请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
, H/ q( _4 T4 F/ ~, z" Q R: m$ kglobals
; O4 g# L' V6 J[
1 N6 j9 d2 {! O0 {0 i, A: l max-grain
+ R$ r! y, }/ a/ o1 l1 f
4 }" b) _8 T! y, ?, W. b2 B]: {/ K# j( I4 Y5 x
& V/ P8 |) g- X' o$ }5 t4 J
patches-own
( n+ Z+ [: A4 T( r[
' E9 M/ s' m; d/ V1 s grain-here ) D4 D, Y% V) U' D" g& U
max-grain-here . V8 w% M7 }: v6 v7 ?
]
5 h( q9 V9 i1 W! N; E; @4 i6 |% N) M8 \: k3 ?5 A- k( m
turtles-own" {; R8 r! \9 N. p* `& R
[+ \$ u0 V- [' ^6 J
age ( Z {( A S% e7 \
wealth - J" u: m# X7 l# `) x# F4 b
life-expectancy
0 g" V' B# ?4 ]+ O( H metabolism
7 p4 Y, z. }8 ~8 o% a9 b0 D3 \% p1 ^8 @ vision& w4 T; I9 L O0 D+ Q
inherited , w* L( `( Z3 ^7 n) M* {% o& t# A
]
/ K: V$ e5 E/ E9 C& ~
' c8 B* `7 z' o8 ^$ C1 v; p
1 d" p' [7 N+ r+ Mto setup, C0 F( N$ ?" l) B
ca
. L9 w. P( c) k' M set max-grain 50 D2 n7 Z' B4 D: w
setup-patches' Z6 A4 L A- Y! j# e
setup-turtles4 B# J" v1 a) q) e
setup-plots" J7 Y! {; u# `) P% y: I9 M
update-plots
" } p- E ?* d" m$ Q5 l/ Rend
# x0 N. n2 i% rto setup-patches
: V- l' `; j, x2 h. ~ ask patches
& i/ R: ~) q9 O6 f. } [ set max-grain-here 0
( R, P) x& N5 C7 i! _2 h5 A) } if (random-float 100.0) <= percent-best-land `! T, `, H0 M- N2 B8 j
[ set max-grain-here max-grain
+ `1 c! B7 N" i5 _8 n# ` set grain-here max-grain-here ] ]
5 C9 u7 E9 F/ ^' O* r z4 F& K1 y repeat 5. {' B: o) z% I; C o
[ ask patches with [max-grain-here != 0]
+ S: G5 j; M; t8 { [ set grain-here max-grain-here ]/ a& S" K: t% o3 s/ m2 z
diffuse grain-here 0.5 ]) J' r) R" t# H: X
repeat 10
( H# S2 ^4 }; ]* p: b [ diffuse grain-here 0.5] 7 F+ t' E' b6 E" {7 M4 l, \: D# i
ask patches9 p; b1 i8 N$ y4 I* A6 D' f
[ set grain-here floor grain-here
( X* P9 s+ Y$ k5 E0 }' j* i set max-grain-here grain-here
1 ~+ x1 d& \( N6 M8 U$ p$ w recolor-patch ]8 G; A2 K7 x x; \. C
end
+ R( t8 e$ r; Z$ kto recolor-patch
( G( t6 i& x( ] set pcolor scale-color sky grain-here 0 max-grain
) R9 P5 }1 ^; yend$ A: ^1 n7 \; n+ C. | |8 g
to setup-turtles
/ h5 p$ y2 G# w+ ^0 j set-default-shape turtles "person"
" b- |* j+ F. u7 Y9 [; H( p% H crt num-people" Q+ ~9 y$ j6 E
[ move-to one-of patches * Y$ E% { Y! D) c# \
set size 1.5
6 b2 i+ a) J# W8 V) Y set-initial-turtle-vars-age
6 S- x! u/ T# J1 V set-initial-turtle-vars-wealth z/ d* q- x4 \" G. t1 D
set age random life-expectancy ]# ?" C& Z. c+ ~
recolor-turtles
! |% `- |. O9 ~9 q7 Kend7 [+ P3 }( K- D& f, I4 B. v5 O6 _
2 K* U* t- D2 E- [3 D, p( eto set-initial-turtle-vars-age. E! h+ {# x, U2 I2 Q. F2 `; K
let max-wealth max [wealth] of turtles
0 Y S6 Z' ~) M6 s V# \/ A' _ * N; @" A3 G g. b. W: t
ifelse (wealth <= max-wealth / 3)' b+ N2 y) K" R6 E' j; n8 T; v. y+ e' O
[ set color red % u( D- q$ J7 m4 Q! F9 _, L. i) G
set age 0" ?/ v( Z& o9 _- q" @: n2 o
face one-of neighbors4
/ X+ U0 \! {' @! ~+ [ set life-expectancy life-expectancy-min +. x) b) M& C; G* b8 O4 a/ P
random life-expectancy-max , g# T" {9 Z3 L6 M
set metabolism random 1 + metabolism-low
4 p5 a1 M" H* r; x& S) C& Z! m& X I set wealth metabolism + random 30
, @' Q$ S1 ]. T6 T set vision 1 + random max-vision/ g S: h$ E/ {
set wealth wealth + Wealth-inherited-low ]' h2 h, M. ?0 V0 b3 Z6 K
[ ifelse (wealth <= (max-wealth * 2 / 3))
% W" J6 a6 T8 r' _8 ] [ set color yellow $ H5 `' u$ \+ [4 s- |4 A
set age 0
# x i0 b4 d; I+ w: S) I: T; Q face one-of neighbors4 3 c* {. i" q% b! `2 i! V
set life-expectancy life-expectancy-min +
4 i/ l- ~" `: {1 h2 o) {6 i random life-expectancy-max + 1
' K) m: k# i! {- N9 ?/ f: A set metabolism 1 + random metabolism-mid
9 B# f5 x* E0 \- w: S set wealth metabolism + random 30& b) x: V2 r9 |9 i- t! ]" n% ], _
set vision 3 + random max-vision0 ~8 a- M' g4 K. _) B
set wealth wealth + Wealth-inherited-mid]
" V4 I; n* m2 h& ^0 p J- D [ set color green & [9 L% A. p6 d) c. t
set age 00 G* p! s( r1 E! W
face one-of neighbors4 1 `4 }% x5 t; ~( O% V
set life-expectancy life-expectancy-min +6 c0 a2 j. O& N) j1 L* j
random life-expectancy-max + 2
0 A- x1 m2 D6 r& m* q4 ] set metabolism 2 + random metabolism-up
$ H8 v3 A" G9 n0 A$ p* [ set wealth metabolism + random 30
$ `8 o' r) y( b p. S8 \0 A, V set vision 3 + random max-vision
. v( a- k; B' [; [/ s set wealth wealth + Wealth-inherited-up ] ]
& k) N% F9 a8 w) {+ g8 U
' O0 E* q. Y/ E3 \ w4 S6 bend
' k# L) z* i( N( U1 nto set-initial-turtle-vars-wealth# g. N, ?6 N/ m. O' O; E( D n" a7 s$ ^ z
let max-wealth max [wealth] of turtles' ^* `; _3 ~/ V, Z' t/ @
set age 0
p/ a+ |1 I# f# M5 a face one-of neighbors4
5 |8 |8 a% B% r/ ]1 |6 n set life-expectancy life-expectancy-min +. P/ \5 y: |1 j4 h7 N
random life-expectancy-max
" r K' J8 t( k5 j3 K0 o2 C set metabolism 1 + random metabolism-up
+ D4 d! G5 Z- k4 z- K set wealth metabolism + random 30) I4 N5 C; I3 g3 D! s& `
set vision 1 + random max-vision
' r) V! S" w' E0 d2 Y) ?" [end0 O) o/ F! g: C
to redistribution* u. `" O) [8 j1 m6 v P
let max-wealth max [wealth] of turtles
1 f7 \( m+ ^ |. ^" ]( Tlet min-wealth min [wealth] of turtles
$ `: N7 ~7 s" Q8 `4 fif (wealth <= max-wealth / 3)
1 L; N1 Y2 P/ m6 X [set wealth wealth + Low-income-protection ]- b! J- c% q* r# R& T
end1 K1 ]* c" [+ ?$ }$ b5 h
: n" Z! M; e8 I- F; O
to recolor-turtles
7 o! b. K6 A# q* W# A) D: k let max-wealth max [wealth] of turtles" G! d7 p- U7 w$ z
ask turtles
8 w+ x7 l- \" m. i& N* N9 y [ ifelse (wealth <= max-wealth / 3), N9 J+ y- R! O% s) O: O
[ set color red ]4 {4 o8 T0 X' [) Y
[ ifelse (wealth <= (max-wealth * 2 / 3))
, Q* C9 a2 |- o2 P [ set color yellow ]; b, Z1 W( W- c0 e" x
[ set color green ] ] ]
& @! H" }9 C+ T* ?6 q ask turtles [ifelse show-wealth?. h% }. |1 b$ M9 B
[ set label wealth ]# _" V/ i$ {9 ~
[ set label "" ]]
. Q+ k7 D8 _+ l+ b$ o4 b4 [, pend
, [$ \0 |& @8 P# v
& x# i4 @# l" x; N. q# ]to go
A' U" L! E( b6 U ask turtles
( U& H8 T4 p. e# ?: p( `2 g W [ turn-towards-grain ]
- e* ?+ M, U. f. [* _ harvest
! D- a" n% R1 ^$ \ W ask turtles
' t3 V$ c o3 t2 Y+ z( @. s7 a [ move-eat-age-die ]
- R' X' `9 s0 |- `) m recolor-turtles: u2 z) S2 a: O( J( C( j
if ticks mod grain-growth-interval = 0
' @; C T5 z( z% m E [ ask patches [ grow-grain ] ]4 @% k5 J) ^; T9 E
. `" A0 s4 u7 c3 T# H, k3 T, `
if ticks mod 11 = 04 c e) I- b+ T4 K2 k/ e5 R1 e1 s
[ask turtles
, v3 ]1 V% l1 o) U$ }- M [ redistribution ]]( b, ^2 z3 Y- ?& C1 a
if ticks mod 5 = 0
( e8 V" l$ J2 A" ]) Z% ?7 W" n [ask turtles
3 q' E6 V# _% U Z, _& q" B# N& M3 S [ visions ]]
. L9 s# n0 C* P1 {3 R4 h6 V# f tick' z" f2 @/ v; T5 k; F0 z7 q5 C
update-plots
3 Q8 G6 E0 l& T2 i' `end4 e' b3 Q% W) f# ?3 E2 M! c
to visions
3 j5 S( ?7 A3 ] @ set vision vision + 1
% x$ y: h6 Y$ Hend
# N( l2 j" C6 w7 b& f1 C$ k7 U: U
5 R8 l3 {( M" q' S% U6 v6 ?% w+ }
8 ~( G: t' F" N: p
7 X5 v U4 r+ J* B$ Cto turn-towards-grain
! G) _. G& Z6 j* P; Z set heading 0
. m8 k* L/ I5 b% v+ X: i Q& i, C let best-direction 0/ h; s# ] r, X3 h
let best-amount grain-ahead
- T, O( J H9 i8 V J2 W set heading 90
; D+ g. H$ s4 [3 N2 m if (grain-ahead > best-amount)# k. ^, ?2 L$ Y
[ set best-direction 90 b3 g8 O3 q/ b/ H! y1 ?& ]
set best-amount grain-ahead ]
4 b- H+ N `1 Y7 `) @; f set heading 180: v k8 [' @5 q) v- z4 p$ |
if (grain-ahead > best-amount)5 _1 h3 {! _6 o" d. i
[ set best-direction 180" e! a: K/ [2 K' d( E5 X" ^ l
set best-amount grain-ahead ]
; I$ e9 a+ x7 p1 h3 m9 m set heading 270
0 e( N6 G" v7 V: {4 q if (grain-ahead > best-amount)7 N) Z7 g y+ }% z# ~6 {9 K; p4 w
[ set best-direction 270
4 z7 p6 r1 `" |) H set best-amount grain-ahead ]# L7 f" E0 r8 x3 D. s
set heading best-direction
& m- s- D! e' V3 [% G* E9 P- Lend3 z5 }: J1 p& V, c& ~3 J" y4 S9 @4 j
% a+ J! E K) A2 ]2 A5 R0 Y; R0 `$ Q) p" c* D1 S- j
to-report grain-ahead
' L B/ J# A- s0 ? let total 0& n4 d: K' A: I, F+ _; w' U
let how-far 1
" E8 r' K: X7 K2 ^* s repeat vision
. o* g. A: N- O6 C) G [ set total total + [grain-here] of patch-ahead how-far) _. e! W# O( J
set how-far how-far + 1 ], O) x7 T4 ~7 H% `6 H. G
report total
1 Y: ]4 Z( ~5 p0 e/ jend
3 F! } d+ X1 h- O3 U5 w9 b2 L6 s5 _; u; k l
to grow-grain # M' D- N0 U4 o) c
if (grain-here < max-grain-here)
. F5 V$ D6 W; ^/ A: P$ N [ set grain-here grain-here + num-grain-grown
5 j, L$ w& T* }3 O4 f if (grain-here > max-grain-here)
6 e* }( Y2 }# a: E* f) t; U [ set grain-here max-grain-here ]2 I5 O; h$ }5 j1 ^
recolor-patch ]% V7 i) h l* _% f) G
end8 k! ?% i. X! t% m2 T. }
to harvest5 t6 t6 f: k: x! I4 B
ask turtles* H! w" A! Z( R3 K/ x- k
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]2 U2 [- ?, r* t# U2 o
ask turtles
y9 Z8 L! J' }% Q; H [ set grain-here 0
3 {1 O) D' v {7 L" g+ | recolor-patch ]
+ p2 n) W+ n; t' V" F ! M: S+ [6 L. Y9 g
end( S; t) I, ~1 [0 {( j
- S8 s) _9 U O' Z% K+ \
to move-eat-age-die & V0 o- m" w0 C6 e8 j [1 a4 |
fd 1
/ ^ S5 r' J& `7 Q set wealth (wealth - metabolism)
i7 ~6 t7 i( ?, ^5 F set age (age + 1)
! ~6 f$ `: {4 S% f& n" Z% M7 a& h if (age >= life-expectancy)5 B) n! f: D6 C4 x/ R
[ set-initial-turtle-vars-age ]
- N4 d `) F" | if (wealth < 0)* d) I; n, u3 E5 g. t) X9 H7 O
[ set-initial-turtle-vars-wealth ]$ [9 }( b$ G+ l3 w
. u0 V( W$ H7 hend+ `7 \: M9 ]$ C
9 n* f% u( {2 x }- F) R2 \2 Y w6 S0 N% m( ?8 S
to setup-plots( v& |! H& {; g# l
set-current-plot "Class Plot"
, F* \' ^4 C# m/ f) @) W8 P' X/ T set-plot-y-range 0 num-people/ i: B1 ?: N+ U5 [
set-current-plot "Class Histogram"4 x9 i2 B1 ]' h9 O0 J
set-plot-y-range 0 num-people
0 L3 k: e/ b# i; d1 [end
+ b$ r; l8 L/ |
5 z: H2 U2 \; Hto update-plots
( B0 ]1 w% |# |" ^; T1 h update-class-plot
+ u, R+ R9 j {% A, s# z' K/ q2 y: l update-class-histogram0 t) u( G- [! ]! j/ H) a# H
update-lorenz-and-gini-plots- N+ h$ X& a- K# h7 I- C
end5 g4 Y& c- ?: Y1 |. W
( M5 ?) {- f0 E2 c) }& b. q; d
to update-class-plot
/ w9 B+ g6 r3 i2 J set-current-plot "Class Plot": \( E! m5 t, S; i0 {
set-current-plot-pen "low"
& D6 y* j' a9 ~( A& C1 } a plot count turtles with [color = red]
8 ^9 J# j- J' j* a# ]; @/ W. d set-current-plot-pen "mid"
+ @" Y1 z" M& k1 e/ l) N! j; C* a; b plot count turtles with [color = yellow]! X( g" X( d4 v- G! U3 I
set-current-plot-pen "up"7 J/ T6 b0 B# K/ W( a/ O8 e# X0 @, B
plot count turtles with [color = green]
: J/ \& {- _0 wend
0 z/ R0 E% U8 a- `* j. x) l _ B% O3 ~& I
to update-class-histogram& q1 [- o; I" j2 n
set-current-plot "Class Histogram"! [+ X9 {# ~6 {$ y, `7 Q0 y0 E
plot-pen-reset
. S& d9 o7 s! V- a set-plot-pen-color red" K+ E/ k8 ^* _1 Q
plot count turtles with [color = red]0 k5 S5 F+ g# |) P. R; |' `
set-plot-pen-color yellow
; A/ v+ ~; S/ v( G1 y' k plot count turtles with [color = yellow]( v& a* ^6 ^8 N4 {- I9 G
set-plot-pen-color green
7 j- }! |$ D" `. ^0 o. { plot count turtles with [color = green]5 U1 i* O( e- K7 C& y! @3 g2 T5 R1 k# L
end
0 F& p7 B+ B" j7 p! d* Kto update-lorenz-and-gini-plots t. |7 {- x; {& P/ {3 w
set-current-plot "Lorenz Curve"
8 N! v* \! w# a$ T clear-plot
- s/ p# ~' C/ T6 v+ D% `5 G4 Y0 [) [
2 S* u' y7 y& s7 Y. i2 ^: u set-current-plot-pen "equal"3 F$ Q; r* N0 u* V8 |
plot 0
$ s' o, m5 F6 U [1 ~% L7 C plot 100% B. A( e/ f9 b* S. \$ N3 k7 ^4 Z
$ o/ T8 S9 J9 U. L) h. M5 Y$ H
set-current-plot-pen "lorenz"
) ~" C% {# i) _5 B" z set-plot-pen-interval 100 / num-people+ U) E+ q6 t2 c# B- \2 [
plot 0
; Z0 R7 n! `0 z. A# h; i
/ L* Y+ C3 D5 c# m4 w. N$ J let sorted-wealths sort [wealth] of turtles% q- t& T5 z) O' d; R! d$ @( ^
let total-wealth sum sorted-wealths
$ ^* ]3 Q/ ]) r! t3 D ~7 J let wealth-sum-so-far 0
1 _4 u9 h. H$ I' u let index 0
; R& n8 C% E9 d9 J- ^ let gini-index-reserve 01 O c+ _( s: [; O6 R7 k
' [) o ?% \7 m C; f4 Q* m repeat num-people [5 z' Z1 @: j' E4 O8 H. L$ G
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
* A* {# p7 H: X8 X. n plot (wealth-sum-so-far / total-wealth) * 100
$ Z: U2 b, q) W. ` set index (index + 1)$ q4 e! r6 k+ Y! ]( v
set gini-index-reserve# u1 D& _! J2 K
gini-index-reserve +
+ Y# U6 C+ d6 r. z (index / num-people) -
& a [0 F' Q4 S& ]) z* Y u (wealth-sum-so-far / total-wealth)
% z; I9 u Z$ ^' h ]9 b5 @. e6 C: I* O
' U1 g7 b$ p8 s, L/ q. M
set-current-plot "Gini-Index v. Time"+ Z' X. @, [, x4 J3 U
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! {0 s, i3 ?6 X% Send
, g ?' u0 p. i! S6 l& n" G- \, Ato-report area-of-equality-triangle
% s" l4 L# u7 u report (num-people * (num-people - 1) / 2) / (num-people ^ 2)8 ]: b$ X. K& u, q
end |