请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现) G* I6 d& @; D8 w0 M
globals
9 S3 C R' {* J: R[
' K8 ]1 c1 {6 @( y max-grain
/ _4 ~& m0 s, y. r' Q; |
. j+ Q, T1 h. L]2 M3 T( r% U5 A2 t) s
3 E; e' F8 l) m* `- v; S# [" ~% Y
patches-own1 H) S; r0 W3 z* i: G
[
0 K7 P% o1 F7 ] p# ~: V grain-here 9 H+ B/ q* B0 [$ f! V( @- d3 W
max-grain-here
. j/ p8 ~, S* Z7 I2 v]" @0 @" D3 g: C6 ^2 K
: N9 O. T- [' ?; s3 h
turtles-own
3 d1 Q$ x* x* ~[
) [3 N+ Z5 P" Y/ v6 Q- n) q age : g* ^' ?5 K# Q t
wealth 2 h* ~' V# z- B% E6 E
life-expectancy 1 h0 p/ i w5 w+ |7 w& D+ ~3 t0 D
metabolism
, `4 K7 o9 R% E# s0 l' \$ { vision
4 `7 k; @; `3 E( S' D7 |3 W: S inherited
3 q7 t$ `; Z) m9 ?" L0 _]4 ~7 r$ V. f3 Z) N& q* p/ s1 c
2 q/ D0 Y( O2 c2 _
" N* G$ G( |* L( G7 hto setup
% h9 l; [' c2 ` ca" {% l8 P4 N1 U$ T( n% ?2 U' v8 ^
set max-grain 506 G4 g0 `# H& E
setup-patches' r* N2 E- {# G
setup-turtles
3 {4 D9 D$ R3 f8 @" f; r% p! K setup-plots4 X H# \- W- S& ^9 w
update-plots
0 w6 \. }( B% a+ Q: l! B- zend
" N& z9 }6 B) Z0 m: M# j( t8 Lto setup-patches
( `. u" Z7 W: V8 N# p4 {: O ask patches
* `0 D6 ]2 q8 B0 l [ set max-grain-here 0) }( L# C* M+ ]2 {) |
if (random-float 100.0) <= percent-best-land" l4 J' F/ q$ l
[ set max-grain-here max-grain
: g" O \% `8 e set grain-here max-grain-here ] ]
; O( }/ f& k; R' Q4 `! K& l2 o2 j repeat 5* q3 {/ I0 Z5 O
[ ask patches with [max-grain-here != 0]3 O5 C) g& {( f; D+ V# v ]8 b
[ set grain-here max-grain-here ]
8 n$ [& S& }" F" A! U diffuse grain-here 0.5 ]1 d! R; b6 j6 ?" A# ]$ H
repeat 10
2 {. h% V6 m$ d' D [ diffuse grain-here 0.5] 6 f+ a" Z# y2 N! s& e) ~, h
ask patches
% U3 a4 A5 d! I5 l! o4 A: ~- @$ Z4 Z2 x [ set grain-here floor grain-here 5 v" c: J. r! ?" Z) a1 L
set max-grain-here grain-here
: r3 x5 g1 N5 j6 l8 f' p recolor-patch ]$ d9 z1 b2 a- d, m
end
; h5 h/ v3 e7 Z8 }to recolor-patch . p0 L" P: r4 @- K- q
set pcolor scale-color sky grain-here 0 max-grain
( ~1 B z& Q- rend8 v9 G$ \$ B* H( U3 N
to setup-turtles
8 Q. b" q, G6 v set-default-shape turtles "person"- N$ k+ Z& R, c
crt num-people
C# ]$ U0 `( e8 k7 L/ I4 O* L [ move-to one-of patches
7 Z4 g' V6 c4 Z1 [0 D# ~# E set size 1.5 / ?* k: n0 w* a5 W
set-initial-turtle-vars-age- ~* f) f; a4 |& _6 @- ]; @8 c
set-initial-turtle-vars-wealth7 h# W; @* J' m% L
set age random life-expectancy ]. U( |/ S- W, x' U) B7 W
recolor-turtles1 l K& C% e* E+ m( Y) ?
end
/ R9 z+ t2 Z- A( P, [) }- }. T9 X' z3 h
to set-initial-turtle-vars-age
6 @/ G8 u2 L! E4 O0 f8 C let max-wealth max [wealth] of turtles
' w" U U% U0 z. B6 c - E1 i( K$ f6 x6 n
ifelse (wealth <= max-wealth / 3)
& e5 d- g+ T; z$ f [ set color red
! [7 Z8 c( r% ~' [ set age 0* c) J+ U$ q) D* B
face one-of neighbors4
* D$ D* c% u- T set life-expectancy life-expectancy-min +8 I [' p" Z1 ?! ~
random life-expectancy-max
( i# M. r4 I* F set metabolism random 1 + metabolism-low9 J+ y* t( }" ^8 x! c
set wealth metabolism + random 30, X* s f G$ v8 e" s/ I8 R& N6 l
set vision 1 + random max-vision9 k4 P' y# g; I% B, r# q
set wealth wealth + Wealth-inherited-low ]6 h9 L8 M; D. a. m( U3 P
[ ifelse (wealth <= (max-wealth * 2 / 3))
( ]3 I! U3 ~- c$ p [ set color yellow
* ?3 C8 d* v: p4 q z$ L set age 0
# |% r' S4 c7 Y$ Y1 C" z/ G" ~ face one-of neighbors4 % q2 x& Y3 H9 {
set life-expectancy life-expectancy-min +
" e% K" t% h6 j8 ^& N9 F random life-expectancy-max + 1+ v R1 `: t, m5 Z& }9 t8 V
set metabolism 1 + random metabolism-mid; ]3 x5 ?$ |& [ O+ A
set wealth metabolism + random 30
, x# u# F" \; p) B! S" a9 w" r set vision 3 + random max-vision5 v8 x$ U+ W# A; F' c3 B$ H* h% D
set wealth wealth + Wealth-inherited-mid]
, j. D3 d) J6 \# x" n [ set color green ' M4 |; A+ Y7 u9 [! C' M! W
set age 0
/ T/ j- e7 y& ~& R face one-of neighbors4
. O; H7 O# q! R' q set life-expectancy life-expectancy-min +# v! J1 @, c" _* z+ P4 m
random life-expectancy-max + 2$ o) a2 k: a+ v, Z$ ]
set metabolism 2 + random metabolism-up3 u- e. O7 S$ p+ V# z5 f# j
set wealth metabolism + random 309 v- l2 P5 t& w) D
set vision 3 + random max-vision' ?1 x9 U* R, @
set wealth wealth + Wealth-inherited-up ] ] 4 C8 D5 X$ z6 X! v2 ?/ |
7 t& H2 s: k3 m; Q+ k3 C6 }- b
end
. Z' {+ U: k" c- k5 k P: Uto set-initial-turtle-vars-wealth
4 E8 g. J4 p" t1 F. n0 f let max-wealth max [wealth] of turtles
8 R% W0 K, C+ `) z set age 0# h1 V4 }9 k: {
face one-of neighbors4 & c7 v8 q$ h+ h' S) W; h
set life-expectancy life-expectancy-min +
9 W9 w$ J# {3 k random life-expectancy-max
! y8 [$ ? ~' n3 z# R. z set metabolism 1 + random metabolism-up
4 ]0 I* i* P9 L+ s2 y; p set wealth metabolism + random 30% P) K+ I( p5 h& S* R& T$ y
set vision 1 + random max-vision
4 z2 n, \8 }. Qend
% @3 {. ~6 o# u( R8 r' l |: oto redistribution
: _9 {+ y- m; J$ plet max-wealth max [wealth] of turtles9 x# {# r7 H' Q0 {3 Q6 x
let min-wealth min [wealth] of turtles# B& {$ K( e8 e, |3 K: T
if (wealth <= max-wealth / 3)
5 D6 Q2 _! W4 V, w q+ } [set wealth wealth + Low-income-protection ]
& `* w( Y- r! b1 i8 H4 Y% ~7 wend
3 \1 E& \/ J# K7 u9 }8 [
( A" ^3 B7 t& U* Mto recolor-turtles2 t8 y+ E: n+ ]
let max-wealth max [wealth] of turtles$ H# Y1 p6 B9 n/ ]
ask turtles3 n z" B5 t: x# R q+ j& }: ^
[ ifelse (wealth <= max-wealth / 3)# R5 H# `8 u4 D6 P% E3 U
[ set color red ]
; ]8 i! Y' W' b/ O0 } [ ifelse (wealth <= (max-wealth * 2 / 3))7 d2 C& i! n, E8 w
[ set color yellow ]# M8 _# K% u4 a; z' i0 B$ n
[ set color green ] ] ], }' O6 s5 z2 V& F4 Y
ask turtles [ifelse show-wealth?. J5 H7 |8 p, |- H: c+ A
[ set label wealth ]
; n' o! f" u5 Z3 Z [ set label "" ]]
) w8 {4 g O" f/ |9 {# M; W0 Bend
4 o) o I, e0 Y& y
' X9 `1 V1 R# k7 U- ^/ P3 C8 Gto go
) x" s' Z( x% L& K" p- p ask turtles
; i* R# V1 Z. N! Z/ y5 x0 { [ turn-towards-grain ]
0 c" ]- @7 c6 n! w; ]. {2 G harvest
\7 P$ E% }: ^% ~ y% ] ask turtles' b* n' v/ g- |' _" v' m
[ move-eat-age-die ]
M9 O6 o# O9 T5 B/ q& B* E* O7 j recolor-turtles
6 c; ?6 n, R* j- a/ q if ticks mod grain-growth-interval = 0( t# ~5 ]3 w) f2 b9 k
[ ask patches [ grow-grain ] ]
" [5 O9 J6 ]$ o7 L0 k7 f% N* L 0 a+ H5 P0 i9 F
if ticks mod 11 = 0/ L+ V; T2 { A- @6 d5 u
[ask turtles( w# f: z+ D' q# |* ]2 K
[ redistribution ]]
' n# A9 Y) v' Y* u* ]* O8 d if ticks mod 5 = 0
/ u, f7 N# a$ B: V6 p [ask turtles8 p& b! ?4 r$ r( N
[ visions ]]" t( t W3 q. H# l2 j
tick6 U3 ~; n+ _* ]- J2 w( [
update-plots
6 o/ L; K3 c9 B' D" j5 iend
7 B: @2 \- p0 ~6 ato visions
( b; W- l- G& _+ f$ g j' R# M set vision vision + 1 3 H* G |+ u- _ f# Y! D
end [4 ~3 ~$ `8 T1 a
5 K) m$ E$ ^; h( `
& {! ], s/ F2 z8 d. S
, V1 X2 T1 E! J/ L# M4 g$ u7 R% yto turn-towards-grain
# [% A# V) ]) ~ set heading 0
' U. {& Z- o! u# v& e- G! u( ] let best-direction 0
( \; r. g* M/ v+ S/ W let best-amount grain-ahead, o) f% k. p4 h
set heading 90
! s" s' U9 D) |+ `6 T if (grain-ahead > best-amount)! Q) M5 Z4 r+ O
[ set best-direction 90/ x. _ e+ |0 ?. \$ ~( R5 g6 s1 M V6 M
set best-amount grain-ahead ]% a9 a" J. C$ [9 w
set heading 180& P: d2 u1 X+ Z% G% Z
if (grain-ahead > best-amount)6 v4 F0 _4 s+ P3 K/ Q# K7 r* z
[ set best-direction 180
/ ]4 v. O+ }, w7 d) i9 | set best-amount grain-ahead ]) T2 V6 p7 c8 j$ ^
set heading 2704 `" b, T7 r1 e
if (grain-ahead > best-amount)
+ s" C# k# y+ R" v! y [ set best-direction 270' Y1 m5 P, G0 ~* y5 ]/ [2 a
set best-amount grain-ahead ]* f% h* y0 j( U
set heading best-direction3 v+ M- g' D% U2 b
end
\5 F% `" j- J3 \
9 K5 m# ?4 S4 Y8 [
" b/ C) _ V4 P9 Yto-report grain-ahead ( p! L$ Y4 n- ?' l7 I+ i
let total 0
- d5 V- ^# z5 H5 ~6 a1 @ let how-far 1
/ a9 b2 Q" y, C% h) D repeat vision
( v& W4 ?; [" b0 X* w$ @8 j: h# ^ [ set total total + [grain-here] of patch-ahead how-far/ @. ], P' m1 [, o0 s, a# s1 `: I
set how-far how-far + 1 ]
# i: T; r$ J/ e$ N3 ?+ p" E' k/ o- M report total
) f! C& z: K m% v5 m0 xend
: H8 a! Y; O/ @6 O" Z: t
3 o+ e! D! z9 `/ C) G3 b3 o5 ~0 hto grow-grain ( J( [/ C% c1 g- @3 p
if (grain-here < max-grain-here)
: Y! d# y9 u7 D0 T( b [ set grain-here grain-here + num-grain-grown
. E" M& E* `* ^% ]- s. E if (grain-here > max-grain-here)
8 ]) A9 v! `$ S4 A! u [ set grain-here max-grain-here ]9 N3 ?$ J- l% V4 B/ S
recolor-patch ]
$ q2 B, P5 o( X5 x; L4 p9 E2 nend" d2 s6 A2 S4 |( B; C! T
to harvest
" J. ]5 B. ?" l8 Z ask turtles
. T6 B) N" a: B/ @$ V [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]8 y+ O. f1 o5 y$ l7 {, G! x
ask turtles& C& U: b# G) A
[ set grain-here 00 a) ?) C$ j% [/ D d
recolor-patch ]& n# q; d C* A: a
) T$ U6 c# G# X; z
end
1 y& m( e' S7 x& ?! Q. S7 v
2 ^3 E3 {; m8 J( J" M9 M5 dto move-eat-age-die 2 ?+ e2 v' i, n* K8 c" n- ]
fd 1
: @# J7 u) @% G8 v- T5 Q. d set wealth (wealth - metabolism)
- V" _6 B7 L+ V# O- L0 X set age (age + 1)
0 B9 u' J# Z# R% G; i7 W' ~ ?7 c if (age >= life-expectancy)6 }0 W1 K9 i/ X1 F/ U0 n% V& b& v4 ~
[ set-initial-turtle-vars-age ]
8 S/ d2 D! f _1 S if (wealth < 0)$ G1 S: Q" Z, n7 ~
[ set-initial-turtle-vars-wealth ]
& B/ v& e9 G5 \% r/ x3 v4 O- P, m7 { ; ]2 R! ^6 B6 P' D% R. Q
end
/ N* I: l5 ~# l3 F b0 G8 h( P% O8 ?4 O
7 d* z9 n w# `& \9 l% F
to setup-plots, e' `) T( D- |+ z) s
set-current-plot "Class Plot"+ c" ?" u; M: i2 d' H, n$ ~9 c1 P, E
set-plot-y-range 0 num-people( y& H* Q8 ^. c
set-current-plot "Class Histogram"
+ F+ g/ I' K% n$ S9 D set-plot-y-range 0 num-people
v! R% f! P8 Xend
6 a* W, O' k; K6 b+ k' V
8 M' Z2 S! E: W+ X# hto update-plots9 ]3 z# T! }' b. D: j* A9 p
update-class-plot
9 |$ k4 b2 l- ] update-class-histogram+ P# v! P4 A8 D) p" s5 M' v2 w
update-lorenz-and-gini-plots
/ U3 x2 P7 y* b! _# J' I9 ]end8 l6 Y3 e H! |0 s& i: j' t
" E% v7 s0 |# _& F+ K5 b7 p
to update-class-plot
) o0 {' h; N# G% I$ B" ^ set-current-plot "Class Plot") I0 y3 V h; Q; w
set-current-plot-pen "low"7 a# U/ c* u! N! R, P! O0 L0 {
plot count turtles with [color = red]/ C/ [0 s! X( L; D2 X: j
set-current-plot-pen "mid"
0 f s! ] v4 d plot count turtles with [color = yellow]. }& | t- q4 y4 B$ `9 `6 g
set-current-plot-pen "up"
" C- c3 `- w! V+ s5 s1 @" w plot count turtles with [color = green]
- p7 c+ K' B1 ~& M2 H+ dend
; q9 Y. W3 e( Q! L' X# B' u1 u% w5 X, Q8 c* e$ @
to update-class-histogram* s+ L* b" r) h6 g, Y* i( o
set-current-plot "Class Histogram"- L) e2 Z: W# a: p' E+ s
plot-pen-reset
p. |+ z$ W, Z5 i5 n set-plot-pen-color red
3 Q% d) _4 |; k7 Z6 U! f2 Q* p3 } plot count turtles with [color = red]
* S9 B, o+ @- U( \/ q set-plot-pen-color yellow8 p0 d& ^6 I. G1 L2 H/ `6 V
plot count turtles with [color = yellow]
; L, M1 |, h! H" c set-plot-pen-color green
: ?6 K2 c) E9 u# N: m% b plot count turtles with [color = green]9 f( ^0 f/ G( z2 `3 u: v. D" B
end4 h I$ E2 k1 |5 M5 L' s
to update-lorenz-and-gini-plots
( v3 c4 b( z, _! g set-current-plot "Lorenz Curve", k/ a' P/ x' {; Q# T4 o/ {
clear-plot
7 B# {( a. o/ l8 U
6 k4 p$ n8 W' G) `1 h4 G set-current-plot-pen "equal"
; |! \# S4 v- z C$ {8 Z5 Q+ q plot 0
; X7 E8 C. u2 W/ E7 x/ \2 j# l plot 100
1 ^! z" W- W4 a+ C6 |* X4 r$ K' N# x% x' U% h1 v
set-current-plot-pen "lorenz", {1 l# g/ z5 n- E* r" S
set-plot-pen-interval 100 / num-people3 A6 z, S0 c* h9 V
plot 06 h$ S2 T# R* l
1 ]* _* L7 M- A9 ^1 v
let sorted-wealths sort [wealth] of turtles" T- R0 a a$ e! I( {
let total-wealth sum sorted-wealths
7 y2 ~3 d0 N( |2 H* k: Q let wealth-sum-so-far 0- V1 {3 ^" B3 w/ C5 ?& E
let index 0) u* i E! ~- J! {3 {1 G( ?( A
let gini-index-reserve 0; s6 t4 w2 U3 b4 i
/ k, ] X2 K9 X2 c0 H* s! Y- N/ M8 i repeat num-people [5 {3 d8 x3 n# G0 n ]/ V
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
: f1 W+ h- b5 N) E9 Q$ _ plot (wealth-sum-so-far / total-wealth) * 100
. {: _ E- ~0 v9 _6 F. j" t" h set index (index + 1)
# M I5 _2 a0 q# }- Q3 G! y set gini-index-reserve
0 W0 X8 N) v2 h, L8 _0 W gini-index-reserve +
* k* L5 S0 b: L" ^) R& R (index / num-people) -0 F) A1 u3 R' V
(wealth-sum-so-far / total-wealth)
& F! y8 \$ G' s e& r ]
% W% y5 X3 Z& R o
$ [6 i6 K- H$ V, b set-current-plot "Gini-Index v. Time"+ P/ x; k8 Z+ p5 Q& n0 U
plot (gini-index-reserve / num-people) / area-of-equality-triangle: l, f: R5 e/ d9 S: j
end; ?4 W/ N: t: G$ c; |
to-report area-of-equality-triangle& @3 I, A, f8 g
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
9 h; o: O9 l; |, {5 U! k: g' Iend |