 \, N update-plots
# N+ L5 D4 t8 `( x5 x" z9 hend
( J3 Y \9 ^0 _5 p. z$ M3 J; K% sto setup-patches
& l2 ]$ y+ N, O% w0 u0 F ask patches
6 a V5 U! J7 C( k) X! X6 v" F, T2 ~ [ set max-grain-here 01 z: m( x' y! ]' y; Z
if (random-float 100.0) <= percent-best-land: e; ?8 i: G1 G' U3 M' T8 }' \' D
[ set max-grain-here max-grain
% o5 W/ S! D1 j5 _% K; {" b set grain-here max-grain-here ] ]
/ c. R, v" J3 h repeat 5
$ v1 u) L. i6 o4 |/ T# |# e5 J) P [ ask patches with [max-grain-here != 0]6 D& S2 J) X3 s# A+ N. t
[ set grain-here max-grain-here ]* ~2 e; n _# \+ K& _# R& r
diffuse grain-here 0.5 ]. K! ?# l6 Q3 y. x
repeat 10. K! ?" K9 I# p2 Y" S% j
[ diffuse grain-here 0.5] ' e" Y* M+ C2 X0 w" E
ask patches* T$ t# L7 c' G+ C2 U) M
[ set grain-here floor grain-here % }7 u' J1 S) [5 x
set max-grain-here grain-here 2 K1 q$ y) U& ~- u
recolor-patch ]* E7 \6 u4 d8 ?9 ?3 c q/ z* J
end' @: r+ m t6 g# c& M# ?% L, `6 ]& ^
to recolor-patch & F( d, K/ O' f, b) p. i$ p {
set pcolor scale-color sky grain-here 0 max-grain" h8 P1 y9 H* @0 s+ e
end
+ Z3 t% x% }- b! w+ S2 p: Tto setup-turtles
5 U# {. l) B( N" x. \0 H+ ` set-default-shape turtles "person"
. H' e1 T8 s/ R/ w crt num-people
0 Z+ n; D/ U) t( S4 _ [ move-to one-of patches
2 L' ?! {! e0 r9 ?, g. ? set size 1.5 5 W- F( f# n( Z, h4 w+ P
set-initial-turtle-vars-age9 `( H" P8 t# X& ^: j: w5 S
set-initial-turtle-vars-wealth
! @2 p, t: U. j3 n1 d set age random life-expectancy ]
) b) P7 N+ w8 C' q/ A recolor-turtles' k1 `. x }0 o/ n1 [* K2 N
end- M: v. [+ `# x" O' Q5 D
6 |' x8 g' W( i% O9 O$ n$ }) p
to set-initial-turtle-vars-age& k% z/ X- [$ S' @/ x
let max-wealth max [wealth] of turtles; S$ O c; f$ z0 W
& o) p: i% q& t1 h ifelse (wealth <= max-wealth / 3)
" c. A/ \! c/ T( D0 t [ set color red
6 |! c- G. `5 C% ^$ O1 z set age 0
- ~3 i: v! N, N) l; G- T) T! ~ face one-of neighbors4 ' Q- K1 d0 R! @9 A$ ^/ Q
set life-expectancy life-expectancy-min +
0 n8 n$ f8 i4 q. M* p random life-expectancy-max
9 d; h* ~ I4 E set metabolism random 1 + metabolism-low
6 r+ q8 C5 W3 U7 w4 I' W, _ set wealth metabolism + random 30
2 g5 Q! b; |3 H( n) j; C* m set vision 1 + random max-vision# \9 n0 R! G5 I" l3 X- _ j& e: C# B
set wealth wealth + Wealth-inherited-low ]
" s2 d# z3 ?2 {( F" d9 h2 A6 L [ ifelse (wealth <= (max-wealth * 2 / 3)) I8 T U! i" Q7 U7 n" A
[ set color yellow
9 [ i6 J- f3 X, ]* ^ set age 0; P1 h, _0 ]' [; j( \" @) N' g
face one-of neighbors4
" _0 f6 e0 H. _6 O3 ^+ B set life-expectancy life-expectancy-min +' ~' k% D3 n2 k$ |6 k, n
random life-expectancy-max + 1# R# }) ^* _8 p( U' y
set metabolism 1 + random metabolism-mid/ J- g- b& O2 a, m1 |
set wealth metabolism + random 300 l# t8 F; N1 z% m( b! \" k
set vision 3 + random max-vision/ {$ T' z/ A( G3 @/ p
set wealth wealth + Wealth-inherited-mid]
5 u, `6 _* y' } ]" ^, H- G [ set color green ' {! R+ e U0 i; ?: k9 {
set age 0
6 }" _9 P9 p: P6 w5 p1 y face one-of neighbors4 ! a) _ t: D) _" d) R
set life-expectancy life-expectancy-min +7 Q9 }$ F$ w* [% [% m- s6 C6 t
random life-expectancy-max + 2
, L) A! c3 E6 S/ b6 A8 A set metabolism 2 + random metabolism-up
' o" J0 Z+ \* q' ~5 D set wealth metabolism + random 30: K0 p/ {: T+ [6 d+ X
set vision 3 + random max-vision
, H$ j" C7 p8 i! g/ Y set wealth wealth + Wealth-inherited-up ] ]
2 ~' k \9 k* ~, _+ J" l% @1 ^ / |( I u6 i& D c' [# e
end
3 ~" k T( M- q bto set-initial-turtle-vars-wealth
5 V' B4 ^1 q1 n: C4 U8 ?! d. U let max-wealth max [wealth] of turtles
W' \9 d4 x- M9 L+ A8 x+ a set age 02 k* x: S; J% }; _& C
face one-of neighbors4 $ r# W! S- \# M1 P
set life-expectancy life-expectancy-min +
2 t& k' S8 i4 d+ P random life-expectancy-max ) i& \4 o5 \9 \1 a1 m# _9 i* T
set metabolism 1 + random metabolism-up6 t1 U H* Y) l3 T0 y
set wealth metabolism + random 30$ Y* x* H) {2 i' I
set vision 1 + random max-vision
" {- v( y) S2 O- S. I5 y/ Bend+ S% s0 V, ]- l4 m C
to redistribution
6 }* c# F9 ], {* p) T! blet max-wealth max [wealth] of turtles3 Y: O- N5 w# l& j
let min-wealth min [wealth] of turtles: n3 R0 D N% u' f+ a
if (wealth <= max-wealth / 3)! h1 m" j1 l* { E1 B) n0 m7 r( h" h
[set wealth wealth + Low-income-protection ]% N0 c3 d+ Z& @7 w+ d6 {
end7 I$ r; ^+ @: ?/ ` Y4 \' B) F
[/ S, d( |! \# t
to recolor-turtles# g4 v- a9 g1 p/ a/ ~3 `# o
let max-wealth max [wealth] of turtles
* f) \0 S, r& a+ a4 s; _ ask turtles/ @' i1 o. c( B9 i
[ ifelse (wealth <= max-wealth / 3)
7 R! r) N# C4 W5 `. o [ set color red ]0 K) p; k3 ?% G
[ ifelse (wealth <= (max-wealth * 2 / 3))* m& _. B) v' P2 |* S1 ]
[ set color yellow ]
- x* ]# W& v" c: ^! U) `# V& h [ set color green ] ] ]5 L* E! ]0 Q" O9 D; e
ask turtles [ifelse show-wealth?
0 c( Z* Y0 t+ T. o" m [ set label wealth ]
. [4 @, L- \" `) ^ [ set label "" ]]
/ _8 ]( R4 Z- t1 j- O Eend
! K6 m3 G9 f0 {$ o" q7 L! r
/ S% c3 a' W7 b% G; F+ c& ato go( A+ r& d1 V1 I! f3 w
ask turtles
6 W: Q5 H. K+ q9 l( J& t1 r [ turn-towards-grain ] 8 @. t$ [2 o% \1 T
harvest
1 Z/ A1 a! i2 [$ w( h9 a: ~$ A( g' @ ask turtles9 m5 v! I2 i2 q
[ move-eat-age-die ]
7 r) K- z4 Q x0 v recolor-turtles) g8 b5 F4 g+ X$ c* u6 @5 N
if ticks mod grain-growth-interval = 0+ y/ A b! n: K& P
[ ask patches [ grow-grain ] ]6 B7 n* A6 ]3 ]- G
# e% a/ p q( ~* N: U: d if ticks mod 11 = 0; H& x* ]* i( q8 a/ @4 A0 D
[ask turtles2 u, U8 }& z1 n `% G6 a
[ redistribution ]]
/ N( t9 l' ?5 D5 E$ x1 F" p; s7 g if ticks mod 5 = 0
) ?3 u' M0 O* w+ _9 i# j [ask turtles
( t2 M- v0 m8 o- V [ visions ]]1 m. w- X; Z2 n; Y# R& v$ l- Q
tick5 q5 D4 t! r) S
update-plots% K% s& L% k9 `' v5 }3 O$ e
end
# ^; {1 i! z( D( K) E2 M- {to visions
! A7 N" l6 K2 a; w set vision vision + 1
9 S y" a* g* C; D+ g: j! e/ G jend6 u2 t2 p8 J4 r' l
@# ~5 _# N) c' I* c0 u( {
! j9 D* V2 b' o% S- k' K: m; F' o
to turn-towards-grain
) Y- ~+ } A8 ] set heading 0
5 T! U7 _5 V" Y: o" x: Y3 _ let best-direction 05 B' A& B( v) o# K
let best-amount grain-ahead
: D3 @! q# F2 Q/ G3 ?- L" { set heading 90
/ g. `7 ^8 c: Y7 i5 G if (grain-ahead > best-amount)! V p- E/ c1 i1 d2 G
[ set best-direction 901 h" ^' f) z8 Z Y) G/ W
set best-amount grain-ahead ]
3 f9 I, Y: x4 P6 k( u1 D, D set heading 180
: k" j) {- K6 P8 h if (grain-ahead > best-amount)/ l! ~) V; j* @, R! u9 L) Q+ [$ i/ m
[ set best-direction 1808 Q/ l }& }& w$ P) _ y
set best-amount grain-ahead ]8 T/ z$ X0 W( r8 Z: z# u* S
set heading 270
+ I1 k, g$ Q2 j5 c% U6 |' E if (grain-ahead > best-amount)4 [5 @1 A+ O3 n4 v+ K4 `
[ set best-direction 270 ]% _. G0 b4 W0 Q6 i) x
set best-amount grain-ahead ]
# E/ g5 I; j+ v1 Z! n( @' [ set heading best-direction+ c8 z: ?" @+ j4 B
end* f( ~$ h2 ]/ v/ M* E
6 \' X( k# p. W3 I
! ~( ~. C, Q% U1 F
to-report grain-ahead `! H! ~& I& j+ i% N) H% m
let total 0% q0 `% j6 C: j' I: J1 D1 P
let how-far 1
: u% M9 T0 e# t repeat vision
! ~) W7 p2 o0 V# F" h [ set total total + [grain-here] of patch-ahead how-far5 _2 y6 a* z9 `5 F- f% f% Z1 \
set how-far how-far + 1 ]% y+ l# [6 c2 f- Y, i
report total
9 u: D- X( ~% ^7 x' L3 `! ^end/ q4 b: h! `5 X* ~9 i& X
8 I5 C1 q5 L% J5 o y3 Tto grow-grain
4 i. o9 Q$ }# f1 P if (grain-here < max-grain-here)
: U* W' ?) k9 Q) z( t' d. }8 q0 M [ set grain-here grain-here + num-grain-grown
2 T2 K( [+ j7 a- E. J! X if (grain-here > max-grain-here) : ?4 Y! Q3 B# o) C8 a+ G
[ set grain-here max-grain-here ]6 |/ C" q! s( x+ l. V
recolor-patch ]
+ m& I- ?+ V* S8 rend D/ t% L* H; J
to harvest
* f$ r8 z2 d( t; ~8 f7 z9 X ask turtles
8 B' }' H7 x) K0 { [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
' b {3 Z5 f3 ~ g1 ]# ^, w ask turtles6 @$ Z: _- J6 ?; y" u0 c
[ set grain-here 0- X" E6 Q8 d5 ~" B8 a# w. F
recolor-patch ]
/ {( p# L4 |: a- z+ q2 V
3 m1 [. b. V: tend- k a! z. m$ o) Y
R# c( x2 a% B/ J& c t$ L: h
to move-eat-age-die
6 r5 f; @( W9 C8 R" o fd 1
7 s0 A6 F' m7 c; g- R( i set wealth (wealth - metabolism)
% A2 [8 A- [$ ^* g/ o# s9 l set age (age + 1)+ i3 a, D8 D f9 G
if (age >= life-expectancy)
" N5 @, q- M* P4 a9 C; y [ set-initial-turtle-vars-age ]
7 L1 q" ^$ [, a; ~ if (wealth < 0)9 O, |0 C g2 r( d0 T
[ set-initial-turtle-vars-wealth ]
+ B$ x& n/ G; y
% n/ h( A3 \9 k5 \! Nend
s3 d# k/ j0 Z" e0 f( n& _& y2 ?7 {! r. Z/ d; U
4 V; _' U8 a' E! w* @
to setup-plots& Y6 ]# t4 D- c# K4 ^8 g
set-current-plot "Class Plot"8 i/ d2 W4 r& C; g0 `& y- `
set-plot-y-range 0 num-people
|$ Y2 `; O# y2 ~9 K/ _5 o set-current-plot "Class Histogram"
7 r5 K% E6 d& H- z" Z4 B. U5 G set-plot-y-range 0 num-people2 F* H) k9 P0 p; U5 \. W+ e
end
5 B$ S4 r( H2 H* ~ e) }) ^ h4 @; k* z4 {8 o) M2 k
to update-plots
7 n3 R0 s- B/ p( g update-class-plot
, Z9 P! c+ d1 v6 D! ]* S- x+ H update-class-histogram* u- r! l( N# W$ p7 X* O, w/ p, H9 P
update-lorenz-and-gini-plots. _1 e, M& x. t( b0 ]) C e& P
end
% C- U9 N/ d2 J8 o
9 f3 ?- ^. M; ito update-class-plot
0 J: s* N% O) ] set-current-plot "Class Plot"
% {, P( ]% V6 X1 { set-current-plot-pen "low"
, r! y4 D# c( M5 H4 ~ plot count turtles with [color = red]8 o0 Q1 b0 y) H" r& W0 }
set-current-plot-pen "mid"
/ D7 f1 c! t: f' I H# ` plot count turtles with [color = yellow], R" a$ S* y/ ^8 j+ [% _8 q3 }
set-current-plot-pen "up"' l9 R6 v& ?) H
plot count turtles with [color = green]% `* M7 ?5 t2 y: ]& X& [# h8 V
end
; z% f/ F/ G( T) j2 a# k( L
% \( V7 q L. u( t3 f, Vto update-class-histogram
* `1 ^( o, b1 @, C- @% F* b% @ set-current-plot "Class Histogram"7 \9 s2 E( w. F0 v9 N
plot-pen-reset
1 r# C3 O7 b! @3 a5 D& T: [0 b6 _ set-plot-pen-color red
" e7 e6 l: S8 d/ O* V ~ plot count turtles with [color = red]
0 C; I* J. |. @5 r set-plot-pen-color yellow
l) R$ S8 e2 C( R% Z- F" g plot count turtles with [color = yellow]
! C* y8 s5 v. Q* K3 H set-plot-pen-color green
2 ?1 V, k: s/ C) c plot count turtles with [color = green]
1 K% Y0 U1 ~! j+ U8 H; v+ A+ o+ Yend6 e2 I; L: N! P1 ~; c
to update-lorenz-and-gini-plots, s7 p; l1 W( |7 g- W) J, d
set-current-plot "Lorenz Curve"
* Z: U; \! [: S9 x2 y5 c clear-plot
4 Y& O4 A( T3 s# X1 r; A* Y# `5 k( L6 H @8 c
set-current-plot-pen "equal"* D) j. Q' y$ Z: d* |" r. K% V0 W
plot 0
6 c5 t- Y0 h" h. d" g9 m$ w plot 100
) X6 y! m P$ I' } u# i7 H& H' F) \0 _
set-current-plot-pen "lorenz"" t" d3 D7 G0 F! Y( v* g5 z
set-plot-pen-interval 100 / num-people
3 q6 J) N% I: p* J6 h plot 0
' ^/ ^: L; ?3 E. m
9 N {1 J" q9 B; d let sorted-wealths sort [wealth] of turtles
" J/ u$ a6 S% S0 Q9 Y3 P! l" J let total-wealth sum sorted-wealths% C2 k9 E" y. X# R
let wealth-sum-so-far 0+ p9 E3 P! o" [% {; k" i4 V
let index 06 x& {9 T8 G0 O+ O: K
let gini-index-reserve 0
. a- b. b* F% H, S
8 V2 ]# {# \0 E7 M \ repeat num-people [
$ K5 w+ A ^$ f. {- t" s set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
5 g9 m* V( p4 d8 E" c, ^' M plot (wealth-sum-so-far / total-wealth) * 100' C6 a% H7 k8 x+ c* o; @
set index (index + 1)% ]: I( U0 C+ R% ^
set gini-index-reserve
4 d. Q1 e1 U9 ^9 r p" ] gini-index-reserve +* O/ M& D) T% a7 y+ n/ \: b; e
(index / num-people) -4 r' z; D# E) m. [- u. d2 s
(wealth-sum-so-far / total-wealth)7 t) [! L& q q4 t
]
# a" d( R9 e+ Y, }; [( a0 C/ a I B. S1 v9 {% w; B
set-current-plot "Gini-Index v. Time"4 w( q+ ?+ G* _5 \" M
plot (gini-index-reserve / num-people) / area-of-equality-triangle
2 l% J! d) x) d8 Y, b! fend
( N! K/ K7 }3 b0 I! }to-report area-of-equality-triangle, ~$ K1 O$ `. a* N3 N
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 k4 T! t! t) V1 y4 o
end |