请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
3 W' f$ @1 V. L8 tglobals) g5 w+ [2 G' k3 `
[
3 q" x$ Y$ F9 e5 r max-grain
& ^' ?( A6 {( L, _8 i8 r1 @7 z0 O
4 V, V$ l4 E/ w, B]
! H$ q" g# a; M! o, H# p* _( l; k5 g* K- Y% ]9 S$ l
patches-own
8 ?& Q& |# L7 i' d$ b; e, X6 w[% j" Y& o( V5 V0 N1 s( O8 K$ S
grain-here ) U8 V4 L# }8 E0 q+ F
max-grain-here 4 e+ n) v$ e0 K) O3 F
]2 M7 c; f1 U' z! u2 w; _" {
j$ v7 E! l3 D
turtles-own* a4 t6 \0 w$ q+ _4 R& w8 M- E
[
, l9 C5 z5 A; f2 H age 0 Y+ M: d* L) T0 b
wealth 6 w: R) r* @4 a
life-expectancy " G, p2 p/ v7 U; ]- L6 q U' T
metabolism 6 p' {% [. C' e% r" Y, D* i5 x
vision& s' B, j4 v4 z* x3 [1 F
inherited
/ }) c0 T" c9 O0 v9 ? l: P]
/ F+ s3 N; M3 C, s# p" Z, W, u9 a ?% n8 D+ p% G) N# V
+ ], G) j& E- y% s
to setup2 K, i0 F6 S0 _; q5 k E7 C
ca Q8 \& {- J( Y! Q" |4 h
set max-grain 50, s3 F/ b2 j: t( s7 b
setup-patches) h) a! ]7 U( n3 _$ y
setup-turtles
! w5 j8 R& H# q- R2 S* o setup-plots; o# ]6 Y' _- m; N6 X5 T
update-plots
- H1 K9 h. H/ n# Wend2 ^/ h4 o3 L+ O7 Y; v
to setup-patches4 _/ o! o; H4 a% R. `; _5 G" w
ask patches
5 S. Q1 l0 T& R- ], E [ set max-grain-here 09 _, ?, e. W$ e+ \8 M' ^
if (random-float 100.0) <= percent-best-land0 d5 P( _( G* B
[ set max-grain-here max-grain
6 o1 T, h* W K3 f2 K `+ A, E$ t set grain-here max-grain-here ] ]9 Z+ r( o7 G7 E( b. X3 h
repeat 5! j* M% k/ B4 r2 f7 h P
[ ask patches with [max-grain-here != 0]
* ], w9 f! }0 e/ Q# j [ set grain-here max-grain-here ] E5 ^3 o$ l* E' g+ N$ E9 ?
diffuse grain-here 0.5 ]
5 k% b% U; c: c. Q repeat 10! A3 ]% n8 m; d: E' W& I- F
[ diffuse grain-here 0.5]
! e- r+ c: c" [$ Y% E. w" v ask patches4 K1 d7 N9 L0 p' L c# f# V
[ set grain-here floor grain-here ( k+ V; ~! I. q( e" P2 d$ U/ y
set max-grain-here grain-here ' U- {. j" {0 s0 H& d
recolor-patch ]/ z1 a% j3 K' u0 x' j* A4 ~+ @( B
end% L2 J2 S) _: e: c) `; y" S
to recolor-patch
1 K- m' n3 A+ C/ Y! ~ set pcolor scale-color sky grain-here 0 max-grain
4 Q( N" X" b+ V+ d' w# @( H# dend
1 ?& t2 o% g. m5 }8 ?2 Kto setup-turtles
3 S% u) k1 C2 Z4 A set-default-shape turtles "person"
. X0 y ~3 V6 D crt num-people& G, P* @- s4 P; Y$ ?* B! R, X% x
[ move-to one-of patches ' ^! t( y) ]" ~3 j& k/ d) `
set size 1.5
/ t4 f7 U7 ~/ X0 F b; K8 L- C7 i set-initial-turtle-vars-age9 c6 H' R# C2 @
set-initial-turtle-vars-wealth
4 E* L* k4 S J; y% A4 K set age random life-expectancy ]
0 ?/ a) w) A2 j recolor-turtles9 a+ n5 s0 A( ]/ }
end- g6 \1 U; h/ U: U: }7 G3 B: b! T
* U Z# t# j r5 k& pto set-initial-turtle-vars-age
( z2 _0 g' f$ f2 B0 v% X let max-wealth max [wealth] of turtles' g) L3 ^% z0 u8 d/ D4 j
' p+ _1 t, I4 b' y4 h ifelse (wealth <= max-wealth / 3)% m* A1 h* e \% n) M6 I" k
[ set color red ! Y/ H5 | b# ~1 v2 ?- j
set age 0
- R$ n; L; w/ s8 y5 O- h9 E face one-of neighbors4
+ f/ s9 v* `6 @" o) G set life-expectancy life-expectancy-min +
; W+ h. ]' [; V' F! P- \# }5 w random life-expectancy-max # J+ E) g& E/ `& f0 ^
set metabolism random 1 + metabolism-low
9 `* h" I/ y) g4 d: }; f2 ]9 i$ l set wealth metabolism + random 30
m: t k. x$ U set vision 1 + random max-vision
/ j4 u$ G8 |4 j set wealth wealth + Wealth-inherited-low ]' |6 ]& b9 E* T. U
[ ifelse (wealth <= (max-wealth * 2 / 3))
; t' f( q. y; h7 \7 @) p% t$ ` [ set color yellow
/ D* n! C* N' Z3 y" g! m set age 0
" r- v: c" e) c1 [ face one-of neighbors4 ) r8 i r3 H# J& F
set life-expectancy life-expectancy-min +
4 e, n1 l/ \& b$ H( y9 X random life-expectancy-max + 1
& {& Q6 p* J C& M2 }1 N set metabolism 1 + random metabolism-mid: u( b. [& l4 T! w
set wealth metabolism + random 30& O. z) T5 F1 v& `
set vision 3 + random max-vision; m( r7 x( Q0 e
set wealth wealth + Wealth-inherited-mid]
5 {: t) E! I9 ^( i' V6 Q! J$ F7 } [ set color green ) r' I' V, X5 O6 D N, G! Z0 c! R
set age 0
- H% {% Z) L6 M* C$ _ face one-of neighbors4
6 O% g6 w+ o& b+ H8 p# i! w set life-expectancy life-expectancy-min +$ q% i5 k9 T, b
random life-expectancy-max + 23 g i5 \; J% d+ }; R7 Q7 W
set metabolism 2 + random metabolism-up4 ^8 R6 O! h' h0 r& a
set wealth metabolism + random 30
. g6 q' q6 t; B7 O# j set vision 3 + random max-vision
0 |" U' o K4 w, e# p$ U set wealth wealth + Wealth-inherited-up ] ] - q0 |, c' ]0 b0 d6 p7 ]
b9 s7 W# A p
end$ w) A* j, V% w2 I
to set-initial-turtle-vars-wealth
! G+ k3 t7 ~- P8 Q- R let max-wealth max [wealth] of turtles
8 V" ~/ J& u& B$ C6 S2 P+ ], t set age 0
; `: |5 F2 @) b. i face one-of neighbors4
3 ~# _( m2 f; d9 N- q7 W set life-expectancy life-expectancy-min +
, _5 N' l! i0 G4 j1 D% {) q random life-expectancy-max
6 ^6 q! v+ E. e3 I set metabolism 1 + random metabolism-up
2 Z9 L3 t# n i Y* y5 p set wealth metabolism + random 30
8 [4 _$ K9 j6 \( ^/ e8 X set vision 1 + random max-vision
4 n) O0 z2 c) c8 d5 c% K5 Bend
- Q9 ]6 D" E) k5 U$ E/ n% Gto redistribution
6 q0 ^' G; J2 \( h3 D5 y) Y4 e5 tlet max-wealth max [wealth] of turtles
6 x) X8 T( {+ ]# Y9 o6 Nlet min-wealth min [wealth] of turtles* h5 T1 D3 m8 C
if (wealth <= max-wealth / 3)0 }4 I, r8 v9 N5 o$ i
[set wealth wealth + Low-income-protection ]$ k7 {( S$ w2 W2 S8 }$ E0 P
end
- V. }/ }: `6 f : O6 a4 f% V9 P# z. x' d
to recolor-turtles
8 s; A; l2 B" b2 R2 y" I: [ let max-wealth max [wealth] of turtles
- B/ K" q$ e2 W' _ ask turtles
. V7 Z3 U; v" h [ ifelse (wealth <= max-wealth / 3)( A( o2 q2 ]% u: ^9 |$ ?5 ]
[ set color red ]
, c8 K+ c) J2 E3 {" F1 S [ ifelse (wealth <= (max-wealth * 2 / 3))& Q* y) B9 @$ ]! j; n: Z8 d: L
[ set color yellow ]- g3 z0 @$ }9 p5 w! G
[ set color green ] ] ]& Z9 g4 x# C) H( p% q( o
ask turtles [ifelse show-wealth?
5 ]" X, I; J( n- y$ Q0 g [ set label wealth ]' q9 e/ O( w' W; ^. H
[ set label "" ]]4 j" p2 @3 W: t) Z3 y6 o, }7 Y
end
& N E. H8 d3 n( n$ O: b |6 k2 L0 p: U: m3 J7 @$ t: j
to go( W/ Z& j" D6 O
ask turtles
2 o* ~8 ]% e" b' J0 d) r m [ turn-towards-grain ] 6 i I* r: j! {" R, X
harvest* c6 g% q! y; [/ Z" \" W
ask turtles/ v6 e- f* u9 P2 C) y+ I& ^
[ move-eat-age-die ]) Y6 F0 I" m" }( A
recolor-turtles
* X7 s% t a9 Y: S& m8 |3 S. v if ticks mod grain-growth-interval = 01 ]! w$ k/ ? o* J X2 E
[ ask patches [ grow-grain ] ]1 G2 G( R c( L+ G0 r( ?: D9 B
: i9 o' x; K* G( ~- Y
if ticks mod 11 = 0& S& C4 a9 O& x5 s
[ask turtles
: ]$ B- A( R1 B [ redistribution ]]
8 Q1 ?' F W, J' K9 H3 y if ticks mod 5 = 02 @) D( y( k6 f. |+ ?" `
[ask turtles; T- `9 |0 h; ~9 M
[ visions ]]
+ R# p) R1 E! }2 I( F tick+ p5 E( b3 A6 F! w }4 L% U
update-plots
: p* {/ r K1 ?end
7 m3 }2 e! V8 U: ?4 e- d t' P: I; wto visions
$ l3 T8 {6 C h7 H( Y1 q% R% P7 ^ set vision vision + 1 5 O, @5 p! u8 k0 j m! {8 [6 _" w) [
end+ Q% D9 l- H- i$ Y( H0 }- y$ v
/ V' n4 S6 z7 o- D4 Y- Y, I% a( u- ~ A
: g/ z" Y9 n1 H9 m. y& r. @, Lto turn-towards-grain
! u: D* E& r! W: |7 p set heading 0' ]* B& o$ @8 d
let best-direction 0% ?2 t2 O( ]8 S; Z! t& E6 }$ N4 J
let best-amount grain-ahead
/ r# r/ [+ Q5 @ set heading 90
$ E) ~! {8 X9 ] if (grain-ahead > best-amount)
% p4 e% ?7 D$ Q; Z [ set best-direction 90" z! ~5 l, n$ R/ F: |
set best-amount grain-ahead ]3 |" ^- U+ ~7 c* `$ G# m
set heading 180
' `; z1 o5 w/ V" Y$ k if (grain-ahead > best-amount)
8 o7 I9 P" _. {7 f% h* t [ set best-direction 180
3 [7 j9 T" L- G4 N/ R set best-amount grain-ahead ]
4 q: u% q$ n8 ^2 p1 W+ i; |' s set heading 270
# Q, A4 P* M$ W* O7 N# F if (grain-ahead > best-amount)
5 K& a9 M5 J* K+ j0 a* ^ [ set best-direction 2700 c# ^5 P# s% ~% B
set best-amount grain-ahead ]/ K* a' c, L. X- n+ M
set heading best-direction
3 P- i, q' l! H) d! ?9 pend. q3 N* E! B1 t& p/ i
" d/ q0 M; E! v4 m# V- e7 J
# @. P! M) t# f
to-report grain-ahead
4 F2 C% ^; l+ z( n/ m3 ]+ g. K let total 0
4 p8 J5 R* ]7 c let how-far 1: K, s" X8 n; ?% k3 f+ R4 t' h9 h0 M
repeat vision' `( B/ E7 j& Y, K
[ set total total + [grain-here] of patch-ahead how-far+ T4 Q4 G+ S$ Q6 U
set how-far how-far + 1 ]. u$ X( W% ~# G! [. T4 ~
report total, L' W6 Q3 C j1 H: I# V
end' K$ m% ~# ~0 a/ ~! ]1 F$ l% s
, }& R m9 L9 H8 l: s6 |to grow-grain 2 a1 t4 @) }6 X) w* O. ^
if (grain-here < max-grain-here)" Q" \; f: y% o# z- K+ _* V
[ set grain-here grain-here + num-grain-grown: X( e" D" K. Z
if (grain-here > max-grain-here)
, }5 u$ c. l3 L! `$ n1 } [ set grain-here max-grain-here ]$ H: s' p" u; C5 j- q3 I6 k
recolor-patch ]( E3 w: E6 C$ A" f: V5 S" w
end+ L$ |+ l; y: [$ Y% W
to harvest
: e" l( {8 u5 x7 ` ask turtles- p- R5 _) _) @9 |& v5 e5 ?
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]6 C. _0 \5 n) _+ n7 O( o! X
ask turtles& E1 z G. T1 X
[ set grain-here 0
m& ~$ l. ]5 l9 W8 @- t recolor-patch ]
; ]" h `( N8 p0 l' i9 g/ G $ O; b+ v0 s+ m# F( ]
end6 g7 S* X0 ]7 Z: n
: T* e9 j1 X# U. @
to move-eat-age-die
) n& ~) N6 V8 |$ Y* } fd 1
C( x- k2 E& x9 f7 r: t# ?1 z set wealth (wealth - metabolism), B7 i; x; s, P' v7 M4 P
set age (age + 1)% ?9 U* b2 }6 {# | `2 X ?, z( V
if (age >= life-expectancy); Y# u- {1 ^# P$ m
[ set-initial-turtle-vars-age ]1 g; \" [) v; h% D% a4 o
if (wealth < 0)6 j6 M# i- ?' O6 p( z
[ set-initial-turtle-vars-wealth ]0 j; |) E7 P4 h
' j9 \" Y6 {( J
end
& ^2 x3 F& p# P( l* s; k4 L/ V) o' F( w" W
1 R, ~' |/ w; Z% X% Nto setup-plots* Z2 f* e+ J% l" r+ f4 l
set-current-plot "Class Plot"
' l8 c% _% j! V set-plot-y-range 0 num-people5 H5 X& Q. h8 J3 _" C1 n9 W; V
set-current-plot "Class Histogram"2 ? {% @0 i7 s& ]
set-plot-y-range 0 num-people8 o0 @, T/ {" R1 b; h' V
end
* w5 b* K! s4 I7 u e& o, m; ` U) A% ~, R+ z/ y
to update-plots# p# _2 Y; X3 K, R0 X, r
update-class-plot
. Q9 h; l7 O+ L6 e0 w update-class-histogram
$ E5 _! w6 ?: u6 _; N6 j' F- H* Y% R update-lorenz-and-gini-plots
* X% p1 _6 z! Y3 oend
3 `$ Z9 h) u) x- q2 U/ d0 W2 v0 A; u) M. m1 F
to update-class-plot. }; {! p' s0 H" d5 `
set-current-plot "Class Plot"
4 N) Q( `) F- A: y set-current-plot-pen "low"' a/ `' @9 D- K; f" f
plot count turtles with [color = red]" q2 D# O# k; E% x8 v3 e5 d' r
set-current-plot-pen "mid"
2 a4 P# h: }& \7 _) S; c plot count turtles with [color = yellow]
# i Y- {3 j: h; W: ]8 [, u: Q set-current-plot-pen "up"
# E8 R$ U c4 L9 ~4 O( w+ W& L/ v plot count turtles with [color = green]! x: z) B- K* D2 F5 [
end
: g5 d- u% }4 g J; ^9 o, i* }: D: ]' B
6 g a4 p! e" D1 i; zto update-class-histogram
8 z8 `9 ~1 h. G- J1 F9 w set-current-plot "Class Histogram"
: S9 X$ [; H. K% T. R5 J! T plot-pen-reset2 w5 `$ ^ k% v V1 { Z4 m
set-plot-pen-color red& ^) t z4 ]; B3 I2 j* z& f
plot count turtles with [color = red]) P. [# N6 q( N( F) L
set-plot-pen-color yellow) H- R. k$ L& L ]& }. D; q, [
plot count turtles with [color = yellow]/ f, q% |7 \/ g( C* m: Y2 E
set-plot-pen-color green
- f2 M2 R: L+ ?8 H5 E: w: C plot count turtles with [color = green]" {0 S8 Z) h1 R
end
1 s; F, c% H" s& O& J8 _1 Kto update-lorenz-and-gini-plots
1 x8 Z W4 v. a8 a( d set-current-plot "Lorenz Curve"" c. a/ E# k5 { S, J
clear-plot
& Q, k" X' z4 ~& r: U; {+ X! Q2 ]
) _3 v' E3 ]) W2 n* B. ` set-current-plot-pen "equal"
" ~: {+ k+ e; i3 w- T# M# X$ G plot 0
" c" C2 d5 P$ j, X* i. E! ?( I plot 100
8 a, K' N: S z( N' L" [; [
5 }4 S- M8 t# G0 u0 D* M( f* [ set-current-plot-pen "lorenz"
5 [. H( e3 ]* n( g8 y1 x% G set-plot-pen-interval 100 / num-people
) s! _8 L$ r6 W$ ^7 e9 K plot 01 b0 J5 c, M, r" |) T
9 d2 S7 Q, C+ R [; C* X
let sorted-wealths sort [wealth] of turtles
( A, ~( B5 C3 `, x let total-wealth sum sorted-wealths5 E# q+ r4 x; b" N( H8 e. Q
let wealth-sum-so-far 0
: A5 g( z- E2 S5 D let index 0
* p1 j1 G# C: h- ^$ f- o7 m: P let gini-index-reserve 09 P+ m# {$ V" z: B/ W
: h* j! T/ k/ ^# P: \
repeat num-people [
1 U5 [! }, T1 U) F% p" R9 {, x set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 F6 V( {( L5 i
plot (wealth-sum-so-far / total-wealth) * 100
: {' ~" w) m8 {! }7 k set index (index + 1)
) H0 Q Q0 a1 h* {- W set gini-index-reserve
9 N4 R6 E/ w$ v gini-index-reserve +5 ~5 [9 ?5 ^- i! }3 Y$ F
(index / num-people) -
9 T4 y' ^6 R* K9 a) j& G (wealth-sum-so-far / total-wealth)
% J$ j4 N/ j7 T3 ^* w ]8 X: ?0 w$ {; G+ N; B# T$ l
0 L/ k; ~+ C8 P
set-current-plot "Gini-Index v. Time"
. b, z$ ]1 W, F! Z plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 A7 ]9 c* _3 Z+ }9 k8 Oend
: Z/ S, h9 ^% ^/ E2 P# x2 T& L1 H- ~to-report area-of-equality-triangle0 ^' ?( K H# \- k# D
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)2 d. L/ S E/ z* P; }0 g2 F
end |