请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现; F6 M8 S7 V; G
globals. Z3 G) j; o3 N5 Y7 P$ ?, ^$ l
[! p) P1 T0 l! c* j7 s# c
max-grain
1 G9 ^, A0 ]' J% B0 ^( e
" ^! y0 x1 T2 l]
/ Z! {6 x( R/ H* o, c8 s( r* M8 i5 ^8 w. e$ [! @ ?
patches-own1 O* \" k2 R2 G( _
[( N0 g0 a5 W0 R: H
grain-here ( ^5 w* W! q7 `
max-grain-here ( Z& n, o7 s: j4 r
]; Z6 q9 e' D) {5 b& J c
$ P* t0 h f. M
turtles-own: L5 o6 a7 u" z2 ]1 g" U4 M
[0 K+ Z1 m5 M6 X$ [2 D# J# |$ T" _
age
2 h; E% d: I( x wealth |! [1 M: K7 U/ p9 O3 w. S& F: Y
life-expectancy 0 g, H7 I1 y# _7 |
metabolism
* y+ E5 V7 z$ k2 l6 v vision# U8 _; j7 L8 g/ j$ R4 Z* W" G
inherited 7 C1 z9 ^6 G$ d& M* Y
]
" n; P+ Y; Q: o& T8 d. Z* c3 D
/ r- T1 z' M+ m/ M1 @6 U: ~+ a8 d+ f2 t" _
to setup9 e# A. Y1 Y7 h% q2 N
ca$ H& C6 j U& ^0 _& D% } ~. Q; {
set max-grain 50& q7 e- ]) G6 s- `
setup-patches8 H; g/ J/ @* J H7 |$ B% U
setup-turtles$ p( ?; |, Z7 }$ n+ B
setup-plots
1 E& l5 e" J j/ |" }2 {( H! O& u9 A update-plots0 m9 U3 d5 `. x1 ~$ Q
end# m7 P; n* K. C* w
to setup-patches
, h$ V0 \1 {3 a+ ^' s ask patches
. n; H" @+ T3 G; H [ set max-grain-here 06 a, z' H0 C6 O- I, G4 _# M
if (random-float 100.0) <= percent-best-land
: Y v* R$ R" y, C) U [ set max-grain-here max-grain
& w$ c1 _+ _" p* ?- S set grain-here max-grain-here ] ]* a2 e+ [" S+ A M, b
repeat 5 U$ w( n# c9 F: G$ A
[ ask patches with [max-grain-here != 0]
$ T' u; {' J) M: R! o6 }# E [ set grain-here max-grain-here ]1 K( W) ]5 S# ?% U% h; h8 J9 ^
diffuse grain-here 0.5 ]9 N* p5 s, V& ^
repeat 10" V/ E: X) c* ]8 U1 x
[ diffuse grain-here 0.5] ! l( p4 T1 k* U) \/ B: c: P. t8 Q& r
ask patches
/ q, D+ z0 ]- r. s [ set grain-here floor grain-here
' M4 W# w# p& w |) Z5 ?) r: ~' B" e/ H set max-grain-here grain-here
, w2 `. J8 j1 v0 L- M2 O0 | recolor-patch ]
1 R* J; l$ _; q E+ Iend
0 ]9 O. W8 M9 f+ Z0 x2 q, \. x# sto recolor-patch - w4 @4 v3 D) \: o2 s2 [
set pcolor scale-color sky grain-here 0 max-grain
' R+ O( j+ x5 `" Q" G+ p# gend
9 j# r) Y- K5 u% k, E! ?$ |8 G* Rto setup-turtles
$ E& s& c! i, P2 w" v set-default-shape turtles "person"1 e2 m9 D$ l; k5 R* Z o9 B( p+ b
crt num-people
. F8 c, u6 }9 K2 p$ z. Q [ move-to one-of patches ( }1 d, b- x& D- p
set size 1.5
* v v) s/ s+ N2 _2 T6 Z: I+ W set-initial-turtle-vars-age
# `8 n+ X' E' H! l set-initial-turtle-vars-wealth
0 ` S# I( `7 ~/ K; L set age random life-expectancy ]
/ z# `3 N/ L! H9 |9 f, A K recolor-turtles
6 N* N) r- M$ l2 |+ m1 l; Oend
/ x( b0 ]2 `; N. a7 X/ V6 X6 U- g
to set-initial-turtle-vars-age3 C: Q; Z1 R) `9 D# r. h ?
let max-wealth max [wealth] of turtles
& E- e9 u/ B. l- ]2 K* S
A2 ^0 W9 C; g7 l2 } y d ifelse (wealth <= max-wealth / 3)' q8 W- l2 W0 a& M" U
[ set color red
5 K- o* M1 C8 n6 f set age 0
7 N1 o- n. d6 o, E; }7 r1 P) I face one-of neighbors4
$ [2 f) v" c- V* J set life-expectancy life-expectancy-min +
0 X" [, E0 m* M random life-expectancy-max
' x6 l- c' M4 V2 v7 o' t set metabolism random 1 + metabolism-low- O0 D5 U" V) C; Q5 z# V
set wealth metabolism + random 30
8 r3 k: t3 d9 @( x+ X. A set vision 1 + random max-vision
) U8 ?0 W4 S$ |9 b: R$ {9 t set wealth wealth + Wealth-inherited-low ]" m) }' s7 e7 Z
[ ifelse (wealth <= (max-wealth * 2 / 3))9 @+ ?& b# b/ ]; s4 U* m* ~! o
[ set color yellow
4 g& D, Q& e9 X" P: [4 J set age 07 S1 f( k8 [/ N
face one-of neighbors4 & M0 f% t% E& i: t4 l! Q' y
set life-expectancy life-expectancy-min +
/ d$ g. K( ^+ {& s+ W$ [& H random life-expectancy-max + 1
! n+ l: g1 M* m( X, K6 e set metabolism 1 + random metabolism-mid
9 \6 R# p# _$ X1 Q, t$ C% T set wealth metabolism + random 30 D( e$ t4 b. Y! a. _
set vision 3 + random max-vision3 `" }- v8 o( H$ C/ m% `9 |1 ^
set wealth wealth + Wealth-inherited-mid]
9 c, {" ^" l) u# R' R [ set color green
" F! k, d9 v& F% j+ K" c set age 0
: [( ]0 \. V% N J5 j. E( S face one-of neighbors4
' Z Z$ a, f/ [, g) q& z( l set life-expectancy life-expectancy-min ++ V, V9 {8 }3 V6 i
random life-expectancy-max + 2
% n l+ X$ q; H- |8 ~' v( U set metabolism 2 + random metabolism-up' t1 V$ p; V$ S( I2 [
set wealth metabolism + random 30
0 q, _2 u0 P( E, Y5 U set vision 3 + random max-vision0 C2 M7 o) {! v0 g: w& V+ G- i& L
set wealth wealth + Wealth-inherited-up ] ] % t I9 U# d$ Z7 W
7 y' A( ^$ X( Q! S/ `end
+ ~- @6 u! S# sto set-initial-turtle-vars-wealth
# ^1 p" R6 ?( U3 c2 G let max-wealth max [wealth] of turtles; [0 u! {! M: ~4 } N: C4 C
set age 0
6 ^9 [2 X; j1 E2 j }2 a face one-of neighbors4
. j" ]4 {; W z- t( ]* | set life-expectancy life-expectancy-min +; ^5 |) r1 t' C
random life-expectancy-max
F Z+ K" f) X: F; ]5 H6 _6 e8 [ set metabolism 1 + random metabolism-up
, {3 q( B' Y* L set wealth metabolism + random 30
|/ A& F1 ~9 V, ?8 `9 t9 ^) | set vision 1 + random max-vision 9 l! p1 J# e+ e& }. Q8 b4 H
end
6 G Z7 K+ b& k+ O4 P; u( Wto redistribution
8 M- _# m, z8 }let max-wealth max [wealth] of turtles
M( @: @7 n) R ulet min-wealth min [wealth] of turtles8 A! T/ W M9 W ^. @
if (wealth <= max-wealth / 3)
8 W! s3 _) e3 |9 K( Z, K8 j [set wealth wealth + Low-income-protection ]
# }4 i% u) l T: m/ |end4 d' Q0 W( i+ \! {& i& G
7 b5 f( C$ v/ J0 D
to recolor-turtles
# {8 S" L/ I# m& I3 g, Z6 x let max-wealth max [wealth] of turtles
1 S7 n$ H5 W) b: L3 f( g ask turtles
5 R: \* O- ~/ n3 C8 v* z- [" Y [ ifelse (wealth <= max-wealth / 3)* y3 J1 j8 T$ Q# Y6 y3 \0 B+ e% `. J
[ set color red ]
: B; K& b9 j2 E9 ?% ~) _; X; M [ ifelse (wealth <= (max-wealth * 2 / 3))! o# Q* O0 C+ d2 D( k a v4 i7 s; e
[ set color yellow ]* o. M0 m2 o6 E8 ~! Y4 W$ [0 p
[ set color green ] ] ]- D1 l4 k4 R" ]) Z" w
ask turtles [ifelse show-wealth?2 N, {1 s G: Q4 {, p
[ set label wealth ]% C. R$ L7 S& p; z2 Z
[ set label "" ]]- j9 T4 j& d5 ^; y: a1 Z
end
0 o# }: t: w( u1 W, r; \ C5 [1 s, Z, T) S6 ?# y" h
to go, w) B# c$ N) `$ V y* M
ask turtles
' u1 n$ T8 l! H r* T0 K [ turn-towards-grain ] 7 m& t/ k3 y/ n" B& o# S* Q
harvest+ u2 W2 I) }7 |
ask turtles
) ]+ k4 T( f% d* j0 P) H [ move-eat-age-die ]7 |( C* f& w, p+ ^1 U$ s" z
recolor-turtles. B$ `8 m y6 [- u) S
if ticks mod grain-growth-interval = 0
" p: i9 ?8 M$ B; b3 q) P# w [ ask patches [ grow-grain ] ]
" C9 J# |, E$ d7 f, H8 ?3 _" Z( K
* r' F' \2 r: C* x if ticks mod 11 = 0( C- S/ ?! R5 ?$ t. d" v* C! _
[ask turtles
! G" x! a% m' I: K+ i+ d [ redistribution ]]8 ?- N( U& B! F+ i/ G7 T, [
if ticks mod 5 = 0
* A9 [$ q+ ]2 i- C9 O [ask turtles) l5 B& E0 V( {7 k. l8 `- U: ]
[ visions ]]
' j g( ~6 Q; |, a tick+ k* s1 I" |9 I: y3 n8 C& c
update-plots
' z5 l) L2 ]0 Q' g" \) Iend3 [) L2 Y% }+ m" w1 \2 p
to visions: B! V$ |/ j. F, y4 y
set vision vision + 1
, `9 y4 |# K0 ]1 i3 V+ \end
' x. |% k5 s) x1 X
T( H- H# f7 z
- Y+ n! K h" g& f+ w; p0 h% m, F( {% A" U
to turn-towards-grain : D' G4 N5 V# G9 l5 G
set heading 0
3 s' {1 A( ]& F9 `$ c8 G let best-direction 0* w; Y& U: z% i, s( a/ q& B
let best-amount grain-ahead R4 v* L8 |0 |: X+ E' l) `) `
set heading 903 F. `( u: l2 P2 }6 W3 c
if (grain-ahead > best-amount)
% W6 s# k: P8 i) T) ] [ set best-direction 90$ l' @- M. P9 W0 @8 O
set best-amount grain-ahead ]
! b/ o5 b2 l+ ^8 ~6 e set heading 180
1 k! l+ `# N) O$ Z2 q if (grain-ahead > best-amount)
0 f3 r: {+ A8 i0 ~ [ set best-direction 180
5 {* O. T s- O. y0 `; [0 V set best-amount grain-ahead ]6 N* U* j, [; N* a0 T. N$ D
set heading 270
9 t# a5 A! m- E' r% e& g# I$ I if (grain-ahead > best-amount)( {: F) P* Q2 H+ h8 a. x8 S
[ set best-direction 2708 S* [$ S5 Y- A1 ?6 }
set best-amount grain-ahead ]
4 P1 Y- R+ R8 b: _ set heading best-direction7 A- q% D3 {" I, {3 g
end/ n8 }( T! _/ a
/ Q4 p' J# S1 F! B2 m. d& W
( A a) ?% U! T Jto-report grain-ahead
, T5 W! q0 k* ]5 r let total 0! o! B' A$ ^3 F6 ~$ S2 ?* T
let how-far 1- a; |3 {6 ~& B% v: \: [3 y- w
repeat vision6 Z' O o+ Y& R+ r3 h
[ set total total + [grain-here] of patch-ahead how-far
5 D" |6 p' h9 d5 p7 H set how-far how-far + 1 ]
0 ^/ j- m( R& H( V report total
m T) l, E( X- ^5 s$ ]end! f1 W. ?$ C+ Z$ L) E* ]9 U
, k/ p0 s0 I& x2 @9 r1 \
to grow-grain ; I% T+ t8 I3 ^! ]& |
if (grain-here < max-grain-here)% [2 N1 r7 q9 Q( D+ i
[ set grain-here grain-here + num-grain-grown
/ x" K! F' d' j3 n if (grain-here > max-grain-here)
) L. ~* h a9 H% ?" }9 J [ set grain-here max-grain-here ]
1 H8 X% |6 K+ w+ [5 h# F recolor-patch ]+ f) H% P/ Q* j3 Q
end
7 L1 M; `/ M( s# o4 u% R: B* Gto harvest
6 B1 }& J' ^/ A: N' Y; g! W ask turtles& u5 t& |$ S" S: p
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
0 V/ }! m0 _% W$ b2 P ask turtles
/ G) O. r W3 |. I ~ [ set grain-here 0
( E7 @. q" r F+ N, u# W" u recolor-patch ]
! l9 F- ^& Q4 \1 z6 n2 \. p$ J# f / k( @) f8 ^7 S% X( Q2 u9 T3 R( {
end) f2 s2 ?& c4 y
- F& ^1 W& \6 b+ X1 d: _$ T# S7 Ato move-eat-age-die
: p3 p' y, z0 }: ^ fd 1
1 K, F+ J0 R/ ]/ |1 [: @ set wealth (wealth - metabolism)$ r- h- w; X+ u |
set age (age + 1)& I% C$ E |, o* p% A
if (age >= life-expectancy)' e$ i' k" T# g" \
[ set-initial-turtle-vars-age ]
8 ?! C- j$ p* j4 _ if (wealth < 0)' C0 H) g& \$ ]7 f5 L9 ^' g
[ set-initial-turtle-vars-wealth ]& p) D4 P+ r o; X" x9 U: h
' Q% ]$ J( a2 K$ l$ o+ A: i
end) C, t5 m% K* Y5 s
" M1 I$ f' ], @* b; Z. B4 X0 q3 M6 ?( n# ~+ l5 o$ f% R+ O
to setup-plots
( F1 w! g& p( z& c set-current-plot "Class Plot"
! z4 x- p) T' H* s# U set-plot-y-range 0 num-people$ S( B9 f6 D8 z9 |6 }# m U
set-current-plot "Class Histogram" U/ f! Q' u1 ], n, g0 {6 Y
set-plot-y-range 0 num-people2 E, A w5 m& L; l# Q
end. }0 E/ A5 e4 ~% ]
6 M2 X+ o! p4 d1 C4 p8 mto update-plots
" N" }" _5 L9 \6 K update-class-plot
4 O: V8 V" H P$ e6 e1 E8 N update-class-histogram3 P( Y3 Q& Z+ g% ]8 D, P& t
update-lorenz-and-gini-plots
# L: k5 J9 h$ ?# Q! c$ ]end& V" F+ }. V4 z8 ^4 p
Z: p |; h* L$ Z7 z5 Xto update-class-plot( l1 Q# Z8 {7 ^2 _# a3 V
set-current-plot "Class Plot"1 s2 K, S5 _9 `
set-current-plot-pen "low") `0 b: V1 W) G$ d! S/ f$ w
plot count turtles with [color = red]9 k, ~3 r3 B6 Q6 {+ h
set-current-plot-pen "mid"
. K, ?: q4 ^0 n" @ O. C- D% w plot count turtles with [color = yellow]# ^* ]* j4 O- C6 Y' i
set-current-plot-pen "up"* R3 f N9 `% e" P- ?9 f9 t
plot count turtles with [color = green]
# }. W9 n, w0 Y8 M/ }" qend! ?8 O$ O7 n6 A- L5 W4 o5 Y1 Q; A
$ K: e k; v7 F- h8 qto update-class-histogram
) {0 i, T; X6 S% v, v$ B( C set-current-plot "Class Histogram"7 C: Z% x/ N- T* [+ }9 d. q
plot-pen-reset, s; F( }% T, ~2 ]& t/ O
set-plot-pen-color red
; G" i# ~) H6 u% T* y; P plot count turtles with [color = red]
4 h3 A* ]3 k, w set-plot-pen-color yellow
9 B! d" K. l9 d plot count turtles with [color = yellow]9 t* K1 H' S5 a3 q
set-plot-pen-color green3 T2 }5 o, O- r' `0 v
plot count turtles with [color = green]
0 L2 E! h! ?" D! vend
* p' J+ n/ J* ?6 `8 \3 Xto update-lorenz-and-gini-plots
7 i( j+ r6 Y$ s) a) B% B7 s6 } set-current-plot "Lorenz Curve"
7 ?9 Y# g# i9 U3 H8 u# O. P1 x clear-plot
; L1 E: i3 k3 M8 s7 l! t: }3 z4 Q' p8 o+ z2 z
set-current-plot-pen "equal"
: ]& `+ X4 g2 h7 R plot 0" d: l( R6 F5 |: r Z
plot 100
/ }6 A& A+ s0 \+ z. H3 y0 O9 \& y0 w1 @# v2 L/ L# _8 c5 [% [* |
set-current-plot-pen "lorenz"% |( l$ @# w3 N1 t7 q" _ T2 r
set-plot-pen-interval 100 / num-people
. ?3 I; W. Q, _, j. ?9 v: g5 O plot 0
0 k3 b' \: S% g$ ?+ J, r3 }5 M7 i$ ~* c' z4 |( X0 g K
let sorted-wealths sort [wealth] of turtles
: y; C! |. s4 ]* ~) p+ G1 C let total-wealth sum sorted-wealths
( [# B @2 y/ V/ T( d, \" v+ _ let wealth-sum-so-far 0+ ?) Z( I. A% R5 O" l
let index 0
4 u! _: u1 P+ B8 }) C5 M8 j% e T: d let gini-index-reserve 0
0 I& K% [) @1 g+ J/ q
. A' w5 O( a& b; F. \; n/ D repeat num-people [4 F. ~$ |% u. H* G+ j x
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
& `/ P6 i1 [3 x plot (wealth-sum-so-far / total-wealth) * 100
: x& E! `" a. e set index (index + 1)
/ P4 ]# j8 O2 z4 X- z3 Q( R. [ set gini-index-reserve
" X6 |5 Y/ |/ H gini-index-reserve +& x# h* n. w5 v( F$ Y0 m% _
(index / num-people) -6 X$ c4 ]2 S- m, r8 L0 Y! u
(wealth-sum-so-far / total-wealth)& M5 n4 }' u J! V
]: r! C# Q1 L/ j3 m/ V+ i- a
# \3 q9 U$ x; Z. L) H5 y. M set-current-plot "Gini-Index v. Time"
0 R4 S+ l9 I- I* A plot (gini-index-reserve / num-people) / area-of-equality-triangle. R3 g# B. a" p8 k
end
, ~# j% n' p% i& [( t+ Eto-report area-of-equality-triangle! E' p( E' z9 B
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
9 V& ?0 Z5 J4 wend |