请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
. x& J" k# r' Y! d- L; _globals
2 X! J5 }. B# I/ `* L6 M[3 [/ D0 J9 B2 U H D: ?$ ^& a9 f
max-grain ; v, z) U+ e" u( e" g K- ?
& Q- m: J7 P! B9 ]2 p]5 T! d+ c0 n# {1 [
& }' ~2 _( o5 j/ z8 ]
patches-own
4 i' n2 r9 v3 \5 D) f) n4 v0 k[- \5 k9 `9 I7 _5 j. R
grain-here
, Z g) e! Z$ ? I max-grain-here ( q2 a4 p; s1 t4 R
]5 [0 N& U# }4 }3 l( s: L
i) K$ V* b8 yturtles-own
% g) b* ]5 O7 t ^, L0 Y# l4 q[4 V" f! M& \3 U( }1 R! v
age
1 s. B- E9 W" E- T ]4 x# P wealth ; S2 y6 y1 o' ^% T8 v" s' D+ ~. O
life-expectancy
k1 Z/ q2 H. J8 i4 t metabolism
l$ ]" j- j) U5 f9 G vision1 F7 l" Y4 Q6 b, y1 L, i+ R9 V& ?
inherited
) e. v/ Q5 C: X2 m7 t- \]; v) n0 } }* v; Z5 S, X7 A/ l
( n* N( x6 F# A7 F/ b6 A
9 x2 K# y/ n5 I7 Q% B/ tto setup1 R# [+ Q& F: @, v6 x8 S/ T! R
ca; [( T( m0 m( C. N! d
set max-grain 506 M; m" W D* G8 }0 w- T
setup-patches
7 d$ {' D4 ?& i$ h setup-turtles' z$ w8 z+ X7 X5 x c9 S8 Y
setup-plots
' ~6 r3 N5 y$ Y6 N D update-plots
# X; o9 S& M. p3 B. n ~end
5 `# x$ x3 F) X4 `to setup-patches! j) C8 ]6 Y3 u7 J$ Y* }
ask patches5 [! ]7 [" p \0 ^4 l( x8 Q6 n
[ set max-grain-here 0 v& V% B) j1 F6 n# }8 v
if (random-float 100.0) <= percent-best-land
7 n2 c+ W5 w& [ [ set max-grain-here max-grain- W4 _! m1 {+ f
set grain-here max-grain-here ] ]: D5 ^# u3 D! K* X
repeat 5
, L7 E* r9 a7 {: s [ ask patches with [max-grain-here != 0]
+ B) W3 W( p: E0 Q3 B [ set grain-here max-grain-here ]/ ?' u6 H5 v' X! D0 L
diffuse grain-here 0.5 ]
( n6 A: ]* o7 `7 e4 `- P! T repeat 10
- J1 I, C7 n' g% D [ diffuse grain-here 0.5]
( ^9 p% P" l$ J; c! Q ask patches
+ @- S% \, U. u! U6 Q [ set grain-here floor grain-here % s& ~, @1 [, ?% P
set max-grain-here grain-here 1 J z6 t/ O' _+ ]$ y' r
recolor-patch ]
8 ~! m! S; A+ R2 Uend
% t. K' N, B3 E8 ^ t G& j$ O1 Lto recolor-patch & o. m# h) S( p; _
set pcolor scale-color sky grain-here 0 max-grain7 r: `/ @1 U# L C, W( u/ k
end' d/ C; J" d* M% r! i: q
to setup-turtles+ W+ P- p5 _! B5 h6 a f, r+ g
set-default-shape turtles "person" g' G$ ?2 B1 S, |. }6 K0 O! E
crt num-people
! h9 c& [0 k" c, t5 {( D- ` [ move-to one-of patches
4 N' m' ~, s; x+ F set size 1.5
3 Q8 J% s) E8 ?5 V; T8 B8 _ set-initial-turtle-vars-age
6 z$ e0 m/ Z( I# M0 z3 t set-initial-turtle-vars-wealth: |/ r; N/ _ p. M3 o
set age random life-expectancy ]( W* `0 L1 U: X& }: ?6 c% |
recolor-turtles
; c5 f4 o- K8 Z/ T3 Kend
' S3 D7 L" T. \, g) F. z
/ [! x3 E" @' z8 ato set-initial-turtle-vars-age
# E9 f5 F3 G3 \ let max-wealth max [wealth] of turtles" X# X" U1 T! G% k, k$ q
4 o) I7 S+ X c& v# D* n( c
ifelse (wealth <= max-wealth / 3)
- K4 N& U3 h4 @5 y5 l [ set color red
. Q$ b; L7 p1 ` set age 0: p' u1 `7 T, Z
face one-of neighbors4 * ]$ o8 V E' ]: A( s! }' a' w$ m
set life-expectancy life-expectancy-min +$ K' z3 d' S7 |3 G. z6 h
random life-expectancy-max
( E0 R$ T+ Z) ?9 u5 K set metabolism random 1 + metabolism-low; a7 ^; }: H4 G7 N
set wealth metabolism + random 30
5 a% U- d! B: t5 h' ~3 ~6 I set vision 1 + random max-vision
6 M$ l- Z8 A7 j R5 V set wealth wealth + Wealth-inherited-low ]+ [4 K; H* L" O4 y2 N" w
[ ifelse (wealth <= (max-wealth * 2 / 3))
* s# `, O# h# a6 { [ set color yellow 6 t0 x' G6 c' M
set age 0
+ c5 J1 A) m& l: r face one-of neighbors4 ' C- ~! z7 i( N5 l
set life-expectancy life-expectancy-min +! v. R$ V. G( X \. X
random life-expectancy-max + 1! b) J* n1 g- H/ f
set metabolism 1 + random metabolism-mid) x1 i7 U; K. ~. ]' A
set wealth metabolism + random 30
; ?5 R* W# F- M6 Q* c set vision 3 + random max-vision, U# T! i) z) l$ M% i
set wealth wealth + Wealth-inherited-mid], }5 a; E; w" D+ {' w0 o
[ set color green
8 g( H) y/ F! w" ^ set age 05 b. I: A- J2 \% H1 X- @+ G' X
face one-of neighbors4 9 @' h( W! h9 H* R/ [$ F
set life-expectancy life-expectancy-min +
! K( c+ W- S4 H random life-expectancy-max + 22 M; ]( ]7 [; g+ G0 c$ g) |
set metabolism 2 + random metabolism-up
+ _0 f) N+ a) ]5 _) @8 J8 r set wealth metabolism + random 30
& G" I. U6 g$ o" J( t' d set vision 3 + random max-vision7 r0 G3 b) c4 s. m! o- t
set wealth wealth + Wealth-inherited-up ] ]
- R( W) D2 [( S: Z# h' m( s
7 a& ^6 R! `% p, Y9 J; Hend
* O' {8 O" M4 N, h0 B% e6 Vto set-initial-turtle-vars-wealth$ y! `1 P; b8 c3 s: g$ o
let max-wealth max [wealth] of turtles
# c8 A* e* u! s* }! D _ set age 0$ v% J" W% N* o: r
face one-of neighbors4 % e3 T7 v" k& }; o
set life-expectancy life-expectancy-min +$ K P0 [# ~ S% w5 X! y$ O! q9 b
random life-expectancy-max
8 f7 u U0 ` |# j* A( c* Q set metabolism 1 + random metabolism-up
9 S' ]* Z+ z& Q4 J set wealth metabolism + random 30
8 ~' O- S% ], C/ g4 m& ~: v set vision 1 + random max-vision : {/ C3 R6 |# Y0 c; s
end
" h* e& C2 W8 E2 c# }( G$ ?( x0 Tto redistribution4 S9 R+ n7 E) Z6 K1 ]
let max-wealth max [wealth] of turtles, N+ n2 L/ ]' A
let min-wealth min [wealth] of turtles
( K- Q9 `+ S6 ]' f5 ]! K! Gif (wealth <= max-wealth / 3)9 i3 n L+ Z2 L: q8 G
[set wealth wealth + Low-income-protection ]
( [: z; F+ s) D/ B$ C; h! lend
" z' \) x7 ~+ T9 e+ Q* r# t8 d! q' S ) i6 [; q8 h2 v
to recolor-turtles
0 _' C/ a/ ?' g9 h9 U; e let max-wealth max [wealth] of turtles0 K& t. y7 Z7 U7 B
ask turtles5 y. q$ ~ s8 |$ h \# R5 @' k
[ ifelse (wealth <= max-wealth / 3), d" Y4 X! o' \" |% b
[ set color red ]7 Q. B% K& m" z
[ ifelse (wealth <= (max-wealth * 2 / 3))! Y+ F7 X# r; W9 s$ q% W4 a
[ set color yellow ]
+ z. T# }" }/ j [ set color green ] ] ]
8 h9 p& |: k ^! a$ F9 b$ X/ q' g ask turtles [ifelse show-wealth?& {$ d6 j, r2 E& ^/ Q
[ set label wealth ]
' s" r. ]" E4 Z" i6 O; U [ set label "" ]]
& x5 X$ G1 s D5 k- iend/ H+ ?. n2 A9 i/ d: n4 _4 \
r, ~1 f* h" g, g9 k7 p
to go6 z; f3 O, u1 W/ L3 O
ask turtles( F; X" B8 u9 {3 a" F4 b
[ turn-towards-grain ] 3 Z! r( A [) X/ F! {, n
harvest* \+ q* j4 H% {& ^# O! N
ask turtles) D- M9 V. w* q
[ move-eat-age-die ]
, C6 R$ G& v; l) q) R* f# W$ x recolor-turtles! d7 v) \' r" Z) T
if ticks mod grain-growth-interval = 0
+ ~ a( } K1 p2 J+ B) a9 T- ^4 I$ e [ ask patches [ grow-grain ] ]- o8 Z" w: Y3 D8 u
" S1 M: ^2 f! p0 r
if ticks mod 11 = 03 _4 z. K8 O$ l" E* K
[ask turtles8 u. P9 ]3 c' F! z% \% h. `
[ redistribution ]]9 {7 y6 f2 @# H2 `1 h8 Y
if ticks mod 5 = 0 u/ ]' F# b1 d: ^3 e
[ask turtles% m' j2 w4 f# U& Z6 V
[ visions ]]3 i h- H& a5 ]/ C2 y2 a
tick
3 G3 O* k/ N, L4 x& F" d& n update-plots
1 [% G3 f- C. V5 Z/ Rend
3 \' ?2 L. R- Pto visions
2 ?& G9 _- m0 n& V set vision vision + 1
) f6 B4 v7 X( J) _) \end$ Y, n, e. R, a- h
4 `7 J. L. v+ h3 s4 B( y
$ g+ e% {$ a4 T! o1 x! i& O, `
# v9 W) k G: J4 ]: G# L+ V3 C3 Ito turn-towards-grain & P) r) Y$ M) a. J% E, C
set heading 0
5 Q% _& ]! R# \ L+ }# M7 J0 Y let best-direction 0
, K5 W& n* B5 ~ let best-amount grain-ahead
) S$ u4 D2 x, a' L set heading 90% p0 B1 k( {( }8 x) ]; S
if (grain-ahead > best-amount)
9 k* S2 g/ C( ` [ set best-direction 90# f% d8 F; o8 L) ?- R
set best-amount grain-ahead ]
5 C" r3 p) o+ F& _* f0 v+ L set heading 180
9 Q% u5 ^8 h& {: w( D if (grain-ahead > best-amount)( \2 V7 J, E1 K" t& E3 i
[ set best-direction 180
5 u/ t7 J6 R) s% m6 h, j set best-amount grain-ahead ]* Y) i6 h0 m) f7 Y8 v& @
set heading 270
" z% x4 E( d% e& o* `, W* ~ if (grain-ahead > best-amount)
" q2 @3 |1 i( P/ ~. C7 x$ A. A [ set best-direction 2705 W: P1 m: Y& a
set best-amount grain-ahead ]0 d( B3 n0 `4 H" t8 Z6 E
set heading best-direction6 Q3 n! N8 }# D6 H% W. K
end! m' ~5 ?+ x$ Z8 [5 [
' O: s5 c* ~4 c
+ E: _$ a S8 L. i
to-report grain-ahead ) R) W$ M; U/ {) A) `* n6 A8 w: h7 \
let total 04 v3 m$ P$ M1 {: M1 C2 Z
let how-far 15 V% O+ G! z5 B& G8 a; w
repeat vision
* W. C4 [" z1 b: g3 C2 x+ Z i [ set total total + [grain-here] of patch-ahead how-far) {0 N- t2 r6 t, z& ^" n
set how-far how-far + 1 ]- j: z' E( B: I$ k8 |
report total
/ G! U( N0 ~( D& c8 Z+ k3 z- fend) t/ P W8 v3 \. A
3 t `- O( T' r: j, A8 }# Oto grow-grain / i2 h- [3 n2 |
if (grain-here < max-grain-here)
& a1 v% V* ]9 u9 n% S- g [ set grain-here grain-here + num-grain-grown
\' ^ Y/ ?, a0 x* X4 Z" x. Z if (grain-here > max-grain-here) . z+ V: I7 c. n5 T. @* b! g! N' X
[ set grain-here max-grain-here ]8 s- d8 n+ U. t( I4 Y
recolor-patch ]6 k: s0 }1 \1 x# h
end
1 r/ [+ O" Q7 tto harvest
. `' Z4 d' T0 m6 v8 B) F ask turtles: g! J0 p2 p, m" v b9 H9 V
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
' ^8 O# H) l# P4 S ask turtles6 U* i+ t% p6 d& J( d5 M
[ set grain-here 06 y5 R( B) f4 o/ ], ^9 A* {4 k2 t
recolor-patch ]. p7 [7 Q9 w: Z; q5 `4 G6 u
6 ]! w' r/ N' ]: N* w
end
& \9 i% o0 I- [4 f/ j( A: ]5 w1 i
! x/ F' j5 w- ^! f" L1 Mto move-eat-age-die ) A7 Y% C4 i+ H
fd 1# u( Q! N! x# F9 p0 K) {
set wealth (wealth - metabolism)4 o: W: p2 `! Y' w
set age (age + 1)
1 h9 T! k, {5 i4 B# H( S2 k if (age >= life-expectancy)- O5 {* o% a' J3 q/ o$ Q' |
[ set-initial-turtle-vars-age ]
3 l/ f1 f' a n' g2 h; ~1 N. G if (wealth < 0)
5 D6 l! o1 x5 Q3 D4 L [ set-initial-turtle-vars-wealth ]
& r1 _' s2 c2 T$ O/ O$ l4 F 9 o2 v) |( ?# L
end
, w2 w; V3 ^, u2 F7 i; |) ^1 }: W, y+ f: J
, a) d2 p5 i& K# l1 jto setup-plots
. _4 y9 H8 }8 b( b) a9 `% J set-current-plot "Class Plot"0 Q: H. n g6 {( C
set-plot-y-range 0 num-people5 w5 Z' @; J, u) |
set-current-plot "Class Histogram"! A7 {9 U c/ T' |" {
set-plot-y-range 0 num-people6 ^8 ?* d1 Y* i# b0 T
end
% ~& |6 \6 M" c9 f8 t4 y2 \3 U3 N% n; a0 [; T; u
to update-plots4 a' h- `+ A4 V, b5 i" b
update-class-plot" A, L$ _; e4 n; t5 S
update-class-histogram* F! g2 v+ I( c+ R1 @9 O
update-lorenz-and-gini-plots' k4 a6 ?5 O! W9 V5 Z
end
3 P- D( k9 F: @$ `% `0 _. C6 _3 f* |+ m7 H
6 k" ]6 U, d( R# gto update-class-plot
& [* D- S: e, S5 b) v' ] set-current-plot "Class Plot"
2 U% _) p9 z- f- U. B1 `2 B set-current-plot-pen "low"
# x- u: d9 H8 ?* P/ o: Y plot count turtles with [color = red]
t( X. t4 R+ M! g. ^4 ` set-current-plot-pen "mid". q- ?/ A; @- I% q9 D
plot count turtles with [color = yellow]
4 Z, C; U3 q# m6 n1 q* R* j set-current-plot-pen "up"
5 \( l3 N/ f' @$ G1 l plot count turtles with [color = green]
3 w2 c0 i9 K4 B& Nend, d! X4 B8 j1 g
! M+ v3 } ^, f
to update-class-histogram
& Z! B8 M7 ^ D set-current-plot "Class Histogram") \3 r3 y: V( ?$ q# u9 U
plot-pen-reset
' q0 g0 H X& K. G' j# N$ R- s* p set-plot-pen-color red
% u/ F# b4 ]' f/ T& u/ Q plot count turtles with [color = red]* v7 z: Y, L( {0 U2 j% I- L* k* y
set-plot-pen-color yellow$ A s& d: F+ a# n9 d
plot count turtles with [color = yellow]& b- D! g$ n7 p& Z* V
set-plot-pen-color green. e! ^( S5 G$ _# a4 e
plot count turtles with [color = green]- z# x( |3 O% d) F8 n, T( G% f
end- Q# p8 X% k* a1 B+ |5 ] f
to update-lorenz-and-gini-plots3 b$ p, e2 a0 D
set-current-plot "Lorenz Curve"$ F) ^3 N- ~$ d; F+ [5 \
clear-plot
5 k) K0 U7 q1 X% ^9 s/ p" _* U9 h6 h" B
set-current-plot-pen "equal"
3 b1 K% c0 V* w4 K( J0 { plot 0
, p \, N" R- c6 M$ A$ [/ g. e plot 100
; L) _; l. ~3 ^7 O( H
. S8 b, ^) L/ S2 |5 | set-current-plot-pen "lorenz"
8 e r r" F' j: a5 c: A, s* B l set-plot-pen-interval 100 / num-people
2 F5 D% {% \7 K, p. J plot 0' r" t) {9 I% W; C. q- ]6 |
9 i- \0 @9 [; g
let sorted-wealths sort [wealth] of turtles! i' i5 _7 v h! A o& E* ]6 ?! h
let total-wealth sum sorted-wealths
2 [8 [/ ?5 t2 h let wealth-sum-so-far 0
: p% w: U# H. c let index 08 p- m. B1 J( D. ]( r
let gini-index-reserve 0
/ n0 v( W+ F1 }6 P
1 `, k6 d- f3 c1 n repeat num-people [
, o! x% j* i9 U3 A' Z! @+ Z set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
8 l- S U8 G: {- F; N! U* _; Q plot (wealth-sum-so-far / total-wealth) * 100( F2 o& ?. R2 S, `3 C5 r% }* x
set index (index + 1)
* a6 F1 G9 y9 A# d9 d# x C set gini-index-reserve/ X; \/ c8 L/ W; }* \7 g
gini-index-reserve +
9 W H9 Q9 F" p5 j (index / num-people) -
6 y$ w0 p# \( j8 L7 J) A6 x (wealth-sum-so-far / total-wealth)
% H4 ^; B7 K+ a$ `$ t T ? ]9 S- G( K, ]4 A! l; ?, r! x
% M" J* m2 {2 A0 ~& A8 F+ S. ? set-current-plot "Gini-Index v. Time"
! D! X0 w1 m& P0 ^ plot (gini-index-reserve / num-people) / area-of-equality-triangle6 B6 G6 @) k8 m( _
end4 b4 p0 u- N8 P2 p, d* k
to-report area-of-equality-triangle2 t0 g7 J; V/ ]/ `: Y8 q- @
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)1 ?1 e- M4 Y) z3 z; S. F( v: H
end |