请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现( [! [% J, `1 w" K& f2 v
globals
+ p8 a* U3 b0 S" }+ f* P4 R1 ~[: i' n6 L* p" y& J# R! O
max-grain 4 s, w8 v( Y/ v5 ^+ T; s, y& [
: S5 G0 k$ w- e: @$ d8 h7 I5 ^$ n2 y
]3 s! j/ g5 x) n0 r5 a: V2 R6 Y
% T: [' K7 n bpatches-own1 M8 v( Y9 D$ F4 ^0 t/ r" S
[
. }( j' A+ i1 s9 C- }8 Z& q$ O grain-here
3 ]1 o( d8 N) V; @8 d max-grain-here
% w# F# }% [* e9 V]6 r# y% _4 v! S/ ^7 o6 `
' [4 k/ m# H! yturtles-own! m7 h5 X' z _) z- n" c
[
, w0 v- @" |9 F8 W3 c age
9 b2 n; D, j0 v( D* r" g, [3 T wealth ) }3 q1 _8 _9 I6 E. |9 T. ~1 U% \
life-expectancy ( _" S8 z9 S* A# a: O6 y6 B1 q6 W# n" O
metabolism 9 `' ]7 g( t7 v- ~/ N
vision
5 M+ y5 l( P3 r( T5 M" @ inherited
! c" y( v) H6 w0 g% X) `7 P]
; w, |/ I) o# \2 r8 J! ?7 n& ]3 s8 I
7 }4 Y, ~- _5 ^/ ^) Q7 W& Gto setup$ ?, v7 V% N6 P7 P
ca
! |& H, u- b! G _ set max-grain 50( C* g) N7 E% y8 U i" c
setup-patches: s& K; s6 G$ p6 ]# B7 G$ o( O
setup-turtles, K6 R2 P& g" c# I( s" O* v$ U
setup-plots+ J/ Q, Z% Q4 o: o$ E
update-plots# O g, c- q5 @5 p
end
/ \! A# F# K; G. r mto setup-patches
" b! R+ m- B. D# g v ask patches
8 Q2 Q, l. R+ ? [ set max-grain-here 0
8 F% r M3 ]1 w+ D) q if (random-float 100.0) <= percent-best-land& z. |* ^3 |, z+ k7 `9 U
[ set max-grain-here max-grain p4 Q1 l: G8 S+ y9 a5 @
set grain-here max-grain-here ] ]( j8 s! y6 h% |- H1 }; L
repeat 5
2 Y. W2 M) u9 U$ H l- I [ ask patches with [max-grain-here != 0]
; r- m) H! E1 b( F [ set grain-here max-grain-here ]
8 _8 W. z/ Z# l* d! D diffuse grain-here 0.5 ]0 L7 H8 P7 ?: h# B* K
repeat 10
) E' ?5 e$ S) r: n' |0 U# U [ diffuse grain-here 0.5]
$ E. |5 d$ U8 Y5 Q# m, k ask patches# N$ r2 i, S% E1 ~' H
[ set grain-here floor grain-here
/ T6 O5 }0 h; K& F set max-grain-here grain-here ) r% ~- F7 k: ~- F: j# f- K
recolor-patch ]
, y# B3 a% h4 V3 L9 X: g e. @, M' {end1 a F5 D3 z5 _9 U, `4 A
to recolor-patch
/ h( i. ^! b: Z0 q% x/ u set pcolor scale-color sky grain-here 0 max-grain3 j# B; R' Y8 K% D
end9 Z; [. @ `( s$ H9 e- h6 B
to setup-turtles
4 S/ H+ V1 x: ^; M t; ? set-default-shape turtles "person"2 q y2 [; z6 X5 P2 M
crt num-people
- U5 n- s8 E/ a Q: L$ E [ move-to one-of patches
" G. p# B( H& ^0 t5 g" c( O set size 1.5 ' o A0 S( L4 Q0 Q6 D4 E
set-initial-turtle-vars-age% l" h8 W( X3 e6 @( Z2 U2 x
set-initial-turtle-vars-wealth
' O4 N1 L% M- h! ~ ` set age random life-expectancy ]
( l' E3 v6 }& _ recolor-turtles
- D& v9 j, M7 R# s, `, _end
$ G* N4 c$ Z2 ~7 }0 s6 w, n w2 F3 X) Y3 j/ o2 |8 w
to set-initial-turtle-vars-age. D7 t( f9 h' |) \
let max-wealth max [wealth] of turtles
, C- W0 j6 W& {5 k( B 2 R' g3 f( u6 b& J) p$ f5 P6 p! |2 C
ifelse (wealth <= max-wealth / 3)& e3 g- `8 o1 L" u7 ~/ l- n- d. t
[ set color red
1 i) L; M/ i @, A* ] set age 06 {* D5 L E3 P
face one-of neighbors4 . O6 ]% S" W. c9 F9 o7 s) V5 ?. s
set life-expectancy life-expectancy-min +
- I) j# D# f- g( g' I random life-expectancy-max - x4 S a( J0 K. L7 _
set metabolism random 1 + metabolism-low A' f, I% N+ C+ f
set wealth metabolism + random 30
9 v/ y: w/ R* q) H: r% @- @ set vision 1 + random max-vision- y) n+ O, R! r
set wealth wealth + Wealth-inherited-low ]
( f7 T4 S; }0 M8 P2 \& N( ]) I [ ifelse (wealth <= (max-wealth * 2 / 3))' T+ p7 J* G E' q5 l
[ set color yellow & a7 c0 w, L0 j1 n' f: q
set age 03 a9 ]! q/ {+ D9 k6 Q' v
face one-of neighbors4 . o/ N; [' [; a5 }7 `: x
set life-expectancy life-expectancy-min +
- p/ y2 d2 W% n$ a* A random life-expectancy-max + 15 L$ |, p, W2 s( j1 T
set metabolism 1 + random metabolism-mid+ z# R& v% R# F( {& B# S4 F
set wealth metabolism + random 30
9 T/ J- C9 R7 V# T set vision 3 + random max-vision
$ S' d* b# _& Y# R set wealth wealth + Wealth-inherited-mid]# r X# m) M8 I& {
[ set color green
. |3 N }3 z U! V+ U set age 0- F9 |6 i9 C% L: k& |8 _6 ]
face one-of neighbors4
; S1 E) e* u9 B8 W" }8 L, j! v set life-expectancy life-expectancy-min +5 }! e7 P1 u- v& h* `$ _
random life-expectancy-max + 2- |/ M/ M8 H: p' u/ F( z# O% b* q1 T: q4 k
set metabolism 2 + random metabolism-up, p# r; I) y) U2 G
set wealth metabolism + random 30) F0 i5 k7 J# N9 ]/ P% y" G
set vision 3 + random max-vision5 q5 F& X0 H. u
set wealth wealth + Wealth-inherited-up ] ] / J2 p6 X8 V5 W
$ ]$ ~2 F0 f' ?. b( G+ c& Q- D
end
4 \& p; Q: V+ P- \$ J0 X, dto set-initial-turtle-vars-wealth
$ } a; y3 D. K( Y. ] let max-wealth max [wealth] of turtles
8 v+ ]3 a( Z' t. e' P* G- i set age 0* o" b/ U# x# w# h) W z/ D q# z
face one-of neighbors4
& G/ N' s& X/ X; ?- e8 d* u3 d1 P set life-expectancy life-expectancy-min +: W5 X# T8 v- c+ Z1 @* q
random life-expectancy-max ( ~% C/ H" x* q7 H$ k f, K
set metabolism 1 + random metabolism-up
8 L( ^( J; l4 x% e4 d" Z0 e set wealth metabolism + random 30. M3 L% _# Z, F8 B7 V K1 W
set vision 1 + random max-vision 2 ^) z) C: ~: D8 Z# Q$ U9 B
end# g7 y0 n0 y9 A6 `
to redistribution6 A5 Q0 ?+ q. c2 T M
let max-wealth max [wealth] of turtles
4 y& B' n# A- Clet min-wealth min [wealth] of turtles
9 Z" w3 }( x* S9 C3 cif (wealth <= max-wealth / 3)3 v' H8 M9 ]0 L/ m/ ?8 F5 E/ L
[set wealth wealth + Low-income-protection ]
, ~) A7 k( _" i5 [- n+ j" Vend5 k$ y( \# L- M9 f
; Z. P z+ h, N/ N: }. Z) u3 rto recolor-turtles' y9 a# }& _: R1 Z# W
let max-wealth max [wealth] of turtles
, _4 Q# [* p* X' z9 o" i ask turtles
0 j. ? ^0 z$ A5 H0 l+ b [ ifelse (wealth <= max-wealth / 3)0 P6 u; n* E/ \0 a1 d6 ?' w
[ set color red ]% D! r5 ^2 A" _1 c+ m, G
[ ifelse (wealth <= (max-wealth * 2 / 3))$ Z+ B8 T8 F0 |& X# P2 D
[ set color yellow ]
+ U# m8 d9 F% c8 e" B6 }1 B [ set color green ] ] ]2 K) M6 s- Q; m. \* s: k$ ~
ask turtles [ifelse show-wealth?
7 u8 z$ G+ \5 w% J [ set label wealth ]9 H' M3 q6 g6 o2 N% h$ ?3 ^
[ set label "" ]]8 h P5 W9 j0 ~, o& `3 F
end9 U# q7 W" |# G; s3 d
; Y* `6 d, @+ w7 \( O
to go
/ R; M/ }- J. ]( `8 S ask turtles
9 L6 _3 K$ ~! g+ |: n [ turn-towards-grain ] # M$ r4 [9 E) R* {
harvest
! }. L' w% K- b3 Z& ] ask turtles6 g( f# N1 Q' A- R7 i& ^
[ move-eat-age-die ]3 I7 e7 F; e( b4 f8 C2 h
recolor-turtles9 f3 D9 F& B$ h H! A2 F6 O5 k1 K7 {0 i
if ticks mod grain-growth-interval = 0: B9 e4 J% a4 L
[ ask patches [ grow-grain ] ]
0 I- I9 U+ }8 T/ V' f, C5 U' _
" `' [ D# S! E+ q" h, [0 b5 i if ticks mod 11 = 0 S1 F6 o. A. q/ x
[ask turtles
! T3 d3 [& O5 Q, r [ redistribution ]]: V. G. }5 r7 F" }2 b
if ticks mod 5 = 03 U/ Y% W- V' P, v+ ]. o& ?
[ask turtles
2 d9 Y/ v9 W4 d3 q [ visions ]]. G! Q7 V# w f. r4 r
tick
! \9 K6 p) S! ]$ h, S( i1 c update-plots
' b8 b2 s& |1 F# Qend
: ?0 A7 e( [0 v4 B. Y% Yto visions4 v2 E- Y. {2 e' c& y
set vision vision + 1
$ m+ G6 L2 t. j1 f1 pend) _7 x1 E5 ~ V2 C& M9 y: D V* @* t2 F
1 C" v7 f4 j$ I. [/ V* x$ d: _2 T. t
% w7 c4 `0 B: ^& j! Ato turn-towards-grain
9 g$ `7 t- \/ T4 h; T( K set heading 03 L) R0 S% ~. j9 q9 R" W
let best-direction 0- ?5 F: {; B Z: S; \! \3 h5 [
let best-amount grain-ahead
6 y; A& H9 Z" V/ W' w set heading 90
# n- H# ^0 B/ A* V- x if (grain-ahead > best-amount)
# _, L) l& P' _3 T [ set best-direction 904 ]# P& x! y. o/ Y! x3 G8 M0 P
set best-amount grain-ahead ]( |6 f6 Y! A3 Z6 t
set heading 180, I) K. l5 y& Z, } I
if (grain-ahead > best-amount)# H# S: B9 [5 S* ~0 r& R
[ set best-direction 180
! O2 @- c8 l5 s9 C7 t+ P0 |/ D9 x set best-amount grain-ahead ]: x3 @! x+ Z/ V0 R! ~
set heading 270
5 h: f9 `7 e* M6 u4 F. p) R if (grain-ahead > best-amount)" y3 t4 ?5 u( Z% X! p
[ set best-direction 270
' K2 Q6 K$ R/ F( @6 \ set best-amount grain-ahead ]
8 m. h0 _1 I' J# N# q set heading best-direction
7 o! W- a# M0 ~3 R# [end
+ D2 s( W7 ~8 ~4 k; f- _& ?+ Z/ [$ b( Q, Y
% w) m- x, Z, w# g
to-report grain-ahead % O: ~8 n* g7 a2 Q) u" X
let total 0. x. P Q! v; F3 y9 a7 d/ a4 j8 R
let how-far 16 i. W$ b- s. f% }+ R" U( e
repeat vision
7 B0 t( V! X ^5 Q% t5 w [ set total total + [grain-here] of patch-ahead how-far
4 k1 x; h/ F) k7 R, k% Z set how-far how-far + 1 ]
- B4 V1 u% o: K. O5 k report total6 Y4 }7 d0 C3 x. b4 M
end
9 \$ B( N! p2 V& e8 m6 E9 S
5 g# }) e6 _2 z! f1 gto grow-grain
2 e3 G( H$ [2 n9 x" \ if (grain-here < max-grain-here)0 ?+ ^! b( ?* R" n' G# O
[ set grain-here grain-here + num-grain-grown
& }; S1 d% r i* b2 o. F" K5 F5 ` if (grain-here > max-grain-here)
& `, v5 w% V+ l8 @ [ set grain-here max-grain-here ]
: W# ^" t1 T3 X$ h" ^. d9 @) I9 k9 M recolor-patch ]1 F% B8 h6 H1 P; e' ]% \7 `7 B, T
end
7 S+ F$ `1 {7 n L7 K3 Nto harvest' h& D; ^3 Y! U' [3 A
ask turtles$ x: x7 |, f0 q& G3 G! ?- y
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. |, a& Y" Q5 }" _1 X
ask turtles. L' x' W% L+ H; [# A6 i5 A
[ set grain-here 0! w. h0 i0 X' |5 Q
recolor-patch ]
3 V* A) ^" B; u# ^+ T0 w - k8 A3 s$ c$ _
end$ } J* J) ?2 `: R
5 I' @2 Q+ r9 @& s! b* L4 x1 xto move-eat-age-die
# r* y" V2 j) O1 O/ g8 {5 V fd 1
l0 R# P4 w6 T% r: `* L: b+ k5 f set wealth (wealth - metabolism)
' J0 D* l0 r' S+ @3 A2 n set age (age + 1)
, o+ I) Q6 C8 j$ k if (age >= life-expectancy)% H6 G; Y( t ~8 h/ I; Z
[ set-initial-turtle-vars-age ]
: H1 y4 c+ u) [ if (wealth < 0)
& O W% D2 h" _( ^0 n [ set-initial-turtle-vars-wealth ]
# l! ~0 H& W3 {- X- Q: h; W$ u: H' C * \% p% d4 R) ?" [2 T$ i) N
end
* c/ y2 F3 O! k! E0 l% E; t; Y( B1 m+ w4 c( c& H7 T
- L! p9 K& n9 R0 I5 o/ h$ H) wto setup-plots
- r) Y4 m& c! E! L0 }0 g set-current-plot "Class Plot"
- G: a2 h, q8 d: p set-plot-y-range 0 num-people
/ _2 @+ K" U- z b% P set-current-plot "Class Histogram"4 z# ]6 a0 F& Y2 D* F4 E% P
set-plot-y-range 0 num-people$ O7 g4 g# ~9 V# `
end
" M& u ^1 Z0 L: H; ~! K$ h$ c- X4 ~( ^3 _. y* D( R: W
to update-plots
8 Z% E7 J6 |; i) t1 ^ update-class-plot
( K1 G M3 W0 i6 j: N update-class-histogram
) Z+ O6 K& t; ~1 \+ z s, P update-lorenz-and-gini-plots" I5 p9 ]# {) U8 |, U* }0 I. B
end1 c0 T; y. o( |% F0 l, j* a! e
+ Y2 C0 l% Q) Q: J( J+ W/ @$ pto update-class-plot
. r: d3 r6 R, N3 [" X set-current-plot "Class Plot"7 d* K. G% x3 f5 _7 D: }
set-current-plot-pen "low"
' U3 o7 }6 [& P8 F plot count turtles with [color = red]
1 H& ~& H9 P `8 O8 J+ j set-current-plot-pen "mid", Q" y# S: m, x8 D/ y
plot count turtles with [color = yellow]6 [" E; B, p% l* C
set-current-plot-pen "up"' x& d% ~8 L- F# z6 k$ K: r: e) K
plot count turtles with [color = green]/ o, Y& [0 H! j% o
end
* d/ q9 \$ h7 g1 P; \# V1 M
) K: i% M+ N4 t9 h7 G- b1 Fto update-class-histogram
" W2 ]! P o9 G8 I& Q( I6 D set-current-plot "Class Histogram"
6 S. @+ b% K) l plot-pen-reset* L' g; u5 v3 o* D0 w& Z
set-plot-pen-color red4 K4 M/ h* w- w% L2 x3 o3 v: n
plot count turtles with [color = red]
% I3 p* u2 D2 c+ j2 U7 ^3 l9 C# } set-plot-pen-color yellow$ _: r9 O( ?! ?
plot count turtles with [color = yellow]* v( U1 O* B7 D" m& Y
set-plot-pen-color green. V+ M' v t! [, g
plot count turtles with [color = green]
. g* v- o' S$ B; f! I+ `% send
/ A7 P% w' @% N" W- Pto update-lorenz-and-gini-plots
; {. e d5 a) x( @ E set-current-plot "Lorenz Curve"& V% t$ }1 X# u& S
clear-plot
7 g$ ?. l% I5 k8 H# }7 P9 S; O8 Y7 w7 e1 O
set-current-plot-pen "equal"/ Z4 _. z) K" g7 e$ f+ ]- y
plot 0
) W, o0 g( `6 ] plot 100
7 ]! q1 Z3 P+ J) x# ^5 @4 O5 u8 e# c% A5 }# n$ J
set-current-plot-pen "lorenz"1 T' v- o( n/ v" X6 ]2 Q1 L% P
set-plot-pen-interval 100 / num-people) S) T. V' T$ N) g- T
plot 07 K: V& }' b. V* p1 E* r
- U+ t; [5 G. |% P# ]. n let sorted-wealths sort [wealth] of turtles
* I- v$ k$ \ q x/ m4 X let total-wealth sum sorted-wealths
( c0 n; f# F8 J* D# F let wealth-sum-so-far 03 y) `5 O7 W5 m2 y5 J3 i
let index 0
% R; s. |1 ^% x: `8 Q let gini-index-reserve 0
$ X' E/ D: |& b7 F
, l8 y$ {! a3 l* f4 D repeat num-people [- d+ a2 a ]8 W) E4 H! I
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
0 w' K* k# G |$ A/ C N plot (wealth-sum-so-far / total-wealth) * 100
8 ^9 g" Q A6 G4 U0 A set index (index + 1)) Z& D# u* [5 N# J
set gini-index-reserve) r+ c U# U$ Z# r; W. h( a# n' w U
gini-index-reserve +' a- k" v3 h o- M
(index / num-people) -
3 K6 O6 i1 \" J# ? b& T (wealth-sum-so-far / total-wealth)
; J/ u% q5 X' p ]
# A: j2 P" n; S/ i
( L2 ~( Q0 _9 _ set-current-plot "Gini-Index v. Time"
. `& y+ }# o9 Q* R. e6 V plot (gini-index-reserve / num-people) / area-of-equality-triangle- q+ r" C. j$ v
end
( S6 H L5 z0 B! Pto-report area-of-equality-triangle4 T; Z3 `% b- x- ~" ^
report (num-people * (num-people - 1) / 2) / (num-people ^ 2). @+ i+ e; |3 e c. l
end |