请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现 I$ A) ?6 [$ s( n/ ^% S& c
globals& ]* }+ m# X2 l8 W
[6 f# p" R* Z. a+ F" N
max-grain 4 ?3 F+ D6 O/ w- m: N$ }9 C
, c9 @1 S( a2 x# K]
% p5 ^1 }& \+ K
* `) X( X) O) s* w- J! ^" T4 t C7 Vpatches-own
! r2 a4 d$ H2 S' T3 v* g2 ~5 q8 u[
, `( T8 |% m! U5 s9 d7 a4 s grain-here
% {, m6 o: ?$ k% \6 _9 E max-grain-here
( H1 y% ?4 F. x2 j, c/ L3 K]
# F) p6 i6 X% h2 Q- X
' s z" Y6 X- C) D, aturtles-own8 `$ Z' b8 G4 T/ n p/ M# u
[
6 p: |& Z* {" \. o0 i8 F* Q age
2 n! S' Z& R6 `% d wealth V/ X8 L( A& z
life-expectancy 8 r/ Y ~8 s* \
metabolism
/ p( q0 X4 C# Q$ s6 O2 E vision
- X5 c3 o* P& A+ K Q inherited & H8 N1 \8 C" y/ m; s5 G# ~
]
5 [( l6 _" m' z' o( P# _) q+ }5 X+ T
! d0 k0 G: C; i4 F
t4 j) o' l% Cto setup3 x# _7 g- F- Y* i/ x6 ^ o
ca
/ X% U2 a& r F4 a/ d. \2 ^- o set max-grain 502 q/ Z1 M9 W3 G! r ^' p; c% x
setup-patches
, L7 ~4 F7 e/ f3 I. J' t setup-turtles
& M& t% C' c) @, \! ? setup-plots6 H3 z. T2 A6 D4 P$ w, x4 c
update-plots: O; M6 X1 X0 O8 v2 k
end* J, [! O! K: J8 A' _2 k# n
to setup-patches7 c! n0 v7 t' A# _6 l, U. p, x
ask patches9 k) P6 _4 u. k/ `( ^8 H5 y5 ]
[ set max-grain-here 0
$ s( D$ u, Q8 g: M9 j- { if (random-float 100.0) <= percent-best-land! `# c5 D) V8 [# u- N) }& V
[ set max-grain-here max-grain
; [, b# ~. _3 _( i+ p6 ]3 W) i& o set grain-here max-grain-here ] ]
/ m) D7 t6 I' P1 B repeat 5
# v/ C# m4 _) z& ~ [ ask patches with [max-grain-here != 0]
$ J* W; P) B" @ [ set grain-here max-grain-here ]1 e/ b" z5 n B: s1 P
diffuse grain-here 0.5 ]: ^( ?( z( D8 O( O4 c
repeat 10
5 Q. [. F6 D! ~8 Y, O' x6 O3 j [ diffuse grain-here 0.5]
7 _2 p: C" K) K0 j5 b) G ask patches
: r' K2 ^$ `' t& }0 V [ set grain-here floor grain-here
/ h8 h% I Z( I7 S4 F y# u) Y set max-grain-here grain-here & s% G2 o; A! I H
recolor-patch ]: P2 g: N3 U& z4 S
end y; [% @( a& I
to recolor-patch
& ], D/ ~6 Z! `1 U- S set pcolor scale-color sky grain-here 0 max-grain
& |( D" k! T) m. p6 F# l" Bend
, x6 E7 w' {7 _1 _8 V5 i2 l) F: vto setup-turtles
# f; h+ Q: I7 y4 h$ g% H' S& _5 \ set-default-shape turtles "person"
5 s3 O7 P' k/ P crt num-people0 c6 f5 N6 ~( E7 `1 W( W
[ move-to one-of patches
2 T, B$ H) |9 I" x' E7 V4 P. N set size 1.5
7 s. \* L) [' B* J1 z) h( ?: ` set-initial-turtle-vars-age! p) m/ k6 c8 U
set-initial-turtle-vars-wealth
/ X: {* s' z& H set age random life-expectancy ]
Q9 B0 o7 r1 h( r: a recolor-turtles' A# Z. ^: z# q. ^ B+ N8 |% f
end
! `. i8 U* p3 I, ~" \9 ]4 |/ m8 u* I$ z. ?. v4 [6 C
to set-initial-turtle-vars-age
, Y6 G) K1 Y' E2 ~8 x let max-wealth max [wealth] of turtles
& H/ N) `7 ^9 H4 H$ J* O
) K% l5 ^2 T; R ifelse (wealth <= max-wealth / 3)( @; k) x6 t- F
[ set color red
4 T; q% V+ \% j set age 0# E" o* t, g. O2 b7 W8 c$ I6 o
face one-of neighbors4
$ Q; r: P' \: W) o% o- `: X set life-expectancy life-expectancy-min +
1 Q) j( V; g4 w$ p$ o$ F random life-expectancy-max ( l* M4 B M6 O& J
set metabolism random 1 + metabolism-low
6 w/ C5 g+ K8 I( q0 W set wealth metabolism + random 30
/ X( G) y& g3 B set vision 1 + random max-vision+ H" Y* {4 h! d9 n. U, g1 C$ y, I
set wealth wealth + Wealth-inherited-low ]* W- ^, w% Y5 B% \" I% U$ S( M
[ ifelse (wealth <= (max-wealth * 2 / 3))% f$ @ X0 J3 T& ~3 y9 C
[ set color yellow
: { o9 q8 ^. o! F: r6 }& j$ g set age 01 R7 t* }, W+ _$ Y+ f4 L
face one-of neighbors4 ( K- l( Z: T1 X& `
set life-expectancy life-expectancy-min +
8 j8 @0 g8 R- Q- h random life-expectancy-max + 11 e' t8 O: Q7 S2 y a: Z/ S L5 e( C
set metabolism 1 + random metabolism-mid
/ H5 }% }3 y1 s( @7 I& P set wealth metabolism + random 30
2 \0 H& _ B. v; V9 n" u set vision 3 + random max-vision$ h) G) @1 j5 M" H" |) n1 T
set wealth wealth + Wealth-inherited-mid]
' l. E+ p% ?1 I2 R& ^ _ [ set color green * b- w: I( y0 W3 Y4 D
set age 00 d, T6 v6 }6 F- K1 v
face one-of neighbors4 & E: Q& I% |6 k; r. T
set life-expectancy life-expectancy-min +! l/ {# c8 {) l) l6 E* @
random life-expectancy-max + 2
8 r) a! M# \: B3 X* w5 M set metabolism 2 + random metabolism-up& `* @# V, t8 e- u4 b! g: {
set wealth metabolism + random 30
8 }+ F; p' ]. e set vision 3 + random max-vision
: K2 j- P# X) |, E# W set wealth wealth + Wealth-inherited-up ] ]
- u( n! i: R A, e' |& I
; r3 m; R. C3 w; u& iend4 n5 ?5 c/ W8 y! }, N; F
to set-initial-turtle-vars-wealth) l7 J8 [0 N3 [) c) S; [
let max-wealth max [wealth] of turtles
: Z0 W( [0 t' G3 U" n set age 0& c; A; m' _" s1 f
face one-of neighbors4 + b* ?7 e$ V( f( l
set life-expectancy life-expectancy-min +2 a/ g/ T. o2 q3 p( _3 {
random life-expectancy-max
! y8 y, K: g4 h1 N; F4 r0 Y! G set metabolism 1 + random metabolism-up
3 e: Y' x9 |7 o% T set wealth metabolism + random 309 {# Q" D" j9 S8 `. e
set vision 1 + random max-vision
/ u# U) p& k' i! P" V* U" H5 pend8 y% M% ^! T% c$ V2 B) S- s' O
to redistribution0 V3 D7 a$ k2 q3 A
let max-wealth max [wealth] of turtles- r j1 {3 z+ F
let min-wealth min [wealth] of turtles3 T2 B3 o; _1 Q5 `0 J7 O' X
if (wealth <= max-wealth / 3)5 z7 ? u4 ~9 l
[set wealth wealth + Low-income-protection ]7 N& q( {2 m5 A
end# r1 L9 g1 B, |" L5 H& e
4 @0 W" ^0 b7 @to recolor-turtles% \: @* d4 s t" i% ~1 u, b3 Z
let max-wealth max [wealth] of turtles
* h/ {& F3 o' X m' O0 p) ]% V ask turtles
% d9 M' _* j F7 I) B7 [ [ ifelse (wealth <= max-wealth / 3); n1 b% l( v+ g7 }+ [
[ set color red ]2 h( Y- D' j. K9 ^
[ ifelse (wealth <= (max-wealth * 2 / 3))
- l3 }! I: {; p9 ~5 s+ ] [ set color yellow ]
) a. k1 [$ H' L: Y [ set color green ] ] ]
, Y. `7 B* ~+ q1 W [ [ ask turtles [ifelse show-wealth?6 @5 q8 ?' n7 E6 `2 `+ N9 V' j0 y
[ set label wealth ]/ P7 `* `7 ~2 A0 u5 r$ ?/ Y! Y0 I
[ set label "" ]]* s' {; o; r- N
end
* ^& _; @5 E2 ], P: i9 e3 J2 H1 v- U0 H/ w
to go
8 I; p+ U# M0 E* |! N& d ask turtles
' T' L$ h) n7 g# Z [ turn-towards-grain ]
$ L- g, o+ Y! `4 C, @ harvest# ?6 \% \, p. I9 q/ n) H# h
ask turtles# P" j, r- ?' {$ j+ e
[ move-eat-age-die ]) t. O6 J) o& i) `7 Q; k) M: T
recolor-turtles6 ~+ e- }2 G; d2 a
if ticks mod grain-growth-interval = 0
, z6 Q5 Z( q+ H B# d! p [ ask patches [ grow-grain ] ]
: z6 ^3 J% s0 k3 F( `6 J0 r & m3 Z/ R7 {7 C# E' e
if ticks mod 11 = 0# R4 w& F4 \, R1 E6 D
[ask turtles' ~2 Z* j; ~$ p) J+ f
[ redistribution ]]
7 n+ i X2 w4 v3 n+ j if ticks mod 5 = 0
; a# U" V+ N, `( f [ask turtles+ H9 [, C) V5 x% X7 B8 g+ u8 n
[ visions ]]
# l$ H9 C- \* g tick4 T. ]/ `5 n- s7 \
update-plots
5 E( Q0 M7 K+ c8 X: l8 mend# {' ]; o' f: g5 r
to visions+ V% B' z) K. D7 L1 S3 a
set vision vision + 1
& _4 }+ K& y6 f7 r, tend
! D& t# x; h9 E5 Z6 K6 n( @1 q. j. n( N. r7 v. M! q
: E: ^: o1 o8 m! b
6 g4 p* W+ \0 ^4 s, w( C
to turn-towards-grain
) D* Y8 E: ~2 e1 i( D set heading 0
+ j' q6 L2 t/ W3 @ let best-direction 0
- S7 | X" i1 R d5 f8 |. k7 U let best-amount grain-ahead2 I e5 r0 L1 h9 ?% u, @# W' G! @
set heading 90, W; E- j- l4 j1 {% u$ W: F7 u8 l
if (grain-ahead > best-amount)1 a3 Z% ^: A" M- J
[ set best-direction 90
/ ^0 X7 J1 s7 d" C/ S! d7 q set best-amount grain-ahead ]5 U) K/ }! _3 m0 ~/ U5 |
set heading 180
3 k m) a8 ~8 d$ h2 ]! {+ \! a+ I1 C if (grain-ahead > best-amount)5 I1 x, t% d. S4 a- H. ^( t
[ set best-direction 1802 h0 P, h& e% J$ b' k. P2 N
set best-amount grain-ahead ]8 \0 c* X k& u1 |+ U1 K
set heading 270% D/ t2 A1 N; ]& f O7 `0 J
if (grain-ahead > best-amount) `3 y4 P4 C/ h( K
[ set best-direction 2701 i; }5 P. H( t r e2 g9 b' z
set best-amount grain-ahead ], m+ }; ^- M u
set heading best-direction* G* E9 p9 o4 `
end: `7 O) x5 i3 n+ ]' {/ C' c% K
' _9 Y# u h6 f8 i
! x* C. Q7 j2 e( C9 }+ z- ^to-report grain-ahead 8 J$ J+ H; D: b! ]+ ] I
let total 0
; O% ]; O) q& @& U/ l4 \# p3 h let how-far 1
% P# |9 T2 ]/ a) ]* P8 O+ i- V& p repeat vision, f- K8 G! g, K. }
[ set total total + [grain-here] of patch-ahead how-far5 l- L( `. t( _) p; Q* j
set how-far how-far + 1 ]
6 D2 u# X" d$ h; a report total
2 S$ V& n- l" g" rend5 U" e: G4 M9 j7 A
) g0 E1 _. j( s- M s
to grow-grain
# X0 ^# C/ Y* A { if (grain-here < max-grain-here)
5 d' r$ I0 G8 n X9 L' m& r [ set grain-here grain-here + num-grain-grown
+ B5 O& `8 j1 D9 Y if (grain-here > max-grain-here) 6 Z6 s; R3 x$ E8 z5 u' R' k0 {
[ set grain-here max-grain-here ]! k2 {' g6 G/ q% z2 i- z0 w
recolor-patch ]
# K I: A" [4 } C9 J5 n2 Rend% }& ]' \0 m3 n( O
to harvest2 M H# ]1 I3 ^2 |1 O+ K% b
ask turtles1 }6 {+ y, R0 ]9 M& b
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
9 |8 v( L3 X- \6 m' K2 A4 v ask turtles
: F$ U4 Y% l" e/ M" x; [0 c [ set grain-here 0
6 m; o- _& @ B- }" c0 z# t recolor-patch ]. ^( \$ Y! p( H v0 U; I7 S' \. c7 k
' f! ? ?( M5 Q4 T# Cend, L: l/ A+ H" z( S
/ V0 \6 l( H9 F1 ito move-eat-age-die
- Z0 p, {5 C* a+ @) A% N fd 1* Q: u' m: E2 m+ {) W! F# s: u/ I
set wealth (wealth - metabolism)
) w" e& z% k @9 q- ?9 b7 Z set age (age + 1)' p! j7 u! u" n2 G. B
if (age >= life-expectancy)" }6 z) J( M' u# J2 {- F
[ set-initial-turtle-vars-age ]8 n4 {* ^4 u. I5 ~4 B# ^
if (wealth < 0)! x; C' l. s* s9 f$ G4 T
[ set-initial-turtle-vars-wealth ]
" c. u1 I; W4 N
1 \) C$ q, n7 ]3 tend
' [$ K7 j5 d [9 Y
3 a0 F& ~7 y& K( k6 j2 e) b
9 G. {# M( m8 U) F& z& Jto setup-plots: k0 [7 x: K- Q. F
set-current-plot "Class Plot"
# V( i+ q4 Z" W. k+ h set-plot-y-range 0 num-people. \$ W! }$ Z) b8 A
set-current-plot "Class Histogram"
4 K- l) W# A4 j$ l7 ~ set-plot-y-range 0 num-people+ h% f0 T6 }, k; |; n5 u
end
8 Q; _5 H( [+ x9 g4 g$ t1 z. M, R' e0 `
to update-plots
}' W2 Q; O- p- t update-class-plot
4 u- Y* j# ^, v+ c2 ?4 V+ w6 f update-class-histogram
/ u4 P8 A6 m" p! O) \( c" T update-lorenz-and-gini-plots+ U& O1 |/ F: a
end' Q* \* a9 g' u+ @! v
! A! V7 z6 n. z) n2 z' ^
to update-class-plot
& o0 d, L& h3 j5 ? set-current-plot "Class Plot"1 }( i6 a3 J$ P; f( B6 |6 O
set-current-plot-pen "low"
' M1 d: _6 Z$ m7 g1 @, c1 L plot count turtles with [color = red]- R1 A1 E2 i+ A+ |8 O- ^8 m
set-current-plot-pen "mid"
8 e6 E$ d' V1 X* u+ I" F3 W plot count turtles with [color = yellow]
/ F1 l3 H* ^: s' n) x \* Y set-current-plot-pen "up"
+ B S3 c/ a. _4 q$ e) P plot count turtles with [color = green]% D+ M6 Y6 S4 v/ W; B/ j* X+ w
end9 r* p0 V) o2 h( E) R
8 J1 _: p/ I. a' Mto update-class-histogram7 @ n: F) R" h7 e7 E( @; V
set-current-plot "Class Histogram"0 I& _: Z' c# O8 @8 h
plot-pen-reset
2 K4 L) D" z* C set-plot-pen-color red! ~+ p$ M+ u6 w& v9 p) i/ M
plot count turtles with [color = red]
5 _/ m j8 | A, o set-plot-pen-color yellow
7 [3 o+ z+ M4 ]+ x* d plot count turtles with [color = yellow]+ ?' b* ^$ s4 {- w7 |
set-plot-pen-color green. z6 Q" c7 {/ s9 M/ ?4 u
plot count turtles with [color = green]0 N( G) t) _1 o6 P7 g
end, P$ A" K8 z0 C2 S
to update-lorenz-and-gini-plots# v+ W! H) e4 D; m7 C+ E8 m/ b ^
set-current-plot "Lorenz Curve"+ ]5 p3 u4 N+ l$ [9 p- `/ M, m% M
clear-plot
( J4 _/ C( \+ B; X2 j D5 N# w% X3 C3 c
set-current-plot-pen "equal"8 f) J/ Z+ ]% @$ n
plot 0
9 ^8 ?8 u3 s) }8 M T; ~0 Y9 v5 s plot 100
# p. x9 v# d) [; O- |" _% [: |
+ D' @6 z% t1 B; D$ p8 `1 ^ set-current-plot-pen "lorenz"
) w* H& ^* F- @- I# D set-plot-pen-interval 100 / num-people+ b( v5 v5 H7 V9 `; B& v( k
plot 08 _% r9 A O$ L! s3 u
) a4 ^* @& V" s: i/ E2 Y; k
let sorted-wealths sort [wealth] of turtles! l! C3 j, r! t# y; T
let total-wealth sum sorted-wealths
% t7 R% i5 o* J" h5 `& J4 E let wealth-sum-so-far 0
) Y# U" w+ h6 U2 } let index 0# B9 P. Z% W+ L7 h- _
let gini-index-reserve 0
4 e4 w) C7 q" ^+ O9 [) T: Z. \
8 |' \/ x, Q7 \$ U1 b! N9 R repeat num-people [% z4 X. x% M, d$ Z2 b& {( H1 `
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
' b. S; L. V% d plot (wealth-sum-so-far / total-wealth) * 100
# ~( o& I' U* O9 u set index (index + 1)
- G+ I" U3 j/ N; W# q set gini-index-reserve7 A2 i: v T) g" |+ m
gini-index-reserve +
/ F* @' n, u. a9 ~7 ^ (index / num-people) -
2 o( {* x* h9 d- k (wealth-sum-so-far / total-wealth)4 L5 Y1 N1 P, y' d3 ^1 M
]
+ [$ t" n A; @/ v: q% f! D9 h+ ?/ S: p8 ]
set-current-plot "Gini-Index v. Time" E f8 D R; X: U* t" Q
plot (gini-index-reserve / num-people) / area-of-equality-triangle
9 j1 v) F$ p \4 H2 k; H, L pend
4 i# P7 V, m [to-report area-of-equality-triangle P. {' ?1 V9 q7 T" u
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)0 Z* M* x+ c" L* i
end |