设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7230|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
1 q6 \6 p* V; D2 E: Bglobals2 I7 ~( E$ H4 n# G
[
2 v' F- [  i6 w* k9 U" t& i  max-grain   
- Z3 ]8 r, y& x$ N! h; a0 ~% j( ]1 s( w: M3 s3 W
]8 \( n8 f+ p+ m8 O. ^+ O6 U! K
8 b' @" G) G* w$ [! Z3 B5 O" C
patches-own
! G/ W2 l9 G  K: C2 U[
: h9 f  y0 x; [4 p  grain-here      
/ }2 T8 T2 P9 H2 v1 k- Y  max-grain-here  
' x- i, Z$ o' d- f* N]: \0 G  y2 y  ]2 G7 y
! A3 n' V/ B/ o
turtles-own
" K! N2 l, e1 y8 Z  P6 r* H9 b[6 y7 `. b( O7 `! v+ j+ Q# A
  age              
2 Q8 I/ b2 D% L, \4 q0 a5 z  wealth         , I4 Z, d) V0 I
  life-expectancy  ! X  Q" E8 j! k+ @8 @/ ~2 u, J
  metabolism      
& f+ k: }; U' {# A# v7 a  vision
+ D5 x, u& q9 w+ b; s  inherited         . G2 W6 r9 R2 D8 p0 d
]
) \9 E6 M; x+ \: J! D" C: U6 F3 H: x  |+ @7 M" {

' c8 b8 \3 D/ j2 D8 Sto setup! L" x; J+ p/ d% W$ \
  ca
1 h# B: `% T+ M" q  set max-grain 50, i& l# j9 s4 b% h7 ^/ ~
  setup-patches- V* w! P$ V0 i
  setup-turtles
2 T! |  e; ]- J* }4 R  u8 w6 S  setup-plots  n# Z9 |3 k+ q; p7 I0 @4 I
  update-plots
, h% J" D: J, @0 I1 X, Kend
( l9 R5 W5 B# a; l! @: ito setup-patches$ l/ L1 ]! ~2 c
  ask patches6 f+ `  K5 k  L+ z
    [ set max-grain-here 09 _: u; y1 g3 D6 i2 g
      if (random-float 100.0) <= percent-best-land
' e! c& K2 W/ P, `        [ set max-grain-here max-grain: N' e/ h. l, b8 J- I
          set grain-here max-grain-here ] ]9 i$ A- g7 I# \. b
  repeat 5' f& m) E( U! ]9 j, r% V
    [ ask patches with [max-grain-here != 0]
+ A% x/ ^) n( |7 r$ ]  k5 N        [ set grain-here max-grain-here ]" l$ e) j! b1 |6 b) _
      diffuse grain-here 0.5 ]
8 p  Q0 r$ u- ]  repeat 10+ E9 \8 t7 W8 T& f% j
    [ diffuse grain-here 0.5]         
5 E9 _+ G+ H! k5 H% `/ _( b8 f8 V  ask patches
4 d1 L0 ~5 x5 a, G0 H6 L    [ set grain-here floor grain-here    ' [8 U/ f3 h4 m) Z! ~# s
      set max-grain-here grain-here      6 H3 t6 _& j6 {  @8 u% s& {4 y! R
      recolor-patch ]2 d, ^2 T7 ]$ X% e( a  Z0 h& k
end3 ]5 _- L( G9 L. D& Y: j4 h
to recolor-patch  4 K# v: W7 T) [/ h9 J; @: w, A& s5 f
  set pcolor scale-color sky grain-here 0 max-grain$ \: o  Z! {- M3 G. d. n+ n
end
% Q1 H  W6 Q  u) W9 m( M8 T5 hto setup-turtles
; Y) C6 u; g; D/ z% K  ^& Y  set-default-shape turtles "person"0 U4 Z' n5 e% a* B2 @- ~3 X
  crt num-people: O8 E/ O: o; B  d- @% f0 t
    [ move-to one-of patches  - T+ n6 N) Z. R3 V7 c% \( U
      set size 1.5  
# P- _& M( i* `      set-initial-turtle-vars-age
8 j1 n2 D' J6 [3 W      set-initial-turtle-vars-wealth
* P9 S" X; d( M* a9 t      set age random life-expectancy ]" E- j) _- J- m: f7 ?  j
  recolor-turtles/ w; E  J& N- |9 D$ R- K! H* ]
end
. X# ?3 Q& W* R+ i
4 f1 c) k7 v  d: ^& J, cto set-initial-turtle-vars-age
2 `6 D* Q( z1 z+ B0 t( d let max-wealth max [wealth] of turtles" l% _3 P, q1 K4 S0 M
   
# J; I  r# f& c     ifelse (wealth <= max-wealth / 3), U/ s- U* Z* D8 V
        [ set color red ( k3 B5 m& I' ~/ a+ ]5 w0 B8 O
          set age 0
/ J2 E( x9 A* i2 }; L          face one-of neighbors4
8 Y/ Z, A6 W6 o' b. @: Y          set life-expectancy life-expectancy-min +
$ r' Z! ?  I7 o9 z2 q9 r                        random life-expectancy-max
4 K# I; B6 F4 W6 c7 A% V4 ^* Y          set metabolism random 1 + metabolism-low
6 c! g5 g# w% Q" \# @- p+ e; p          set wealth metabolism + random 30
2 R1 g3 k) C  }. v5 G* B) S$ t          set vision 1 + random max-vision2 `4 q6 _. _7 ]2 P. Y$ u9 v0 `: `
             set wealth  wealth +  Wealth-inherited-low ]
% F# A2 M0 i  [! i2 I        [ ifelse (wealth <= (max-wealth * 2 / 3))% Q, S9 o; Q5 F7 e' X0 |
            [ set color yellow
( e5 w' o  B; Y/ a0 M! y' e              set age 0# c4 _  i+ `) C
              face one-of neighbors4 9 E; z, I4 r( k+ G9 R9 x# Q6 G
              set life-expectancy life-expectancy-min +
6 U+ y' U! X& h4 d                        random life-expectancy-max + 1! Z0 K0 b  [4 i1 [) P4 F0 ~
              set metabolism  1 + random metabolism-mid
# E1 V2 B& \- E' O, |( `# j8 v              set wealth metabolism + random 30
5 r! K- Y5 V' k" V. t              set vision 3 + random max-vision, ]/ t9 X& p/ d* g/ _
                set wealth  wealth + Wealth-inherited-mid]! E- ?* M, [* [+ Q1 s& \1 ^5 H
            [ set color green & }* p* z) e8 I% ?
              set age 0- O  {  E7 o5 O" Z2 X, S
              face one-of neighbors4 ' ?1 g# s" `" K( H
              set life-expectancy life-expectancy-min +
8 @% G; {5 Z- H                        random life-expectancy-max  + 2, i) `4 F& Y% f
              set metabolism 2 + random metabolism-up
3 ^8 c3 T( v/ h1 `' M1 k0 R              set wealth metabolism + random 30
, x2 A2 \6 i: a$ @' o              set vision 3 + random max-vision
* l; V! p2 J" i+ T) ^- J              set wealth  wealth + Wealth-inherited-up ] ] & Y( i$ D5 H5 p0 L
; _  u' _/ s& Q
end% B: y, P; L( ]: p
to set-initial-turtle-vars-wealth
& F& z& N1 i5 j% S' g/ r let max-wealth max [wealth] of turtles& P" L2 h6 \, K
          set age 0
* o+ L+ u4 h; Z# x3 k  e5 I9 Y          face one-of neighbors4
* x% o& K2 r, l          set life-expectancy life-expectancy-min +
1 j6 l  X2 N" P9 \& p, }4 }: {: Y                        random life-expectancy-max
1 s- ~) T* s! _$ G          set metabolism 1 + random metabolism-up& r0 ]" w+ ]$ J, U! y- U5 N& n
          set wealth metabolism + random 30
" a0 e7 j& z5 s; {- q+ s, |, F          set vision 1 + random max-vision ) Y& c( G# V: I- M& x
end% u% Z( J# d: G9 _' g( N
to redistribution" W7 r# U1 G' y% @* j$ w( d; S( v
let max-wealth max [wealth] of turtles1 `; I- x" U1 e& y* B9 j
let min-wealth min [wealth] of turtles
' Y/ P( H( E; z; A1 lif (wealth <= max-wealth / 3)3 }: z8 }0 b5 _: |: D
[set wealth  wealth + Low-income-protection ]6 O8 m: F( F3 @" U1 D+ r
end, j$ Y1 q2 u% n1 }1 p
         
% P. \  ]  b2 F# b' h8 Hto recolor-turtles
5 z7 \: V4 x4 c5 N7 ~# r  S  let max-wealth max [wealth] of turtles) j$ S0 d" o! c. J. @, `6 l
  ask turtles
( w6 g+ x8 J8 k4 u, O! Y) G& R   [ ifelse (wealth <= max-wealth / 3)
* k  X: U/ B) V5 p/ r$ o" c        [ set color red ]
) \) e+ p7 b+ E* a5 g$ `. D        [ ifelse (wealth <= (max-wealth * 2 / 3))
0 V! h; E, J9 Y+ J1 ?            [ set color yellow ], j2 o6 m$ D* H+ a: {$ W' B
            [ set color green ] ] ]
) D. d1 a, g8 m3 k" k ask turtles [ifelse show-wealth?, z  k; E: k4 u+ M; q' G
    [ set label wealth ]: C9 ^0 n7 D# \0 |1 E) X
    [ set label "" ]]8 r" W! ]+ D' {+ a( K
end
. G. h/ P: X, c# L0 [# c: j9 k+ U/ \; A- T% _6 R9 K# [
to go
  Y# Q7 U+ O! x: M' V  ask turtles4 }4 e" w: C: @  ^5 v& }
    [ turn-towards-grain ]  1 ]9 Q9 T; G3 j
  harvest2 a9 X7 Z; n. r0 z# w6 H$ @
  ask turtles
1 s: H# S# B* l2 a7 e$ V    [ move-eat-age-die ]
3 H6 u! U2 i! H9 J' Q) ]  recolor-turtles
7 ?1 L1 [; ?# x) a# C( {6 d  if ticks mod grain-growth-interval = 0, E& }& c1 F' s6 G1 [
    [ ask patches [ grow-grain ] ]; X; w) `/ ?" n5 A+ P
   2 T; ~' c+ c* I* Q. G. P9 n
  if ticks mod 11 = 0
% F5 |! n4 @8 X  @* e. D; S% f" K  [ask turtles2 |% i7 v6 S/ D7 @8 y
  [ redistribution ]]+ n9 K* [# O7 g. y
  if ticks mod 5 = 0
2 V- V0 m, J# N# L   [ask turtles) a5 g" d7 i9 ?  ^0 h; ]0 O
  [ visions ]]# ?: F7 L" Z0 J$ l5 G
  tick! b5 ?8 ?8 A) E: S
  update-plots8 z0 N; V6 w: ?5 V
end+ o% y# }& r) V, d9 [, Z
to visions# ^  V; u: [  I( J/ r0 [2 G
set vision vision + 1
  ?, ^+ r' l" rend  K. m$ ~4 a. [5 ^% F* r! y

  P. P9 V/ K+ e& _
* K( o0 J! G& g9 P# e& H8 x! A$ C0 G, k8 I" e$ m* s" V
to turn-towards-grain  " X: R- B5 J. C1 J' @, m$ F
  set heading 0* x( ^* M6 N( ]
  let best-direction 0
' r2 X7 y) o; w  let best-amount grain-ahead6 [% n% P, X4 d1 r( I3 S6 B
  set heading 90
. v4 }/ r% v. k* L0 Q: m5 c  if (grain-ahead > best-amount)# i4 ]' C5 b" ~2 w1 V
    [ set best-direction 90
) y0 e. Y8 `$ `      set best-amount grain-ahead ]
+ Q( b9 |( l* y- M( f( [  set heading 180
6 o) k5 t4 M& T6 X0 `  if (grain-ahead > best-amount)
) q) g) u; d$ t6 `$ q2 r" _    [ set best-direction 180
0 `3 q. X) e. t& a0 ?% b, F      set best-amount grain-ahead ]( D3 y( ~1 U' J$ t
  set heading 270- K! _% h- m* p; P9 }! Q/ x* `
  if (grain-ahead > best-amount)
4 u8 u1 G  M# y! _; }. N    [ set best-direction 270
6 k* e5 Y% k" j& Z4 {* N      set best-amount grain-ahead ]1 \3 Q0 K3 o3 I# z" j6 E: X: o
  set heading best-direction
; S* \3 f5 O; ^6 u7 \# tend7 b" L0 O( [4 T7 ?3 q: b9 A! Z' @& o
% o0 W/ |/ h# z3 O4 ~, }9 z$ p9 L: f
& |5 f  P7 @% M
to-report grain-ahead  
' B) L0 G" ]" L) e2 ]- y. p3 t" x  let total 09 o% ~& g. a' X% ~, \
  let how-far 1
, L' s- N1 r& h! R# ^  repeat vision0 W# S9 Q/ y# c4 U0 h% l
    [ set total total + [grain-here] of patch-ahead how-far. L1 j# D! L2 n; c' k: R7 v
      set how-far how-far + 1 ]+ o% m& G: y* g; p0 [: v
  report total' T4 O4 {) K4 s6 e
end4 g/ Y  M- l2 v! Q- ^

  G$ P' [0 {% W! v5 B: bto grow-grain + u8 V  O& ~  y' h0 s
  if (grain-here < max-grain-here)
, L; ?, W) F: n9 N* n    [ set grain-here grain-here + num-grain-grown
; n4 z# r/ |1 ~3 f" w      if (grain-here > max-grain-here)
9 f2 l8 Q; f. b$ J3 i; I$ ]        [ set grain-here max-grain-here ]% i( N: @4 {3 w* F+ Q
      recolor-patch ]0 Z  W' P- |# C+ p3 R1 X/ J
end
, R7 l6 L" u7 v8 x& g* J9 gto harvest& \. M2 |8 J7 w7 q
  ask turtles
1 X( h4 i9 c' j3 ]2 S. e    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]2 }! R; j2 y' @2 B
  ask turtles' p' V3 F0 z& D% T$ S) a; O# [
    [ set grain-here 00 n6 o7 {5 R1 c' v% B$ R( @9 \1 e( Q
      recolor-patch ]
4 T& ]7 p4 e+ `: K6 x, p  
5 D+ q1 i5 t% B& T* ?4 n  Qend% _2 D; Y% ^7 \, g( h
. l; ^0 k$ K6 b
to move-eat-age-die  
* [3 `2 c) O0 F! k! N6 {2 [2 `  fd 1
7 J3 `7 a% L' G+ C+ ^0 C+ Z  set wealth (wealth - metabolism)5 q! |! E; a" F; S, |- \6 k5 M
    set age (age + 1)
, P) Q. N* F. N  if (age >= life-expectancy)
! v3 p2 w3 b0 T2 _( `    [ set-initial-turtle-vars-age ]. y4 S  N# Y# a( `2 r+ Y
  if (wealth < 0)+ c% B+ _3 {2 _: W( X5 s. U$ P
    [ set-initial-turtle-vars-wealth ]! Q( A6 m3 {8 i( e. `
    # d: A$ `7 s4 ~) K$ k
end( c/ j- `; v4 e+ u4 o

+ Z3 z6 [7 s# @8 D5 b. A- g% c
2 D. l0 U" u; t1 ato setup-plots
- X3 `/ O% ^$ }0 O; R4 U) ~- ^  set-current-plot "Class Plot"
5 S) c1 A8 m+ D6 ^, p  set-plot-y-range 0 num-people& M9 z$ F  s7 X% U
  set-current-plot "Class Histogram", [3 I2 m4 f0 c4 b: y0 |
  set-plot-y-range 0 num-people
/ E; K0 a" @: ^5 w; S" [; i% ]end3 y; r9 E% z5 Q, p0 J. c6 ]) l# R: A
9 M; k  w4 Z  ?$ M( F* r6 R
to update-plots5 W  u4 V! u) }. y
  update-class-plot9 P' i5 ^% d, y
  update-class-histogram
; _: J8 D& `* H! Y' E, U  update-lorenz-and-gini-plots
1 ^; K. ?; L! h8 d, f. ~2 K$ P" lend& i$ ?1 ^) x9 k& O, V0 Y  D5 }
5 k7 m9 e; I3 P) E/ D
to update-class-plot
" a# b1 ~- h- `6 y: \* O4 W$ r  set-current-plot "Class Plot". f& K1 Y/ q! y0 v4 H
  set-current-plot-pen "low"
) J, L5 p2 A$ L3 |" f  plot count turtles with [color = red]2 t4 d- v% l$ c9 _! q
  set-current-plot-pen "mid"* o% K9 _# \0 \9 Y8 _
  plot count turtles with [color = yellow]! g* `% {" s  I' \
  set-current-plot-pen "up"8 v# B& T% W1 _2 N1 l0 p& j) `- G
  plot count turtles with [color = green]
. r  W, f& I" c7 T- Hend
, Q8 v# T7 w% f* r! i/ w- a$ W
% t. u# r& P) p. X* y$ `to update-class-histogram2 ^" ?6 J2 I- N4 L% P
  set-current-plot "Class Histogram"
% o+ m: w  g) C4 A/ A* ], b& q7 ^" w  plot-pen-reset
  y) {9 t% |' w: N; ]+ Z( b4 L$ Z3 K  set-plot-pen-color red7 b6 @' @' I- ]. z/ v' b4 K: }
  plot count turtles with [color = red]! w- C! H) V2 H6 j- D  U
  set-plot-pen-color yellow$ Q4 x2 N+ ]6 D# ~; G1 W
  plot count turtles with [color = yellow]
+ s" z; P2 t" }2 z) m  set-plot-pen-color green
& o; C" q' o: O) [  plot count turtles with [color = green]- F/ |1 L# \, y! v4 B3 {; j
end& d/ o6 H4 M3 |* P9 E. I
to update-lorenz-and-gini-plots
% V0 @' u2 H) N0 \2 y0 h  set-current-plot "Lorenz Curve"4 B! i" N. ]" g. `; f8 R5 F* w
  clear-plot% e" j% a, ]4 V$ O. ]6 W2 h  j5 c

* b! U+ m6 N% H" s* Q- O5 p8 \, V  set-current-plot-pen "equal"' F) c. j1 B. H) @% f
  plot 00 A5 X8 L, x5 S
  plot 100, u  @2 ^) v" P- g5 J+ v% v" D
8 j8 X" ]; j* B+ Q7 z, J& y0 t* B+ B
  set-current-plot-pen "lorenz"/ {' G; `4 }; r
  set-plot-pen-interval 100 / num-people% f* V! E5 y( N, g& `- f
  plot 0* x1 }- _! y' U- Y- h6 b

9 y- [( E* |8 O8 q0 D) M3 r  let sorted-wealths sort [wealth] of turtles8 b0 L6 g* v( G' H# [2 a* o
  let total-wealth sum sorted-wealths# e0 ~% Z; e; [$ p
  let wealth-sum-so-far 0
# {  a- q9 U9 H  let index 0
5 e0 y  b. ?4 b" A/ z/ W# [7 J  let gini-index-reserve 0
, c- U8 |1 s7 O8 G1 n0 {6 h
) n/ _- N! b9 u; L  repeat num-people [
. @4 T% Y& |- d% {7 l    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
% B3 }  B: w" @! m2 W; b    plot (wealth-sum-so-far / total-wealth) * 100: h/ W2 L0 N* G" p" W
    set index (index + 1)
, ]2 C0 I! `8 M    set gini-index-reserve4 T8 x7 L3 ^" Y) O
      gini-index-reserve +
8 I% b( U- k# r5 W. N      (index / num-people) -
# C" x4 r* t' J& A; n% B      (wealth-sum-so-far / total-wealth)+ T( j9 Y; g8 _7 Z: m. D. Q2 r% j, e
  ]$ W, }" k2 x$ w! {7 ~2 U

; q" W# N% ^' @" X7 V: T  set-current-plot "Gini-Index v. Time"7 X" [( S$ A" G6 [5 C9 R2 y* G
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
8 [' P) Y6 {+ `% ?& j  xend. x' u2 T, Z% q4 f& K
to-report area-of-equality-triangle( z  z5 W+ @5 v% \) l
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
+ \  c: f/ C& X7 F  xend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-19 21:26 , Processed in 0.021440 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表