请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
- |2 n; T, m- C) Gglobals: Q) x5 Z$ t% r& ]1 j) q
[
! I; a( q& v# } max-grain 9 a* v1 X! W! |( z' T% w6 C
9 S: S: d% x( \2 R]" R7 r. r: ]1 ]7 v) \$ T* ?
' p6 e8 Q0 K' wpatches-own: ^- T& i8 n* `9 v
[
! C) v. L! B4 K! {8 U2 C; @5 I grain-here ! B6 X- s! [0 C0 {1 ]1 b
max-grain-here # M2 F% P1 Y' x9 ?1 A
]. M! \0 S3 Z! \3 f7 E$ I M& |
+ J3 u) D1 v) n
turtles-own+ f( o" H% e# p1 @ m7 Q
[
& s6 {* e" J, z! \8 t* Q age
. U. X( B ]1 T% J5 p: A: r wealth + @1 t- A/ C ~9 n
life-expectancy
& X2 ^ Z; _! X0 e metabolism
' q. S! L- U$ h3 I vision
/ m' p1 ]; P a d" G! L inherited
: a9 W4 W9 I2 X: M]
4 ]# q9 j& o$ Y8 {- K- i
$ l8 D' a, t1 w9 {; y% j' d/ x0 T0 i+ z2 L: M. R/ Z$ @7 d
to setup$ J: Y" N; D* X7 }- K
ca5 [# r @( N0 O/ l5 D; o& _+ p
set max-grain 50
% ^8 a6 y; t' x# Y setup-patches" P. k$ a; v2 Y# z* |5 T/ I
setup-turtles
/ I+ A2 [( f9 `- N f setup-plots
6 x: R p2 l4 p4 w) Z% @ update-plots
4 d7 i& e* W, n3 [$ ?4 z! Iend" i5 Q# ^; V. J0 Q7 Q" w* r
to setup-patches
! j- B8 l0 k% t2 j' Q) y6 P# g1 K ask patches; d a5 z2 G8 t/ }
[ set max-grain-here 0
& ~) o, v1 r) G% x if (random-float 100.0) <= percent-best-land
. e) b2 c7 H* Y1 L; J- u U [ set max-grain-here max-grain
/ d& w$ c- f( o2 g: Y: b set grain-here max-grain-here ] ]
& n% A5 X7 [' O: U: U+ H repeat 5
: k2 F7 w* k; U% c- u [ ask patches with [max-grain-here != 0]
1 \3 G T: ?" X7 [; F1 s2 \& w [ set grain-here max-grain-here ]
% x5 p# G/ j8 t! s. D. j) o# Z, `0 ~( L diffuse grain-here 0.5 ]
6 r3 F5 d* j4 Z repeat 10, y0 @5 a4 @8 R V& j: |* Q
[ diffuse grain-here 0.5]
0 B0 G6 F3 ]: b- W4 ^ ask patches
3 ?* L$ ~! n3 ]$ B [ set grain-here floor grain-here
U* t; {' w2 x8 ^ set max-grain-here grain-here + w* D& A$ u5 V+ O
recolor-patch ]
2 k6 Z& z# i; F, E: r" `6 i- y8 Jend! a9 l# j- w* z Y3 v* G1 F& G4 N
to recolor-patch + [. c9 e: r- _: A1 c5 y1 q
set pcolor scale-color sky grain-here 0 max-grain4 b% E' r) D# k+ W
end# ], | y3 D; h8 f
to setup-turtles2 M: F& c- A: t1 D
set-default-shape turtles "person"
4 k7 m1 U$ T7 ] crt num-people9 g' [. _4 T# J6 W* T3 V# V/ l5 h7 |
[ move-to one-of patches
" `* p3 e, u. e set size 1.5 : X! T9 g6 C" B: @3 B
set-initial-turtle-vars-age! C) p: N& D9 _
set-initial-turtle-vars-wealth( b6 N5 O6 Z7 _/ l
set age random life-expectancy ]
( a$ m8 D6 C$ \- L! a recolor-turtles [7 W- [- x5 @" p. j' U% i
end3 L Q+ C1 F5 ~6 v- @/ h/ n" X, p( X
' R2 h6 ~+ }, F) Z, T; jto set-initial-turtle-vars-age( J5 v( B0 ^5 ~3 |
let max-wealth max [wealth] of turtles
0 \! v4 u& p n1 n( p; h# W - t4 O- _: b, P" p/ w7 D7 }5 I
ifelse (wealth <= max-wealth / 3)) E9 u" x6 G8 L" g3 i
[ set color red 1 W: ? m1 d# C9 A
set age 08 V& f2 U: D1 r
face one-of neighbors4
. u+ E9 g2 U+ F) D7 z6 ~ set life-expectancy life-expectancy-min +
D0 ?0 B7 F0 B- j L$ p6 D random life-expectancy-max t3 p: B0 c$ f0 H# N
set metabolism random 1 + metabolism-low0 r/ ]3 M2 u* L4 e" r" Y, {
set wealth metabolism + random 30
2 i4 b* r6 b9 ]" d5 B set vision 1 + random max-vision$ L) _( F: Q7 y: ?" r8 X1 {
set wealth wealth + Wealth-inherited-low ]
& i! Q2 {( P3 a x H [ ifelse (wealth <= (max-wealth * 2 / 3))
: Q$ y9 }1 B2 u; F [ set color yellow
5 b/ ~3 C- b# o3 D" K! I set age 0
# _" m$ k g$ X; E i1 m' A* L face one-of neighbors4 / H& ?* Q( Y6 N# n! T* {
set life-expectancy life-expectancy-min +2 `; P/ N- D& Q$ r* X I# n
random life-expectancy-max + 1
; q- A% N: {! {$ B set metabolism 1 + random metabolism-mid
6 ~8 _" V+ e x. @ set wealth metabolism + random 30
" R2 S1 {. _: `- n9 H4 g set vision 3 + random max-vision
) x2 \ Y+ t$ M/ |2 o, J* N set wealth wealth + Wealth-inherited-mid]
) Z- L+ q. T+ t [ set color green
6 u( G+ I* G0 B7 Y: V set age 0
: F8 d8 _' {5 ?# J7 [ face one-of neighbors4 3 l: p' O/ U' b; F2 Q) r& {
set life-expectancy life-expectancy-min +, [$ M% D4 p1 m8 q$ e" i1 u. Q7 S
random life-expectancy-max + 2
' v$ j( d- E Q set metabolism 2 + random metabolism-up
( `4 H4 b( G. R- V* S3 [1 C set wealth metabolism + random 30% S+ f4 K9 k* `: n; \0 \
set vision 3 + random max-vision
2 g1 W/ a3 R1 V/ _6 M set wealth wealth + Wealth-inherited-up ] ]
3 @( W) @0 n5 \) w) k1 ~) E" t# x
0 V5 M1 ^! f7 ~3 O. vend
; ~/ J% \* M0 W& v; Qto set-initial-turtle-vars-wealth
, ]5 c5 y1 E3 Z2 {/ P, A- I& U let max-wealth max [wealth] of turtles
; \7 {" ], J4 N7 p* ]2 D* _ set age 02 v9 G5 ?6 `) p/ q, s2 [( X4 b9 T
face one-of neighbors4 ' d2 C" C7 H# t& @- _
set life-expectancy life-expectancy-min +7 P p( P* D. g0 A. t6 z% [/ W+ r" P% A
random life-expectancy-max # W8 }$ C/ y" d1 b0 d$ ?! i
set metabolism 1 + random metabolism-up
1 ? g1 c# _: h7 ~- g7 E9 d set wealth metabolism + random 30; e- d' m- T$ }4 Z, F
set vision 1 + random max-vision
( a$ `/ e' J; ^0 O! tend
% [3 t* f2 t3 ito redistribution
' g' a( L1 m d% g8 J7 g* Ilet max-wealth max [wealth] of turtles
3 z' O" Y4 @/ g+ Xlet min-wealth min [wealth] of turtles
/ f2 o% c6 Q$ M% e% q; wif (wealth <= max-wealth / 3)
]6 F( a+ w7 }+ ]/ ?3 O [set wealth wealth + Low-income-protection ]4 W7 q+ @: _9 W
end
4 K& O. n) I5 I; u + O# S% N% {* H8 v
to recolor-turtles
- q1 f. y0 `" X2 q" K let max-wealth max [wealth] of turtles8 B2 s2 w9 Y4 k; g4 M2 e q/ A# ]
ask turtles8 ]8 J# w& B% N* ]
[ ifelse (wealth <= max-wealth / 3)8 N- c. S. d8 g3 P4 D" H
[ set color red ]7 m5 z6 I- L( Z: A
[ ifelse (wealth <= (max-wealth * 2 / 3)), ^, H; J( N" P% b& q
[ set color yellow ]
' g$ a: N% `" G6 x# R% q [ set color green ] ] ]: D4 |2 o3 z; @1 {, Y
ask turtles [ifelse show-wealth?
& i' D6 {# S! s6 f1 @, t! P& L [ set label wealth ] b$ ~$ g& ? a* F H) s9 h
[ set label "" ]]0 Z: S/ O& |: K! [1 R
end
" c- c+ R# N6 |) k- ?1 B- k! [3 O4 E8 l" w! m: E/ ^5 T& s7 p ~$ {
to go& R5 R, y; B: H
ask turtles
1 ]2 v6 y4 i2 z A# z [ turn-towards-grain ]
/ H) [0 P1 J) \) f. j. c harvest+ s8 C2 U; S. [
ask turtles2 C7 X2 Q5 U8 o4 b# B
[ move-eat-age-die ]: }+ r8 J9 o+ ^) Q
recolor-turtles8 n6 s8 d M8 P2 l, W6 y
if ticks mod grain-growth-interval = 0
8 Z ~8 v/ I/ V [ ask patches [ grow-grain ] ]0 ^- N4 S2 G+ | c
8 X5 }. ?9 E' _: r
if ticks mod 11 = 0
8 o5 d, [% n4 _+ t- |# w3 f/ l [ask turtles; { G* O, K/ t6 S# k
[ redistribution ]]' y, X) ~/ w: u' M
if ticks mod 5 = 0
# O B2 g: A& H [ask turtles: g2 ? G: @, @) Z- A
[ visions ]]
& C' `# R1 b3 T9 q0 z tick1 r3 [. a1 R7 P _6 X3 J
update-plots
# n: t: `$ r3 M: wend$ Z$ h) n+ |/ _5 E. Y/ v
to visions$ J! `% W. W+ f) S0 O6 r2 D
set vision vision + 1 $ F+ B+ y. P' K" \# @7 }
end. Q* ~/ ^* l' u) m
- U; S% X% z5 t. a% g8 ^5 m7 N/ m! c' K1 _5 ^( ?
5 t, L p3 {, {; _+ n/ M4 Z- {to turn-towards-grain
) |9 Y/ w! ?. T9 k- g7 L set heading 0
2 i/ O' O1 @: f" R: x let best-direction 0+ F/ f$ K6 N3 A* S* ]/ J4 k
let best-amount grain-ahead
0 U: E1 G& [6 D6 m0 B set heading 907 e5 J( r8 Z6 q& Y
if (grain-ahead > best-amount)1 o e# Q' P- l% w% J
[ set best-direction 90
9 H9 W* a. ~9 Y+ e set best-amount grain-ahead ]* i, ~. [9 }' m, _+ q
set heading 180
6 Y/ H: @5 i' ]' c, Y$ D4 B! y if (grain-ahead > best-amount)
# Z& E& [9 ^3 O* U/ U, B [ set best-direction 180
. X8 s( V* F E, U O' ? set best-amount grain-ahead ]
4 A3 p5 _' b7 q) q% F set heading 2703 w9 E. ~6 K I( H2 {. L
if (grain-ahead > best-amount)
# d4 e" d4 a' E( a+ i7 N+ ~9 i1 d [ set best-direction 2707 C! r0 [- t a4 U' f
set best-amount grain-ahead ]
0 b$ s& w y/ O8 C! ^! v set heading best-direction
0 _5 D. f* j+ f* q( U% b% y% Y- Yend
3 b' x0 J# F# {0 `
. Z' s2 [7 }; ?2 N: f C
. a6 u1 I9 ]* ]# Pto-report grain-ahead 3 V+ ?# K6 y5 O' Y4 C
let total 09 |$ P) v2 U$ I' ~ d x ]" G6 ^
let how-far 16 Q# L$ U: p# A, X; Z0 B9 Q: t2 @ G, V
repeat vision
! Z& b3 K# H7 h1 Q0 p$ ~8 `0 M [ set total total + [grain-here] of patch-ahead how-far
9 T) r9 i. [4 G set how-far how-far + 1 ]- {, p$ A0 D- b
report total0 S; O- X* W* a7 v5 i3 I- [3 r" W5 F
end
# S) k8 Q0 E0 V* o: @! s" T( ^! I8 A3 V8 O; ^* Y8 O
to grow-grain . k7 k8 `/ o; b* p4 m1 {' o7 V
if (grain-here < max-grain-here)0 X L) r' z' i0 }& I# u5 a: y
[ set grain-here grain-here + num-grain-grown
4 \3 `8 x# a: _ if (grain-here > max-grain-here) 4 C6 ~* X5 H j, I
[ set grain-here max-grain-here ]
0 g7 T7 f: I6 b Y3 Y9 @ recolor-patch ]
/ K p- |7 O6 ]7 z7 uend
+ w H6 Q4 u7 ?to harvest/ L2 W2 n% M) N8 G# [
ask turtles; F3 J$ ^% U5 l* z" Y
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
2 A V" @6 q; y# s5 a ask turtles' t' @7 ]: Y5 U$ {! P8 ?$ c
[ set grain-here 0. a4 t- L* O4 M) d3 H; ~9 T
recolor-patch ]/ [3 w4 N$ |9 A$ w8 F3 C. F
6 y/ C! {, M$ @2 eend
4 W! I$ d( E# O! M8 Q2 t) ]/ w' J
to move-eat-age-die 8 [9 X2 E I" u3 K& I- x# m9 G
fd 1; o) M: w4 O9 @% x4 `
set wealth (wealth - metabolism)
{, C/ F9 T0 {9 c1 D$ z, I set age (age + 1)
: P4 x6 G# C9 H5 r( X if (age >= life-expectancy)
5 e' z4 ?- [/ Z4 R2 R& H [ set-initial-turtle-vars-age ]# c1 ]% X* R: c
if (wealth < 0)
* D2 d2 Z# m B" v; g [ set-initial-turtle-vars-wealth ]
/ v7 P6 o, Z" W/ Z: {* Y
7 ]. s0 c& R6 tend' e- Z' e# o4 d- T& F9 | R
5 }4 v7 V6 P7 c* e5 }4 d' _" `0 ~5 A( p, @( e2 e1 g' a# o
to setup-plots( X" L% ~: d: k2 Y0 k0 g
set-current-plot "Class Plot" N& Y" ], {, J% R/ {5 I. T9 x1 Y: j
set-plot-y-range 0 num-people
: _0 Y2 D/ Y4 m% D7 |7 ]" h set-current-plot "Class Histogram"9 W8 h7 \ B1 A- E3 j
set-plot-y-range 0 num-people
3 C9 p' J' F' n2 V% hend% m3 i0 u: i" p1 m1 W5 E9 ^
: l6 t7 p# v. r2 d
to update-plots, x4 H* ?8 `( b3 [
update-class-plot
2 f, p4 J( D! j5 c+ y update-class-histogram4 T' M" t. U3 [( c$ }. g# j
update-lorenz-and-gini-plots
& v. N) Y; R1 B: v) Mend( t& `, U& q2 u2 j
+ u. l9 l5 d7 h5 f2 ^& F1 c5 lto update-class-plot" a4 H+ y' ]0 n m3 F9 ~# O
set-current-plot "Class Plot"- P0 z, B+ }# p( A
set-current-plot-pen "low"
P1 B x( U- d ?/ c1 C' u5 ]- s plot count turtles with [color = red]; C" ?+ j- \$ _) P: ?3 v
set-current-plot-pen "mid"
" m2 ?# \6 E# c9 H3 m; C( q! _ plot count turtles with [color = yellow]+ |' b& ?1 z4 a1 }7 I8 C
set-current-plot-pen "up"3 e- |, J# [, i; m7 A1 K
plot count turtles with [color = green]
6 T4 _" W1 r6 t' x, t1 cend' F: y5 g9 j/ l A- a# z
/ l, E$ w* Z7 @
to update-class-histogram4 r/ Y8 P0 y) z
set-current-plot "Class Histogram"- L9 y* f! {! A9 b7 a( b- k& p
plot-pen-reset9 k7 j! {8 h7 J8 Z6 l/ T0 q
set-plot-pen-color red! P' ]9 z* Q: V8 B/ H3 e! P
plot count turtles with [color = red]
5 i+ y* t8 C/ i9 b! H set-plot-pen-color yellow: f0 u. q) m" W- A+ `- t6 V+ [1 J
plot count turtles with [color = yellow]+ B0 g7 s! ]8 t3 ~( j
set-plot-pen-color green
3 @: \ L5 o% \ plot count turtles with [color = green]
" |4 K: A! J7 Yend7 k4 s' _" A5 N( j0 z& W
to update-lorenz-and-gini-plots% s4 E% c! P0 \* F3 J# P4 s
set-current-plot "Lorenz Curve"
# B' U- ^3 J' z7 R$ @ \ clear-plot1 y+ N" g, _- {- G/ R0 n
. Q6 b8 V6 b! d. |) O/ d0 o set-current-plot-pen "equal"
, J7 h5 e+ w0 E! c% H+ e plot 0# |( F- ^0 n+ E5 _& N+ h8 Z
plot 1001 S6 p8 y9 C8 U% J- m" ?2 G# D) J
w* u7 I6 A/ R1 h
set-current-plot-pen "lorenz"
& b) t/ u" h# l! I r set-plot-pen-interval 100 / num-people
& l) ]! s3 t" }" o" a plot 0
- A/ ~4 I1 Q; u6 Z* P: ~, J3 `6 X% I2 |3 o: V
let sorted-wealths sort [wealth] of turtles
9 ^4 g" g4 X2 R9 ]* u$ _+ f let total-wealth sum sorted-wealths
9 W8 ?2 P$ Z8 Y1 { let wealth-sum-so-far 01 f: t- b5 f, D X$ v& A
let index 0" N) u( z% K5 j- L8 ]
let gini-index-reserve 0: a6 O3 j( _9 b6 ~
- D. k, s9 A) |) o repeat num-people [
% u5 k3 T! M3 @* w. c7 U2 R set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% m1 M9 }8 M7 Z: x$ Y* p P9 x- J: p
plot (wealth-sum-so-far / total-wealth) * 100; C; j7 A1 n5 l% ]) Y( R
set index (index + 1)) J; I8 W* M1 L7 r% a
set gini-index-reserve
' K: |$ D* q8 H. Q$ p$ f& M gini-index-reserve +
) u+ }( x3 B6 b) K) M- b- K4 B (index / num-people) -
o. Y r7 g+ k0 L- ] (wealth-sum-so-far / total-wealth)4 g2 q/ Z1 x1 a! O0 ~
]5 c6 k4 Z+ b" }' U3 o
: X# V* A- k! K. d) w5 w2 F3 L
set-current-plot "Gini-Index v. Time", I/ S" S% Y. _# A6 ^7 y9 W) f; J
plot (gini-index-reserve / num-people) / area-of-equality-triangle
* F* F6 k% v. q. P- o, @end
# Y `: z: n5 w% K: W Vto-report area-of-equality-triangle
. C; H$ P# O/ `9 w' s report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! q3 u* Z# L6 F! A2 z
end |