请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
6 B* v( l/ o# |( Kglobals
4 l2 v: ]% `; Q: Y2 h- {" _# H9 c[
/ f6 o( Z# D, K8 S- ^ max-grain ! P: k6 P/ D+ c* o
+ I8 w# V% @) J& t
]( R8 X8 e( B5 |9 k/ i
) w& p Q: A, }6 k
patches-own! P+ ?* M# L" k% [( p, U8 S
[& X- \ R' r* c# C& \2 J& p
grain-here
3 P: d- f! a/ P" } max-grain-here & H- M1 I. U U# q" a* L# A6 c
]+ f3 x7 _4 g- z
' \% L4 Y: R) G3 v5 l- W4 q: l3 aturtles-own
" C/ I3 }7 w. Q3 h% T[; ? w& C9 |% Y) t
age - x6 G( N( i- x
wealth 2 ]7 J+ R3 f, t) l1 x
life-expectancy
( I1 ?- ?; s; [# q) g metabolism
, A9 C) y E' q/ |4 d" G: m vision
; v9 @& n2 o$ D3 _& U4 o# } inherited
8 e" U% P }4 N& X6 J3 v+ B0 B]1 i8 N4 U1 c+ ]* p; ~: N: A
# N+ X$ g/ Y" b( r! f) e! [
% O; t5 m: P8 m! y
to setup; q& ~7 G% K. I' F, ^3 `
ca- m: R6 R" G. _/ y* n7 R
set max-grain 50
; N% L( M7 x# {1 Q4 G. W setup-patches
% N, e6 n* N% F5 d setup-turtles
. c- ~( Y+ y" c! M" ~: P setup-plots, b! [4 {, {7 T: V
update-plots& k7 [- E2 L L- J
end
: t u: T1 E' L2 s! K1 uto setup-patches
6 K$ q6 n, P2 y2 i& D6 w1 o0 z ask patches
" l& ^8 P- G) x1 r' u [ set max-grain-here 0
& {# K7 S$ J) O Z) w5 B7 a if (random-float 100.0) <= percent-best-land0 X7 X( W* G) i
[ set max-grain-here max-grain( `# G9 g% ^6 k/ q q
set grain-here max-grain-here ] ]( [- v) i+ {, G, c
repeat 5+ m: {2 v( T" {4 p
[ ask patches with [max-grain-here != 0]5 ]* a4 Q0 q0 s3 x+ P# v: f
[ set grain-here max-grain-here ]
" z0 b& d7 H8 V diffuse grain-here 0.5 ]0 M; ^9 A3 }: \
repeat 10
9 U7 d9 w) S) p, G d: e [ diffuse grain-here 0.5]
7 `! k2 Y" u) }+ F3 E- O' @5 l ask patches
* F( v5 Y, e- P [ set grain-here floor grain-here 4 g4 R9 J$ D9 u Q* m5 i8 z
set max-grain-here grain-here
( _# b( T5 [+ C6 N6 |8 f4 I4 f recolor-patch ]
% j8 Q7 c% T$ @$ Q& mend
2 Q3 n/ u k4 K/ a; S& Eto recolor-patch
9 F* L% }, w3 f: f- @: v6 H4 F set pcolor scale-color sky grain-here 0 max-grain
1 x4 f$ u0 }3 I, I5 ^0 Gend! _; K; K0 w8 n, E2 F5 }
to setup-turtles% F0 i. `2 u- T7 ?$ k& _$ s0 [" M" t
set-default-shape turtles "person"
' K- g# f6 @; U6 i- s- W# v crt num-people5 Q2 B# t" b" K6 ^
[ move-to one-of patches
* {9 E2 C9 Q/ [. T set size 1.5 6 Q& _, d; Y- r( K. Z! H9 Z' j
set-initial-turtle-vars-age4 G3 V8 J# d# O( m
set-initial-turtle-vars-wealth9 n' s: e5 [0 \2 q
set age random life-expectancy ]0 }; l( D+ T5 t9 b2 [9 G
recolor-turtles ~+ v/ o: }! a. K5 w. Y/ @7 c3 M9 o
end
) }% Q2 z% e5 p( I& V* P: ^ w% m: }* K% C
to set-initial-turtle-vars-age
1 e" ^: x5 v; @" ^+ M! q6 { let max-wealth max [wealth] of turtles* h; F8 J( q8 h, C
; U- D& P+ m& X( _" Z6 G ifelse (wealth <= max-wealth / 3)
. a2 Q" ~# ?1 y& V+ G8 X; X3 ^) a [ set color red , p+ X Z. j4 J; Y' {7 n
set age 0% K0 q- W8 q" h5 M2 c5 p
face one-of neighbors4 / b1 w: R' N: E- k
set life-expectancy life-expectancy-min +
$ W2 W# Q% i0 F7 j random life-expectancy-max
6 V, F# J4 e. i8 a, V set metabolism random 1 + metabolism-low9 K" w' s3 z5 W5 Z& k Q! w
set wealth metabolism + random 30# q; Y F6 V" G
set vision 1 + random max-vision" E: D* w8 |/ \5 v& r: ]
set wealth wealth + Wealth-inherited-low ]
8 U2 Q% n" i6 O: D. ? [ ifelse (wealth <= (max-wealth * 2 / 3))1 n1 P9 A0 [6 b% H) `: a, V
[ set color yellow
- j: W1 ^0 u) f$ X7 N+ n set age 0" k) t, a& E6 L# l9 {9 V
face one-of neighbors4 " i# g2 }9 s+ c1 e! o. v
set life-expectancy life-expectancy-min +3 [- e" Z" p: `) F5 e" S: ]
random life-expectancy-max + 1
5 I- t. U7 G Z! V set metabolism 1 + random metabolism-mid5 _ L0 r0 d3 _2 L
set wealth metabolism + random 30
$ d) ^+ \& C( Z4 q' X j/ h set vision 3 + random max-vision) `( I- y3 C( K/ E D. @
set wealth wealth + Wealth-inherited-mid]+ Z7 H/ c' ]9 D
[ set color green
& ]5 C. p! h6 U! Y3 A0 u set age 0
6 ]3 x+ P7 W" g face one-of neighbors4 , q' }% r' \9 l- }; i& h# ?+ N
set life-expectancy life-expectancy-min +
: u1 j0 Q2 k' e$ Y2 E6 [) O random life-expectancy-max + 23 [" M6 P6 q5 B: R5 V) B- M
set metabolism 2 + random metabolism-up
' o4 W v x M2 G& J. S set wealth metabolism + random 30. W# c- k! `- ~0 e
set vision 3 + random max-vision( H1 U1 \, |& R% k
set wealth wealth + Wealth-inherited-up ] ] 1 R" Y f; A- U. R1 v9 G) z
0 D+ Q7 f. m, O Y0 t& o: y7 L1 Iend
7 Z7 V* A( Q: f7 G2 w$ Qto set-initial-turtle-vars-wealth+ T% \) c, Q: ], r9 q/ A( h5 n
let max-wealth max [wealth] of turtles
: J7 F7 m, c( k set age 07 y7 x" e Z$ l* O6 l, a
face one-of neighbors4 / }& Q7 f3 i' P5 h+ _! W$ M( z
set life-expectancy life-expectancy-min +
; M0 y( [3 H# `1 q f& ? random life-expectancy-max 4 n7 a2 k( L3 l. _
set metabolism 1 + random metabolism-up
, N6 p+ C& U) D i set wealth metabolism + random 30
, ?; J8 f k# j3 l set vision 1 + random max-vision
$ [+ ~; q* a/ H( nend' |7 \6 H5 c' m/ R1 j
to redistribution6 o9 e- C; ]' e( _) B& r
let max-wealth max [wealth] of turtles
) j8 Q( n/ ]* d; \6 T) llet min-wealth min [wealth] of turtles: U2 O- h' e' r
if (wealth <= max-wealth / 3)
3 u8 u: D7 S- s- ~* }% x# s/ A [set wealth wealth + Low-income-protection ]
% s3 U% h) O" u) K2 Lend& |4 m X1 e4 Y0 f' b* @
* f% Z. ?0 I4 v7 W$ u
to recolor-turtles
1 m, Z5 N4 v+ J6 n, A# _9 P7 a let max-wealth max [wealth] of turtles6 N4 w3 R$ a3 b9 S5 G
ask turtles
& o! K/ s1 V# h. c [ ifelse (wealth <= max-wealth / 3)) U# v) B. L; j# ~
[ set color red ]
. L" M6 v" x5 ^. x' c; [! k [ ifelse (wealth <= (max-wealth * 2 / 3))3 @" y0 l0 D Y2 `+ k
[ set color yellow ]
4 g7 Q; W' e v( L( ^! L) }* t [ set color green ] ] ]$ S5 j8 b# e1 W; a2 d0 x
ask turtles [ifelse show-wealth?
# m; g, m( @, ~8 W [ set label wealth ]: n; d* y* `8 ^- B5 s
[ set label "" ]]0 ?9 Q! _& h, `8 z0 p
end
6 _2 ~( M% W& f: [4 R; e/ H4 G- l& A: v
to go! P( A. r5 o- J! L- K7 c
ask turtles) n" q4 H: E( U0 J. M+ i
[ turn-towards-grain ]
- Q9 T6 ~ i: O; _2 B; _) H. s harvest9 f" R) _5 ^7 f/ G( ?$ ^: o
ask turtles0 R3 A6 ]. k* K; s5 P8 {
[ move-eat-age-die ]/ Z" ~' ?- b& _) f! } l% c
recolor-turtles
" u* k% D/ T, c$ A if ticks mod grain-growth-interval = 0
# J, N5 ~- g' e0 }" x% K0 r# j$ E% V5 D+ g [ ask patches [ grow-grain ] ]2 D! Q; }1 Z+ z4 w* o
6 L! F8 O+ Y& D" k' S
if ticks mod 11 = 0+ P0 T* o7 \6 }/ r
[ask turtles: \$ w3 X2 Z0 w& B5 s% }7 b
[ redistribution ]]
+ S6 f% U, c$ r2 Q; k if ticks mod 5 = 09 s, Z7 Q- T4 E7 A, b" L7 L+ C! K
[ask turtles$ Q& ~2 L6 [" r
[ visions ]]
3 d: S+ M: D d" G* q tick
; W h3 k* U5 P! ]! ? update-plots Q0 f: ?5 Y2 S3 c; K; p
end5 e: p6 z4 {5 f; U7 P2 z" k
to visions0 z. c5 Y6 R; U
set vision vision + 1 6 \! j, l5 i; j" p/ [8 l
end: Q. d. z% M# g: t: L: i
' E( ]. P" V2 j M1 C) Q" |# B
8 j, k) f' D) a) w5 {8 {* l! \& J4 E' Z9 n$ X3 Z% I, P+ J' m
to turn-towards-grain 0 I6 g9 ~# I8 O5 p7 s8 T, u
set heading 0
* a7 m+ i# D: n; X$ \ let best-direction 00 R+ Q: F4 m9 Z
let best-amount grain-ahead
( R! D4 A1 j0 _! L0 m$ C set heading 90
9 E+ _" ?" g7 w# V$ I/ a if (grain-ahead > best-amount), z$ } b( ]% @, [7 ]
[ set best-direction 90
! x$ |6 P8 g, |0 P) K) q- b set best-amount grain-ahead ]
* T9 R* g+ _9 f% i, T set heading 180
1 y- L/ J8 z( t- X0 ^1 [4 B" ^ if (grain-ahead > best-amount)' m! T: j$ Y4 Y- T/ A
[ set best-direction 180( ^1 v) P: P( _+ c! `8 C+ A+ B
set best-amount grain-ahead ]% h1 D$ p i8 p! O$ \5 {7 Y" s
set heading 270
G6 {2 h2 m' _. ~ if (grain-ahead > best-amount): ^( \& o8 r1 z* D0 \
[ set best-direction 2708 J/ i) o' w3 A% m, B# {. _0 X |6 a
set best-amount grain-ahead ]
7 K+ \* M" |; G* L3 P set heading best-direction% s9 u' Y& M# D! c4 V
end
: Z* N, @- }+ O4 Q$ q% |* b& M1 B- u! A4 a+ v) o
5 t* f# F' t* J4 a! d/ L# h! O2 Cto-report grain-ahead
. V* c# Y9 b" [5 J _6 |1 `3 y" f let total 0
# e' O1 K$ X2 f/ Y0 z let how-far 1
/ m* Y% I$ b- |5 @; [7 o3 o, C* B% n repeat vision
8 q# X2 @8 h& W4 w [ set total total + [grain-here] of patch-ahead how-far* D4 y8 z* i- ]( J. A# E
set how-far how-far + 1 ]
9 t: O' i! X( M" j( p report total
5 n# p" \& a# v* lend9 S5 [8 q/ j+ {8 k2 A* `
: c0 ]# S' H, o' z' T& Jto grow-grain - ^5 D2 I, ^7 Q6 G0 @
if (grain-here < max-grain-here)
4 O* R1 _9 p& B) Z, k6 _. ^; T7 } [ set grain-here grain-here + num-grain-grown
4 x4 P" t h( K+ |! ^" n9 g& _ if (grain-here > max-grain-here)
2 d- m! {( C% x. C2 ^ [ set grain-here max-grain-here ]
. Q6 i) f# |+ q2 }* g2 ?% A6 | recolor-patch ]* u$ `2 K; t! Y4 \/ M3 T
end
2 e. B6 W; O- {to harvest7 H9 {0 @( h( z8 t* i
ask turtles# l& h' |) g% K W x7 ?0 _
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
* U! u! x! P8 V ask turtles
" ]7 u/ [! E' _% k4 w' g [ set grain-here 0
7 T( i; P; j- I$ W3 y y recolor-patch ]& @ n3 `8 f# p
4 D! ~2 \/ `" M# aend8 _5 n! }4 `: x9 R' L2 a1 Y0 C8 W0 ]
& g( R& ]3 j' L) f4 ?: @0 B3 y
to move-eat-age-die
% `( A1 e$ T8 v- Q7 w( B fd 1
. ~+ ^# ~1 k9 z set wealth (wealth - metabolism)2 E* \9 T. N+ E6 c
set age (age + 1)
F- a+ W% ~* F if (age >= life-expectancy)
' M4 F2 D0 l/ C6 k. I: R* I- v [ set-initial-turtle-vars-age ]
( C2 N8 }+ j9 A9 g4 i if (wealth < 0)
` L; w/ d# ~0 d3 @ [ set-initial-turtle-vars-wealth ]6 T5 X. Q# [$ K2 w- z! h$ O
S3 a: b- s: N8 n
end
/ C) _& ^: [: \5 @
; S. k& S |: N& E" h- D" w% x( r' o$ ?& R2 y0 y) F! ^( V
to setup-plots
4 C( }7 b6 j N# l. L% u3 C7 E set-current-plot "Class Plot"
6 q; e) a5 P" c% U+ V# X set-plot-y-range 0 num-people1 M3 S/ E1 A3 V
set-current-plot "Class Histogram"
& P2 W7 X$ U5 s) C set-plot-y-range 0 num-people& R3 J" [% M2 n; ]
end
& D' ~/ L j1 Y0 g: T
& Z1 h4 l; V( U2 N, L0 X1 Sto update-plots
* u) Y& ^- B+ t8 L8 O2 b& ?& A update-class-plot7 F, M: T' x. B/ K
update-class-histogram
( T. H6 @$ u. L# |+ C- t update-lorenz-and-gini-plots
' x% F5 r0 H$ Kend
) F8 ~9 A5 n3 D" \9 B3 D/ Y) g$ X. N! q2 y
to update-class-plot. D1 ^+ J2 H; v! @
set-current-plot "Class Plot"7 C+ }& F5 @" [5 L" h
set-current-plot-pen "low"$ t' |( I1 t0 C; }) f
plot count turtles with [color = red]
# Y8 p) a9 L1 K+ x T2 R set-current-plot-pen "mid"
0 x/ }/ D6 t* K. h; p% Z( C plot count turtles with [color = yellow]: f" q: C) Q- p' m9 Y
set-current-plot-pen "up"3 Z; `7 C! S& _2 @5 k
plot count turtles with [color = green]) r) G8 B/ F8 a1 `8 Z" Y8 M4 t1 e- b
end/ {/ a1 D" k8 ^& s
5 z' {" q. l5 `+ x+ a- ito update-class-histogram
4 J% N k( ~4 w2 Z5 q set-current-plot "Class Histogram"- u: @9 _; n- u" q$ k
plot-pen-reset
. F% l- x; W8 O9 O set-plot-pen-color red* V. Y: t6 |1 W5 s; G
plot count turtles with [color = red]
. O4 }( [% K0 b. _ set-plot-pen-color yellow8 _: S. i0 h c) k X/ |
plot count turtles with [color = yellow]
7 g9 f5 V/ x% g* q9 z set-plot-pen-color green7 G! S0 d! [ t( |9 I+ ]- t
plot count turtles with [color = green]
" Z& |$ V2 i. |9 c/ I6 T( cend; n6 a4 I( z9 _/ }2 n
to update-lorenz-and-gini-plots- ?8 y. R) l* \3 J% F" J
set-current-plot "Lorenz Curve"8 }1 a- N1 G6 G
clear-plot9 @2 c& T; W+ f) i8 n; I1 T9 Q7 B
0 t+ Q+ n4 d/ z8 d' g, ` set-current-plot-pen "equal" D* d% X6 M- R/ `& @0 Q; W+ s
plot 09 ]- N7 s& e. R; ` |1 |
plot 100
3 F7 L i8 z4 A4 ^" }! y3 _+ b, |" i I w
set-current-plot-pen "lorenz"
4 _( j( a) w6 O; y7 | set-plot-pen-interval 100 / num-people/ F" L z$ f! B+ a" K' h k
plot 0
{, a# O1 S* @ ^- J/ d
! m1 `5 G2 ^3 V+ F let sorted-wealths sort [wealth] of turtles
+ l% i7 g' I& x! i, h let total-wealth sum sorted-wealths! D I& L4 Y/ M Z& X
let wealth-sum-so-far 0
8 i" l4 }) z2 P- D4 U n) X% a- P6 m& A let index 0
* a6 U/ Q( Q% G* u let gini-index-reserve 0
7 w j; ?4 x, k$ G, {# _; j
* O: r/ b( ]9 [$ W; F+ }: P* l repeat num-people [
& I4 G% ]+ C7 z3 D/ b! L7 ]3 n; o+ Y set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
/ ^ v5 l( N: [: h0 @( H# }* n plot (wealth-sum-so-far / total-wealth) * 1003 W4 O X8 M* n% T9 P5 Y
set index (index + 1)
$ Q6 U6 ]& ], Z; Y0 |5 _ set gini-index-reserve
$ u. M' N9 K6 B gini-index-reserve +/ M; r. Q0 p7 p; w; p) t7 ]
(index / num-people) -3 z* p# k9 Q0 {1 ^' l
(wealth-sum-so-far / total-wealth)
" h9 i) E' [7 k9 U$ C$ W ]0 D5 h. i! M3 I1 B; z6 Q+ Q& e
% Z0 Z" i# _ q3 A/ F set-current-plot "Gini-Index v. Time"
6 _5 J: c7 v y& F plot (gini-index-reserve / num-people) / area-of-equality-triangle
9 j+ |0 F5 T/ W: M; q7 s! iend
2 G8 `0 n: g9 r9 \) o8 P: a* l: X9 gto-report area-of-equality-triangle
5 n4 T k1 b) r' c report (num-people * (num-people - 1) / 2) / (num-people ^ 2)+ X D( k0 w; N( H: l9 N
end |