请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现+ z' O. D) j5 _& ]$ z7 g
globals E# x. @. h0 z4 x+ I0 m
[
- u% j& a5 o# o max-grain
0 t( U: _0 r) {
: C5 h6 R+ A1 m. ]- F( n]
) K0 [) Y" D6 \8 L8 j5 q$ D) I+ W$ l* Z% ~3 d; [' @% q
patches-own6 k. }$ F9 n( ^7 F9 X, Y
[: D! V0 m9 j# @2 m3 K
grain-here . p4 g4 z5 L- B+ a& H+ |6 E
max-grain-here 9 d6 r" B) M4 O. @7 s1 p
]* d. ?6 n+ p- H9 X: a' K* A
+ Y. e7 X# @7 m; U- `
turtles-own t+ x, _# z3 Y; R
[
) N: J+ W. K" b) _, O' j+ j age
4 a" g- A; m# i: g E; E* x wealth
2 u) c+ W" C$ ?& w% P6 r+ b life-expectancy 6 U3 v# R& Y( C+ R3 u4 M
metabolism $ e% f5 o5 O5 B# |2 R
vision( d. h8 W, ?% U5 o
inherited
- ]4 ^1 {* M/ S# b+ j; t* V]/ `2 D# F$ p* V ]
( @& L" I' X) c6 y/ @. r' V0 D4 W, V
: T1 K) Z P8 f0 j" Y$ N5 Jto setup
9 K' M9 S7 W" G8 m$ @ ca% d \' V" Y2 v: T/ [
set max-grain 50
0 n* u& a* t, H setup-patches
& c5 t% K. a8 U) w, Q& L setup-turtles
$ Y& H+ ~" F( s1 _ setup-plots7 ]- L( x( _4 L4 Q) |
update-plots
# M5 x; I6 M6 r1 }- x$ Uend
4 k& x+ s) p. [" G5 `! ?. P) |/ \to setup-patches/ ]3 p+ q. J5 x/ ~
ask patches8 ]0 [1 r! c3 k( K4 w! m- m1 i7 q
[ set max-grain-here 0! I- V* J. l# K% A; f
if (random-float 100.0) <= percent-best-land. Y- O& c) B$ }+ J
[ set max-grain-here max-grain
' Q+ Z: A6 Z. O# i4 I8 v% ? set grain-here max-grain-here ] ]. R7 l2 F5 ~, Z7 M! {/ v% U5 x
repeat 5$ t; `5 Y6 j5 H( ]7 Y- d5 U
[ ask patches with [max-grain-here != 0]
, x a" A1 g0 Z, Z) o4 A [ set grain-here max-grain-here ]
* P9 W0 |# H2 w$ B! \ diffuse grain-here 0.5 ]
& O8 t! ~# l- z' _) r% d repeat 10
+ ]+ V0 }! Z* S3 ] [ diffuse grain-here 0.5] - f; ~ G* x6 s3 H- j
ask patches/ T1 ]: ~% K# x& q! x% Z
[ set grain-here floor grain-here , E. a, o7 b" k9 D3 @ m
set max-grain-here grain-here / w8 m- g7 h! g8 T
recolor-patch ]* }9 M3 p$ L1 `2 F+ j( b) D
end
4 g2 V% f$ ], d1 K6 D Yto recolor-patch , M5 @! h0 S* g
set pcolor scale-color sky grain-here 0 max-grain
" @- ~8 S. o; U. cend
& q I: |6 R+ ?: ?! pto setup-turtles$ T1 o; G" F7 B) p, N3 S* f
set-default-shape turtles "person"$ b1 x, |6 R/ B) s+ O- v
crt num-people8 {' w$ R- g# d. \7 u( r0 `0 U
[ move-to one-of patches
2 _6 A0 Y ?" o! s3 r) _2 Q set size 1.5
) Z/ j! y. Z( W9 c, ^4 v! D set-initial-turtle-vars-age/ z3 m b- [ N5 U7 d- n# t4 ]4 H
set-initial-turtle-vars-wealth
% W$ w T0 |! q0 K' d/ ~- P% V set age random life-expectancy ]" p& q, v3 f6 z
recolor-turtles
% b S! I0 N g( X7 [end
, J8 b7 G" A* v: a8 T
. ~) @$ |5 ?$ W+ Y1 J1 \0 J5 |to set-initial-turtle-vars-age5 W1 ~$ f- s; n1 s- ^9 Y+ d' @
let max-wealth max [wealth] of turtles
$ i! P- q. Z F( P+ i - u# K. V7 V3 c, K" ?# o& F
ifelse (wealth <= max-wealth / 3)
: ]) q: F/ Q4 E2 d6 ^4 B4 P7 } [ set color red
7 A& X0 _+ f" `; \) W& P5 j* u: F4 U, a set age 0
v5 I$ l8 H; `0 b face one-of neighbors4
x+ o, e+ C4 n5 Z8 |- R! O# l set life-expectancy life-expectancy-min +
, ?4 J* `, d# L' b random life-expectancy-max
- F$ s" U3 y& I* L* h5 Y set metabolism random 1 + metabolism-low
" ^$ p' F, v Z0 e: P$ a* N set wealth metabolism + random 30
: C8 _! k3 k8 _" y set vision 1 + random max-vision4 T! m9 M+ L; K. p
set wealth wealth + Wealth-inherited-low ]3 P; K! e: r& M8 Z& G$ W
[ ifelse (wealth <= (max-wealth * 2 / 3))
; l$ ]8 M. G) d9 S V [ set color yellow . t6 P/ N1 T7 Y! e
set age 0; k5 t0 [( Q! y; y p
face one-of neighbors4 0 N! p" x1 R- n0 u9 w1 @
set life-expectancy life-expectancy-min +$ a" W) V2 j4 K
random life-expectancy-max + 1
/ Q' ]* D# ]8 j- p+ A set metabolism 1 + random metabolism-mid
5 u; S9 o" _0 }: s X8 ~ set wealth metabolism + random 308 g3 B. q! g" U+ }/ K
set vision 3 + random max-vision4 B1 w2 q( }/ Y
set wealth wealth + Wealth-inherited-mid]/ |/ R& _/ H! s3 u; M6 q
[ set color green
/ v; I; b. U, }/ ^; d& s set age 0$ q8 N3 v T& i# W8 b
face one-of neighbors4 # ]; Q) V$ M3 m5 t9 {
set life-expectancy life-expectancy-min +
9 u; Z" `6 [2 U random life-expectancy-max + 2
) p( N& Q% I! z+ L- [ set metabolism 2 + random metabolism-up f2 m6 f3 @, @, F( F) k
set wealth metabolism + random 30- D; @0 P2 f* U: m# P* A
set vision 3 + random max-vision% L, d) j, ?+ L! ?/ E- V- o( K# q
set wealth wealth + Wealth-inherited-up ] ] ' D3 I3 ?# t* t8 `* W; L
& K+ E7 }9 v# u r. u
end! R; R' r9 }0 E4 W' n V% `
to set-initial-turtle-vars-wealth0 S' Q! d8 o9 k8 P
let max-wealth max [wealth] of turtles
6 V; k0 k C4 M1 X set age 0* L8 Q+ O% T5 @8 c
face one-of neighbors4
$ v% ~# y1 b# n5 `% |+ e$ ^ set life-expectancy life-expectancy-min +
0 l( l% y9 k( H! r random life-expectancy-max
+ E* Z, O! v2 }) `4 p2 o set metabolism 1 + random metabolism-up
8 t. @; d, a ^0 X- z4 Z5 N set wealth metabolism + random 30
/ }! K% F0 s4 K# G set vision 1 + random max-vision
8 n7 L3 V3 b3 dend% O$ j" {6 E2 t2 N
to redistribution
. V) y7 r( r& O* k& t+ Tlet max-wealth max [wealth] of turtles9 H5 `5 N7 X% |4 A3 F
let min-wealth min [wealth] of turtles
. H6 I3 x$ C& j- @% ?! m; M, qif (wealth <= max-wealth / 3)$ d. K) i o$ v
[set wealth wealth + Low-income-protection ]+ x' ^$ \4 W, ?/ v: z
end1 h. ^6 ^9 W/ f- L
8 [/ `- C# g& P8 H/ Bto recolor-turtles4 Z# ~) T5 T* n4 M" j7 f; }
let max-wealth max [wealth] of turtles
: M; b5 @; q/ G$ i! N8 w, M ask turtles- d# i& h. p$ p
[ ifelse (wealth <= max-wealth / 3)% M1 E$ K% t0 G! ?/ L3 A
[ set color red ]
0 d! I! o* g( k( k- @! ^/ u; Y [ ifelse (wealth <= (max-wealth * 2 / 3))
+ Q+ _3 B4 d8 t; N3 J5 P0 g [# k [ set color yellow ]4 v+ d6 `# }1 V q6 V
[ set color green ] ] ], U% M2 Z% O) g. n
ask turtles [ifelse show-wealth?
$ J* a% Z9 _! g M. v1 H5 Z h; j [ set label wealth ]
) p# |" k6 w0 r% b [ set label "" ]]! H; @ m* q: C5 Q/ B) V" j, ]2 T
end
1 _6 H8 R- S5 z5 h! o
) Z1 p( h0 P% S8 ^to go7 q3 a6 O5 `* c, ~/ Y
ask turtles
6 y" s' {8 I# g9 U; ^" x/ ~4 e4 \ [ turn-towards-grain ]
, W) w' Y1 S+ ^# t7 |8 _ harvest7 K, t' `- M V; X$ O+ e
ask turtles
' T8 \/ A; ~$ |9 B [ move-eat-age-die ]
& b6 F$ X8 S3 T' H Z/ x+ V. t recolor-turtles
i9 R1 n# V7 v' F! T: c2 Q4 O" h if ticks mod grain-growth-interval = 04 x, Z" o; R( o/ d
[ ask patches [ grow-grain ] ]
8 N) J: \+ J0 n' A % j8 b4 V; |' }- Z9 \$ ?9 V, C
if ticks mod 11 = 0) {; p% e* G5 B7 t' E9 v4 P: i
[ask turtles
$ O8 y% p5 W B+ }, |* \ [ redistribution ]]
) H# I' u' j& v! Z0 B; S if ticks mod 5 = 0" Z3 V% ~, ^/ W; Q! N1 L8 u
[ask turtles
3 m i8 l9 h& c5 U% t' H% B [ visions ]]
; C$ E: e- [8 f9 |" x tick
& f" p9 U k3 g( `. H update-plots
+ l) v; v7 A \2 _' i% B; T& T, C- vend, ]" ]% u% v0 N7 S4 b# @
to visions$ }0 }' e4 ^7 C
set vision vision + 1 " J2 G& ]$ B+ x2 ]/ R7 O
end
5 E: E% I, i6 b( c
+ A8 N& m+ Q1 B2 U/ \* h3 ?! f8 J( u
5 h$ I. i7 ~2 R8 U* a5 ?) Cto turn-towards-grain
- M, y, [: g4 b# \3 u% g; v set heading 0
! c, S! m/ V0 r7 U" s let best-direction 00 f w, n" ]) S* G
let best-amount grain-ahead5 j( ]) m8 S; Z# Q$ j
set heading 90
% i2 g _' b3 D* k8 ~ if (grain-ahead > best-amount)
! |4 @0 L% o+ g+ V1 t( J0 Y [ set best-direction 90
" f! T( c, t F) T4 X0 H s; D set best-amount grain-ahead ]
# M: v, B5 I2 X' R! V( k4 t9 k set heading 180# z& x% F* }/ I
if (grain-ahead > best-amount)
- f5 r7 ]1 B& x. X [ set best-direction 180- Y3 ]$ S% v% e( D1 j2 z9 O1 u8 y* y
set best-amount grain-ahead ]4 z/ V( f. `8 W' K- m4 a. ]
set heading 270
2 S* A) u, g2 O% w. f/ y# S if (grain-ahead > best-amount)* [5 | j5 p9 u) z+ O7 [
[ set best-direction 2707 p+ [3 t, J6 [0 |
set best-amount grain-ahead ]; n* C, V* L6 d" ^
set heading best-direction+ Q" O8 ~! G& e
end
& X! R+ L1 Y$ Q, E& X* M% f% B4 a+ {& C9 A% |# a
% e/ v* s$ |4 V) k( x' L7 k& Y
to-report grain-ahead / S& W$ F* f. a" A, a# z
let total 0. e% F4 h/ w, s) M: w4 H- q! L
let how-far 1+ J# P1 R8 y) v7 C3 K
repeat vision
, G; ]1 B- v8 D: ] [ set total total + [grain-here] of patch-ahead how-far: U9 i" G& ^/ ]5 j
set how-far how-far + 1 ]
. i l: k9 M' @ G. Q6 @' d report total
" `, ^0 j0 j- G3 O$ [end1 |* K3 u- h8 a. q a- B# U
8 l4 Y* v8 P: S+ J. K
to grow-grain
% t) J1 s/ {( `" V+ g8 G, R. z if (grain-here < max-grain-here)1 K/ c* f& t5 p9 @ Z, O
[ set grain-here grain-here + num-grain-grown/ G) |3 M$ v% W( B$ C" v+ ?
if (grain-here > max-grain-here) # R. j# \2 z* t# A4 K4 \' G; w3 b
[ set grain-here max-grain-here ]; Z& o3 m7 i/ W( I& d6 H
recolor-patch ]
" Z$ I7 |: z3 {# A1 x1 b. Dend" ^" _. ]! L. c# _* Z5 d" T
to harvest
1 L' ?9 R+ ]- z7 G- w ask turtles: D% A0 e, I2 [5 g* y) O
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]* @/ w! b+ Q/ Y8 E0 F
ask turtles6 f& c5 {7 g! b
[ set grain-here 0$ V! u0 n& `& V
recolor-patch ]3 n% p; K. Q2 H# m$ ~ X
. _: {# r4 s) X, ^1 Fend
V b# ]9 P2 M* v/ W
* n5 }! Z) W" @* jto move-eat-age-die : {2 T' _- s% E- h0 z
fd 1: J( F; @% j* m
set wealth (wealth - metabolism)/ z3 t3 l) p4 z8 w1 _$ c4 @
set age (age + 1)- V: K, L* N; Y
if (age >= life-expectancy)9 {# R5 v! V% I2 Y4 ^
[ set-initial-turtle-vars-age ]
& A5 e& H; e) @/ ]1 J5 l if (wealth < 0)' E- W2 O; a. B3 {. A5 {5 g
[ set-initial-turtle-vars-wealth ]
9 {6 @7 }$ `$ y; \8 e8 W ( v2 J# s7 h. k% y5 u3 T. U
end$ M$ _, R% z# T, }7 s
) ]+ R/ V" G8 i0 c( }6 n. H! A
! k1 [0 ]6 l0 l" ^5 R' Oto setup-plots
; {' Z# X0 o+ j+ @ set-current-plot "Class Plot"
7 R( g( I/ G( q: p/ v3 G3 w8 ]- { set-plot-y-range 0 num-people' O, l! P7 g2 C. P \' y2 j) x
set-current-plot "Class Histogram"" d3 @! {9 S0 C5 U; K5 k
set-plot-y-range 0 num-people
/ \& z/ h* ]" x Y) E: }" p4 V5 c2 @end: g3 J/ G" O' C' |
. T: i! s6 c# h' ^
to update-plots, D8 m6 l2 T' g X% {; E
update-class-plot
y! F) R: o1 A: ]$ r update-class-histogram% h! e! y% g, f4 ]% l7 E
update-lorenz-and-gini-plots
2 Q. J7 P( y' j( W! [4 O4 I( xend# h# [& e. a5 ^
( S# d5 a1 ]9 e) Ito update-class-plot
; m9 W' c# w4 R1 f% A. T3 H8 k5 U set-current-plot "Class Plot"
' m8 E' V& d1 ]- u v8 U" H6 x- | set-current-plot-pen "low"
. I+ N7 n* n" Y2 Y/ k( t) ? plot count turtles with [color = red], m2 e) x1 k0 g2 Q- P& W, Q
set-current-plot-pen "mid"8 n- I _) Z" t% P; k# @2 ?
plot count turtles with [color = yellow]
- T1 R- q) u' O- Y$ Z$ W set-current-plot-pen "up"
0 Z" C9 f# k. @0 y8 V! f plot count turtles with [color = green]2 i& E& k- ]/ G& Q' w( j
end% X% N4 r$ b+ x' c
3 Z$ x; ?0 l9 e$ K. D
to update-class-histogram
2 M( k! u) i' L4 s$ { set-current-plot "Class Histogram"
+ X y& _5 S9 Q6 [6 _! W# J plot-pen-reset
: t& r3 g6 k& V2 c$ B0 T8 A3 p set-plot-pen-color red1 }& K+ x" v3 q
plot count turtles with [color = red]9 k- A# R7 I1 t3 ~
set-plot-pen-color yellow. H, j( h. D/ T3 u/ L; n
plot count turtles with [color = yellow]
4 |% W* ?7 k3 q/ \9 O set-plot-pen-color green
6 {/ \; d3 N, Y plot count turtles with [color = green]
6 N: {, x) x" t' j/ {! }end$ Q! ~" f4 { v, r" l# M7 s1 f
to update-lorenz-and-gini-plots
: L* A& B; P- G7 Z& M set-current-plot "Lorenz Curve"& ^& Z2 @8 {3 b# d; e+ k" p5 ?
clear-plot
5 r% s3 f0 w8 T. F# W5 e- V3 B
7 K" B/ ^3 ]5 R$ F: G- w set-current-plot-pen "equal"
+ a1 {+ R5 i5 z+ p2 w plot 0
1 h: A5 z* U* T/ Z- T. q) c plot 100
# j! K) `+ u! Q1 v S' A7 W: H2 n: ?4 F1 @# x8 b: y- `8 L4 e; ]
set-current-plot-pen "lorenz"6 [) ^3 A" V3 m6 F0 l& P% ` U# o
set-plot-pen-interval 100 / num-people% r9 d% A# J# _$ e$ ?8 Z; E
plot 0
* E& H( P( r+ n2 a( b# g! @/ q0 ]3 q' P' w
let sorted-wealths sort [wealth] of turtles8 a! B( c- r" w, C. J6 Z
let total-wealth sum sorted-wealths
, l4 ]" u- X6 K let wealth-sum-so-far 0
8 ~# U1 M& j& C5 J, W- c let index 0: L: k& w/ G/ z3 _9 [' }6 i
let gini-index-reserve 0
9 A( A: c7 ?/ t0 L" F, }7 W( y+ F6 f+ t+ k( I6 @ m% |
repeat num-people [
, w% {- j J9 O8 b" T- z. y( V set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% V0 t/ K1 ~7 A) `# z1 \6 ]
plot (wealth-sum-so-far / total-wealth) * 100! z+ v" V( e: T2 V. h/ K
set index (index + 1)) S2 u! k2 R/ a
set gini-index-reserve4 ]6 ~3 ?) M2 g) a5 @( w! _' Z+ j
gini-index-reserve +
2 l3 Y. }/ e4 R" }; s (index / num-people) -
3 \7 m$ i8 D$ ?# n Z( Q (wealth-sum-so-far / total-wealth)
P' q" _: u r4 K ]" ] H4 M s6 N* N
; Q: x2 c* i% I: U- q }, J set-current-plot "Gini-Index v. Time"
5 u |9 A& s# u ?' O plot (gini-index-reserve / num-people) / area-of-equality-triangle
# k* ?% O; B* J% g, B! Yend7 p# ~# }: E: t$ W# F! g
to-report area-of-equality-triangle/ \8 |1 z; [( P- c
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)) L6 k p5 j7 ]7 p
end |