请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
/ m4 @+ L" I- Q" vglobals
E( n+ O% I5 t) g0 w[
" c+ H8 \. `2 D- Y* y3 [+ K+ P max-grain
( y" d" o5 ~& r3 X( }4 A& r# V; q- v9 F% l
]) C- g" \3 r$ a/ W# J
& ^, y: A: [( e) v' {1 [$ b/ W+ ?
patches-own
1 w3 n% ^/ T* m4 g" g7 X1 U( F$ k[! `2 [) Z9 N- n: I
grain-here 8 y% R' B" c9 ]1 `& E
max-grain-here ; L# w! Q# C2 h1 ~6 y8 s H
]4 G) b2 p- A* C: S1 T& [3 L/ ?0 N3 J
( `1 l7 E& @: f. f* a
turtles-own
( D6 n M! Y, o. @8 W[
- T2 ~$ h7 M' C3 L age
3 S( A9 ?& w5 p wealth % \% I) u" q0 I- `: H2 ^8 [
life-expectancy
) L I8 k ]5 _4 d metabolism
' w+ k& U3 [. e) n- u vision; ~/ a. @# ?6 Y: ? z
inherited . H5 ^0 ^( E7 M5 O: F
]
, x/ n3 {% v4 C. f# c$ B$ l) k# @& @& A% g; v
5 c+ r9 z* T( u+ G) r
to setup& h) L# p3 Q4 }, ^# H* a' p- A Q' c
ca7 T/ a1 M: t$ G& U
set max-grain 50
( p- J5 z. t G9 D9 V2 M setup-patches
% i, O. ?% Q2 K/ \, s9 t) p setup-turtles+ |1 D6 ?9 O# Y) [9 y* E
setup-plots
% S% ]: h+ N/ v- z% r- p5 \& a update-plots" N" h9 c" }' G% H, o
end
' s) W3 e: ?& P3 [" ]to setup-patches) H2 |- i% X% t( D4 {
ask patches& p2 P* F L1 M* L# v. b1 u
[ set max-grain-here 0% E/ i- W' S. B: L! F' p- Q k- o
if (random-float 100.0) <= percent-best-land+ I$ j- X) v, B" i* R6 H
[ set max-grain-here max-grain
' E# s7 c5 u7 X! G; z0 D set grain-here max-grain-here ] ]
% g+ b# K- u/ {* Z1 k+ E# ]% s# q repeat 5$ p& R+ X5 O& S% v3 u
[ ask patches with [max-grain-here != 0]
; G! F4 P9 p5 n* r; z [ set grain-here max-grain-here ]
0 q; u9 h3 ~1 B7 X# n; @ diffuse grain-here 0.5 ]
+ I% z7 i, `0 D repeat 10# q. [% P; E' D" e( e$ Q) `3 r! n
[ diffuse grain-here 0.5] + m' l p& [2 ~: S4 `! L$ E; z0 b
ask patches
5 s v3 l ~. L6 z! ] [ set grain-here floor grain-here : k3 a: O6 P" H! S
set max-grain-here grain-here & \+ @2 S7 k. n. P- z( T
recolor-patch ]
; H2 J' {2 G, S# Mend
' ?3 C) w9 W, dto recolor-patch
8 {6 M8 o# o7 R. x6 G; D' w2 B set pcolor scale-color sky grain-here 0 max-grain" Y5 O+ t o7 J3 h7 N
end
' ^; O4 U& e$ J Z7 Y, Sto setup-turtles
, u7 Y% |' D& x set-default-shape turtles "person"/ i2 L# O. e/ k) _
crt num-people
" {4 X9 E1 b( H3 w7 b$ T [ move-to one-of patches
$ {' W7 O" g% w1 |# m3 N set size 1.5 " E) ^7 U; T7 ^9 }( k
set-initial-turtle-vars-age2 u+ w" ?0 l2 t3 q- m/ J- q( [9 P
set-initial-turtle-vars-wealth/ ?! C! r8 }6 D! N4 z2 G$ ], ?
set age random life-expectancy ]2 ~; ]% S3 u# d" K" V1 @
recolor-turtles
& z* n0 D+ `8 ~9 Pend
# m& o! T2 R" F& g) M
2 @. T* b3 {1 A4 cto set-initial-turtle-vars-age
( L1 e. s$ U+ B8 _9 A" `" O2 y4 ~ let max-wealth max [wealth] of turtles V4 Y% e% ^* ?
?, B; D& w/ n! v
ifelse (wealth <= max-wealth / 3)
$ J6 m7 \2 j) R5 R [ [ set color red P; b6 g a H6 c6 o( |
set age 0
D. d* v" v/ K0 }' N0 p5 ^ face one-of neighbors4
% S+ _7 f* K6 P set life-expectancy life-expectancy-min +8 R% Y2 w, k3 n4 d( ?
random life-expectancy-max 9 j/ Z# n- W8 j2 k9 q9 K, y
set metabolism random 1 + metabolism-low
8 T5 h3 N# d% H) F; r set wealth metabolism + random 30: ~; K2 o, b: B4 [
set vision 1 + random max-vision- ~' I1 e; \$ w0 n q2 i" p T
set wealth wealth + Wealth-inherited-low ]
9 v7 O0 n* V( Q6 R1 o [ ifelse (wealth <= (max-wealth * 2 / 3))2 T9 e/ k3 Y+ G2 p1 \9 x4 X
[ set color yellow
3 ^+ _0 A5 T" ~8 g* B set age 0
1 @, F, ^! Z- J: E5 Z face one-of neighbors4 9 J5 H4 d9 }8 G. F0 L7 x1 F
set life-expectancy life-expectancy-min +
" y C- t' E6 V5 C# f random life-expectancy-max + 1 G+ f. `! }0 V" S, a. \
set metabolism 1 + random metabolism-mid! |+ ?& J$ G: n/ k! F
set wealth metabolism + random 30; ^8 C7 \% y: N; B
set vision 3 + random max-vision
9 [$ D7 D) X7 k7 O: r9 `1 q set wealth wealth + Wealth-inherited-mid]( u9 t2 P. P7 ^5 P9 _
[ set color green
) Z2 y6 u% v: M. J% E8 k' \1 {: r1 {3 P set age 0& G/ K$ |$ h$ c; R1 a
face one-of neighbors4 6 [, F1 m9 k- P+ G5 P2 _
set life-expectancy life-expectancy-min +' d! h/ \& C/ H1 z+ T. O, e/ ?
random life-expectancy-max + 2
7 ~ \! J% ^( p0 l N set metabolism 2 + random metabolism-up
1 ]7 X' @0 P' H# P set wealth metabolism + random 30
8 ~5 v. a1 n# j3 [9 p set vision 3 + random max-vision
% }+ d9 Z0 T4 F( M4 `" y set wealth wealth + Wealth-inherited-up ] ] 1 Y- D! N7 n( q8 A6 e$ q
# ~! W3 A# C1 e
end
; H1 u r! h& Wto set-initial-turtle-vars-wealth
9 V9 o( k% T; Y7 j let max-wealth max [wealth] of turtles0 F1 d" Y/ D8 Z& g
set age 02 E% D' G" U, Z* m. \, c
face one-of neighbors4 ]6 s+ g$ y& [0 }; O8 ~& m
set life-expectancy life-expectancy-min +
6 m, ~) g) x; f0 n% B; a( |! d* I' M random life-expectancy-max " _% H5 D& P! t( ^" H. Y! o# |. i
set metabolism 1 + random metabolism-up
' d, @" `* I5 ~' `- y set wealth metabolism + random 30
! O$ Q4 {3 h7 B- B set vision 1 + random max-vision ' _. K5 k. A! n: |2 l: n: g' n
end% g/ T$ ~6 A/ [8 w9 p
to redistribution
, |2 }9 e5 |3 ^0 ? Plet max-wealth max [wealth] of turtles4 g6 _; k$ J) _ H& G& @: P
let min-wealth min [wealth] of turtles. J Q" P& E6 i Z; |6 C }
if (wealth <= max-wealth / 3)! N7 Z% @4 M2 H0 n* c
[set wealth wealth + Low-income-protection ]
( d' ?' @7 ]# S7 Wend
! A3 K% d& b# d! F! | % l# x6 _2 U# [7 [3 }
to recolor-turtles* @0 M6 L3 H2 g
let max-wealth max [wealth] of turtles. G) t$ y: y" ~5 o
ask turtles
6 \- l) i" A' r [ ifelse (wealth <= max-wealth / 3)' `# D4 j& l7 y3 a& A+ B9 q: |
[ set color red ]4 ]" O2 M$ ?3 T0 ?: x
[ ifelse (wealth <= (max-wealth * 2 / 3))
- I( q" v( F7 G, n3 Y [ set color yellow ]
& H, o2 |1 m$ C [ set color green ] ] ]
5 y. y9 J' }1 K1 @8 O% u ask turtles [ifelse show-wealth?
- X, H) z' f/ V$ x% G: [. J [ set label wealth ]2 ]7 e: V( v, c* g* `: X
[ set label "" ]]3 l2 K* Z/ e9 z* D ~, Y) i3 t
end
) Q* J N: \+ l3 J+ T- L0 i0 W3 T5 c" D$ |
to go& [0 p* D% S5 K
ask turtles# K' q7 z% | M1 b" j
[ turn-towards-grain ]
" F/ q& g! X8 H- k4 ?! T, N1 B harvest& R$ g) h$ l4 O6 A$ m( Y# l: x! Y
ask turtles- ^) a% b8 M5 H( E! A; }: k
[ move-eat-age-die ]
1 a; P$ L i6 h) S! Z! e ? recolor-turtles- A1 ?9 y+ W6 T% ]) D( h
if ticks mod grain-growth-interval = 0
5 c. ]* X n, {9 u [ ask patches [ grow-grain ] ]
) p1 K, [2 Z4 ~$ Z
8 g( @8 K" a1 G/ j if ticks mod 11 = 0
& \% N4 t" g+ V [ask turtles D% }8 O" F" i" h9 j/ W
[ redistribution ]]
$ |4 j4 A8 \; d8 R" l+ Q, ? if ticks mod 5 = 0
5 S6 Z& }4 _- x' n$ z5 [ [ask turtles
# n& V3 X7 Q) ^( R) x [ visions ]]
3 X A$ p- l% K- D& o7 K: F2 q, M$ m tick4 j7 N( b0 d. m4 u+ N, N
update-plots3 O1 \1 @( L% U. M0 i5 C+ m' `8 E
end
2 n* I! a* p: t& }; j+ tto visions/ p# T6 Y6 r9 f2 |0 q' x# H7 O. ]
set vision vision + 1
( w# D8 I1 w7 A; L, q% Y7 j$ a4 C! Yend- i. ]) z) B7 O7 G
7 p- ]8 `! F* q7 C) `6 @; H0 i/ F* Y# t0 Q2 e; _- E
, z% @9 D. O$ I+ C6 Nto turn-towards-grain
" V5 u( v8 m8 S- H set heading 0$ Y* |" c: x) x4 g5 ~
let best-direction 0
1 R1 h+ C) i4 {4 t let best-amount grain-ahead! ^* w' v4 i Q7 w9 a: f" W p
set heading 90# `* C1 _3 f: v! w! w' u
if (grain-ahead > best-amount)
]+ }4 a9 Z% s% A8 m( E0 M" E [ set best-direction 90
" C0 M; {& S2 n" g j! i set best-amount grain-ahead ]) t, I# a+ H+ B0 b* ~
set heading 180( N I$ c' q4 y2 W! U
if (grain-ahead > best-amount)
9 ^, O9 @7 X& _2 X5 e [ set best-direction 180' p1 ]3 o+ G) a% T9 p' n
set best-amount grain-ahead ], Q, ~: `; \. e V5 ~3 W; ?
set heading 270+ h- C1 t- g0 ~
if (grain-ahead > best-amount)
2 X. H% Z& i1 }- Z3 {6 | [ set best-direction 270
$ N4 x; a8 x5 h5 F set best-amount grain-ahead ]/ p$ g. l0 H+ M x/ M
set heading best-direction8 G9 D) t" }7 C
end
. ^/ E& W9 `6 T7 C8 _9 H, h- Q' ?, p( K5 _# _, M" M4 R! u6 @
) @# O; F6 f oto-report grain-ahead * d: H# Z4 G$ b% b& b
let total 09 ]8 j6 S5 X3 m- m0 L* S' W
let how-far 1
3 ~2 _' T' l- U2 `% Q/ \ repeat vision
5 J% v' }( C: W9 X9 ~8 } [ set total total + [grain-here] of patch-ahead how-far) u5 H7 n, ^+ F; O1 c
set how-far how-far + 1 ]
; q. Z% i; A7 c; y report total9 `: ~8 y9 K1 t" o* [
end# ]1 p8 p1 z& H: Q! O
8 \. A _: O9 jto grow-grain
( ^( I7 T0 |* V8 l8 _ if (grain-here < max-grain-here)
, T5 k6 i* R, C- [3 U [ set grain-here grain-here + num-grain-grown
2 R' K$ ?2 v. g# [# V if (grain-here > max-grain-here) + F# k1 L6 n, Z B% r5 x5 q7 w
[ set grain-here max-grain-here ]
) A# q' B) S6 |2 s* \" x1 r recolor-patch ]: Y6 |5 k# {! H' g; V1 a
end- z9 I% A, ~1 L g3 I( ~6 L
to harvest! q- m) ^, U9 f
ask turtles9 y4 Z1 b" j7 |7 J$ r4 S4 A
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]8 B; E3 ]' P3 G# j! O" J
ask turtles- z0 u9 H5 {4 K7 Q; k/ R% J
[ set grain-here 0. Z( `) G' V3 Y$ ?! @4 ~# U4 ~
recolor-patch ]
% \4 D1 t: o4 s" ` 0 K0 z! b$ S( [ s1 v6 B, O
end0 k+ ^7 }2 G' {$ O/ ]3 M1 B" D# ?7 v8 f
) ^- p% }. _" T/ @5 t& Yto move-eat-age-die 4 E H; p- Z# a$ {% J
fd 1
9 q7 v) K' Y7 L5 L |1 r+ i set wealth (wealth - metabolism)1 s; v& Z" B2 V% `2 j7 o( t* {
set age (age + 1): H4 y" W; `# n \3 @' I9 l; u
if (age >= life-expectancy)+ {0 ~3 d% r4 ^3 N
[ set-initial-turtle-vars-age ]. |7 y1 l4 I. E% z4 v
if (wealth < 0)
5 }! W7 N3 `' D! [5 H [ set-initial-turtle-vars-wealth ]
, L4 R7 e3 K4 \& R$ G3 ?( |+ D
, \- G# m" p/ y& Cend
) o2 Z! q4 a& P* V. s* R$ Y4 ?- R: o' m' p$ T( j; D
: y, g2 w) A+ f u3 z
to setup-plots
2 u) _0 v; F+ a1 K* \6 v3 z0 A set-current-plot "Class Plot"
; `. i- M4 ~5 j0 L/ | set-plot-y-range 0 num-people9 c6 w# v5 Y% M' U: w/ g0 G" T
set-current-plot "Class Histogram"
/ O& ~( B, Z3 T X set-plot-y-range 0 num-people
$ d7 s6 |- d, k- k) e/ Aend# O) e/ {1 d" O, I& u$ G( h
: s. j |$ b' v, c! lto update-plots
1 m* I! z/ ?9 \2 a3 k update-class-plot
. `: E/ j- S* w8 A- {. a update-class-histogram/ ?$ P5 Q7 y( Y: b/ N" M6 ^ d t
update-lorenz-and-gini-plots
6 I/ x, R3 @" a( s. Qend2 k7 v. h6 d4 Z! V) n
" E" L, x2 [$ d$ m9 c# `5 ?
to update-class-plot
, j6 M! `0 w' F( [+ U4 _" z. C set-current-plot "Class Plot" A4 n. [5 W9 P9 d0 i' U
set-current-plot-pen "low"
- l3 {& }( _* w plot count turtles with [color = red]* p2 }, q# H! H8 O- {
set-current-plot-pen "mid"
! A. q# @& U C3 k3 J plot count turtles with [color = yellow]
: t+ c/ \; }6 A8 C. i set-current-plot-pen "up"
[3 C: Q% C( L plot count turtles with [color = green]" S% h6 _8 S8 @; ~) b: M. `
end" V. A) ^" e3 h$ i) z* a7 H
9 \3 h; p6 T0 Y
to update-class-histogram
F3 z! G8 A& ?9 B- E. ^ set-current-plot "Class Histogram"
2 r# n# S B. W6 v2 | plot-pen-reset
! y# v" H2 _$ g; S- e set-plot-pen-color red! d7 S( P2 [4 | P, O+ c' V
plot count turtles with [color = red]4 F6 V! A9 N* q% }5 r3 Y
set-plot-pen-color yellow) I4 `1 B+ _3 \6 {1 M
plot count turtles with [color = yellow]. c' d. y* P. T& f+ m' A7 r
set-plot-pen-color green( K, X4 C5 W7 @# j3 d# `# M
plot count turtles with [color = green]
/ t7 S/ G; f* c/ send
7 |) [# Y/ q+ k3 o6 gto update-lorenz-and-gini-plots
# V. |2 a: T' w. ? set-current-plot "Lorenz Curve"4 o/ w/ F* G: l, E
clear-plot
" c! C- _: [. }7 C: P+ O: O- K0 c' R2 [
set-current-plot-pen "equal"2 q9 `8 R9 j# }; |
plot 0
# J& R5 v, j/ [, ~ R) Y plot 100, @7 f% Q2 |3 h' p
8 I) D9 e' G6 e, [ [ set-current-plot-pen "lorenz"
; g& v' ?* \& l, W( u6 Y set-plot-pen-interval 100 / num-people
6 D" E- m# W4 ?! D plot 0" L" U5 w! U a% `3 P: C \
8 p4 f$ Z2 Y1 n, E let sorted-wealths sort [wealth] of turtles
9 g4 f0 Q1 \& Z% l$ D" | let total-wealth sum sorted-wealths' B0 l1 e9 ]$ j& Z! H
let wealth-sum-so-far 01 E: e% i6 _2 A9 s: n- ?, D
let index 0, y' K( X& N. r& c! t7 Q) T: y& I! E3 ?
let gini-index-reserve 0& Q8 W( s) x/ ~
% p1 v* |$ M( m, G9 h
repeat num-people [
% j O2 g/ u5 y) V# D set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
6 K, `$ ^ S' U4 F% V, z# ]8 @ plot (wealth-sum-so-far / total-wealth) * 100
8 e0 l) P) ]4 w2 z+ _" g/ H8 m; d8 b5 W set index (index + 1)2 F8 Q* b4 Z7 f4 O" y$ l+ h3 N
set gini-index-reserve! J9 P; V: V9 a) M
gini-index-reserve +
+ p- R! O: t, `1 h7 R- J, _ (index / num-people) -
( {% ~/ w' U( A4 @0 `1 J (wealth-sum-so-far / total-wealth)! U/ ]5 I- _( F, ^" Z
]
; w% j Y; z6 _7 @4 j5 Z1 M
7 N+ p' R, t6 x% l/ u set-current-plot "Gini-Index v. Time"
: L% v5 t6 |; G( n0 K9 f, n plot (gini-index-reserve / num-people) / area-of-equality-triangle+ U( l& h; @- g8 m4 l- e: c
end( E$ z& y9 m( Z2 `+ l
to-report area-of-equality-triangle
4 ?# U, \/ Z4 F9 H' Q7 |6 N8 A report (num-people * (num-people - 1) / 2) / (num-people ^ 2)" B5 w, |* J# x1 Q& B& B3 B& A
end |