请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现: [: w5 p8 U5 {6 B% B0 `
globals, {; {8 I9 U/ g/ f! g# u
[& W- L% Y. y6 a) \4 x; [
max-grain 9 M- w4 e" \8 B& M
. h7 s6 i! j3 e* b3 D; z/ o]# [8 u, I& y* E# d
! C( h' m" H4 ~8 z! \6 C) }8 a
patches-own2 G$ v+ t) S% ?7 x* |2 x3 }/ Z
[
2 @5 o" z* u+ K$ U6 N. J% ^" x1 c! k grain-here ' Q6 x6 I) l+ t! _
max-grain-here
6 e/ p: s) r: H]( r0 [# C3 V, r o' F6 I
0 {( k* m1 o% d8 P$ N
turtles-own
" p$ b1 t }8 p- n% [1 i8 t' W[
$ N$ ]5 L j5 _5 m* b age ' x, d0 z" S$ G4 r5 b4 L# K
wealth , |) I$ c, b# v, m" N
life-expectancy . V" Y+ f: u: X- L! K* a: @3 V
metabolism 9 r6 u0 _2 @, V% k. W9 d, D
vision
7 m+ e: ?, h- u* q' }$ K8 z5 [/ n inherited & I8 i# z) Q3 p
]
. \, s2 ?* G) {0 j% O; c
5 R" Q! o7 k% I U3 \7 C1 f2 F% M5 t
to setup
9 O/ i% _& {, Q ca: |$ U/ t9 T3 e, q
set max-grain 50
: d+ X! I( f. I setup-patches% n) i" o* F" w3 B( o d
setup-turtles
* T {; u9 A/ Q9 |! J setup-plots. _- V* A; Z" I# E3 P& L" d
update-plots$ ]2 o) R2 q9 g. T" E
end* e6 S6 ^# L& _3 @: F8 i/ h! |
to setup-patches
6 u; G- `) ]/ t& n ask patches Y! L) h. j& F9 M, M. l2 ?6 [
[ set max-grain-here 0
" `& m8 [# g3 g, X# i# d4 b9 f* q if (random-float 100.0) <= percent-best-land
( r' A; m, S( P [ set max-grain-here max-grain: W9 S; [$ k& _/ b
set grain-here max-grain-here ] ], `0 h; _' K" n3 O! X3 g
repeat 59 X. Y: J( |1 u5 x9 R/ e
[ ask patches with [max-grain-here != 0]9 J+ X$ g5 V! r/ |) T5 Z Z
[ set grain-here max-grain-here ]6 g5 Y5 _# e( s- @; x3 P' P
diffuse grain-here 0.5 ]
# c: h3 O( |' o) L0 m* b repeat 10+ d B0 g4 B7 d3 U8 d# S
[ diffuse grain-here 0.5]
* l' A9 f7 o9 v) J! ]( `, g ask patches& o: u4 }( f( D) o# {0 S
[ set grain-here floor grain-here & Z1 ]8 B4 k% a) d/ H+ @: h: x) O+ M% i
set max-grain-here grain-here
0 v X3 i+ g1 R recolor-patch ]
& U5 Q$ k7 T& zend
3 r l! `1 ~ J5 Q, dto recolor-patch
' ~0 m+ j. R; N" P/ K set pcolor scale-color sky grain-here 0 max-grain f& V: d* y! u8 y: q4 G8 I @
end
0 P4 ~, y; P7 hto setup-turtles- F* h5 U. T+ ?6 h5 n% h; K
set-default-shape turtles "person"5 ]6 e& e# }0 w4 p% Q
crt num-people
$ }! I! o% j" o1 _ [ move-to one-of patches & q4 }* x2 H( y; ]
set size 1.5 3 O6 e+ F; a* P# v5 p2 }; ~3 I g
set-initial-turtle-vars-age" d3 o- P% M" P# a! k1 M. }5 n
set-initial-turtle-vars-wealth7 N5 V, X' i6 U+ C+ z, E; j) s
set age random life-expectancy ]! V* t0 G, ?& ?( q9 B" Q0 H2 M
recolor-turtles$ F" x" l' }$ i9 `+ ?
end
1 A$ l( O. d5 h$ t1 c$ Q6 p- ^2 f9 L) |" [8 E( V# Z/ s
to set-initial-turtle-vars-age) g+ G8 \* J1 D1 O' W; h
let max-wealth max [wealth] of turtles# }3 ^* ~7 e$ k
' h; e# n5 n1 O ifelse (wealth <= max-wealth / 3)
" [% \ Y) h& g/ i4 R1 A6 z [ set color red ' A4 r9 M1 {* @! o$ B2 a5 a* H/ h* j
set age 0
/ V0 w7 S8 f6 x+ y( v% n! \% W face one-of neighbors4
6 A- x+ i! X. B) e% F# Y! A! x8 f" w set life-expectancy life-expectancy-min +4 u! g' C, R4 I6 ^% v( W
random life-expectancy-max
9 U9 e, K5 N0 [2 G" ? set metabolism random 1 + metabolism-low! o6 z( z$ r4 n9 H G
set wealth metabolism + random 306 }5 D. ], R' `* w
set vision 1 + random max-vision1 V$ D A- g, x( b6 T g$ j2 X' h
set wealth wealth + Wealth-inherited-low ]
! e5 ^3 t! C" w0 \ u [ ifelse (wealth <= (max-wealth * 2 / 3)): x# j* @- v% p% n- C
[ set color yellow
6 W" x5 P Y3 E p: U# t set age 0
! |+ [) J3 L3 [ face one-of neighbors4
; q. [' B7 g* s5 C O9 C set life-expectancy life-expectancy-min +1 Y) O0 Z% r" s$ C% X" @4 K. t1 Z
random life-expectancy-max + 1
: \+ @1 ^2 \7 ?9 f5 n! T set metabolism 1 + random metabolism-mid
5 L: d* a0 P3 P% B. r/ S set wealth metabolism + random 30$ v1 I3 }# R6 d a
set vision 3 + random max-vision
3 `* H' x% F" b set wealth wealth + Wealth-inherited-mid]7 A% S9 s6 d( W' W) |1 |, E9 x" c
[ set color green
" i$ a, q% s2 F, n- m- [5 u set age 0 g0 U) H a3 p& j, R6 P; K
face one-of neighbors4 & U* D: S% L! B
set life-expectancy life-expectancy-min +& i( a5 ]1 R6 h: K' f
random life-expectancy-max + 2
0 |1 [- v, A' [/ ~! u6 @/ k set metabolism 2 + random metabolism-up
" H0 g& D! h' U5 t set wealth metabolism + random 301 g7 _# v: o1 l+ ^1 p) p6 Z
set vision 3 + random max-vision% O& d& ?8 S3 h J: i
set wealth wealth + Wealth-inherited-up ] ] & n* s9 t/ o6 S9 P& r7 `
( G8 f0 M; w* wend4 R& @" R3 f$ Q# p i# u6 ]- M# W% s
to set-initial-turtle-vars-wealth
p8 p7 A5 ?2 ?# b let max-wealth max [wealth] of turtles9 Q- s9 M' y: Y
set age 0, a, x- p; u4 G y( s
face one-of neighbors4
( t8 x9 Q( W7 L set life-expectancy life-expectancy-min +1 K! d# D8 l- j9 s
random life-expectancy-max 4 N9 N0 @: R. B
set metabolism 1 + random metabolism-up# k, j4 k' h& V
set wealth metabolism + random 307 @- R0 q: C/ M0 C% u& r5 p
set vision 1 + random max-vision ( u/ v- E6 I. k/ s1 {4 p
end/ q1 k4 E" ]1 b! o( a: l5 a
to redistribution
7 N3 @* W) i& Olet max-wealth max [wealth] of turtles$ H! _, Q; r6 w: d$ w' e$ s2 b
let min-wealth min [wealth] of turtles
$ }1 K' o. U j! L' C) f* h/ kif (wealth <= max-wealth / 3)& L2 B9 b, A3 T
[set wealth wealth + Low-income-protection ]
f. i* @* ^* W4 S: u. _0 Aend
* S3 V( y" M( R# ~0 N. ~* a# B: h6 E
, i( R6 U" r# o6 z; H- r# u; fto recolor-turtles
; D! B& a( \6 ~ let max-wealth max [wealth] of turtles4 B" }, s; l' x! v
ask turtles
( D, V1 z! v+ ^0 t* r, y$ f* U [ ifelse (wealth <= max-wealth / 3)
2 ~, t" M1 Y) D- g1 H0 a [ set color red ]
o$ V6 C% |9 d# E5 p# e% r( @2 a, M [ ifelse (wealth <= (max-wealth * 2 / 3))# h# W- ^7 g3 p" ] T
[ set color yellow ]" A& Z4 C. Z: `! l6 N. x: J# B
[ set color green ] ] ] d! i" e5 x3 C5 s
ask turtles [ifelse show-wealth?5 \& Y, N& c x: |- H8 Z
[ set label wealth ]
, H5 |# W! B2 M- Y9 W [ set label "" ]]0 o' Q8 I+ }1 _
end1 g6 K. F) s! f/ C
, b( T7 V/ J8 O. U% |- z+ D. D5 E2 qto go
; C7 u" f( X! \3 @" l0 L ask turtles
9 J( B: o3 C/ x' C" l& F [ turn-towards-grain ]
. J! ?0 m" Y1 {5 `8 U P harvest
% R1 H t, ?# N ask turtles
8 E& ^# n4 {6 `7 X [ move-eat-age-die ]
& v; w9 V0 ?/ N4 S recolor-turtles: x& X$ r0 Q R. p( C
if ticks mod grain-growth-interval = 0
6 f' g# Z1 H7 B [ ask patches [ grow-grain ] ]7 Y! G, x, X5 ]9 z3 k8 o
7 x V$ O) @* H) x3 c: n! U if ticks mod 11 = 0& e9 d9 _& @0 Q6 i# |. @+ `
[ask turtles
: w- u% j; x5 O7 ~% m, r [ redistribution ]]
- s3 a0 ]- _. Q5 ^& \ if ticks mod 5 = 0% C5 I4 m& I! c. H& a) d4 Y" v f4 E+ k
[ask turtles
& W* w* N5 g K [ visions ]]! v; U) R" B( n2 Y9 h& y, {
tick
2 W5 z6 I/ ?5 }& }# z update-plots
; a( t% v$ o$ g7 ]" v send
& q0 z/ v* L1 A9 h' Oto visions
# c( z: a3 U8 J# R/ a. b) [4 X set vision vision + 1
! Q! @8 z( b0 q2 kend Y6 r6 \ t5 J% M. U0 s8 f, r
g8 l, M5 ~" Y1 D& N: |! t, J. R/ O# ~! k0 H
7 f7 u0 b7 d7 C& E ^ H
to turn-towards-grain % V( o6 Z) c+ [" }, \
set heading 0
' P% r2 F4 O$ m& D/ ~, H$ M" l let best-direction 0
2 G4 h' V' C0 Q$ e& q& _9 l9 b let best-amount grain-ahead
3 ?4 d! r# P4 J, ?9 W set heading 90
v2 n( {7 F5 b% F if (grain-ahead > best-amount)! j( h! L# m4 G7 t+ H
[ set best-direction 90
) m) S) `+ j1 J& K/ p& j" v set best-amount grain-ahead ] o- `' G/ \1 ]' _& o( F0 x
set heading 180
% q) S% f H7 F& F if (grain-ahead > best-amount) I T: }4 F2 n( V3 c( B
[ set best-direction 180
% u$ o9 l- [& x f" Q- l set best-amount grain-ahead ]& [ A7 {) W! g! Z8 r
set heading 270$ y# y0 {. g# q5 S
if (grain-ahead > best-amount)/ j$ K7 ~$ p$ P6 S5 C* g& G( p
[ set best-direction 2703 ]' Z s' T0 A
set best-amount grain-ahead ]
1 x( D5 A0 S( e t* J& F set heading best-direction8 U& @$ g- V% A& i4 C) C$ m$ n2 ?2 l0 i/ q/ T
end
- K- s9 H; L6 {# L* K2 w6 k9 R7 w8 Z( X7 m$ ~/ v
& o, F% h6 u1 ^$ `) t* G* b$ `" W
to-report grain-ahead
; q0 w K. v. K let total 0
, X4 \2 ]1 i; R let how-far 1
9 ^+ e7 k4 T3 R. s9 H E repeat vision
6 \5 X: E9 v3 _- }0 E7 J9 X: L& V [ set total total + [grain-here] of patch-ahead how-far
8 k) B- l, T! W; `+ \2 v# w" @ set how-far how-far + 1 ]- d8 @. J7 v3 D# S7 T
report total
" G6 j* u a) lend5 \2 u3 ], z& q: z) U# C
& k) n$ G& {5 t4 j) w
to grow-grain % h- l$ }& H* r1 W
if (grain-here < max-grain-here)
8 P: m6 f E8 |' `1 |/ a' ~ [ set grain-here grain-here + num-grain-grown
d( u H; F. h( w d if (grain-here > max-grain-here)
- L8 I r0 ^; h3 b% W [ set grain-here max-grain-here ]
" K' s8 r+ o1 v! H8 L; g2 V, e recolor-patch ]
! Y+ B7 l$ P' @5 Uend8 y! O; O8 p, c* G `: l3 d
to harvest! o' V5 U- L# |; |! s. s
ask turtles X7 e& S6 {% w1 C$ s7 b) M. u
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
" v* N* R. }. o+ S ask turtles
, v/ S1 n2 n. h, i& x0 \1 A [ set grain-here 0
7 o" _% p3 n1 A+ h0 o recolor-patch ]+ C/ e' B- w5 N3 q) N6 R
$ l2 q9 ^5 K; P' ~: Jend
* o7 p; a/ Z! R. Q/ X. n8 p: @
$ [3 D) A3 Q2 Rto move-eat-age-die ! s; u4 ?" a6 j3 i, H+ ?1 }
fd 1; k+ q3 F' \7 b& E
set wealth (wealth - metabolism)
D2 _9 Y1 D8 W0 z o9 ?# A+ C" b b' t& v set age (age + 1)
3 |' O1 O% Y# R0 N% l4 C/ P* f/ ?. V if (age >= life-expectancy)
8 ^" X, t# I/ F# A0 ` [ set-initial-turtle-vars-age ]
( ^: h- Q9 _( Y4 E; }- g if (wealth < 0)* J" r8 a0 W. T8 V& L
[ set-initial-turtle-vars-wealth ]
e8 n% j2 B( n! ^! m+ B 8 A% i; |. ]5 R2 v
end
1 i2 r; A& S; ^8 y
' M# f2 a8 r* R- E' j- W
" Z7 H0 M7 r: T! e$ e" fto setup-plots
6 x! _- w( Z- d* f set-current-plot "Class Plot"
- C: s0 \8 v" o; U: Z/ R set-plot-y-range 0 num-people
- ^1 i0 z6 t1 ? set-current-plot "Class Histogram"
8 m" x9 e! t2 Z- @* X set-plot-y-range 0 num-people( s9 s1 t ?2 B7 ]
end) I3 R) z7 U9 m* z8 u# H7 y
# y7 w5 w# e; |. o2 j5 T4 K9 R
to update-plots
0 c! n2 Y% \; b) }3 h3 Z update-class-plot
" W3 S' [3 R/ u4 g3 s9 H update-class-histogram3 d1 \' W, }- ^' A1 c& Z6 A
update-lorenz-and-gini-plots" p& B1 j4 [- |6 p+ ]2 f$ D
end
& H% [ F# l6 {* \% B2 p3 A) E" w% f5 K
to update-class-plot1 `5 B: Y' o) V- B' G8 i7 i9 Y
set-current-plot "Class Plot", y6 S7 K( g+ D; w N+ r
set-current-plot-pen "low"
4 X! u5 X% l4 o plot count turtles with [color = red]: d6 s7 u- a& H/ r
set-current-plot-pen "mid"& f0 r1 {6 d9 V' P7 t/ p q
plot count turtles with [color = yellow]; }) X( G/ p, h# }% Y9 m
set-current-plot-pen "up". i6 o. E) S" O7 E$ Z5 p' X8 |
plot count turtles with [color = green]
* u: C8 k1 u5 L2 I2 w+ u0 eend
u6 ]9 T+ c# ]# N* _4 Z8 W% Z. G& o% |% \1 Y
to update-class-histogram
* F+ M1 b( `& X- L set-current-plot "Class Histogram"! m8 T! E$ G& M
plot-pen-reset3 p" e# u2 e8 j& Z7 f, M# V6 D
set-plot-pen-color red
. E( R2 [8 K1 b. n6 z plot count turtles with [color = red]
$ m9 G1 r+ ^5 U set-plot-pen-color yellow `: D+ v, T, p8 z! L7 M, r7 H
plot count turtles with [color = yellow]2 k; z; G5 X6 l7 B; d4 p3 X
set-plot-pen-color green
8 N! n9 c9 ^ p" {8 { plot count turtles with [color = green]
e9 Q7 C0 R2 e t0 P8 Oend
% q: a( E; V! f) W$ }to update-lorenz-and-gini-plots$ l/ B! o" U/ y/ b# I
set-current-plot "Lorenz Curve"
, ^7 N$ _, m! p% ? clear-plot
7 J, Z" e. M9 g, J. g: | M2 ~8 n+ k/ W3 A& ^( Q% f% I S3 Y
set-current-plot-pen "equal"5 g/ u! w. ]' i9 w$ N
plot 0
# ?4 @8 X4 C% C6 a8 N plot 100- ]1 z2 I+ ]6 h5 X) S
: }* v7 J, O% I2 M9 v set-current-plot-pen "lorenz"
9 v# I* i* z8 }# b& Z set-plot-pen-interval 100 / num-people
: X# ?. `5 i8 j/ u plot 0; z( N7 I! R Q( p
) h+ M: O/ m+ c/ C- j
let sorted-wealths sort [wealth] of turtles
7 u. M8 j! r n let total-wealth sum sorted-wealths
y1 i% Y! K) x4 d! \* O let wealth-sum-so-far 0
) p5 p \' r K0 \4 L9 T let index 0
}$ F9 D3 E. Z. C let gini-index-reserve 00 ]8 c2 u( |( T9 B, N3 q7 ~
0 }2 K9 j6 A& i% A1 e
repeat num-people [
8 z; S5 S# @$ L( r l set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)) S" z7 r7 u% H7 t+ I$ V
plot (wealth-sum-so-far / total-wealth) * 100# g3 d5 v0 r( a- _* U7 k& _% d# ?
set index (index + 1)# b) S: R: i3 u
set gini-index-reserve0 u3 M2 Y6 u8 r
gini-index-reserve +
1 s" Q: T6 l5 n7 H. V% x (index / num-people) -
9 _7 u* `2 v$ @9 o! Z (wealth-sum-so-far / total-wealth)# t R M0 `2 R
]
+ y9 C [, a, M2 k. V2 P v
: L3 s5 z7 h3 d. N0 c set-current-plot "Gini-Index v. Time"
; [) S9 V# k" A plot (gini-index-reserve / num-people) / area-of-equality-triangle. F! k8 t" U4 D+ a6 a
end
3 H' U1 i+ t; e0 A# U3 K c j3 eto-report area-of-equality-triangle d2 I/ x) M4 B$ d3 C
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
7 X9 M8 x( E2 ~. ?% i7 @* f4 o8 Send |