请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
6 F7 Q: P2 a9 K; Wglobals
+ _) @5 \1 O2 a7 l' f" ?. [/ r: G: J+ |[& z7 C% `% Z& i) N5 N' D
max-grain
+ l; y/ C% y; n0 l n8 {. E/ A( |: k6 B# |; V: G H3 l
]% f" n$ W6 c, B1 y0 a( U
: [6 k5 `9 q# t$ j% Z3 x0 Bpatches-own
* c% T: x J" g# @ U$ ^3 b" y6 P[
3 T2 G! h8 c9 @6 l4 ? grain-here # b" o3 @; n, Q4 K4 b0 E% m3 q8 X5 y$ @9 A
max-grain-here - v1 N8 L- Y6 ?2 F9 b) E$ Q+ {& }' V
]
( z" ]. h0 Y5 P" F) p$ ^$ A# ~) w2 x( z
turtles-own: S `7 [# f; x/ f A
[: P6 L. j' P, d2 Q* a9 ~
age
( c5 O. L" S, `4 W wealth % a4 W6 w/ c0 F" a) }, s' M/ g
life-expectancy
9 W! ?3 H' ?0 N0 S: ]# a metabolism
7 S8 D2 J: {* o vision
* r0 _) A P5 X% n" E" E0 { inherited
" q" T1 o6 @$ N1 y& t" {]4 p. Z& d) B3 y
( s3 p! }0 Y* X; S; W8 V) U2 S
& @: }" a8 m8 a" ]) c- {: r
to setup
: ]( t. B9 d4 s; G$ u% l: a ca
9 t. G4 V) C. M1 h set max-grain 50
4 O, z6 V: r( Y1 B; V5 A setup-patches
5 o, T# J; v8 n setup-turtles
4 J0 O. ?5 v0 e" B# a setup-plots
& n8 Z7 o! N! \/ q5 H% Y update-plots3 i2 ~/ w0 c- x
end
0 B/ o# w* h( a/ |to setup-patches
' @2 M3 c) u6 G ask patches. F: T$ j8 b u# F. K; S
[ set max-grain-here 0
7 i4 P1 ?8 N6 M3 U- r; e if (random-float 100.0) <= percent-best-land* z; V. v/ C% F1 W$ Q2 ^) d. Q
[ set max-grain-here max-grain
, L% p% R! X6 g) e& C1 o set grain-here max-grain-here ] ]8 A+ r ^8 b r3 G8 Y g
repeat 5
- l2 U' k& b7 o% N5 C [ ask patches with [max-grain-here != 0]0 |( f% o* p" @- @; O% Y7 f% d# N
[ set grain-here max-grain-here ]
) @% O8 U( u5 R- }0 I5 W diffuse grain-here 0.5 ]
. A4 _# [9 d, v) T$ D4 r repeat 10' s0 G5 ^, P/ _% K9 g! L: z
[ diffuse grain-here 0.5] 9 U/ k5 E0 t. b' [: z* K: i; D
ask patches8 C# p' `9 N0 v7 n' R1 h
[ set grain-here floor grain-here 9 [* \2 h3 M1 v' D2 d3 z: `
set max-grain-here grain-here
% p+ P0 @$ Z% ~: `9 L recolor-patch ]+ H9 T. A8 F( e* b8 ?
end8 q" m9 M1 [3 a0 h d) U$ Y6 q
to recolor-patch . a- G3 _3 O: w" O
set pcolor scale-color sky grain-here 0 max-grain
( M5 M `( s$ qend+ @/ d( @) H. M6 f1 L/ A
to setup-turtles6 U* J+ ?9 C7 u3 |' ]# C3 d8 W
set-default-shape turtles "person"% Q7 b8 {* c" M Z3 M' z
crt num-people1 l0 X& I' k7 K; |
[ move-to one-of patches
C& A$ `6 f- A! [' \; ~" ` set size 1.5
- L& \+ v+ z2 r/ D i7 G set-initial-turtle-vars-age* h Y8 Z! l' @: h1 a; \
set-initial-turtle-vars-wealth' E ?8 R3 }4 E+ R: Y
set age random life-expectancy ]
) L6 G* N1 S% b2 l A7 N- _5 N recolor-turtles
" n" W: G( ^3 eend# G: O8 r5 Y$ L$ \) n2 y
( e, o6 _6 ?# b" }
to set-initial-turtle-vars-age, p2 o1 Q# P. s m6 @
let max-wealth max [wealth] of turtles$ Q$ U9 g. p5 g4 w' h) J3 v+ v
8 U! |3 ^, @, p5 ` ifelse (wealth <= max-wealth / 3)
, d1 f" S! X* t [ set color red / R& l: d" V+ A1 }7 @5 ^
set age 0. |0 J* y" v: \
face one-of neighbors4 ( R) \7 L* e& o) ?, \& b
set life-expectancy life-expectancy-min +
, t* Z& _$ k# Q; r& c$ y5 l random life-expectancy-max
/ Y5 l% n9 d( M$ M6 z set metabolism random 1 + metabolism-low
. f R# V. |0 c) { set wealth metabolism + random 30
, y2 |# B) b+ o8 X) Q4 s set vision 1 + random max-vision
3 M4 s. X; l9 L: D% ^6 w9 X8 p* w set wealth wealth + Wealth-inherited-low ]! c' [. C* M1 b i0 ?) J2 L
[ ifelse (wealth <= (max-wealth * 2 / 3))
4 m) V7 _0 D- z+ s [ set color yellow
$ m: N+ x9 j/ u, g% w set age 0 y$ K+ T8 R) L# }4 X5 A q) W
face one-of neighbors4
2 D5 p* _9 R. r1 ]: s5 F- @ set life-expectancy life-expectancy-min +/ I0 S9 I+ W8 G5 D
random life-expectancy-max + 1/ W: F5 W. N0 L% H/ t5 f. N
set metabolism 1 + random metabolism-mid' H$ D0 t. E, K# y
set wealth metabolism + random 30
4 `& ]$ \3 I+ L) T6 ] set vision 3 + random max-vision" a( q% E9 o3 \. u
set wealth wealth + Wealth-inherited-mid]
) p# j% |6 S2 c( r+ X4 f [ set color green 8 O" r+ x1 j5 p2 g/ D( s
set age 0
4 ]+ A- S7 W3 N* Q9 E. P. w4 ? face one-of neighbors4 9 X4 o1 T% r9 c: B4 J; `6 C
set life-expectancy life-expectancy-min +) [. p3 A8 |4 a. W5 J: t
random life-expectancy-max + 2
$ u6 q% Q: b7 s& [/ F set metabolism 2 + random metabolism-up
. C1 p/ W( q L1 V/ V set wealth metabolism + random 30( [/ N& w3 J8 \% C3 [+ a
set vision 3 + random max-vision
3 X9 n% |1 l! y1 U& I+ ? set wealth wealth + Wealth-inherited-up ] ] 2 F# Y8 V8 H0 O% E4 {9 ?
; D5 p( D% |; Y& p, G
end
* t6 ?% i& \+ ~' J" K9 gto set-initial-turtle-vars-wealth( o; w. @1 a3 Z
let max-wealth max [wealth] of turtles
1 d3 q! w3 |$ w( w set age 0
/ r( e* c7 M( G1 t3 V4 e face one-of neighbors4
1 _; W* U- n' E6 s( o4 ^% S$ i( S set life-expectancy life-expectancy-min +
6 k6 f/ e; N4 R3 _ random life-expectancy-max ( E( c4 U2 p [2 ~' `8 V& l) L
set metabolism 1 + random metabolism-up
: M. z! A" t6 ^+ @! f$ U1 \ set wealth metabolism + random 30
, c8 b* ?7 M6 p7 v set vision 1 + random max-vision 6 ^1 ]! H8 U( H) p
end/ Q; m: I0 i# M" `! O# @9 ]
to redistribution- z0 K& a$ M! ^+ p4 d6 n
let max-wealth max [wealth] of turtles g. H* y: z6 K. {9 N* x* i( {
let min-wealth min [wealth] of turtles
; H, o: }+ q0 ]- jif (wealth <= max-wealth / 3)
0 v8 y- V; K% @0 ?0 n" Q6 H3 t [set wealth wealth + Low-income-protection ]
+ l, [8 @5 J9 n& H9 b' i8 a! kend
0 Q) d2 @. H) j) L% m
, z/ G+ }4 J4 ~& Fto recolor-turtles
) l* n: h9 z+ n6 i/ S- O1 @ let max-wealth max [wealth] of turtles
: t/ H" u3 S7 d, W# {. v ask turtles& E0 y- D1 \. T; G M
[ ifelse (wealth <= max-wealth / 3)" ]+ i# P* e; S I
[ set color red ]
' y% c1 ~% ]- \; m [ ifelse (wealth <= (max-wealth * 2 / 3))
8 W J; ~5 t" g( @, ]& O [ set color yellow ]! k/ D4 g3 w3 @4 ]8 A" R# N
[ set color green ] ] ]& L: o* m' I3 ?' g, P
ask turtles [ifelse show-wealth?
# |- A, d/ {0 G* @ [ set label wealth ]1 G, H# s/ a9 m
[ set label "" ]]7 K2 F' m: K- ^ G T& d1 Y
end* v# a0 u0 s" V# f; S" Y
$ C' z- E7 e( r8 g' w
to go
5 |) S+ z3 a* J* [+ w* D8 X ask turtles
% w! N3 }* ?# P6 Z) a& f [ turn-towards-grain ]
6 q/ }$ |, z, o8 I2 h! u harvest0 [5 {3 p, F* Z' `
ask turtles8 A, D# h# I9 @6 Y( o+ W7 X q
[ move-eat-age-die ]5 G7 l+ L0 o# o
recolor-turtles5 b( ?" j, R! p4 d. d/ l
if ticks mod grain-growth-interval = 0
1 b0 |) @- g. t- Q n! w+ C# w [ ask patches [ grow-grain ] ]
" S- F# q. \' G% H8 G/ f8 \ 7 B% G2 D2 E! d+ y, h, o
if ticks mod 11 = 0
7 e5 |( \1 I" v' Q [ask turtles
- _& b. |$ F2 q [ redistribution ]]
- t0 S e( S7 o0 ` if ticks mod 5 = 0
; e$ H& @) Z. Z5 ?0 D; ?0 t6 l [ask turtles! j& e3 `6 g. D3 R9 z
[ visions ]]- T& x k/ J: V0 {+ C
tick0 D( t7 g7 y3 _( g6 g
update-plots. t9 s6 D: C' Q; m) I; k8 s; V8 j
end
6 W5 W7 k0 U5 N6 e( ?to visions
$ i% S' k1 A0 r/ K& M; V6 u set vision vision + 1 - E4 a2 p: k; V1 P9 b
end2 P: T8 z3 b$ Y. E, N9 r. I
9 P/ G6 h% p! k9 D7 d9 ^6 s
8 x$ d# K4 T- | Z* ^* n, ^' |0 Q; Q [- n( b% i
to turn-towards-grain
/ t: u6 T9 |* c7 L/ x set heading 0
. i$ `# {1 u1 ~3 {% T" K* j; m4 ? let best-direction 0
: H& x) d3 K- N8 j( [1 B let best-amount grain-ahead
5 |7 U! G# i4 b0 O( }) H set heading 90+ @0 Z6 _9 e6 e& m3 U& b
if (grain-ahead > best-amount)
) k! |+ Y( e# O# X9 S [ set best-direction 90
* D2 S! K8 c/ h4 P! ?4 Z set best-amount grain-ahead ]4 T# d$ ]8 K: z. A5 l" E
set heading 180
& D- e6 B( G! e- |5 |9 k* H if (grain-ahead > best-amount)
' l- E" K I; u+ l; m- A4 P2 s [ set best-direction 1806 J, z( q9 _1 _! O8 e
set best-amount grain-ahead ]6 a/ T( S, Y) d- T h
set heading 270* L" n* ~# O5 E3 J+ _
if (grain-ahead > best-amount) X2 E8 O$ S: t3 g' f
[ set best-direction 2701 _ x! [* P& I1 u* z/ U
set best-amount grain-ahead ]( b+ N* v* S! S
set heading best-direction; A/ q) c$ w' B4 w' {
end
$ K; L& w( J/ r+ |; D/ |! t- d; A+ \5 \6 M
' O, [6 d- q# _: q# y, pto-report grain-ahead
& E. O" X+ }+ _2 y let total 00 R/ Q4 Q. B Z% p- g) ]0 j' n
let how-far 1/ W3 w$ x) P2 q/ r5 Q
repeat vision. C. V9 V& ~% {* D7 ]# _
[ set total total + [grain-here] of patch-ahead how-far
# f7 ?& V+ g) Y+ A% ?9 t set how-far how-far + 1 ]
0 i6 I9 U8 h% L3 W6 Q# b report total
# B: [- A/ A) Q) P' y+ Dend
2 d5 e4 [# K+ |/ o0 {! D- M) m$ W. A
to grow-grain 1 c% a0 [& q3 n) Q
if (grain-here < max-grain-here)9 D- i1 h6 d3 `, |* E
[ set grain-here grain-here + num-grain-grown
5 ?; y1 K g8 ~6 F if (grain-here > max-grain-here) / d9 w2 j0 H* \
[ set grain-here max-grain-here ]. J; @7 `* i$ o9 S2 f2 T4 c
recolor-patch ]
+ K$ C. s! r- c, m, G+ u. jend
0 S9 U$ k" p0 V3 F, L; Q7 ]: yto harvest$ j0 w; ]) Q e" q7 i" p
ask turtles+ f4 D8 H1 d- Y5 W! `0 s
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
6 i0 w' ~8 W0 \' Z ask turtles1 D' F' ^5 Z* u! N
[ set grain-here 0
+ J7 p0 n0 n5 g3 n/ s recolor-patch ]
# B G3 B1 t* ]! b) R$ `3 ~) M, G4 h : o. J' U1 d" c
end3 J4 W$ E+ |- x, B. h1 E( w
* B/ P$ J% R/ x
to move-eat-age-die
, K0 o" }$ O4 N2 v& d4 z( V fd 1
1 B. T/ b$ E U# g( p set wealth (wealth - metabolism)7 i# g# D, @) J
set age (age + 1), o. v9 P A: L0 q; b
if (age >= life-expectancy)
. `% f9 s+ E6 W4 k' { [ set-initial-turtle-vars-age ]
3 B$ Y1 h* F* O# Q* @$ c' k if (wealth < 0)2 O ?; u& l1 ]
[ set-initial-turtle-vars-wealth ]
2 h' z ~- }5 H- x& o' ?" J % G" B/ ]3 K4 o8 r
end: @( Z) ]6 M- v9 z0 ]
( G* `3 ^7 B4 G) X7 M
( C3 O O, v5 o9 h- k6 `6 k+ G. Yto setup-plots/ g! T. l; n, {% r( v# Y
set-current-plot "Class Plot"& `& Q, _* p6 M- P8 C7 \7 M9 v) I. \
set-plot-y-range 0 num-people
4 H2 C& j# `4 J set-current-plot "Class Histogram"
, {; T- ]' Z/ x set-plot-y-range 0 num-people
* ]( q0 k% ?+ S: Bend3 u! o8 M6 S' S
1 @8 t; y. J$ B) `. n' _to update-plots( {( a4 h- S# w$ j7 u7 d
update-class-plot8 L/ R! l) @. a9 p5 ~
update-class-histogram7 x0 L% T: S* @- J7 P
update-lorenz-and-gini-plots
# }/ m8 ~8 E4 o) mend
9 o2 i! u8 P, c& M" V. L; F5 u% X- ?8 X9 r% B
to update-class-plot6 c, k9 Q3 f0 i- D. o' w
set-current-plot "Class Plot"
, n" Y ]. b$ C' t- g, E set-current-plot-pen "low"
( w; g0 g- w" @$ t plot count turtles with [color = red]& a) V; ^5 S$ q9 P
set-current-plot-pen "mid"
$ W! ~$ ]4 m* x% A3 s8 M plot count turtles with [color = yellow]
" J1 h4 b8 \- }4 Y. C( P9 r# [ set-current-plot-pen "up"
+ d6 e' K7 J5 a% n plot count turtles with [color = green]/ u1 g9 X X0 S8 ^' ?* P6 e5 _& }
end$ q4 z7 _6 S7 g6 U* T9 i5 p5 R/ J" j, |
, @9 ?; T: A. H' B/ `to update-class-histogram: C5 r1 o1 O" ^7 f% q# b
set-current-plot "Class Histogram"
8 X9 F8 J7 O) B& V: l2 L plot-pen-reset
( N! z$ T0 o/ S6 L set-plot-pen-color red
" W8 r) `; h h: k, w: } plot count turtles with [color = red]0 g2 @' X& P9 r0 ?0 z# D
set-plot-pen-color yellow
# y( N# X: I/ A( {* a. I plot count turtles with [color = yellow]
2 c+ a+ T5 g; J( b% C set-plot-pen-color green: o9 g9 C% b' ~) B, w) h: B
plot count turtles with [color = green]
1 X7 _' T" x* \7 ^- t( dend. M- d, r0 b" m9 S# I/ P' j' A# U4 r
to update-lorenz-and-gini-plots9 A2 A$ ` x" a/ k2 d5 e# t
set-current-plot "Lorenz Curve"
; m! k0 \- P& H# y7 ?5 b clear-plot& z; g. M: Y% ?- V1 |
5 L/ q( L. m7 h$ q
set-current-plot-pen "equal"; v: @: d% q7 p$ M6 e8 `
plot 0- `. q7 z i1 L8 x8 g) F
plot 100% ?, D$ z m# b7 x7 q
; B/ E9 V1 j4 [: L' U4 I% d
set-current-plot-pen "lorenz"
6 e6 U9 U' b, \* z- H) t set-plot-pen-interval 100 / num-people4 h6 K0 [8 w5 T, }$ A
plot 0" l2 W: C: a" E7 l" U4 J) d
% ^% S7 J1 U5 P/ C let sorted-wealths sort [wealth] of turtles
" X1 z6 G1 r$ o" H* o3 E7 m4 e let total-wealth sum sorted-wealths
7 s( P' K! `7 R9 T1 M* T let wealth-sum-so-far 0, P% F% F7 ]" d3 h. p
let index 05 X1 A# V* n. R; Z e1 i, ~* @
let gini-index-reserve 0- b0 x( U, a) `* @* x
4 u+ z3 v; y9 n8 l3 p repeat num-people [& M8 O* _$ y [/ v5 c9 S: a
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths); `; s h2 a$ J, S. n/ q- q
plot (wealth-sum-so-far / total-wealth) * 100/ \9 O. U& b8 \9 t
set index (index + 1)1 r4 T8 I. Y: T/ r+ e8 T8 O% Y
set gini-index-reserve7 u& h' J8 d- h9 J
gini-index-reserve +
1 o* u: n0 F+ P9 B, p0 S (index / num-people) -) {/ ?! d" h% T# `9 i2 Y* k
(wealth-sum-so-far / total-wealth)+ y8 |1 W2 }& T( `, I# p0 [; x
]
4 n! ]1 ]* a+ w2 n7 i- i6 W4 r* R$ E7 s
set-current-plot "Gini-Index v. Time"! z( Y4 o2 \3 W% c ?
plot (gini-index-reserve / num-people) / area-of-equality-triangle% [; S" R; I* @' z. U) v4 j3 Y; G! e4 Z
end
* Z( M/ [/ d( G o0 V. Hto-report area-of-equality-triangle2 A5 C: D$ F: D. [' `+ g
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 Q" N: B" e3 a3 M, e* F2 D( y
end |