请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
4 t6 Y9 `, M1 q3 p* t Sglobals) ]6 \6 T1 R9 T$ U: F1 j/ V
[% {6 `! a i, L
max-grain - G. D5 d: @) C# J
+ k& S. b4 Y3 [0 R% H]) E; k% X0 i; T
1 c# y, g+ h: Y! ~patches-own
# W# o% b, [4 |+ c# v8 M, g0 k[
. j' _; T3 x: |# K grain-here
3 f9 F) I1 Z' N# k max-grain-here
7 O& `" G" F( s9 f5 H9 {, f]
; a# k. p* e8 J0 ]5 a
+ |+ S+ o+ p7 }7 pturtles-own5 s7 h- S0 p8 o* g
[9 D. h" k2 K. q; z
age
3 R* O+ D- `8 R! y wealth
6 @' \- V; G$ L4 J life-expectancy - L3 H' p- F+ N% |' l
metabolism 2 z( |0 L! f( k/ Z
vision
6 P4 O W0 E7 D- g$ F: x/ d inherited 4 `6 b$ _' ?& X' m8 i& \. H" `
]! Q- z5 N( p& f7 M7 t& O
# \0 t1 h9 n' Y4 T6 a. R' c
) N7 g3 e# Y+ w; fto setup
6 Q' f Y" o2 n' \( Z ca
% z+ `+ }2 s9 T' ~+ r z set max-grain 50
0 J, K& b" o& N: a! ?8 d4 z setup-patches7 w. D6 C P* a+ s- E0 X2 _
setup-turtles+ T% P. t" o ^, H; @! |
setup-plots
- Z7 b& Q8 j J# O update-plots
, Y% Z3 s$ ^' F2 w# m8 F. i7 {end
@( \; h' m0 Yto setup-patches7 [; _% H- Y; Y8 k `3 I
ask patches
/ r$ J0 n% z) S [ set max-grain-here 0
: ]1 d5 O# L6 A5 P' O" B if (random-float 100.0) <= percent-best-land2 B- h. q/ A" \0 N& ~4 h
[ set max-grain-here max-grain( r3 d# T1 s+ u5 M2 f7 B
set grain-here max-grain-here ] ]
% c5 v( r' y. y; n3 T/ u repeat 5, |% V5 F* Y' ?- ] W$ @5 |, T, G
[ ask patches with [max-grain-here != 0]' y+ ]" C z4 H% \4 _
[ set grain-here max-grain-here ]# x, ~4 V- n2 L, f3 U9 n
diffuse grain-here 0.5 ]
% l! P9 q7 ^+ e3 j; t7 T6 Q repeat 10
0 v* ^5 b3 M- K( y6 h9 |( K [ diffuse grain-here 0.5]
9 L O# v0 g& P* l5 U* h( Q8 i4 Q ask patches) a: C+ j7 r0 o
[ set grain-here floor grain-here
6 g5 F, f0 V* P/ v8 F5 f; o set max-grain-here grain-here ; a2 [/ H0 C; u# D+ g/ o
recolor-patch ]/ F4 P/ |6 ?! C
end
% f- P7 Q7 _" t8 s) E8 y0 Bto recolor-patch $ ^' U% G7 |, Z O
set pcolor scale-color sky grain-here 0 max-grain) ~0 ^: t6 L. M
end
" W7 t. t1 ?7 ^to setup-turtles
, @% {( ?/ ?1 c3 j9 g( p: \2 e set-default-shape turtles "person"5 V& ]6 W. [8 R& t
crt num-people6 B5 H$ x# i* N
[ move-to one-of patches 3 S4 h5 ^+ b. w2 m: u& e
set size 1.5 $ O4 D8 ^2 E: f4 M2 j
set-initial-turtle-vars-age& t. ?# s+ z& n: C' z8 p
set-initial-turtle-vars-wealth
; K5 {3 b7 V) _3 N set age random life-expectancy ]
' r0 `! ?# ~: q$ M* q6 ~ recolor-turtles5 k, Q% \; F C7 K
end8 h9 G0 Q' C* S) n# A
/ N5 d7 n u2 hto set-initial-turtle-vars-age( L% Z% o4 s+ `1 s
let max-wealth max [wealth] of turtles3 n& b H& `: e
9 e/ ]1 i5 x2 t! Q
ifelse (wealth <= max-wealth / 3)
! R# k) B$ ^" k" _+ A [ set color red
; W9 H' Y# _" P; t+ F0 }& v! j set age 0
7 R" i, t$ @- b! q- r; C" R face one-of neighbors4
. i: n$ B3 u! a4 `# G- N3 e( @+ H# `0 e set life-expectancy life-expectancy-min +2 g7 o9 X8 D; b' R. R
random life-expectancy-max
p, L* }, o1 s" M; D/ K set metabolism random 1 + metabolism-low' m6 I, n# v4 H
set wealth metabolism + random 30
2 ^0 v( a: V$ Q( Y% @+ \) Z2 ? set vision 1 + random max-vision* V+ j# \& M x8 O) `+ U2 I c
set wealth wealth + Wealth-inherited-low ]- ~8 a; y. j1 Z) h9 k
[ ifelse (wealth <= (max-wealth * 2 / 3))
; z& D' G: Z6 L/ a7 \7 V [ set color yellow # l/ I |, `- B h$ O
set age 0
9 m- Q: `; ]7 i7 ^6 Y3 t face one-of neighbors4 ! m' [* i6 L' q' ~: u
set life-expectancy life-expectancy-min +
+ C' A; R6 R( u) }& t" h& p random life-expectancy-max + 1
6 |# i9 b! t+ }5 L! N. _3 c set metabolism 1 + random metabolism-mid+ ^, y9 B3 t* U7 ]
set wealth metabolism + random 30
$ D/ B( }4 B( Y set vision 3 + random max-vision
* Q" y5 B* \% |! }7 Y! Y7 M set wealth wealth + Wealth-inherited-mid]
5 a- w- d5 p. G3 R, G: x( L [ set color green
3 X# y) a7 E u set age 0
/ u# a: Z0 b$ [5 J+ @" f face one-of neighbors4
7 _. U: b1 e, U8 Q2 ~ set life-expectancy life-expectancy-min +. R, B; O9 r% E7 z
random life-expectancy-max + 2" d. S% ^2 j/ F' z' X
set metabolism 2 + random metabolism-up
! \$ w. V) t( ^' A. S$ b set wealth metabolism + random 30
/ M0 l" a2 d: h set vision 3 + random max-vision
6 F6 f5 v9 A0 U9 |' {! \8 F' B set wealth wealth + Wealth-inherited-up ] ] ( L. {& A G3 G0 {( Y, V
! Y8 d$ `" z: K$ d6 g3 o# F
end( i( v$ J: _2 D' r: k. X
to set-initial-turtle-vars-wealth
7 O# p& c4 f* O let max-wealth max [wealth] of turtles' d3 D& v2 J+ X# k- u2 b
set age 0) }+ l# I& `+ a T
face one-of neighbors4 ) y* M5 Z, L" h0 F
set life-expectancy life-expectancy-min +
4 M9 [7 X* d- l( ]6 ?- e, z random life-expectancy-max / ^6 p- H4 }2 Y2 m+ j( W
set metabolism 1 + random metabolism-up1 ^4 {" b. F) y, w2 H, H
set wealth metabolism + random 30
: m7 w+ F; p% Y! w- J set vision 1 + random max-vision
2 X3 I3 W) H$ k% s# ?end
K B4 [& |. Y, zto redistribution1 o: d; @* }& ?# S1 i6 i8 E
let max-wealth max [wealth] of turtles( W/ Z- r! `' K( @
let min-wealth min [wealth] of turtles* L' k4 m5 F( H1 f6 P
if (wealth <= max-wealth / 3)* W+ N" N& Z; e$ c: f, y. M
[set wealth wealth + Low-income-protection ]; Z& t: M# _: ^5 h. Y k
end
! `' _% S0 F1 O [! O 8 d. j$ F+ D# B
to recolor-turtles! j2 O. G. c' K$ j* ?# f
let max-wealth max [wealth] of turtles
* C9 M/ l/ s3 l1 w5 J; L/ C ask turtles
5 q5 m* ^7 e6 A0 d* Y5 e* H [ ifelse (wealth <= max-wealth / 3): U" d/ t3 K5 \9 |
[ set color red ]
1 J$ ~" @1 o! n( M, a! n [ ifelse (wealth <= (max-wealth * 2 / 3))) Y5 p& w4 _% F6 f6 J5 E: R
[ set color yellow ]; M7 H* e9 U8 I
[ set color green ] ] ]
" k' K7 [: a l/ q, z& _ ask turtles [ifelse show-wealth?* C$ z1 ~* S0 U- `( r) `
[ set label wealth ]
% ^0 c! }) d' q; s [ set label "" ]]
7 x, h- h. E3 K! ?6 u# d' yend6 q' K4 g; K% z
: F+ P3 T! O$ N( U0 D
to go
' s; T, A& b4 P ask turtles( W. b6 w* s& N$ M" S" S/ A: u
[ turn-towards-grain ] + {6 p- ]- ]% P0 A( t
harvest1 y, ^5 b8 X( P8 V
ask turtles
- j* Q/ J$ f4 ]4 n( g" c i [ move-eat-age-die ]( Y" m1 V7 `, D, C
recolor-turtles1 Y' `& L- [$ i `# @. |: ^
if ticks mod grain-growth-interval = 0/ w2 ~7 p2 d, R
[ ask patches [ grow-grain ] ]
# s5 v3 n! N8 ^& _' M1 F6 ] % f" c% [5 }5 I% [* l6 ^
if ticks mod 11 = 0
$ E; c3 \7 S& m [ask turtles- g [# @% V8 [& F
[ redistribution ]]
' q& S" e+ X' _3 V k0 C4 m if ticks mod 5 = 0
3 g! m) f8 F4 Z [ask turtles* n) |/ U4 r, h8 u) a
[ visions ]] `5 N0 i, O' J' O1 Y
tick( h6 N( G! T$ g7 a
update-plots
2 d, H+ k5 w1 n! A6 ]end3 A( a6 J* o5 R& S3 g' P' m( q3 Z
to visions
/ J. a$ V) E. T% |$ i/ s set vision vision + 1
) i3 V4 T! g' I _2 tend
: l: |0 w$ ?: [* H* q+ e7 b% x p' v! t" X6 c5 S/ H/ R
/ \1 k% Y7 L. u Q& K+ A) |1 F2 u
! Z) ^, g8 ]& l+ Qto turn-towards-grain + x: g6 o+ s6 @9 d z) q- I
set heading 0
) t& I8 k2 Y `& s1 _& f5 z let best-direction 0
$ ?/ N8 Q U4 b let best-amount grain-ahead
) v g0 _8 z+ E* f% N6 a set heading 90
2 c4 Q" V+ N ]1 I+ k if (grain-ahead > best-amount)
5 d6 f6 u# w6 ?: D5 a [ set best-direction 90, Q9 f& i# ]# D/ x! U' A
set best-amount grain-ahead ]7 O4 v, c- B& i
set heading 180
7 @9 @" J3 m' ~# y1 D if (grain-ahead > best-amount)& t1 }/ v: n; A+ M+ H1 T7 a: ?
[ set best-direction 180& n1 @. o n* a& W) X* q; H1 s* r
set best-amount grain-ahead ]
: X) w& }# u0 S set heading 2700 V8 H" Q7 C+ _; {
if (grain-ahead > best-amount)
& j! m! V3 n& c* P) G [ set best-direction 270, s, p1 f7 ?8 \" K
set best-amount grain-ahead ]
2 [; Z: ?8 | r8 T5 u( ` set heading best-direction
, K% c! `# D. j w2 tend
( z$ I" }, o! }; v& |3 h9 Y' B) n& |, E1 @4 q
. j5 W, Y& s& F& l
to-report grain-ahead 3 ~4 Y5 k/ n- O+ ~
let total 0
2 \3 x) B" q5 s5 O* N- d0 { let how-far 19 d$ l: |0 E5 F+ b* v5 K+ W
repeat vision
, J+ o7 s! o2 s: v [ set total total + [grain-here] of patch-ahead how-far, }) e5 Z" I: z- L4 X
set how-far how-far + 1 ]
% T4 u2 T+ {( p! P report total
% N, \) f2 F4 g1 R" b9 g3 U) z8 Send* p. X/ `! z1 H+ A% C9 {+ w5 j
# u5 N8 s* G9 e2 Q0 k( P& rto grow-grain 8 q& j5 x( o8 U) B/ o8 b6 `
if (grain-here < max-grain-here)
A3 T7 C7 _. Q( l7 p6 z [ set grain-here grain-here + num-grain-grown5 v4 x, V8 H8 {" W% K+ X& J
if (grain-here > max-grain-here) 7 k% ^6 P) E# a( j- x) Q
[ set grain-here max-grain-here ]
2 `) n H+ i( i; ?/ z8 E5 U recolor-patch ]2 r8 C5 {' C8 P, l, C1 J
end
5 k- M6 X0 I9 q0 F p% _7 Oto harvest7 \: c$ Q9 V6 n* ?
ask turtles6 I% H2 V( d; I7 K- e9 R9 T
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
' t7 m6 b0 Q! u9 C" }1 K O ask turtles
( T/ n8 _+ f* h% y! L [ set grain-here 0
9 a3 F; t9 F- a, O U recolor-patch ], W+ g/ W) A/ [) y) X
0 B/ U! I3 O, p
end
- ]6 z N/ L4 m; }% R3 {9 C. B& R* c" d- ^
to move-eat-age-die : p) a* z" M& y; D
fd 1
" M4 e0 f7 l" D4 A set wealth (wealth - metabolism)
% J o* V, R" t5 m% F6 W0 U; ~2 J: f set age (age + 1)
1 | F+ L4 r# {0 n1 f if (age >= life-expectancy)4 I$ z" Y2 W0 O4 ?/ `' C
[ set-initial-turtle-vars-age ]6 K' D2 G6 y, g
if (wealth < 0)
8 ^0 i+ J4 I% Z- q1 V7 F1 \' v [ set-initial-turtle-vars-wealth ]
2 T6 l: D* q! ?6 `( C: o
% ~; v: Y5 Y- ^, m5 \- Zend/ I8 `% Y7 L+ C% c2 v% M* E, ?$ Q
* h# I, }7 d! z2 ^& Z+ A" l
2 [/ C3 F5 E* q% F C9 Bto setup-plots
: R+ n7 R' Q+ ?& P2 E+ @; E8 z& r set-current-plot "Class Plot"
( l3 o" J* }' j8 e! Z7 ?7 h set-plot-y-range 0 num-people
# c1 f% \& @9 ^3 v$ Z set-current-plot "Class Histogram". A/ e! j3 V; |% b3 b
set-plot-y-range 0 num-people; u) Q) k( D c
end
8 ?$ P }/ A+ n. B# U4 O, D# {9 ]6 L! u
to update-plots) M& `, M1 A6 ]: W% ~ R
update-class-plot
7 \9 J3 f" `" H8 l: M# k( o: Z, [ update-class-histogram
, X3 g0 p* Z: `* i6 X- d update-lorenz-and-gini-plots/ L$ I X9 ^% `& C( Z4 `/ u# W# [3 P
end
" w! q' T% H } p$ R) n$ ?5 y4 b% h3 P6 d, H0 w' [+ y
to update-class-plot: G* |7 I9 Y$ z q1 O! M- g
set-current-plot "Class Plot"
8 A7 y8 j. N8 z% m1 n% e) Q, B set-current-plot-pen "low"
& v) f% t. ~4 G% K plot count turtles with [color = red]' D5 p3 w) Q8 Y3 B, N o
set-current-plot-pen "mid"( H, y# W+ v$ v) _
plot count turtles with [color = yellow]$ Q" I! ]0 S$ [) |% @
set-current-plot-pen "up"2 l0 r; K4 b4 }4 M4 F9 V$ M% g
plot count turtles with [color = green]; q- o0 D# b A1 d# {/ @0 l( r
end3 g% w! [9 l7 w f0 h$ Z( V- b( t
7 z5 v. k6 o6 A8 {' L8 n: w
to update-class-histogram) w1 s- Y/ E: S/ x4 W$ Q
set-current-plot "Class Histogram"- g8 T# C5 n8 s2 C
plot-pen-reset
0 i" i& Z* [1 |- {' Y2 g+ { set-plot-pen-color red0 `, Y1 h+ f" b3 C7 g$ o) i
plot count turtles with [color = red]' ]! r0 x4 Q: _0 F4 K' u
set-plot-pen-color yellow' W5 M, J: _0 A; j s
plot count turtles with [color = yellow]$ ?. a6 O" Z1 J& V, X
set-plot-pen-color green' B. e! p" M3 ~7 S2 n( c4 \# b6 u
plot count turtles with [color = green]$ q$ K6 A9 ~1 h0 E: I$ B) @
end
3 {/ m, v( P8 V. S/ ]; B* tto update-lorenz-and-gini-plots
r+ V* U. f b1 A. N. O set-current-plot "Lorenz Curve"
7 u& f) K! X- I1 ` clear-plot7 j7 v% Z9 A/ C( S @
5 d' A: R0 j. l: [ set-current-plot-pen "equal"# z1 Q* G: |5 q9 m6 _) J4 k+ e5 |
plot 0
" q! Y9 S6 [3 u& i+ y, l6 G: j6 r plot 100
5 S$ m$ K. e# [& p( L, H9 |5 l4 X& K! @, p- M
set-current-plot-pen "lorenz"
. `% r) u8 B, U0 B set-plot-pen-interval 100 / num-people
: E$ t. |. r& K. H/ P( G plot 0
0 f" d7 r8 C) f* y2 U* a7 ^, ?0 z5 R8 H" @
let sorted-wealths sort [wealth] of turtles2 p+ P- U' f3 A: m7 V
let total-wealth sum sorted-wealths$ s- _; F% t, J
let wealth-sum-so-far 0
/ ?7 l' A$ A$ ?) a, } let index 0
$ N" R3 W0 @+ j1 ^: i let gini-index-reserve 0) {8 f0 H- ^" d. h: k
/ _. S& C$ S, k
repeat num-people [0 y7 X" u. s" J+ H0 w
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
1 @) E' r8 \: @9 q8 ~6 b) I plot (wealth-sum-so-far / total-wealth) * 1005 F# {/ q4 w& {3 ~7 n" F: x
set index (index + 1)
1 b! {0 u: Q S* w& R set gini-index-reserve
! X: @, o& @7 u; L# @' X- v gini-index-reserve +0 I% S" k2 U' K$ s+ D- r
(index / num-people) -
P: ]* K2 c4 R. D$ ` (wealth-sum-so-far / total-wealth)
: d; X( m; T: S, P! \3 K ]
/ B6 z: `" [5 k% `0 v4 Z: q! ^% E6 v5 a: j2 J8 z. ~1 J
set-current-plot "Gini-Index v. Time") a/ O" o& I, [! w9 D
plot (gini-index-reserve / num-people) / area-of-equality-triangle8 U8 X& `6 n d( Q
end* E% x, w- m9 } Y
to-report area-of-equality-triangle
* j6 h! H6 x& z# S$ m8 y report (num-people * (num-people - 1) / 2) / (num-people ^ 2)8 [* b/ A& |- N. k7 e% V8 z
end |