请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现1 \) v2 D8 |1 e1 F+ l6 ~7 @
globals
$ S+ p0 a+ ~4 B8 H# H7 B5 H! W2 m[
6 g T. b8 N( ~( Z9 N: S; y l max-grain
# _# x9 V$ `8 K- i5 r7 i/ j5 v$ o ?3 D9 D8 c
], p& g B8 j9 r l2 f( X: J
7 H3 S! ?7 p! l4 A7 ?patches-own2 O3 f: e; }0 f7 c0 E% M9 t, E* F
[
9 A' h) f' \" |; V; ] ~- t7 F grain-here
. k" U9 m5 M. n1 C$ E3 v max-grain-here ' n/ a3 l9 t2 I3 i8 Z0 s
]+ M% u% C9 `1 b3 i, y; U' W
3 x i% \! C) g5 o% Gturtles-own+ Y4 G/ \4 k( ^5 z
[
, m ]* K2 e1 p r age
$ O. y Q; e2 V* Z) l# O: _ s wealth
- t6 i4 ?5 X0 Q0 h0 q: g life-expectancy ! s$ b0 @( J& i9 E: K& J' R
metabolism
6 J0 r/ c: I/ \" v/ v vision
& R7 s* q# [4 h$ m" _ inherited " L; p& F3 v) l X
]2 P. X6 M& q. T( _ M. Q4 X, Z
" ^$ {8 h$ L$ T5 O; U, K& M+ H7 Z8 x. i9 v, T
to setup% B9 s8 v# i: ?0 ?5 o
ca
7 G( H8 ~0 n+ z4 q3 x& ?7 ~. s# n: ` set max-grain 50' q, Q$ L" j: k
setup-patches% {. _4 v0 U$ u7 }& x
setup-turtles
' U5 }4 E2 ?/ p# H3 R setup-plots6 s/ d* W( R/ Z H! l! V/ z
update-plots
2 v/ s0 }( I! G; X) Nend
- B. h, n6 J% ~2 K' S/ Dto setup-patches
J( }/ i1 \8 Z5 f/ W ask patches
7 y( ?+ v) ]9 `& f9 f } [ set max-grain-here 0$ j9 F. Y7 a2 w% ^: e
if (random-float 100.0) <= percent-best-land
, n8 ^. }+ | |" @! S5 P- i [ set max-grain-here max-grain! q5 W" w* i8 I+ P/ s
set grain-here max-grain-here ] ]
, P9 z! G0 S0 z" M+ w3 t$ {/ \1 f repeat 5
8 ]. b9 u" |2 I0 X2 e5 V( }8 @ [ ask patches with [max-grain-here != 0]& K- }1 a+ }& |9 C) d/ n2 Q- s1 n9 @7 {
[ set grain-here max-grain-here ]
& X8 E$ h4 b5 t: m& f# v diffuse grain-here 0.5 ]4 i0 w. P6 O: L! F3 z
repeat 10 |5 R6 u0 ^8 T X
[ diffuse grain-here 0.5]
6 }3 E: q: f; q0 Y; D+ k7 \$ V ask patches
0 S, j4 H5 x7 a, L& v6 h [ set grain-here floor grain-here
0 `3 `, _# c" x& `/ T5 y set max-grain-here grain-here / [" X8 b' A7 G- N+ F+ \ w4 k+ }
recolor-patch ]# z; g' e3 F& h+ T
end8 t) x9 y9 E' ?3 u1 K1 v3 s% W
to recolor-patch
; A: I3 M2 a8 | set pcolor scale-color sky grain-here 0 max-grain
' U/ U3 c7 {2 Pend4 r5 L2 Y3 z, ?) Q8 F
to setup-turtles P. `5 l# Y! P% s
set-default-shape turtles "person"
7 b }" F; {; d2 I$ t" L$ J1 ]8 T crt num-people+ A2 ~( u: k% R6 i0 K, w. p) G3 J% o
[ move-to one-of patches / [" g9 b4 U+ J
set size 1.5 " |* @! }: o8 y& E
set-initial-turtle-vars-age$ k1 N4 [0 p8 d
set-initial-turtle-vars-wealth
/ [) T. ~5 t) v l. `/ g2 ^ set age random life-expectancy ]! d' S- E. V' x0 w( y
recolor-turtles
$ H: Y) c, t# |# A0 L$ Qend
& q. i1 E$ j/ f$ | g+ G( f) e3 D: |1 }2 g0 c" Q6 p
to set-initial-turtle-vars-age
& f5 u+ g+ s, |' w+ X let max-wealth max [wealth] of turtles
2 G9 p7 \0 J% M! N5 k! y 2 b6 C6 m, O! E \' t
ifelse (wealth <= max-wealth / 3)
4 l6 w9 L* V6 S& E [ set color red " V: U5 \1 z# K# ^
set age 0+ H# a F7 A: y6 w4 I5 v
face one-of neighbors4 : C+ I" a# V7 \2 B, q8 j
set life-expectancy life-expectancy-min +9 M/ q( N; N. g: W, L
random life-expectancy-max
4 f# E6 R! y: j set metabolism random 1 + metabolism-low I7 R6 G$ x' B, s
set wealth metabolism + random 30( ]6 @! P& Z8 x! J1 E* J6 E, O* C
set vision 1 + random max-vision1 v0 ]6 U/ C! b$ @9 d$ f! O1 {
set wealth wealth + Wealth-inherited-low ]. R6 ^. f( x4 C5 [, |. M
[ ifelse (wealth <= (max-wealth * 2 / 3))
( `; D: K2 J" M* {- M$ \* f7 Q8 E [ set color yellow
* V; q( ]* d4 ^9 Q: m7 x set age 0
5 t) i6 [* b; k2 O6 K face one-of neighbors4 , A" ^' r y# L* e: d. {, t
set life-expectancy life-expectancy-min +
. d+ ]/ B( `) \; F) l! y5 R# { random life-expectancy-max + 14 |. \" q) F2 i8 [0 ^
set metabolism 1 + random metabolism-mid0 D4 Z8 i2 E; S6 p
set wealth metabolism + random 30! B) D, s. o( t, X A/ k
set vision 3 + random max-vision0 l3 ]1 F L" d5 A* ]
set wealth wealth + Wealth-inherited-mid]; Y$ q4 k. Z* e0 W1 S
[ set color green
" [9 _7 I! q, t, @: I set age 09 C e0 q/ l+ t7 w8 H
face one-of neighbors4
: q V& o+ u8 k8 Q set life-expectancy life-expectancy-min +
1 A; |% N( _% q% B random life-expectancy-max + 2: ?6 T; L: Q! k1 u. V7 J
set metabolism 2 + random metabolism-up
- b: _! J5 x o# p8 C. W set wealth metabolism + random 30* @- k k9 v' R# P1 K$ ~
set vision 3 + random max-vision2 R+ H: U+ v1 I% R9 G
set wealth wealth + Wealth-inherited-up ] ] 5 D% f- L" k5 T! {" `2 a7 A! M! r
; W7 P3 g9 k9 d4 d0 Send
& v; H. B* W9 \! ^. ], ^. vto set-initial-turtle-vars-wealth
* [& r& R8 E3 m# l1 y let max-wealth max [wealth] of turtles# G" D$ c% T! i0 {% B
set age 0
5 u; o) u: h" o" K face one-of neighbors4
9 I7 r7 C) ~) |8 w( D set life-expectancy life-expectancy-min +
2 n! i# L: Y5 P+ q3 H' d3 e$ k random life-expectancy-max
]2 R& G# v9 ?& n! g% z set metabolism 1 + random metabolism-up) v9 d; i. {: b* O; q
set wealth metabolism + random 30% P2 \3 C" Z7 W0 }2 _
set vision 1 + random max-vision
/ X& n6 d X) j- _( `: J, Cend t* S3 R3 \8 i6 E. ~
to redistribution
( N( \+ L4 c5 f flet max-wealth max [wealth] of turtles% J8 }4 R+ x* \" w: _
let min-wealth min [wealth] of turtles
% Y0 Y& k4 _/ a, k/ |if (wealth <= max-wealth / 3)
3 {4 o; I2 c# P3 n/ I- c9 f [set wealth wealth + Low-income-protection ]: O& |& V8 q# u( l" Q% @# S0 a& Z
end) i/ E+ I% C/ L' F& y _( Q
D( z% ?8 ]/ ~0 a, y
to recolor-turtles
1 B% |, ^6 D5 ~8 d+ Q4 ? let max-wealth max [wealth] of turtles
/ g0 i* l3 e' L/ b7 o ask turtles
& J4 s6 W- O+ e' L& D [ ifelse (wealth <= max-wealth / 3)
7 e9 o2 g6 a3 D$ x u [ set color red ]* C% U+ b/ [" H6 B. t
[ ifelse (wealth <= (max-wealth * 2 / 3))
) D6 \. n6 c% A! ^- k7 x [ set color yellow ]
3 i! B2 V: e; l; i L$ J. J: } [ set color green ] ] ]
0 U, p; D) y9 v! p" [9 W ask turtles [ifelse show-wealth?! I) W& z, g/ c
[ set label wealth ]- ]# D9 U- A, {; Q$ A
[ set label "" ]]
/ `' y% q/ d/ r) A! G2 ?$ X% N1 \end' [. h7 A: M$ ~% v+ j
. S; `; l0 Q" j# }! }4 r
to go
6 S8 H* o% p" n- u9 U" j ask turtles
7 B Y( H! ]5 V6 C, p$ n% u+ d u [ turn-towards-grain ] 7 D: f2 E8 t; R1 h/ H' s O/ A
harvest3 R4 ]: S' ?; M/ I
ask turtles+ f- ~- F$ c# q+ t* X* o% v0 ?3 K
[ move-eat-age-die ]+ x, z) x) q7 x" Z
recolor-turtles$ S& F" H+ f0 c
if ticks mod grain-growth-interval = 0: y$ H0 V6 V1 u3 c( v
[ ask patches [ grow-grain ] ]
& n$ [6 q z& S E! |
/ q% u% ^: Q: g if ticks mod 11 = 0" V' r) A$ V$ c) {; i7 Y
[ask turtles
; Q2 ]2 o; r& c" L [ redistribution ]]
" i# [" L8 V; A) e" @; g2 g0 F if ticks mod 5 = 0, x6 u) H0 c: Z+ m$ x% \, B
[ask turtles o4 L$ U; ?" [: ^3 o" k
[ visions ]]1 y. h \2 F' ~
tick
: U! }% _: O% k" ^6 J1 S4 F _/ i update-plots
8 ~3 h% h) I9 n. |2 S+ m4 G2 F; W% jend
6 X. W# j, V) V- v" C2 t( R# ]8 \to visions. ]. T+ H9 [/ u( }
set vision vision + 1
) ^8 T B6 B" Tend
% S2 k, n& F+ W* ^2 a9 t' I. O* ]3 S' Q# I# n
3 }* {* @8 ~8 Y& [2 v6 N
" s( N& m; q& v. B* y+ pto turn-towards-grain , s* y* u8 M$ q5 a! r$ I7 Y
set heading 02 m" Z/ d) x2 t$ t3 U
let best-direction 08 r% V/ v- b! j
let best-amount grain-ahead
2 X0 q' L" Q9 \0 P9 t) A set heading 901 F4 x q3 n$ u2 C2 T6 }; f! @' n
if (grain-ahead > best-amount)
( o0 `* J/ \6 W4 \, A) B" ? [ set best-direction 90
0 P7 i6 c3 F* C0 C/ Y" F n set best-amount grain-ahead ]
/ q5 ^4 \% Z- l; L! D# L6 O set heading 1801 L% Y" p8 J% C4 B0 l
if (grain-ahead > best-amount)
* }# @2 P& O! E6 y$ e d1 x. G& } [ set best-direction 180. N% m a) Z7 O% k* Q, L, q" S& l
set best-amount grain-ahead ]
* Q5 ^4 b9 r( \3 e set heading 270
0 Z7 ]9 W: x9 X* E: q6 q# F if (grain-ahead > best-amount)6 ? M6 K: @( `! P3 `, H7 i
[ set best-direction 2700 B% F% b4 x( F1 A) m" o
set best-amount grain-ahead ]
" K# w! f2 d, ?' o6 O0 u set heading best-direction
" a$ G8 j2 u" ]' J4 iend
1 p: s2 k+ L9 R6 q8 x) |" f$ C; g( t( }: A. C" T! f0 \
; g. K2 e! r8 Y1 {. ]' R+ Z% r
to-report grain-ahead
+ V8 P8 \! ^/ q# {$ Z' s let total 0
4 Y. A9 n5 ^: F' A; p4 i let how-far 1
# J) _5 l- {7 W0 n0 { repeat vision8 |: G, {+ [: F3 [+ R. m9 B
[ set total total + [grain-here] of patch-ahead how-far
( [% I4 Q4 \0 S" l set how-far how-far + 1 ]! r* K d; J# ^7 g' P8 }) u6 w
report total* c$ M, \) h& f9 K: M; C
end
: x) n0 O1 a2 I: h% j3 r
! A6 _; ^) o/ ~. W+ uto grow-grain
. G B( d: ?) b! l" ^3 t7 m if (grain-here < max-grain-here)
0 q+ @( f' ~8 Y' H6 z [ set grain-here grain-here + num-grain-grown
8 J: Z* w0 N4 Z; J4 B, p* p if (grain-here > max-grain-here)
2 p2 r* ? g: W% z5 V4 I [ set grain-here max-grain-here ]
. D ~/ K/ R) c& H# e recolor-patch ] ^8 F$ B' J% F2 ^6 Y% Y7 n4 h
end* @% W- D; E8 _: H; |8 U% `
to harvest; m* b9 B# W1 y* |4 D7 F2 p! B5 T
ask turtles8 v( b& J: B7 I
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]8 E" V$ d4 |( \" f) x
ask turtles
0 o3 k5 A, B( M! v5 n7 F [ set grain-here 0
, ^5 t/ P% S7 n recolor-patch ]
6 {# T: Y; P9 [( P ( e! Y5 p8 U) U
end
& I* D b# ?$ F# F6 g& m9 g7 V( f# c. E
to move-eat-age-die d5 L9 v2 c0 S8 }: A
fd 11 ^- I' u3 @' K2 H+ m" V# d
set wealth (wealth - metabolism)
" X. H' L8 V/ Q8 k set age (age + 1)! c6 @ W9 J1 m$ U! _
if (age >= life-expectancy)
" i1 A/ \' }' C$ c+ M# z [ set-initial-turtle-vars-age ]
) |, n6 V9 Z, V( K8 x& h if (wealth < 0)
+ Z3 E$ R* E# |0 ~8 d [ set-initial-turtle-vars-wealth ]
# r8 o+ i1 |& r/ z% E* c
/ y5 p2 e. ]( U4 k7 u+ bend l' j# Y) g* _) F+ \! g" V. I
- Z/ R5 B1 U1 a. _
7 r, K. J$ [) N: Hto setup-plots
4 W c n2 Q# j6 x% G5 A5 ]1 O set-current-plot "Class Plot"
% w: o. C0 _) j4 y7 C set-plot-y-range 0 num-people0 L- a4 y5 X C- x4 ?
set-current-plot "Class Histogram"
/ l b1 F4 y9 y$ `) ~' x set-plot-y-range 0 num-people
. W, H$ J6 W" d1 u) P! R/ Bend: i. X- u5 p2 ` Q& ]+ j( {" P
& z; R; h& q2 K9 e# h* A
to update-plots( Q2 J. i, P) P/ Z( p( n( q# J/ ^
update-class-plot6 [, `0 @' V B, ?: e& n) n8 D; K" ]
update-class-histogram0 p# V9 W% j3 T
update-lorenz-and-gini-plots/ c# k: @) F( b% W4 i6 n& ?
end
/ `) ^: d) e1 B) Q5 _& t) r9 p0 c+ ~, t$ l5 _: w5 E
to update-class-plot
1 q% c) J; H. O0 \ set-current-plot "Class Plot". i- v* Q3 P% d$ { E. p. v
set-current-plot-pen "low"
+ ?4 E- n* r: A7 Z3 N7 f L2 _ plot count turtles with [color = red]2 p( p5 Z( ?, A: G" h5 ]8 r* ]
set-current-plot-pen "mid"
a5 j& ~6 w' F1 H plot count turtles with [color = yellow]9 r2 }# P) _% U5 [
set-current-plot-pen "up"9 F+ T% Y/ K; p! c
plot count turtles with [color = green]
1 D8 {0 Z7 ^$ G Bend
# P# b. V, J2 d# c! S; @! F, L. G
- `/ s: B5 t D/ S8 O, X; jto update-class-histogram
$ ~6 ~, ?! i8 p! ^' a set-current-plot "Class Histogram"
# w7 M% J% o% [1 p plot-pen-reset0 A, O! K9 K0 Z7 W
set-plot-pen-color red/ J2 v# z Y: U" C) E
plot count turtles with [color = red]
4 B# }1 Y/ ?! ]0 T# J set-plot-pen-color yellow
& L' `( t* r3 f: V. k: b! y plot count turtles with [color = yellow]4 a1 n9 f8 o) `' m5 f! E! V5 t
set-plot-pen-color green
9 E% b/ s( x( h: }. \# m) r* j plot count turtles with [color = green]
. H* P! o5 F8 v) F+ w0 N+ fend
5 `0 n2 Z2 d+ _" y& k* zto update-lorenz-and-gini-plots
7 f7 E+ b' J( D7 A% s1 L6 b set-current-plot "Lorenz Curve"
2 M/ Z, X( f/ r& S3 l clear-plot% U$ ?/ T% A7 G6 T7 Y# j2 K
; ?; t! p, N, z1 A% q- K4 j
set-current-plot-pen "equal": c- [% [" C$ z1 Q; @
plot 0# k( N: V% T! v/ M$ V. l
plot 100/ t# F7 A/ ~. e" N0 {- U. I- X) L: }
) _& D# j9 _# K$ x e
set-current-plot-pen "lorenz"
- l% ^ \; u: z+ {3 R8 `' \ set-plot-pen-interval 100 / num-people
; S; v+ l- R# q2 z plot 0
: v/ x N# e5 C3 @! N: D* U$ ]& p6 L3 E* D! S9 d0 m9 e* ~
let sorted-wealths sort [wealth] of turtles
" e/ k. K8 N& k3 b+ P3 @, k let total-wealth sum sorted-wealths/ }/ U9 E, f0 _# b9 O0 [/ J5 j
let wealth-sum-so-far 01 w5 [5 W+ f7 P3 V
let index 0
) z" X8 F' O/ U" v1 @) [/ n7 s& S let gini-index-reserve 01 y$ F/ c! H! T# w2 |* R
. ^; x: H2 \/ @ N& R8 {+ q% Q% U
repeat num-people [
/ P# i P% Z2 W set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)- T1 A* f5 E& o7 a6 {0 z& A
plot (wealth-sum-so-far / total-wealth) * 100
7 o( r, \. h6 q( s set index (index + 1)$ G2 `- L5 j: e- w, E* N9 y
set gini-index-reserve2 F7 K. q' j/ N# a" R5 Z; H
gini-index-reserve +
' w0 s: T5 E3 G: U. }& U) v (index / num-people) -( O$ F; k$ d. E7 c
(wealth-sum-so-far / total-wealth)
6 Q1 _: m$ } A( E7 A7 [5 g& A ]# ?; o( f& G" B5 q, N) c
: A) Q. j' D+ p5 E2 @ set-current-plot "Gini-Index v. Time"
' _0 z: E$ f; E. M9 o plot (gini-index-reserve / num-people) / area-of-equality-triangle
- B* ]/ h/ U3 ]. pend
8 Q8 a! }: C: w ^9 v; v; pto-report area-of-equality-triangle) @( K" V9 `& j9 B8 c
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)8 x$ t: c) {& R: v3 G) g
end |