请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现; q/ p- x( H6 D" }
globals
* U1 \( z5 c c$ l) {* R4 S- \[' t' F0 @) M3 _% \ R% S
max-grain ) _ H! q, E$ P4 i" l$ y, @# N
* {% j+ c9 r: N3 s4 D1 v, j
]
# Z# T4 q" C+ {- k4 C5 V7 `6 K# S5 w7 J ^# I
patches-own
4 c! d. q# f( h7 q0 l[* q& w; G" j) s. d& }
grain-here 6 f' s! d/ y' J( s! z4 ^$ g
max-grain-here
3 v) u6 c" ?1 ?" W" l- n5 ^3 x]# _3 l2 k1 T; {( {; o1 b9 } Q
' ~5 E {4 v8 Y& @, |; S
turtles-own2 |4 e" p, }4 L* _$ G
[4 L: q: k8 A8 S! [: j# O7 C
age 6 R) H/ V+ ~6 r% o3 @
wealth
) D( A9 ?! D- A0 ` life-expectancy
}/ e8 U- z8 u% J* `+ p3 b metabolism
& A& l3 {) v2 u. ^ vision0 b, z4 t( o% T1 U
inherited 2 y( l) H F* e7 Z3 Y7 b& _- c
]0 p; l# k l( ]
" q! @1 Q6 Y( T, g8 T' O$ t1 _1 b1 H4 w8 B- e* K
to setup
: }! I# R7 W D8 p: k6 L* Q ca' h' V3 u8 e9 y, ~5 \! b' I
set max-grain 50, U- J& g5 L( r% Z
setup-patches
9 L( M `5 p s3 }; ?% h7 D setup-turtles1 a" g5 Q% G0 ?+ p% {; y
setup-plots/ a$ u4 C( @- `0 i' }/ P, r
update-plots
1 P& W; n- y5 y0 f& J- nend
0 n: O; a$ n5 E/ t eto setup-patches
9 h* `6 @" o" p9 B ask patches; t3 z0 m( ^& P* n/ r$ N7 w
[ set max-grain-here 0# i \3 y3 z& p6 D0 [
if (random-float 100.0) <= percent-best-land: I( u( \. y+ y
[ set max-grain-here max-grain: c9 k; R2 A9 l
set grain-here max-grain-here ] ]
1 k% _+ b: ]3 O- n/ L3 Q3 h repeat 5" U5 z& v; x) o8 Z# W1 X8 l
[ ask patches with [max-grain-here != 0]* M9 p* r* _9 P. q& ?( }6 X
[ set grain-here max-grain-here ]
' M4 C+ p6 z( R1 o, k diffuse grain-here 0.5 ]
4 p, I+ [* L+ I repeat 102 }: T. r$ d" V! n; ?. k
[ diffuse grain-here 0.5] / v( E4 i7 u6 j6 L) C* R/ @) L7 e
ask patches
% c' j. G/ p) _- G [ set grain-here floor grain-here # i5 L- o3 v6 `, ^5 z" H
set max-grain-here grain-here ) s/ O2 M5 L! y% [5 ~+ l D
recolor-patch ]) Q& ]+ E! o8 y
end
+ }/ I. y% s0 \ ]to recolor-patch o, R7 j7 T6 T, |) T7 a
set pcolor scale-color sky grain-here 0 max-grain0 B. W5 A3 @0 b$ p8 X7 @
end
2 e' [) Y) L+ [2 P9 f, Uto setup-turtles
1 W" D. h. D* Y+ N# ` set-default-shape turtles "person"+ {! b! n3 U0 H, C1 Z
crt num-people
0 v0 N3 Q# t" i3 \* t [ move-to one-of patches 6 Z0 v- c; Y) `8 S9 `
set size 1.5
7 K* k% I3 v5 Z: F0 ` set-initial-turtle-vars-age: F# i+ P6 F% Y1 u* y6 x& ~
set-initial-turtle-vars-wealth, X' t$ s6 T1 l! B5 l, ?
set age random life-expectancy ]/ Y t' H4 w, _, e; F( Q* S- h
recolor-turtles
( C8 I% B7 g8 C* n+ d% Nend
: p7 ` i+ m; k9 ~: W% C; |3 d' F! J! l; c
to set-initial-turtle-vars-age
$ j& a3 A6 C% D) r* C let max-wealth max [wealth] of turtles
* X# ?' N: J, p$ K! _, H* | 3 A1 a: U" d& g% C; Z0 O2 A
ifelse (wealth <= max-wealth / 3)
n, p' P* H' K9 x5 `# i0 `4 z8 e [ set color red * X! v/ [" u! \3 D/ d
set age 0
0 } a' {: i: _5 E: R2 M face one-of neighbors4
8 d' U- i$ i- r/ L" q3 H" w7 g set life-expectancy life-expectancy-min +
4 K5 D7 S' `5 ~% I) Q/ O$ q random life-expectancy-max 5 D3 G$ _. T/ }9 |) J$ M9 _/ `. A
set metabolism random 1 + metabolism-low
5 v6 {) ~% X% D2 K set wealth metabolism + random 302 Y' [7 x# d. s
set vision 1 + random max-vision5 M3 `7 f" C3 x7 N% v0 F2 C# B
set wealth wealth + Wealth-inherited-low ]
4 A& n) d% q6 s [ ifelse (wealth <= (max-wealth * 2 / 3))4 c- f9 R& l$ ?8 _; w
[ set color yellow
! g4 `1 B% C. s, ]" w4 } set age 0
& b7 M4 Y0 t& S) P2 y& t face one-of neighbors4
& n6 A$ x9 D" J2 D2 { set life-expectancy life-expectancy-min +
% R& t5 j# p! d$ |/ i0 x random life-expectancy-max + 1: h& ]6 {: P8 ~. K5 X+ G
set metabolism 1 + random metabolism-mid
3 W4 U& B" n9 o8 W, a$ S set wealth metabolism + random 30 W- r/ g! A- g
set vision 3 + random max-vision4 q5 P& M E6 P1 x' ]
set wealth wealth + Wealth-inherited-mid]
1 m! ?; c) l/ \8 ^! r [ set color green
f2 p7 p( I u0 P0 O4 q set age 0! e# z4 z$ v2 |) Z) G7 o
face one-of neighbors4 " ?& j: p7 M [6 i: Y2 s1 a
set life-expectancy life-expectancy-min +4 f# i' V9 q# W( A4 h
random life-expectancy-max + 28 T4 u% u- U0 r0 c9 ]
set metabolism 2 + random metabolism-up
' P# u5 @& ]- k0 q. J# o set wealth metabolism + random 30% I# n5 o/ \0 e. L u
set vision 3 + random max-vision; r/ d: _( m1 f! E2 D8 d
set wealth wealth + Wealth-inherited-up ] ]
8 P# b9 ] J/ T" D* u3 G r* S
6 q' M8 L6 t2 `; Gend, K+ ^; O7 Q- X
to set-initial-turtle-vars-wealth
. z+ t. ^9 y1 p let max-wealth max [wealth] of turtles
/ Q! r7 u7 [0 x3 H7 X set age 03 g2 q, ~- @; A3 N
face one-of neighbors4 1 ^9 x9 W8 Y5 n% G# i1 r
set life-expectancy life-expectancy-min +- I% S: }0 U1 X9 C* P$ b
random life-expectancy-max * e3 g9 m& g4 H. {! L) e M
set metabolism 1 + random metabolism-up
! D" l: f) m2 i% ]% e' @ set wealth metabolism + random 30
: ?) r. c6 o2 I set vision 1 + random max-vision 4 n6 l3 X: \9 T/ m, H/ P9 B
end
e3 ~ q* k; C U) |. q: ~. Oto redistribution
1 {5 @& @* s" [let max-wealth max [wealth] of turtles
* ?+ F" Z0 Y4 g/ l: [let min-wealth min [wealth] of turtles0 G+ n9 u+ L1 _9 E5 p
if (wealth <= max-wealth / 3)7 t5 y: H8 I% F* f M+ ]
[set wealth wealth + Low-income-protection ]( V" i+ f0 ^7 i2 @4 a( |
end, o2 L: e" W' g
. ~- k, f# t# w* |% r/ c; {
to recolor-turtles d8 w! F' w. s- b) H# ^4 R: t
let max-wealth max [wealth] of turtles
- F- \2 w4 d2 r/ k+ Y" Y% X4 G ask turtles" z6 c& S1 \" U- v+ C& W- e0 F8 D$ Q J
[ ifelse (wealth <= max-wealth / 3)
) x; c4 ? a, ~8 y3 b1 r [ set color red ]
( l5 Y8 V: Q. V) H* l [ ifelse (wealth <= (max-wealth * 2 / 3))4 u5 m t3 e/ w" N) M5 B
[ set color yellow ]
. Z1 q L! Q" d2 d! ~ [ set color green ] ] ]3 g2 \* w8 @- m+ E7 o- [* j2 v
ask turtles [ifelse show-wealth?
: d' `% v9 i1 u# P% x+ I [ set label wealth ]
2 Z, W- T& s, R; o3 X0 c- P! V9 v" O [ set label "" ]]/ z, |6 B5 X4 i) [8 P
end6 F. I, @0 ^: ?- V
( c& t' n9 S2 d& n' r6 mto go( p( h3 F4 ]9 J1 z2 ]
ask turtles& L0 D8 f. y; H% D) k
[ turn-towards-grain ]
4 E7 d, \8 b1 d1 C$ L harvest& p: a3 J, h1 U: G Y0 Z+ X
ask turtles
# a6 w2 X: f; B# Y+ d [ move-eat-age-die ]
b' Z) C- A* y2 z. A recolor-turtles: I" ?! X2 z h; R9 D0 V: \
if ticks mod grain-growth-interval = 0
' p1 T3 F P& {6 U7 [- { [ ask patches [ grow-grain ] ]% G+ m& o( m9 h9 i
+ T/ g2 G6 W5 ~4 f# j5 \! q
if ticks mod 11 = 0
' p4 x6 Q9 v6 A; K k [ask turtles
5 U: C' a- j: F. r [ redistribution ]]( |" Q; `. G8 ]8 I4 _' E4 x# A3 u) c/ o
if ticks mod 5 = 0) c0 q3 Q% |+ v7 X# O
[ask turtles+ b f1 t7 c ~, l' q' \
[ visions ]]- v9 `) P2 y( }* E
tick; {* p6 L! Q6 X! _, O
update-plots. k- i# l3 m1 W9 G) {
end% e! {5 [2 ]+ `" }# \7 j* _
to visions3 B4 G. [8 k, }) Q# a4 s3 r
set vision vision + 1
2 n) {+ c5 I, L }$ [end
1 k1 M; i) `: d% k8 y2 b6 Q w0 \; E! a2 g
2 X2 @( F7 b) `& v. _
" P- `0 Q. f1 T$ |$ S
to turn-towards-grain 4 Y6 ?& s i* o
set heading 0% @" U7 Z. |. n: O- L: O* _5 g5 g
let best-direction 0
9 \9 m; N. u' Z" D# C3 |, O0 t0 g let best-amount grain-ahead. I+ t4 |2 u" |0 [
set heading 90
' `, r' [3 v/ X& o if (grain-ahead > best-amount)3 n( y" H+ Q7 {5 ^
[ set best-direction 90: T4 z3 d/ R7 i5 S9 \! p5 M' n
set best-amount grain-ahead ]9 u0 m# K2 |& i6 ?3 l
set heading 180
" [5 _* c$ v& `7 B2 f) b if (grain-ahead > best-amount)6 r$ G' v! \! H, s; G
[ set best-direction 180
6 Q: }8 d2 S2 E4 s* _ set best-amount grain-ahead ]$ X6 T$ {# f/ V! _
set heading 270& ~1 T, O" w4 C1 B: V6 M
if (grain-ahead > best-amount)
+ _" R. v7 P! t1 `" d3 @5 e [ set best-direction 270* k8 O- E1 S3 L" ]7 r
set best-amount grain-ahead ]5 I! {' x: \! V" w, M
set heading best-direction
/ g" |2 s" x1 Q9 Q1 Y/ @, Wend
3 N5 Z7 p( D! T; p3 J" ?
V! f3 ?! l9 X- B& z4 Q
- m; p3 b" e' g9 w3 v0 ito-report grain-ahead
* B$ X( u' k/ Y9 D% j7 u let total 01 e8 ~. O' [* }2 p! a3 f! E
let how-far 12 u+ `/ z2 F4 m
repeat vision2 ~) s- ^( y- |9 d* ]' o
[ set total total + [grain-here] of patch-ahead how-far! G2 q' m9 h6 h5 j, J
set how-far how-far + 1 ]
: w$ Y" A9 p" v report total
9 c% _" U! i' T1 ~$ `" Bend+ G4 H7 e9 u& U! I) I$ F& [! r; i
6 j5 Z# u' ]- @to grow-grain
' w! H* F a$ Y0 r% j' u if (grain-here < max-grain-here)
+ t$ n, S% X2 m/ k6 a" {) Z [ set grain-here grain-here + num-grain-grown
: j1 }% ?# s9 I- u0 d if (grain-here > max-grain-here)
( ~9 R. M/ B" `# [6 z D$ \: `- D [ set grain-here max-grain-here ]
: Y7 P4 K3 ?* |) g recolor-patch ]
) y5 W' n& `1 `7 [) q. pend
% d. ?, C4 I6 c$ _( xto harvest
' Z7 t" u/ ~- E8 v$ E0 ?; q ask turtles
" p; [8 g9 J' H: u, `* ? [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
8 V4 z9 d$ W% t- R8 M- R ask turtles
" V& `6 g) {$ C- M [ set grain-here 0
8 c1 P$ `7 f) p, T recolor-patch ]/ h/ e" M# A# i
# _" ` a6 u4 s c1 b8 E1 P
end
) V/ r- \ \/ S r$ U% O6 ]
. D9 ^+ D" C: R; V& J8 Ito move-eat-age-die " P/ j0 q% Y) |+ g n" P; Q
fd 1& U$ k I2 y- x; c8 z
set wealth (wealth - metabolism) X p) ~) c, R/ [, h
set age (age + 1)( B9 r6 g. O9 q. w5 I+ N
if (age >= life-expectancy)$ v5 j' M- \/ d8 n, }
[ set-initial-turtle-vars-age ]# j; w) a& J, f; F
if (wealth < 0)
3 {; V& Q3 O: ^ [ set-initial-turtle-vars-wealth ]
# d- S5 V: p) T 0 _# m! s4 l3 p) n |$ f4 J
end. r$ h# W) L7 q, M: _
% P: e- \8 y8 u0 N7 }8 _2 ]
1 ?4 A( W) X6 D% z9 j
to setup-plots
; S" R, _4 E& Q4 C set-current-plot "Class Plot"
5 Z# j. k b7 d set-plot-y-range 0 num-people
; y( l! q. I! T. t set-current-plot "Class Histogram"
, v7 L8 D6 i* ~' I# d& ` set-plot-y-range 0 num-people/ x$ p; p" \ p/ J6 ]5 z
end7 v. h; q: T+ f4 H
6 v& \% ~9 l! k) ^9 H$ h+ j0 |to update-plots2 Z% o5 A! B" ~1 j9 r% U# x [
update-class-plot
- S/ N3 m9 M$ @( F update-class-histogram
, Z9 c, K0 a2 X8 [- v8 F" q update-lorenz-and-gini-plots- N. k% D/ Q8 k2 e7 _) b
end
% a9 G' I: d; P; ?+ z! g8 p( d+ s" T
5 b; L1 ]' {2 R0 f- l2 |" `1 G' G& sto update-class-plot
0 ~* a1 a/ r. p, R set-current-plot "Class Plot"& V/ u4 W0 ` H) @4 o
set-current-plot-pen "low"
4 Q- G5 t. t2 q plot count turtles with [color = red]
: Z+ m" D6 ?( o9 f2 i0 y1 L, h9 Z set-current-plot-pen "mid"
5 a8 t7 [) X5 o J" }, I- Z plot count turtles with [color = yellow]- Q0 a6 i% n( B0 x$ C5 s
set-current-plot-pen "up": z( o) L0 `# P+ @" d
plot count turtles with [color = green]1 G I0 {, z5 {1 P
end! D }. Q& \$ m! \' M( n4 B9 u
; ], h/ U1 w7 ?$ Q# Ato update-class-histogram% X8 m4 s" G7 J* U; x* j' Z
set-current-plot "Class Histogram"; ?, m4 R$ Q7 ~- Z: ^
plot-pen-reset
" v' W& n4 D- W' q8 k; A2 } set-plot-pen-color red
3 _( Z L2 O( L! `) z: ]; o a plot count turtles with [color = red]
2 s6 u" }% P9 E/ Y% b set-plot-pen-color yellow
! Z4 D4 A3 E# y6 Y: H% l6 r2 N plot count turtles with [color = yellow]+ S5 K+ b* h2 k' O& U5 i9 N
set-plot-pen-color green1 Z8 p3 S7 t$ c% |
plot count turtles with [color = green]: `* ]8 R; c; g8 D9 E5 b( U
end$ s9 U/ H5 K9 d
to update-lorenz-and-gini-plots0 @8 R8 e: z! |# d: f" `/ ?
set-current-plot "Lorenz Curve"
$ h! U t) K2 I3 {( f1 l clear-plot
& J( y( y' Y$ t" m
* K& s/ N2 ?+ i- D set-current-plot-pen "equal"
6 P5 `8 ?4 u+ l" Q8 ~. ]" [ ^ plot 0
) O ^; C5 e$ `9 a plot 100
4 q6 o: E; _3 E( r( E) X" @- `0 E7 v3 u1 e+ N
set-current-plot-pen "lorenz"" t2 ~/ C) J5 |( o
set-plot-pen-interval 100 / num-people
- D$ d. p, b+ I plot 0$ o/ h9 I1 g _% ^
" r t' I* U0 N* c' p let sorted-wealths sort [wealth] of turtles2 C5 [2 N+ P# a" n* D
let total-wealth sum sorted-wealths) S$ L+ `$ z* c. w
let wealth-sum-so-far 0! W+ e' n* ~5 E1 v/ }
let index 0* d, b% @2 F1 T. R' l% O* C
let gini-index-reserve 0; M' m# @# O% y1 p) G
6 _& P2 g `+ C6 g repeat num-people [
) x1 r3 `* r$ A) s set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)9 S6 a) x/ a e2 S* u
plot (wealth-sum-so-far / total-wealth) * 100
% c4 o% ^& [$ N, b' H set index (index + 1)9 Z' K9 a. E I' P/ p
set gini-index-reserve
* d7 ~7 e0 [3 v: A3 }9 Y gini-index-reserve +9 M9 n7 D J# N; y: X3 O
(index / num-people) - k# I$ I3 O% H$ v
(wealth-sum-so-far / total-wealth)
% h! R5 G9 T7 ]' t7 K ]' y+ _# ?3 T/ g4 j
" n7 S& ?, |* d set-current-plot "Gini-Index v. Time"+ H. q% Q- u2 n, p4 Z5 m' S
plot (gini-index-reserve / num-people) / area-of-equality-triangle8 N5 L) k- X8 u
end
: j z0 M/ ?& m2 f6 nto-report area-of-equality-triangle
1 X$ b2 ]) `5 c6 q0 y) ~7 w7 F- ` report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
, i, U& C4 ^2 n% Vend |