请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现" l7 j# J* j0 `
globals& L) `1 U& B' U7 L2 m
[
6 X% x' G4 o# Y" r max-grain 5 O. `* E" z" P) A. s1 z
8 o9 t1 j& z1 d1 V* D1 T" ~1 z, Y$ } |]2 U- K3 a% h8 [( c: k; w
3 a# T; i) x& ~# B
patches-own
, G6 S3 r5 `" Y* Y[
: @7 c' P; v) P/ M grain-here
8 ~. S/ o, ?9 Y, i Q max-grain-here 7 ^& d3 k. w+ n/ d, h Y
]
~) h0 A* h7 ?$ n# J8 j% L6 | P" s9 ]' z/ A
turtles-own
4 Z5 E5 q) Y; U5 i# ^2 i3 @ x/ |+ u[( \6 H% n3 Q5 \6 ?
age 5 b; a0 [3 ?+ G4 N; A" i; L
wealth 8 b( q. w1 V1 s, Z" `
life-expectancy 0 n' Y1 L% V+ `% m0 t
metabolism ' X5 R1 U; L7 V$ E. F
vision* i: Q. G' Z* @0 J
inherited
: x3 C1 `, C+ b) p, \]: C3 ^. o2 G! |
9 x- _% h" m: X% ?" u+ h; M$ @
m& w9 E) d& N' m/ q4 v# ~- G9 d% Ato setup: } p# b1 ?1 R- o$ X
ca5 @8 R5 g) |: q3 j! z6 l: t
set max-grain 500 M5 E- ^" Q/ t
setup-patches
0 n6 c4 n. }+ v: s+ [% o( d+ q setup-turtles
6 q' w. w4 D! i/ g3 Y3 j setup-plots
( i1 c! u, _& H+ P% Y update-plots2 ^, Z" B, [# w% h2 z; `7 w
end
! C C6 [& t7 t+ s/ \: O2 lto setup-patches
6 P! ]$ q% F1 Z' k ask patches
3 \, G7 i0 n3 } [ set max-grain-here 0, p9 q5 C$ J2 |
if (random-float 100.0) <= percent-best-land
) s8 f; a- ]) d& [/ U" o [ set max-grain-here max-grain+ `6 n8 Y1 M" S
set grain-here max-grain-here ] ]3 T7 p7 y$ d: d3 ]( w+ y9 J# p; u* b
repeat 5" E; t* {& G( d+ [$ X
[ ask patches with [max-grain-here != 0]
! q& v9 E% h0 Q% c# p& }$ z [ set grain-here max-grain-here ]# u) g c' J$ w; i
diffuse grain-here 0.5 ], m2 M/ n$ T6 x0 P* {* `
repeat 10
: `, B( i& Q8 c% ~2 a: x" d [ diffuse grain-here 0.5] 8 K% G3 u) L2 o5 g. f! n
ask patches2 C- Q' p* g* q* i9 D' ~0 m
[ set grain-here floor grain-here
x' i" c. ] k/ Y2 z* b set max-grain-here grain-here # m5 q' q: |4 `
recolor-patch ]
5 o. P( L. E2 ^$ K9 F1 uend( s: I M" \* n' R
to recolor-patch
2 E! o6 [" M( G# n/ H' O set pcolor scale-color sky grain-here 0 max-grain3 b* @1 @1 Z G) G5 V! A
end/ J9 e) a- `9 a/ F
to setup-turtles
( M# g7 O. R6 J! O- ?! c$ L set-default-shape turtles "person"
( ~! L4 `5 }8 m crt num-people5 G) A0 {3 {( A
[ move-to one-of patches 0 `2 D6 x# g& S" l5 q& v, o
set size 1.5 4 X7 G2 ^* V+ r
set-initial-turtle-vars-age6 Y% J0 A" ^1 }
set-initial-turtle-vars-wealth
( t- s+ _; \. J6 t0 L5 T set age random life-expectancy ]) U9 x! o7 @" _( _
recolor-turtles
9 [! q# |# H+ |* Wend
6 f5 B- r+ u0 c0 Z
) @0 K7 Z0 ?& i9 F$ rto set-initial-turtle-vars-age
0 D% s! q4 v3 r/ U# G& m let max-wealth max [wealth] of turtles! G7 h; Z% G V- _' S
/ v) I/ v5 q8 E ifelse (wealth <= max-wealth / 3)
; l8 w! {* n% U- N/ F0 z1 S [ set color red
' e' B7 @+ D2 u+ J/ M1 {! m set age 0) Y6 F9 H. j) Z& z
face one-of neighbors4
) q: `; h- e4 k1 K" D) [, w& Y set life-expectancy life-expectancy-min +
% y& m7 v+ T% q2 c) {, l+ n) ? random life-expectancy-max
1 C% ?( d+ }0 E) s set metabolism random 1 + metabolism-low
6 q7 U$ P" Q3 }6 N- @) ]# i6 [: w set wealth metabolism + random 30- }# \! V. U- r, H4 \1 }/ f6 Z
set vision 1 + random max-vision" O! v# o7 Y. E. @& O% M
set wealth wealth + Wealth-inherited-low ]
x, ~5 g8 u! k/ O [ ifelse (wealth <= (max-wealth * 2 / 3))$ v0 h# b8 F" y0 e
[ set color yellow ( g9 [ a' d8 ~/ i
set age 0
+ ^* ~6 h) e( D& w2 u& o' N0 T face one-of neighbors4 ! @) _+ e/ Q( Y- N, h+ D, A1 k
set life-expectancy life-expectancy-min +
- |* O1 x' f/ L( [ random life-expectancy-max + 10 S) ^' y( R# R3 i2 _
set metabolism 1 + random metabolism-mid6 b1 [5 H$ J2 u1 T6 B, S9 P
set wealth metabolism + random 30
) @2 k9 B3 _# ~: l$ r2 F# ] set vision 3 + random max-vision F$ e3 r4 i+ ^$ \5 O+ J
set wealth wealth + Wealth-inherited-mid]
$ F8 J2 F9 L3 U' o9 \8 e) J [ set color green # i& F4 P- ^) ~# f
set age 0
( T( e% A% a4 _7 o7 ]( W H face one-of neighbors4 9 G6 X6 u7 N$ T6 F$ T" ~0 T
set life-expectancy life-expectancy-min +9 e; B- k) l' J4 a6 t6 P# s) C
random life-expectancy-max + 2' g" ]% D5 s8 @/ G
set metabolism 2 + random metabolism-up
: {' z7 u/ J/ Y& |. t/ Q o" {$ m! ~ set wealth metabolism + random 30* ~1 O# j. F7 o* e
set vision 3 + random max-vision9 i; A0 g4 m& ~% A$ c# q7 q
set wealth wealth + Wealth-inherited-up ] ]
" ] {. J/ A0 A9 }7 G1 q
% k2 K' A: c( b' ^/ [/ Fend: T- V: f7 c* k& m$ G& y
to set-initial-turtle-vars-wealth0 `( n4 R# T0 q$ F( [3 E$ {
let max-wealth max [wealth] of turtles# X' A. c3 t! _5 `, J9 @
set age 06 `" E/ W; R! D1 F* a+ O
face one-of neighbors4 " T4 T) F! w5 O/ ?
set life-expectancy life-expectancy-min +3 S. i0 S2 g0 @5 V0 `/ ^
random life-expectancy-max
+ v& c' n% E8 n" z3 d set metabolism 1 + random metabolism-up
% u* o# \9 ]& i: h1 w; ?4 ~$ f- y set wealth metabolism + random 30
3 w! C8 f- b$ y% ]" W1 P5 d set vision 1 + random max-vision
/ Y: x! s# G; n: y) p$ C$ iend' R+ v. K2 M4 Y9 |
to redistribution! @- @$ O; v9 W+ Z d5 {
let max-wealth max [wealth] of turtles
# f+ k8 Y: {0 B, R& ? k5 Qlet min-wealth min [wealth] of turtles
; E( f: t Y! H }5 v9 y" Yif (wealth <= max-wealth / 3)
* h7 r7 s) [( _6 H [set wealth wealth + Low-income-protection ]
* J/ ?& e8 G" c4 Send- p7 K2 R; i1 k& C! M% m
" B Z7 B2 X, {to recolor-turtles
2 M/ P3 Z) A, E& R5 d6 | let max-wealth max [wealth] of turtles# x2 S" i' ?& ?; Q7 P" K: y6 Z
ask turtles+ s5 V) A h3 [, N
[ ifelse (wealth <= max-wealth / 3)9 P, [( `" S$ {' H1 W4 M
[ set color red ]! Q; ^9 W+ i( @
[ ifelse (wealth <= (max-wealth * 2 / 3))
* p$ ?: m8 |* l$ U; H [ set color yellow ]+ r1 G- I( `' ]. ?" N& L$ F* I- }
[ set color green ] ] ]+ x' X) K1 \. B/ G
ask turtles [ifelse show-wealth?# ]# b5 g, A! Y d7 J# B: z
[ set label wealth ]6 U$ C1 c4 s/ q0 j5 b0 o+ m; s
[ set label "" ]]- B) O: I4 T l- g, D
end
i; p3 }3 v+ S, f# X$ F9 b
2 x: r& Z8 F1 z0 S9 pto go
! k* _& l* A1 \7 f7 x6 u9 S0 T$ T ask turtles
* M4 ?7 [- t: S, @5 b, Q0 w) c! n: Q [ turn-towards-grain ]
7 P2 ?" V. u3 O7 s+ y$ T harvest- f4 m# H3 e( F' q8 t% D7 |
ask turtles
' ?9 c; S# Q' F [ move-eat-age-die ]
9 a& u& i* o, s6 W) m1 V recolor-turtles. G8 U9 H/ c2 O1 `% \
if ticks mod grain-growth-interval = 0$ G1 y; e6 j$ n. u
[ ask patches [ grow-grain ] ]
6 n+ f. T1 I- f; o% X9 O
. f1 b8 k" @" S" ` if ticks mod 11 = 0* W4 N4 x' ?6 E8 N
[ask turtles
! e: U! Q* G1 z: a) O( @2 ` [ redistribution ]]4 d; R4 A( j# o3 Y0 _
if ticks mod 5 = 0
0 J$ y- r I4 [# l; a/ e- z+ z [ask turtles, W! g# c/ g# o) J! j0 P2 R: G
[ visions ]]
5 N# I5 y7 T# Y- h K' x% Z tick
# L; S/ Z" c" N update-plots, G- J8 X. d5 ^ t2 o& I
end1 D) j- W4 i4 O3 g( ^: @% O
to visions
; O1 K& O" R! Q, n, A set vision vision + 1
% o2 Q, W; z3 n. Pend) l) q. }4 n/ y+ i0 a
4 V. f6 p1 a$ q T
( W% B! b7 O2 |
) p( p6 o" f9 ~# V0 {, }to turn-towards-grain ! I* [& o; X' i3 F# `
set heading 0
: a/ V* |0 T3 Z* |( F" n9 {% l let best-direction 06 C* [4 t- i& s8 ~
let best-amount grain-ahead
( ]0 D! ?- G% u set heading 90
& X8 V4 i! m) M* c" ^8 j if (grain-ahead > best-amount)! T0 C1 J3 h- G/ ?. H9 o
[ set best-direction 90
) m* S# e9 g' i: s. ~# G" M set best-amount grain-ahead ]
/ m% H+ l, h T0 h% A6 u set heading 180 C6 J/ E( G, [1 S9 k( W# N
if (grain-ahead > best-amount)
" Q8 z7 [& G; M( z- p1 ~. f [ set best-direction 180
. X- n. d* g" o5 v; q7 h7 Y set best-amount grain-ahead ], w1 b! O$ ?& E8 l, s0 J
set heading 2709 U3 e* H$ ]' C) E3 |- `
if (grain-ahead > best-amount): P; ^$ q) Z' }- m3 z
[ set best-direction 270
( n' O& U$ w7 q* V set best-amount grain-ahead ]
# L" s b0 |3 h9 H set heading best-direction
/ o( C# t4 v* y g' ^0 s; _end
7 ^# H* G/ L) ?# k4 r- {( W- H2 [. ]2 {7 E
, L- w1 N2 o, s) }0 b4 ~3 ?
to-report grain-ahead / I' f/ \6 ~ v5 s" N
let total 01 V) [$ }6 g+ X9 y$ n q7 `; J Q
let how-far 1& J, L5 j0 _, J! ~# a7 Z3 G
repeat vision7 n: F; q7 C6 J2 A" X
[ set total total + [grain-here] of patch-ahead how-far
% g$ M7 I; L) Q9 }. S set how-far how-far + 1 ]$ T5 \# A3 k' F& W+ d1 `# V- V
report total
' G2 O4 C/ A) a6 Q, f3 vend, B l% N6 Y. w* ~9 a" @ n
8 }' ]7 W' b$ e }1 Kto grow-grain $ {/ a4 c$ p" S5 w& {6 y
if (grain-here < max-grain-here)/ `0 A0 Q. U- }# |9 ?# I* O* }* j
[ set grain-here grain-here + num-grain-grown# W$ z& q E/ g
if (grain-here > max-grain-here) + I, }4 \' q( o2 ], r$ |
[ set grain-here max-grain-here ]
( c# h" W9 r- f7 I8 V% y recolor-patch ]1 a4 G" f% ~# v* J$ p, k, _
end3 _7 U) t( W1 O4 t- V
to harvest& \3 X% ~ D+ }; _
ask turtles9 ^9 ?1 k0 Z" B/ h
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
2 d# j) \7 V+ s* r; y+ q% V ask turtles9 C. e6 I+ x( u- F# ~# N* E) h
[ set grain-here 0
+ P( M7 ^% h+ y6 d+ ]# J/ s1 N recolor-patch ]
- m5 V, Y5 q3 |4 W5 N4 `; h % T8 g3 i& ~* }8 s0 G
end
, f$ K) A( u B2 A% _! K/ b1 Y5 i& _: t" X
to move-eat-age-die . n$ B" X8 \1 x* \
fd 1
/ c, g; z& o5 M B5 ^ set wealth (wealth - metabolism)
$ E8 S4 q2 F: d$ N ?* I set age (age + 1)
0 O6 y; B/ l: C4 ] if (age >= life-expectancy)0 A+ [1 D: L# [. m
[ set-initial-turtle-vars-age ]& d L3 A, O2 d4 W; M# z8 Q( K. l
if (wealth < 0)
2 N) j" c0 l# E [ set-initial-turtle-vars-wealth ]
6 s0 C4 x6 u4 O+ M1 y) V* v; j ! @" L/ i5 _+ ~2 _* J
end. l/ K- k/ J. Z0 D
z2 Z3 J0 @* p
2 o; U) `, `7 D/ t, E+ U- _to setup-plots
* D1 V. I2 k4 q) T set-current-plot "Class Plot"
2 m8 w X& u5 S8 u set-plot-y-range 0 num-people
* K) y$ E9 d7 q9 O6 H: ` set-current-plot "Class Histogram"$ S5 _( l) H+ {) j2 f
set-plot-y-range 0 num-people; X8 |7 c* Z6 m
end
( y: |$ O9 T4 Z2 R. `' p% [3 i: r+ Z5 P8 A8 z2 g; G
to update-plots
9 E9 n7 t- a+ g2 k6 D% L0 g update-class-plot6 Y" D6 Y" p3 \. q+ S0 x
update-class-histogram: ^7 Z7 ]% p# V7 p- }9 M" W
update-lorenz-and-gini-plots4 P4 g$ f M2 h6 c$ g* ^! h
end
$ y8 b+ F7 D4 E5 ~" M( |
+ P- u" Z5 r9 r4 y: pto update-class-plot
) D3 v0 o' @! S* X% k7 V set-current-plot "Class Plot"
# s( d) K; X5 l set-current-plot-pen "low", V) Z+ o; ~, e# M4 b! C
plot count turtles with [color = red]# B q% L+ _2 n+ j. P; ]
set-current-plot-pen "mid"0 t# s9 l- W& k% M# x' X
plot count turtles with [color = yellow]+ d \( S4 B7 l$ i: J
set-current-plot-pen "up"( w' G) [* [) P9 R r; f) h
plot count turtles with [color = green]1 h- g. W! k+ [ ^
end
) j S# K! [0 T- d
% V# S8 D) p4 p: A6 n4 J" ito update-class-histogram' U, w' Z/ O8 b8 b; @
set-current-plot "Class Histogram"
2 N) I6 b% R# a/ o( s' H% F( c7 B plot-pen-reset4 |+ f4 [1 ^& c8 L+ O, \4 s7 Y& y
set-plot-pen-color red
; b) v5 J0 q# K+ m7 V' i8 I plot count turtles with [color = red]! W& t3 h/ y( c/ f& }" Q/ W$ F
set-plot-pen-color yellow* a+ n u8 M( B* X* E+ F$ L0 M
plot count turtles with [color = yellow]4 I4 ?1 P( H- v9 M, H! c
set-plot-pen-color green j& x! h; z- {- Y
plot count turtles with [color = green]/ |" W' v D$ v1 J
end% E( E& U* m! U q( H6 C7 ?
to update-lorenz-and-gini-plots. h! w8 r5 Z4 o3 E8 Z2 c$ y
set-current-plot "Lorenz Curve"8 J2 d9 H$ v0 [, _7 I) s# d
clear-plot6 t* I* u A$ }% h$ K, N, K: G
A1 `$ x4 a3 a1 E N0 U$ M, {
set-current-plot-pen "equal"3 L! N/ D5 J) z
plot 0
/ p% G1 m# r0 P plot 100
# Q k, ]9 O7 p+ {
- o/ ]$ T& o* s9 r5 K7 U set-current-plot-pen "lorenz"8 m$ O7 r8 i. U" G; z0 X# ~" f
set-plot-pen-interval 100 / num-people
7 i) Z1 o' }) [: k plot 01 y9 N+ v5 d& _" y! y* G
; Z( L' H; f* h. _" s
let sorted-wealths sort [wealth] of turtles$ H1 \ t+ U# d5 {
let total-wealth sum sorted-wealths9 \9 n. r' Q5 J& e
let wealth-sum-so-far 0$ r6 N0 [4 c" G) E2 E: ?5 _) ^2 a
let index 08 `& b O. l/ Q3 q. c* P
let gini-index-reserve 0! \( I/ E" |/ j1 t7 q, i) ^& [
4 {5 |, A" D, z$ t. H+ c1 z6 K repeat num-people [ z( M$ _; U4 T) W y7 S
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
" E" j2 x7 I6 S plot (wealth-sum-so-far / total-wealth) * 1003 N( L6 d; n; ?9 i" ?2 t$ m V
set index (index + 1)
0 q- A: d+ D- e set gini-index-reserve
2 o4 }* @. {2 i: o gini-index-reserve +! S& |* D+ B% ^3 f0 i$ j( ^
(index / num-people) -
: E3 B3 G( N6 f0 w' g (wealth-sum-so-far / total-wealth)
% k, I5 c; Z; h! k6 W ]
$ z G- C0 c o! Z$ Y v# c" @3 M# s" f- k7 A: a9 @
set-current-plot "Gini-Index v. Time"
4 B: }3 Y$ N2 g: @( K/ t* Z7 _ plot (gini-index-reserve / num-people) / area-of-equality-triangle/ D' T3 n* o6 j" C1 N* z
end
& @) _1 @. [* j6 Q/ u' B& L% ?to-report area-of-equality-triangle
3 y I! ^& w6 `9 n& p report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
, z6 j) i& R" J& ~4 P, send |