请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现. e* J1 J; P0 i- |3 U" x
globals7 C! s7 r( R1 N& V. z O& |* e
[% m+ d( \/ D0 Y/ E
max-grain
1 U- m0 B7 W4 h7 M) L7 I$ x3 m1 Q. h/ v* |+ e7 D# x
]5 n& k) d% Z7 O) i& X
4 ]1 K6 [4 E4 K0 Spatches-own
/ \. H2 G! X0 r! Y7 }[
4 M F! \( a1 ^4 e6 j6 D; R grain-here
# D9 p% T* i% a6 u4 \# m max-grain-here j6 n/ J1 @8 c1 |* W
]
. o! d" D" F9 V, q4 w: t1 u' p6 q4 m y
turtles-own
5 g5 c3 `" K2 N- t- L[5 l$ l- w. @( t2 j/ T
age ! S4 S# f, B, q( O" f2 M
wealth 6 x* i5 V9 `1 }# d
life-expectancy ! L) a8 }# k" w4 Q7 \
metabolism
D9 p4 U8 }. r$ Z: L vision
. u) ]9 z! h! U4 M! h D9 C inherited 8 B% Y0 \) m/ M! [! {/ W% m
]6 d8 \/ |, _$ `: C1 ]( d; Q
+ C; d: q, @- ~! i; x- z( h
) k% s( y3 f. O: K* y9 N: fto setup# p/ l% S+ M- a7 m; m& `
ca$ ~( Y$ L/ `! v# {
set max-grain 50
- k% h) m3 l2 _% v/ ` setup-patches
/ J& h% \' r6 u4 ^" j setup-turtles
7 A% g2 q* J( I" |2 c! h setup-plots& b) r+ R6 @1 q/ a7 V. f) U- U
update-plots
$ ~1 G7 T h; ]# `& _end2 S2 c& p. V0 p' V- L0 F
to setup-patches
- o- z3 U/ I! t8 O; O B ask patches
% S$ R' h9 x; }) F [ set max-grain-here 0
6 j0 l: A( [# C6 s0 [% d" H+ D. e if (random-float 100.0) <= percent-best-land
6 L+ i. ]3 M3 p3 w, e& P$ M [ set max-grain-here max-grain
/ G# r9 n, Z% l! z, ?; H: H8 C set grain-here max-grain-here ] ]
2 M- _) ~9 F( ^' L! i repeat 5, M' A6 J. H. f* A8 T1 q' f
[ ask patches with [max-grain-here != 0]: k3 t3 G% |# I# h: B3 d' T5 K
[ set grain-here max-grain-here ]
: B2 d$ A( T! V9 O* ]2 [# F4 M diffuse grain-here 0.5 ] j+ X) L3 {! [. Y" |
repeat 10
2 B& a- Q" y; l, v8 F [ diffuse grain-here 0.5] # @) [: M& x) o+ m
ask patches
4 N, L+ t1 B/ l- x [ set grain-here floor grain-here : `/ z: V- c- s7 d
set max-grain-here grain-here
* }5 {+ d7 S7 A4 r6 m; ] recolor-patch ]5 G5 I0 z9 Y1 `3 F& [
end
& m! h1 }- U; ^# |) Jto recolor-patch
9 r$ f+ q$ l( H set pcolor scale-color sky grain-here 0 max-grain
% {/ S+ |* j: z# e! gend
) F5 r9 B5 I: p& l$ o+ }" S- qto setup-turtles
8 ~8 j: S) A' K5 B, n% L set-default-shape turtles "person": p, O. \; L. [$ t8 c
crt num-people5 m& C1 k. l( [3 \% b
[ move-to one-of patches v4 a+ F0 ]% h- q
set size 1.5
4 c# e3 X. Z7 Z# o# N set-initial-turtle-vars-age
2 W' H+ t0 n) S set-initial-turtle-vars-wealth
( I' w8 ^( }, ?- ~* l& \" v set age random life-expectancy ]
$ o5 d m$ D0 l2 m$ v H+ j recolor-turtles5 X3 ?: z% b9 n
end8 n) a% r' W. R" ]7 K+ |/ p) L
; ^6 \4 L6 r/ {/ m+ H: ato set-initial-turtle-vars-age: U) r; I a; e! R
let max-wealth max [wealth] of turtles6 J5 }' v7 s9 f$ p3 \- p, b( F, ?
& z: ^) {+ y" i, x3 A
ifelse (wealth <= max-wealth / 3)
# ~: z8 Y; ]( M8 S4 X+ g2 n5 K) h [ set color red
* {; J- l4 |- P0 _* l7 w8 S set age 0
& ]$ U- q" b% z6 G* K- v6 r face one-of neighbors4
4 e/ J! O8 `7 u* d7 v E \ set life-expectancy life-expectancy-min +& s5 I5 X! r: }9 A
random life-expectancy-max
+ x# r. {. m1 a9 _) C% o5 Z( F6 g set metabolism random 1 + metabolism-low
, c4 u5 q" t. i/ o& D. N# w( } set wealth metabolism + random 30, |- p# H: Z& i1 [" ~; i5 `
set vision 1 + random max-vision
2 B( Y- b& |5 {) d" g. {: e( _ set wealth wealth + Wealth-inherited-low ]
% p( K* ^/ d; c [ ifelse (wealth <= (max-wealth * 2 / 3))
" h. h+ y3 i, K- W( L [ set color yellow ! y5 V8 N/ `1 G3 D3 \
set age 0
9 _( K& |5 B+ E! y' ` face one-of neighbors4
! y* O2 [- U6 T4 f6 J3 n4 y set life-expectancy life-expectancy-min +
p3 M1 h+ p( L7 h, j+ S random life-expectancy-max + 1
( b- N, G# D# Z6 Z$ l set metabolism 1 + random metabolism-mid1 a& T6 \5 @% ?& w% w, A
set wealth metabolism + random 30 G L8 q) W; n- W
set vision 3 + random max-vision" C6 }1 P% L. v9 S" ~
set wealth wealth + Wealth-inherited-mid]
9 Q& X( A6 L5 F. v, d, g8 q* `1 g [ set color green
& r+ z. l& O: {9 t Q. R set age 01 t* T9 `( u8 k
face one-of neighbors4
! ?/ I2 j- {9 q% v set life-expectancy life-expectancy-min +
, N( f0 ~# U: V+ E random life-expectancy-max + 2
^7 a6 P. \) g0 j5 p& m. \ set metabolism 2 + random metabolism-up8 e+ R9 D& V! L6 ~3 z7 Y
set wealth metabolism + random 30
% b3 K3 R( ~" [* Z8 l set vision 3 + random max-vision
# U: ?! m! ^9 P/ e set wealth wealth + Wealth-inherited-up ] ]
2 ^5 N1 P, r3 Q! N- M5 | % x2 s) n6 C" m% ]
end
" Q% V. b2 [2 A& Jto set-initial-turtle-vars-wealth6 Z, Z: c9 t/ L( b$ L; U- G
let max-wealth max [wealth] of turtles& s+ W7 q" W, F
set age 0
$ x. Y8 O/ H7 W j face one-of neighbors4
, |: `9 b+ Y5 M$ W8 q8 M set life-expectancy life-expectancy-min +
' ?+ t3 d1 [4 o( v' h random life-expectancy-max * \" ?" l1 z: i# ~( h
set metabolism 1 + random metabolism-up4 O' ~# k: g' g j8 A
set wealth metabolism + random 30; L9 g" ^- v7 r- m
set vision 1 + random max-vision 6 O* d+ D* q! _" K
end' d# `5 u5 i: d7 r2 Q2 O
to redistribution
0 b; z; T3 o7 X# _" I8 R! i! K3 Mlet max-wealth max [wealth] of turtles
8 P5 W7 ^ k# G' O e# u4 ]' ]! Jlet min-wealth min [wealth] of turtles
2 b- Q7 ~3 t2 E6 a. @/ C2 Aif (wealth <= max-wealth / 3)- s& g( o2 e4 ]! C- b: l. @
[set wealth wealth + Low-income-protection ]
A% X* W* V- xend5 t/ c. {1 j/ @. {
/ }* n$ g5 a- _, W D2 S+ Tto recolor-turtles
+ A8 _& d% e2 o% Q. B let max-wealth max [wealth] of turtles3 { r( [# ]% }$ r$ w7 [1 ~+ Z4 f- T
ask turtles
* T2 z; a3 u1 D0 t+ `8 O: C- ` [ ifelse (wealth <= max-wealth / 3); o9 K) d2 m/ e2 {8 m; w# o& W
[ set color red ], Y; R! r: @# V. U2 W) c. G4 O3 ?
[ ifelse (wealth <= (max-wealth * 2 / 3))7 S) {, h$ G: T& g! C# |! @% S7 q* A
[ set color yellow ]
1 R! v( j4 k( a% T( g- a! j7 q4 h [ set color green ] ] ]
" B0 Z: k* @2 T M8 C0 n3 ]! Y/ W ask turtles [ifelse show-wealth?
6 r7 A$ x8 }7 a& E5 q5 c [ set label wealth ]
1 U2 U& n. W* L8 V; W [ set label "" ]]+ }. C2 ?- ~0 N A2 D- f& U
end& B3 r3 o0 I2 d1 ~1 b
# b: q" x5 j/ L- ?+ b$ a
to go; s+ x# I& N, v2 e+ L; z
ask turtles) S$ m8 s/ M) l, w8 n9 n! [% q
[ turn-towards-grain ] 6 n) ^3 _( F& K2 f6 x7 J
harvest
! l( p0 a# z" a- X4 U% p% l ask turtles9 O/ x! J# @9 o! `% ^
[ move-eat-age-die ]
9 x- Z% p4 y5 N& [5 b" _+ a recolor-turtles
$ t( O& ^! z" R2 s z' K if ticks mod grain-growth-interval = 0
& @) y" P) P+ W9 h& ?3 t [ ask patches [ grow-grain ] ]$ Q& m4 Q0 d0 d( P, f
, z+ [$ G! O; }% }( K$ A1 K5 k if ticks mod 11 = 0( z3 g( v5 _" R
[ask turtles. _7 x* f! o. K0 t% S
[ redistribution ]]; a4 |' s6 h: t+ h. n6 |& \. h
if ticks mod 5 = 0
4 |4 g5 ]: a, C' { [ask turtles; R5 y" e* l* Q. F% S
[ visions ]]; h9 X- H' y4 u! Q
tick1 I3 h# f- T4 ?6 Y5 t3 k! z* z
update-plots
* |- v* B' M. U+ I, ^& b% Aend
; Q- B, f( n4 {to visions
# ~1 w- g5 {( S9 s6 Y+ n* f1 H7 P set vision vision + 1 4 r- U: ~0 D6 U% W0 I
end* _1 n/ k" ~ w" E8 E& C# ^# C
. f2 g. j( M: L% L
& [' b; @2 t) h! q5 N) T
5 s. Z+ P7 C3 Z$ [* mto turn-towards-grain % b. T, W9 H- l
set heading 0* X! e7 x9 ~: M8 E
let best-direction 0
4 i) r% e3 y$ i7 a let best-amount grain-ahead5 u3 k5 r8 H0 ~) _
set heading 909 d, ~8 G9 h0 s4 U
if (grain-ahead > best-amount)! Y$ G$ G4 m9 x2 [* f5 \
[ set best-direction 90
; f5 d j. K0 Z) P' f1 _- B1 w set best-amount grain-ahead ]
^! m2 c! k$ a5 F( P( E, W set heading 180
4 h8 k1 A% U% ]% S+ b( U4 y if (grain-ahead > best-amount)* G k. X1 H8 `7 K$ [
[ set best-direction 180. j" R5 @: U4 y0 v; `
set best-amount grain-ahead ]
5 ]; b* }1 N3 C- W0 z, q$ M. S" { set heading 2706 f# i& L( g0 n
if (grain-ahead > best-amount)
6 V; q+ i" z4 d [ set best-direction 270, R2 O5 i% y1 T% @- h: ^9 Z" E6 G* l
set best-amount grain-ahead ]: D' T+ c2 [8 i* t/ ]5 |+ X
set heading best-direction; K/ i1 L! N# h0 f3 D, }6 K1 a
end' t) s- P" m& T5 T; @* d/ R
9 H: @ Z) | {. x t. Y: z/ ~0 u) z: ?. [( r' ]
to-report grain-ahead
z3 M' F) [ [9 S6 J let total 0& g/ k% C: L; X4 k* |
let how-far 1
0 ^1 [$ w9 Q4 b3 _3 Q0 x repeat vision
- r* ]: t% C F( ] [ set total total + [grain-here] of patch-ahead how-far5 r3 K3 f* }) k
set how-far how-far + 1 ]. [) k5 c& L1 O
report total. f! U, [2 }% o' s5 [$ s- m
end$ r0 u" F- E) }& f4 U
, u1 S! s' U3 Q) n4 q; q: jto grow-grain
0 `* C# p h# g8 t4 c# u1 X if (grain-here < max-grain-here)
5 |! }0 ~2 y4 _8 w [ set grain-here grain-here + num-grain-grown+ a) ^8 ^+ c) y, D& w% e5 ?
if (grain-here > max-grain-here)
0 w3 Z4 t/ Z% X& C# { [ set grain-here max-grain-here ]
- q2 e1 A5 n1 ~' e5 Q# ~ recolor-patch ]0 X" E6 u/ b. s, X4 |) r9 u
end
; U; v! f7 ?5 g$ h qto harvest
8 w' \6 w) v4 U! S# |) e" q* w0 R ask turtles
' T/ d# C6 Z( q [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
~9 s8 ^ i' S7 U I ask turtles5 w4 S! ?& @! ~$ g
[ set grain-here 0
' e( L$ g- A. r recolor-patch ]+ k( q7 ^ g/ x( ^
# q# H. U, {. Z$ M( Fend
) b. R( h* y6 Q: C7 ?# ~1 m4 j7 J2 f& G$ s/ t2 m" L% ?" U$ R {4 ^ g
to move-eat-age-die 2 ^# r7 F# E* q" I- h T7 o- q
fd 18 ]" U$ m9 \' ?5 o( D; D. o
set wealth (wealth - metabolism)
) T% W6 ^2 b9 E* \ set age (age + 1)& f0 z9 V* F* [% \8 C }
if (age >= life-expectancy); C0 o/ R* Y6 J
[ set-initial-turtle-vars-age ]7 g4 Q# z' T$ p! ?
if (wealth < 0)
( w" Y* F# Y6 @5 o" ^ P3 |% j [ set-initial-turtle-vars-wealth ]
9 ^* ?# h9 g/ B. t0 l
) b" Y6 U* E$ u7 X* Zend6 J7 V5 X; `, {$ X
' a; H. f4 U* u- f7 ~( f+ C7 l
4 L8 ]( x. ?. f) F, j6 i3 I
to setup-plots
' Z" _. r: g% y' }* v' A! n set-current-plot "Class Plot"* E* p6 f! G* m$ `4 x" z" d
set-plot-y-range 0 num-people V4 Y' S4 b7 r4 G# w
set-current-plot "Class Histogram"1 x1 G0 H6 R6 {1 j& s- t- P2 G
set-plot-y-range 0 num-people
' _8 y, l; X2 V0 \1 Hend
6 m. Y- D0 U9 P* M
, O( l5 c( ]3 C1 Q' sto update-plots& P1 I4 t$ Y" @( {. ?
update-class-plot. `2 F A, c+ F
update-class-histogram) z3 e' S& v/ c: a
update-lorenz-and-gini-plots! F/ i5 M, U% l" b
end7 E8 }, ^0 S. C# Q
2 z% ?# N) P; R* r. B* ^8 S, H" {) H
to update-class-plot
1 V" V9 M3 s* F" T set-current-plot "Class Plot"0 D4 M$ _2 L( L* p7 F5 n+ g
set-current-plot-pen "low") T K4 v8 L# f! v/ Q9 Q, ?. L. y
plot count turtles with [color = red]! A% G, a0 O# `6 ^% Q
set-current-plot-pen "mid"' ~8 b) O; J4 c) E7 I# d$ ?9 p
plot count turtles with [color = yellow]
4 s2 a3 t8 C: ^5 ~: ~ q set-current-plot-pen "up"$ ~& \& ^ y9 A) k( I
plot count turtles with [color = green]
- Z( P0 Z8 [- T* ~4 |7 Gend) I9 v% c/ X# }; `: T! Y! J
1 F* L+ t! r7 Zto update-class-histogram7 K( r; E! d6 A; P9 c, [
set-current-plot "Class Histogram"
0 G4 Y! ?- v: Y4 S9 u8 u& i plot-pen-reset6 P* ?8 c! k& o8 Z! P2 m( t' m6 L9 {
set-plot-pen-color red ^$ X# ]) z$ {) _* {$ B) E. T
plot count turtles with [color = red]
6 X0 l! r2 k# `; c# W set-plot-pen-color yellow
0 S3 E: |3 W- g H9 C4 T plot count turtles with [color = yellow]2 V' M: [3 B, w3 |. H3 h0 E* L
set-plot-pen-color green" c2 e: f# L/ m
plot count turtles with [color = green]
1 l* D& J0 @# y9 E* Send
# D! _' y$ u6 s! s( mto update-lorenz-and-gini-plots
6 i3 B3 W0 j) u/ n0 P7 q set-current-plot "Lorenz Curve"/ ]& N. W3 r' `
clear-plot
7 N4 n r6 x9 v& `" b! C
" W x$ I! L& U' V* ~% { set-current-plot-pen "equal"
2 Q5 x/ ^' U9 O1 s4 H9 a plot 08 i& `3 f1 ~" {, o1 i3 k
plot 100
" h9 l; t5 h/ n4 H4 M/ I$ o% X" e( D1 b
set-current-plot-pen "lorenz"
& k: n* ? C; ^6 K5 Y set-plot-pen-interval 100 / num-people9 K, x4 j. W, K% O
plot 0
* T# ?& w8 n b/ p1 H
+ O; V1 ?" w# ~5 D/ V d \8 c let sorted-wealths sort [wealth] of turtles2 x( J( T3 ]1 y o* x
let total-wealth sum sorted-wealths
# Z8 ^' H6 ~/ K- ^; t4 x' e let wealth-sum-so-far 0$ i5 Y3 Z! @$ f
let index 0
/ s5 k) ]- Z+ Q let gini-index-reserve 0
0 w+ w% A* F6 P9 f- m. w
/ ]! v+ p3 d; S& E) M4 d0 R repeat num-people [2 P. B( t( y- b& e e& w
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
7 k3 ~% F6 Q; |, O/ J plot (wealth-sum-so-far / total-wealth) * 100
8 }" n3 |% U# ~/ d! Y8 c- Q; L set index (index + 1)+ b+ U% x \" W. C' D4 f
set gini-index-reserve) |: r. E' U) [
gini-index-reserve +
5 J$ r3 P% C4 v5 Z% W% a (index / num-people) -: x; S' G |; j0 o0 s" D
(wealth-sum-so-far / total-wealth)+ {* |8 M8 O: ?6 ^. a( c# s* X) O
]. \- Q0 C8 N) W9 @% ^) _4 L7 d
! w6 L: X8 U# {/ T. r set-current-plot "Gini-Index v. Time"+ I7 P$ w9 t% R+ V4 U; H* B+ k- D
plot (gini-index-reserve / num-people) / area-of-equality-triangle
Z6 [* U6 |* F! U; S: zend
1 f1 |3 [0 Y- M7 g7 A3 s$ Zto-report area-of-equality-triangle& O9 w' O# ^" f1 Y& m- y
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
6 a X- W, Q; ~1 O0 @2 Qend |