请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
- r3 R8 W* N U$ m' { _globals9 Z% C5 \! C8 _. j6 b( i9 _
[
) H& a2 A% G |0 J+ X( Q max-grain
1 Y& R" @- x9 p" `; E8 X! I8 `4 P# \; u
], w0 u; o5 ?8 {6 Q* E
2 v, S; H6 s8 \, C$ P; s8 E
patches-own
& F' a1 S) m. e. f[2 S" r! v2 O; Q& {& m3 u% O
grain-here
6 }2 s- f" r! N; }) e/ S max-grain-here ( m6 B' J+ G: `+ w9 z
]
0 _$ O7 q) h0 m6 f$ Y% i# ~+ ?0 L, E" ~
turtles-own
5 I4 q* v$ p0 T[/ A& Y0 {0 E( j$ @
age
# T- V- h$ Y3 Y$ p; J, i wealth 0 c" J1 Z# J. T5 W& P9 T2 b" i
life-expectancy / s& _* l0 d; o1 M" }3 Q
metabolism
K4 l8 P: A4 R" w& O vision% A) ]- \0 S3 a n) O6 |3 y
inherited " R! c1 O' i( h" ~* c
]
% w6 z8 A+ C% u0 U' a
. c: q, O) W: Z9 P E
1 G/ S0 k% G5 G: C1 \! d [! Wto setup. l9 Z0 K/ H, C* U3 I$ e
ca
% H( E, p7 G; l* @& B1 N set max-grain 500 }: A5 Y4 P8 l# H
setup-patches
. ^: `/ L- `6 |$ ^! `' Z$ k setup-turtles
0 u7 e' M/ P2 J5 z3 g4 J setup-plots
; |+ ~9 }6 ~" B+ i+ f r# K7 T, s update-plots# P2 J) x0 x! O/ G3 H! d
end# p8 `4 `% h) \0 V- b
to setup-patches
g) c* R* P* k( Z ask patches
( _6 `: \& ]5 o c {4 P' N2 c2 v [ set max-grain-here 0
0 i4 y- B. I) j2 r( T9 s4 q0 C if (random-float 100.0) <= percent-best-land
C8 @) C& [+ _ [ set max-grain-here max-grain+ M% t# X$ u# ]8 H6 H! l* Y; Y u
set grain-here max-grain-here ] ], x/ v( d' h2 k1 O m
repeat 5
- Y5 ?+ v" S% e. g+ H1 e [ ask patches with [max-grain-here != 0]
3 Z" o2 ?$ ~6 a' ?0 J7 a x [ set grain-here max-grain-here ]
3 ]# H4 x- m, ?8 c) k& g w, [ diffuse grain-here 0.5 ]$ p3 l8 ^5 Y' c1 V
repeat 10) d3 m" B1 h2 b' g0 v+ c
[ diffuse grain-here 0.5] . |& v ^3 |) v8 h6 T! v8 O
ask patches5 z+ a# q, l' {1 l& y" }' r- X }
[ set grain-here floor grain-here . v: M, E/ K0 ^- Z4 I, U
set max-grain-here grain-here
5 r9 r) d: c1 [ recolor-patch ]/ U7 `( O# t- T. Z
end
; ]% V/ }) u' w9 Pto recolor-patch ! D' |" r4 f0 Z7 O3 U, h7 B
set pcolor scale-color sky grain-here 0 max-grain
U$ x) i6 i! Z Aend
+ R) n' g4 y( H, s$ U( m) s _to setup-turtles
! _: ~' R* J7 h& Q$ ` set-default-shape turtles "person"4 v& {4 |, }$ R" H; u4 B$ P5 _
crt num-people
7 X) o. G6 D. m7 D8 k7 B- n( z7 Q [ move-to one-of patches ) v: h; C. K8 A
set size 1.5 9 `! ^4 r" E: p" U
set-initial-turtle-vars-age; s7 W3 Y* j9 Q9 L% }6 p5 k
set-initial-turtle-vars-wealth9 }1 ^+ n' @3 @
set age random life-expectancy ]
' j; n' E1 T4 K' r& D! U {" _ recolor-turtles! q: J A* @5 Z9 I, f
end
4 ^) h- p. {' _7 w1 |- S3 s0 g5 R! q
" m' c$ L( x* F) _to set-initial-turtle-vars-age
4 q! ~, x6 w3 I% q let max-wealth max [wealth] of turtles! D4 y6 h& g/ z" v3 n" g& Q# G
( K0 J# W2 s+ S* v/ y ifelse (wealth <= max-wealth / 3)
% }7 N% A8 V9 M$ I [ set color red 5 [; L/ v/ P+ r2 J& _- Y' r3 }2 g) i
set age 0
& U- U% F( z. Z8 ]* x face one-of neighbors4
) r C6 X* l) @2 E set life-expectancy life-expectancy-min +
( v2 C$ u5 [. c g' B2 d- v% |9 a random life-expectancy-max 2 @' W) H6 s4 v- W
set metabolism random 1 + metabolism-low
& U+ F$ | S% ]; ~- h1 v. R; N set wealth metabolism + random 30+ V" J- a3 B- j. C
set vision 1 + random max-vision; {% G Y0 S' m0 C/ O
set wealth wealth + Wealth-inherited-low ]
4 c: |+ K0 U0 A5 B [ ifelse (wealth <= (max-wealth * 2 / 3)), s! A- n7 r4 b7 Q( m0 {, S, E# T
[ set color yellow
5 Y' g- m0 a% r; l9 c, W6 @ set age 0: [: H2 p8 E" ?: E$ j: G# K
face one-of neighbors4
4 P) ?- J, j0 E* ^( I set life-expectancy life-expectancy-min +
5 g% Q1 g. `, C% I random life-expectancy-max + 1" a# o8 s! I" {0 \; u. @+ B! s
set metabolism 1 + random metabolism-mid1 T. w o6 B, x/ `& a% o, \
set wealth metabolism + random 308 Q. y& f( `: u! |. Q0 Q
set vision 3 + random max-vision, s) J9 W1 R5 o1 f2 Z: g5 i
set wealth wealth + Wealth-inherited-mid]
6 F, n# _* R- k4 J. n. b$ |0 h. T [ set color green
: ^4 k0 \+ Y* N3 J set age 06 F8 T( Q: c) F$ s; U4 S
face one-of neighbors4 3 m; G- v* F6 Z: ?
set life-expectancy life-expectancy-min +8 G0 m: R; v4 U) z6 d
random life-expectancy-max + 2
* m7 ^* x( O7 a) p2 f set metabolism 2 + random metabolism-up8 ~4 o( Z2 {# d5 {
set wealth metabolism + random 30
, y+ h, i7 h7 e+ G. [6 z8 s set vision 3 + random max-vision
1 G+ z, q0 m" X! E set wealth wealth + Wealth-inherited-up ] ] 9 j& P3 F2 k/ h
& C6 U2 J% e3 E5 b2 N6 s* U
end
1 }2 d+ ]% |, k J$ `to set-initial-turtle-vars-wealth5 C% H7 O' Z9 n; V" X) h
let max-wealth max [wealth] of turtles
% ?7 Q& I, u O3 A+ b% T# H# U set age 0
0 o) H2 l! ^+ C( f; t face one-of neighbors4
, x8 v6 J- ~( o H& \ set life-expectancy life-expectancy-min +7 ]# F2 f3 m( B% u
random life-expectancy-max
7 {& D. @; S6 `& I set metabolism 1 + random metabolism-up- _7 H# s. ]" e4 l
set wealth metabolism + random 30
% p% n% B- P8 `6 v( [6 u/ e/ j set vision 1 + random max-vision
, f. y9 E# W* { k1 _4 W: d/ u# X( N: oend
* x2 _+ u/ [' sto redistribution
! v) @* e. M, w, N( Llet max-wealth max [wealth] of turtles
3 N0 ?- V6 `+ H3 qlet min-wealth min [wealth] of turtles w) }3 F" J8 f
if (wealth <= max-wealth / 3)
! F- G4 R1 _3 |! F5 z [set wealth wealth + Low-income-protection ]- F: |/ Y I3 l! J7 a. W
end" J- l0 @5 e# d* k3 h
1 n0 `: @5 X7 o/ `8 ~- ~to recolor-turtles
' C2 l1 Z0 m/ r4 Q* a- N let max-wealth max [wealth] of turtles
& B. t( A+ p9 [% w+ K7 c% P ask turtles9 {, K3 I4 s) Z) B9 d6 b# D- \( A
[ ifelse (wealth <= max-wealth / 3)
& B- m4 [' n% ~; E [ set color red ]$ G$ g4 M6 {) D. X! U/ ?0 Y3 U
[ ifelse (wealth <= (max-wealth * 2 / 3))
& W+ g6 m/ q7 K9 c9 U [ set color yellow ]! q) ]& x& Z* u( Q- P6 F2 |3 _8 u
[ set color green ] ] ]; |& a& F5 @) j" w# ]) P+ ]
ask turtles [ifelse show-wealth?
0 T( U5 |8 t7 n8 n i [ set label wealth ]: F! h" {9 E$ a5 s( i' J) P
[ set label "" ]]
) P( `5 `( v" Zend
) O6 O; Y' P* j1 y7 n& ?+ Z" L0 s, `9 R
to go
4 }, M; r( i$ ]) J( n- Z ask turtles m5 J8 o* d+ u; ?5 E& e
[ turn-towards-grain ]
! N1 l. a! U, R harvest/ w" E3 M# D" N& Q2 t
ask turtles8 H3 Q9 v8 }1 W1 S( H
[ move-eat-age-die ]
& c: a: g `( E* c, _" w) M recolor-turtles# e5 Q; J& t8 X5 r1 x5 B
if ticks mod grain-growth-interval = 0
' X: D6 H( H. p [ ask patches [ grow-grain ] ]
" ?- h( k' j( p' g8 ]2 E$ r! Y
j# i2 k# f- ^: o if ticks mod 11 = 0
4 P0 i1 w f# s4 u* r- U4 R: x [ask turtles2 d, E# N4 y2 z4 E% u
[ redistribution ]]
, ?# p0 S* {2 g" { if ticks mod 5 = 0; r- o8 V1 a) G0 G: a
[ask turtles
- q6 a- y, i; H [0 z) b0 J6 \ [ visions ]]3 {$ |9 Y6 j: k- @3 u) |. J
tick& B" p0 T$ ^3 P" x- ?+ i
update-plots. r" z3 ], z' o$ W+ Y. O9 x3 S
end' j: d% F/ N0 b' Y. P) C. V' C4 f
to visions
9 Q# o& ~: r& f) U, I! i R set vision vision + 1
/ b m' {) u. L( e& p- Oend, {1 U4 k1 h4 h; Q1 B* T
; S% z9 i# m/ Y6 x2 A* m z
' ~+ z! \0 m6 V7 ~" m0 H/ @ W) N5 O3 L) |2 e3 {3 e9 }) v5 B
to turn-towards-grain & `' ?8 i. x! E( {$ [4 B8 u
set heading 0; |# W* U- ] u( P5 o
let best-direction 0
$ W" G0 j3 {9 r let best-amount grain-ahead) H5 g/ A$ ~6 Z5 ]7 \! N; l
set heading 90
% q e" k/ B. q5 b9 g n0 f$ X if (grain-ahead > best-amount)1 [ @2 f6 C6 L5 J# R- x
[ set best-direction 90
9 W1 M& o$ c$ e) ? set best-amount grain-ahead ]) N) r2 {+ r0 |
set heading 180( F. j: M; |; N! Q! q6 C' v
if (grain-ahead > best-amount)- d1 t; B8 {7 q2 ^5 h' l
[ set best-direction 180
8 N+ H4 d# H P7 @ set best-amount grain-ahead ]
) K7 I j/ _" I. ~" @ set heading 270
7 b6 k- n, n* Q4 q if (grain-ahead > best-amount)
4 g5 x, @/ d9 ?5 D! G [ set best-direction 270' E# c% S9 D2 L
set best-amount grain-ahead ]
, Y/ \; @1 A7 `7 _8 F set heading best-direction
% x; h6 _ {3 d ~end
! ~0 b k! }. [' O! c% x W. ^* w9 a' z+ U6 g' u$ X" i
8 S) U3 ]9 P2 Qto-report grain-ahead 4 \7 G6 G6 h3 B3 z+ }/ k
let total 03 @5 @: `3 ?1 _ }; [
let how-far 1) c( ] K0 h# L4 P
repeat vision5 T) o# r+ o9 w7 y0 Q. D l
[ set total total + [grain-here] of patch-ahead how-far
) Z% J1 z# [+ p set how-far how-far + 1 ]- T" V `% w" x G& i# }9 R
report total
* [% I( p5 u9 t* z) w" Tend
4 L5 k+ {7 X5 L9 D* t- Y/ Z: j% p& R. K1 m* v& a% O
to grow-grain 3 w4 p3 d: Q/ S
if (grain-here < max-grain-here)
( }1 K I9 ~( P4 J [ set grain-here grain-here + num-grain-grown3 m* L( E) K) g2 |) [
if (grain-here > max-grain-here)
! i1 t# V2 `3 h% C. K9 P. Q7 ? [ set grain-here max-grain-here ]
" T4 E2 S' P% L% H recolor-patch ]
% o9 S1 Q0 t- @8 lend- m8 d( S1 W, n1 {/ b6 U2 d
to harvest7 U! I M4 Q- W j7 P6 |
ask turtles" s N) E; W9 t9 X( N2 }6 V
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]6 }) n6 r9 {) Z o
ask turtles4 m- d$ e9 B! R5 x+ c2 ?: T. L
[ set grain-here 0
& j h1 o I% d+ w, ~4 m4 Q5 v recolor-patch ]
. |! \, z$ r' b G 8 c, M) U! R3 H P. l6 T+ e
end
% s: S: B K2 s. `. L0 S8 e' Z( Q/ @( l& P% N
to move-eat-age-die
5 N4 e% ~. p4 ^/ q% N* N0 `- b fd 1
; T5 s9 q* d6 K B/ x* I- R set wealth (wealth - metabolism)
8 o- i9 w% `( b9 o: R set age (age + 1)
2 x. k+ [% Z# A, h if (age >= life-expectancy)) j- ~0 q+ z& Q+ ^
[ set-initial-turtle-vars-age ]
6 t5 [& E, D) N. V9 D if (wealth < 0)! S# h3 Q1 a8 Z$ F& @1 O
[ set-initial-turtle-vars-wealth ]
5 Z) q1 C, ?% |8 }/ O" ^3 z 9 E& K7 z( E8 \2 [0 J$ I
end# h9 L1 p5 H/ I' M1 u# ^: B% ~$ V
0 z# x* |' ?9 O+ q, c' r4 Q: W( K a, p- L# d2 u
to setup-plots
0 W: _3 \1 E5 _. ?1 A4 b" O set-current-plot "Class Plot"
' j, f6 W+ j; u* A! l set-plot-y-range 0 num-people G" k# |+ `* r3 d+ I+ z
set-current-plot "Class Histogram"- o( {1 g9 B1 l/ ]4 L g( Y$ s5 D. ?
set-plot-y-range 0 num-people/ {4 e' O- }, t& R3 J
end
8 |# f U3 d& k
W+ y8 f" e2 R, f- Qto update-plots
: h* Q( ^0 _- X) }6 J update-class-plot
+ ~6 c# s: ]' m E' H3 U7 m e& l8 R& A update-class-histogram
: s! `; f8 v. h update-lorenz-and-gini-plots5 D0 j9 ~' i% t6 v8 O
end" q: W) T0 q3 E5 ?0 J. W, o! ]
3 o$ N& `7 |/ t2 k( l3 Bto update-class-plot
4 e: w# T: t" y set-current-plot "Class Plot"
$ `! N5 Y/ F2 J [+ l( M# @$ D' @ set-current-plot-pen "low"
2 ?* e9 L& L/ w8 c, G8 I8 ~: [, [# A; W plot count turtles with [color = red]0 Y$ [0 t" m3 p( z
set-current-plot-pen "mid"
. D! o+ K" O* e/ T! A2 c+ B: y7 m plot count turtles with [color = yellow]! c$ ]; P# T) y1 l
set-current-plot-pen "up"
4 w: o% r; N; _8 ~ plot count turtles with [color = green]) V1 J9 t! p: ^4 l1 ?/ b. I" v
end' e3 X4 }( |1 h B
1 b; u: ]2 R8 t" {7 E& W$ z: v
to update-class-histogram
) D2 @6 V Y: ?5 } set-current-plot "Class Histogram"
% H; d' ^4 X6 A+ C: J6 f2 D plot-pen-reset' d' T$ U( ]# c9 R& F( F
set-plot-pen-color red% o! c( J" W% {/ Y, a
plot count turtles with [color = red]- }+ W+ K% Q: T' N
set-plot-pen-color yellow" i5 c: U1 E: g
plot count turtles with [color = yellow]
4 N) y* ^! [% o set-plot-pen-color green
- V, Y9 v: c% ?. p0 s) ~ plot count turtles with [color = green]
+ ^+ t. w5 P% @$ oend# p; S9 z! J# A0 E& I
to update-lorenz-and-gini-plots
# P3 O( r) p5 j; a M9 \7 b set-current-plot "Lorenz Curve"
# X$ ^+ ?2 v" t! Z clear-plot
/ E) O& f j' n" R
6 |3 [; }: S7 z: ~ set-current-plot-pen "equal") A6 h4 M5 B/ B7 b/ \0 X& I; j
plot 0/ @. Q$ x" Z+ g7 h
plot 100
( m+ l! Y7 v# d2 `
/ u2 ^6 O3 x: I4 h: s set-current-plot-pen "lorenz"
- x( I5 w- D w$ ], y# R set-plot-pen-interval 100 / num-people
+ J# E% ~/ y( n& j c# }0 F plot 09 [, \1 g) m) t2 N& C6 D2 M6 m
3 a& E+ `& E7 { let sorted-wealths sort [wealth] of turtles
7 b- z& B$ H" J" {8 `* D" ? let total-wealth sum sorted-wealths2 v) @2 [+ _' a8 y$ O* t
let wealth-sum-so-far 0' E& p. {! E& E7 ]9 n: {* u0 t3 [; z
let index 0
. L4 M# n! Y8 T9 B! R( h* F: a let gini-index-reserve 0& H/ \. ~: ^ X0 b. h
. r. Z0 ]) \0 E4 g, b1 i
repeat num-people [
8 e7 w5 |% A0 G! y set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
: v6 P1 H4 J' s ^ plot (wealth-sum-so-far / total-wealth) * 100
2 a5 D" U$ J# f( a9 o/ ^ set index (index + 1)
# ^5 f, t: l# C" n% o8 F2 C set gini-index-reserve
9 r) }0 h" U6 G gini-index-reserve +" H5 Q0 G# W+ P
(index / num-people) -
4 L! B& |, A' E& G (wealth-sum-so-far / total-wealth)
7 A1 O( {5 y, u& G9 b, J. }, ]! s ]
0 u/ x4 r& D3 D8 Z) s2 q9 M
1 R4 {% X: m$ Q/ Q8 s set-current-plot "Gini-Index v. Time"/ x; E; l& c; J1 a+ V' [8 a( C
plot (gini-index-reserve / num-people) / area-of-equality-triangle
; N& Z* z8 T+ O" s5 u! _# y2 ]1 Gend
& \/ @/ T' Y0 g2 C5 Cto-report area-of-equality-triangle
% L* p9 I5 n) k" K7 m report (num-people * (num-people - 1) / 2) / (num-people ^ 2)/ N7 O2 C1 m$ |- g
end |