设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7111|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
  ]3 X3 L( P0 {- B8 k9 o7 xglobals
/ B) ~" g1 H8 K+ j, F$ M3 c[  X6 Q; L0 T9 S7 ^
  max-grain    5 F% G( W& z: f6 v+ A& d: g9 e# f
: U- S( P3 E+ T' [, j
]1 d4 ?4 n4 x! b& j/ N7 K! e

5 Y+ A! m* m3 ]! X$ _patches-own
6 x6 h* B+ \1 l( V) i7 H2 ?3 J[. V( I) Z' w+ l
  grain-here      ! @3 f. r) P. z
  max-grain-here  
+ R2 J$ n& y( H$ o; |8 Y1 x) c]
1 \3 Y2 L" g( w7 {. J% M5 U% u& a* n# K+ D9 {. H3 i
turtles-own
+ b) Z- s& l- g1 {# h( t0 N[0 c2 y' P9 c! J: Q" B* L* M
  age              9 M7 K/ v. H1 c$ A3 g
  wealth         7 A: t- n' I  c, R9 o
  life-expectancy  
# ^/ N. K7 m. w: j+ N! [# X  metabolism         ?3 ?) s. J/ {' J, n
  vision
" \5 ^- }+ E# M5 x7 t  inherited         - Z2 a* R# o  W8 g6 A* j( M  f
]2 V: U2 w5 H6 h  D; I: h+ `  B0 T

& _9 m3 U4 _3 Q7 M8 p; B9 V/ D( L2 T/ m! c
to setup" _$ V. [; T# ^! e$ q- X
  ca
% G1 O2 \6 M: Y  set max-grain 50
) V6 b, _+ h( l  G  setup-patches
) k) L4 @7 Z6 ]: J, t7 u! M2 ?  setup-turtles5 Q4 K  E. T8 ~# Y. |
  setup-plots
* \# Q  N0 n) F. z1 R  update-plots( }  `3 b! s- P3 j' r
end. I8 v6 |- D; u
to setup-patches* Z& b1 F8 d# n5 }/ A2 T" V6 R
  ask patches
% b& t$ P% K4 p4 Q/ Q    [ set max-grain-here 0( {' ?0 [9 b8 T$ y2 x  a
      if (random-float 100.0) <= percent-best-land7 e8 K  B' b8 N+ [( _. C
        [ set max-grain-here max-grain$ z0 x8 S$ G5 X  N- Q2 E- T
          set grain-here max-grain-here ] ]1 [- S+ y; B9 s+ D3 M/ t
  repeat 55 {. `% d& A, K( x
    [ ask patches with [max-grain-here != 0]( z- R/ P' V9 K( F0 h! p
        [ set grain-here max-grain-here ]
3 ~% b' ^: R5 Q1 A5 F      diffuse grain-here 0.5 ]
9 w( d0 e: H# G1 w, _$ v' Z/ m  repeat 10
4 w! i9 n  X: `. h' y8 J5 ^    [ diffuse grain-here 0.5]          8 i0 f+ ?: _0 ]( D4 K
  ask patches0 _( Y! S- S* t5 G+ a4 h' o; \
    [ set grain-here floor grain-here   
9 ]- \- B4 r3 T8 v! k# H5 {" g7 w      set max-grain-here grain-here      
. ]2 o% B- Y+ D. @3 j6 O  L      recolor-patch ]8 D) B. Y1 i  k
end
5 C! l. q! x9 w* F& z& r8 D! Hto recolor-patch  & Y/ T+ Z8 t" z6 o" r) U9 |1 Q
  set pcolor scale-color sky grain-here 0 max-grain  S% P1 C* U0 x
end7 u0 k% u9 B4 N, ]
to setup-turtles
; W  O$ W% {6 F& w1 A1 |  set-default-shape turtles "person"5 q) G: A" P# F! K( q2 P" O& W2 G
  crt num-people
$ i% {" V3 J" ?0 Z! M$ T    [ move-to one-of patches  6 s; X  U. K1 n5 W& I
      set size 1.5  
0 i3 r, Z! U& W) ]$ a      set-initial-turtle-vars-age
8 _9 [. Z; [" @/ V      set-initial-turtle-vars-wealth
1 V, v0 l# Q3 k" T      set age random life-expectancy ], I) t6 c6 T9 X, o4 Z: n- P
  recolor-turtles5 j# U0 n7 Y2 y( f$ L1 C
end
" }0 y4 N* N* t* {/ C* C, ~8 Z6 n4 h% v$ M/ J& M
to set-initial-turtle-vars-age5 j& E. n+ {, o
let max-wealth max [wealth] of turtles' h1 l+ D' o, j: Y' T* D& F. v
    ( F* J. `& i% B
     ifelse (wealth <= max-wealth / 3)
9 H5 ^! {) T  g: C        [ set color red
9 V1 [5 Q7 W0 c! u" \/ Y          set age 0" j# M" U4 Q& t3 ~8 d/ z
          face one-of neighbors4 , M) A0 `8 m' v( F
          set life-expectancy life-expectancy-min +. ~. @: h* Y9 q
                        random life-expectancy-max 9 W- u: ~) ], u! ?3 {3 l" B
          set metabolism random 1 + metabolism-low
) d  J% M1 W1 B1 o" \3 \/ g          set wealth metabolism + random 30
8 @0 i' {  J5 z6 d! }* p+ L          set vision 1 + random max-vision+ q. d8 r8 y4 n+ y* ~/ n3 R
             set wealth  wealth +  Wealth-inherited-low ]
4 [1 X2 G% R. O" J0 I        [ ifelse (wealth <= (max-wealth * 2 / 3))' K* ^$ G! @1 h
            [ set color yellow
# l- e3 s0 o8 m" t. F              set age 05 m& N6 u. q4 N0 ~- m8 W6 n9 d5 l; G
              face one-of neighbors4 & g4 h2 M0 z3 k* r
              set life-expectancy life-expectancy-min +9 n( T+ N9 E- y) ]
                        random life-expectancy-max + 1
$ p2 N# t  F$ y# O- v- O4 m# _' n% f              set metabolism  1 + random metabolism-mid
) Q9 r1 i0 K  F& J; u2 V1 K" U% E              set wealth metabolism + random 30
! U+ [' u" Z, }, t. o0 j3 n              set vision 3 + random max-vision
* Q: T" B$ }% z4 \& m! C                set wealth  wealth + Wealth-inherited-mid]. G& B, O/ m$ |  P; U: S$ m1 T' D4 h
            [ set color green 6 A! s% ~  U: K) o+ B8 V; X% p2 v2 A
              set age 0
! g% @: v6 o' g( K0 W% @6 c              face one-of neighbors4
/ X! _% e+ A9 Z6 u              set life-expectancy life-expectancy-min +
& D8 M. J! b; p! W+ @                        random life-expectancy-max  + 2! j- y" V6 `; L+ [* t8 z
              set metabolism 2 + random metabolism-up. u1 Y2 p0 d! V& y
              set wealth metabolism + random 30
2 r# a, S1 g. r0 r, t2 O( @% N              set vision 3 + random max-vision3 H5 V7 y& E* h& m( O" `7 w: N
              set wealth  wealth + Wealth-inherited-up ] ]
. T' v7 m- ]* ~  G( a1 W
( L9 h' ?1 v& Y/ H5 t8 m  uend* {) k9 N# P; X4 w& x  O, S; i3 |- w
to set-initial-turtle-vars-wealth  O' s% {$ ?  M3 f5 `3 ~
let max-wealth max [wealth] of turtles) }- s0 P8 ~: b( w  @  l( Q, C# O
          set age 0! ?/ o) Y# N4 B: O! M# \, }; z
          face one-of neighbors4
2 N; D; d4 d, U; G- y5 {9 @          set life-expectancy life-expectancy-min +* ]  v& @1 R! x4 Q/ S# C5 j" P
                        random life-expectancy-max
  {8 C% M/ ^* v          set metabolism 1 + random metabolism-up* ^- f, i7 y, B5 K! x# Z* m: A* u
          set wealth metabolism + random 30
' G- [4 B6 D) c2 O3 T& f% y          set vision 1 + random max-vision - s) x+ K( g) w7 @0 K+ G/ U
end
" ?* \5 k; N; d* Nto redistribution
+ x# e+ i4 P; J" k* Glet max-wealth max [wealth] of turtles7 k0 t% C) B' t5 ]
let min-wealth min [wealth] of turtles
- ]1 q* ]5 Q6 {* x9 w; Aif (wealth <= max-wealth / 3)
% }2 N1 u) T* d5 M: c4 S6 E [set wealth  wealth + Low-income-protection ]
/ _9 i# j( X# H6 |1 z" H: mend
( I% L( q8 \1 z; F7 ~, Q- r# w$ K         
7 P% t+ D" o5 V  ?  r3 Uto recolor-turtles7 j7 I2 X% u% s
  let max-wealth max [wealth] of turtles6 Y& R& n$ g7 T0 a+ j3 |1 Q# |
  ask turtles
5 h, c% D, P8 g   [ ifelse (wealth <= max-wealth / 3)9 x7 `- Z( o6 t: T5 U5 ], Q
        [ set color red ]
. x( J0 t( _# z        [ ifelse (wealth <= (max-wealth * 2 / 3))" \% n( H$ l! H$ e- q
            [ set color yellow ]. E+ s( @+ m/ X8 X; o" W" e' N- W& ?
            [ set color green ] ] ]" g! F4 S1 `1 g/ m
ask turtles [ifelse show-wealth?2 L0 q; T: N$ R" L8 q
    [ set label wealth ]
8 K+ g7 B5 ^; L* F    [ set label "" ]]
: r7 k% j& C. A6 F: w7 \9 Kend
1 _; Z, M0 g. C
- R7 a/ B3 M- F) T, D0 l: G6 @6 ?0 _to go5 w- K" t: c: l8 [
  ask turtles4 z+ s7 @' b  l; K! Q
    [ turn-towards-grain ]  
! e1 b' V7 m* P  harvest  _1 F' D0 _0 n8 m2 y
  ask turtles: @  u' G& r! o# J
    [ move-eat-age-die ]
3 t8 l7 b5 _% ^+ G; ~- C3 V  recolor-turtles6 P( N  Q3 u$ z3 |$ P# {
  if ticks mod grain-growth-interval = 0
2 W4 }/ ~+ t" O9 ~* i    [ ask patches [ grow-grain ] ]
! x( q# X0 V8 j* h( S   
. g4 \: Y: _$ t. O  if ticks mod 11 = 01 j, P8 {' x& z- n9 G/ B1 }$ f
  [ask turtles8 a& N: L: G3 Y+ r) I1 d( C9 M
  [ redistribution ]]
% s7 G( U; c. [  ?& R# ~  if ticks mod 5 = 0" Q- t( Y- S6 M6 ^4 ~
   [ask turtles
( l/ |+ j' o1 N3 }  [ visions ]]! i8 D) G5 L: A* t
  tick
: T  c- t) O/ P# O  update-plots9 m: f  L- T: H; Y7 X4 t
end
: X! o2 L- I, R: Z0 t% D" O( g& |to visions0 q- Q$ P5 X2 O% W' ~' F5 F
set vision vision + 1 9 W* Q4 T: s( I9 q
end
6 D' U# v* Q  T- O' `' m, D1 n1 n5 M" I+ c0 p0 L) \( W

" a6 q" u/ A4 s# w
+ [3 [0 W* U' mto turn-towards-grain  
# g2 n, q8 ?9 c  set heading 0
% e: s* ^1 y! z4 Q+ o; y  let best-direction 0
: h: N2 ~) B( w; Z  let best-amount grain-ahead2 ?% r- f- D+ p/ v9 A1 ^4 T$ H
  set heading 90
# n6 Y( @0 a% E$ e4 n( R% x- q  if (grain-ahead > best-amount)
/ E* W, D. {6 @/ n, q$ ?- y5 a0 o    [ set best-direction 90
$ `1 o6 V4 D' G      set best-amount grain-ahead ]
7 K( F" R0 j. @6 R3 o6 H  set heading 180/ k% j, X; X4 [) C9 K" d
  if (grain-ahead > best-amount)
) f2 G. s$ u9 j/ ?+ J" h    [ set best-direction 180
# P! o2 S% u. N8 e) F  A. R- I' T8 W      set best-amount grain-ahead ]
; N/ h0 e8 r/ z# n9 a: j) u  set heading 270
4 p) l. f; u! C0 U( i/ H6 J6 ^  if (grain-ahead > best-amount)
- W  x. ]1 ?: t; ]- v! o    [ set best-direction 270* a* a0 J+ }7 i/ ]
      set best-amount grain-ahead ]( j1 {0 e4 T- V+ G) G
  set heading best-direction
/ r$ I$ g2 B- U  M4 M; Xend
; `. O) ?  n" b( V9 p8 c9 u- r+ i6 r9 M# r+ p7 Z
$ [3 B4 _* V5 J9 l
to-report grain-ahead  1 Y. Q$ Y! @7 I$ W& f* y
  let total 0+ h- {6 d; S' Z0 J; H0 K* H
  let how-far 1* w+ ?- @& b& g/ h+ \* H7 f
  repeat vision
4 J/ A. E" x7 b    [ set total total + [grain-here] of patch-ahead how-far+ X  f) H% B7 M. U3 P8 v' U) u4 u
      set how-far how-far + 1 ]
& D4 F& i/ t6 K( P& _4 q  report total
: u1 U7 K5 r( a/ n* s4 y- l! Z. ]: Yend. ?6 X( O' Q% N

0 n/ w: W( P6 Y8 k1 ~8 ~' `, @to grow-grain ; [6 x4 c/ T( \/ d4 [2 v  [" h# P
  if (grain-here < max-grain-here)
! C0 O5 b+ r' N0 k  ~    [ set grain-here grain-here + num-grain-grown
9 R9 a6 _& y1 ^: I* L: ^4 m      if (grain-here > max-grain-here)
! Q+ }, x8 c% y7 @6 p        [ set grain-here max-grain-here ]
5 S% f: j; O* g' O      recolor-patch ]
0 n* o* T( ]( |. L6 jend7 c: H+ p# Z  {
to harvest0 K, b6 e/ L4 s
  ask turtles
: K7 z$ x' X( H; _7 A6 ]2 [    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
4 _% ?& ~& ~! X$ W8 p" w0 B  q  ask turtles
' X; K3 g" K* i# @: V# B- i& K    [ set grain-here 0
5 v" ~7 W4 N) A2 D+ ~0 S      recolor-patch ], K( X& b' I) w5 O
  1 f. Y- u& s; {
end( |/ k! @, C5 ^" V/ z  p$ O' {' }
+ B) @+ n0 }% K) A# Q" @
to move-eat-age-die  - q9 N% v" m$ g
  fd 19 |) ~1 U" C1 F7 a( J$ {
  set wealth (wealth - metabolism)  r* y9 {+ S; g" G3 l7 S4 k- g( h
    set age (age + 1)8 Z% m5 W( p+ ^) ^" A1 l" C
  if (age >= life-expectancy)) k( P. \. U6 p, f: w
    [ set-initial-turtle-vars-age ]$ {$ ~$ U1 P( x- }/ O
  if (wealth < 0)$ S" ~& ?! k" c) F1 J, w( K! j6 c
    [ set-initial-turtle-vars-wealth ]
3 G7 \+ y( W1 ^: `- r+ z1 r   
& ?, I" s& f( _' F5 s! jend
" _/ R: K6 X! l% a' [; M# P% e! t9 m* Z% ~( \3 G! z" N5 y

% J$ I, Y1 R5 w, [# qto setup-plots# G8 _( o1 \1 z* `" D+ A
  set-current-plot "Class Plot". s$ }0 n& a( X4 j& ]
  set-plot-y-range 0 num-people, f: s; q2 S& a" a4 \0 l( k* W# r3 G" R
  set-current-plot "Class Histogram"
1 d7 K4 f9 |% p  set-plot-y-range 0 num-people
7 w/ p, d1 g1 |: O$ r& hend
$ |$ L3 c5 O; w! r! h/ K6 s' y0 n( Z; d/ y- j8 U- ]
to update-plots! L' N) ^' o: \* \) u% n5 r
  update-class-plot
- [  k. M9 @. ?8 `5 f) i; j  update-class-histogram4 T) Z# s0 N9 ]) r1 i# J, k* h7 [& K
  update-lorenz-and-gini-plots" z7 Q  H5 X$ a  e
end
; q8 C' q& ~* f( z5 j& |7 [% Z8 M" t  m$ ^4 U
to update-class-plot
6 B8 U( K8 {4 F  set-current-plot "Class Plot"
  L' Q/ Q# }" P4 C8 ?8 \" f  set-current-plot-pen "low"
+ ~7 O3 ^0 a7 [  plot count turtles with [color = red]
8 f& k: h7 e( v5 Z7 \' g2 T% X  set-current-plot-pen "mid"
" G8 b6 S( j4 C  Q$ y  plot count turtles with [color = yellow]  Y" t( S9 h( C! w2 h) O
  set-current-plot-pen "up"# e7 Q- J4 U* b$ q+ H
  plot count turtles with [color = green]; v2 Y( S- T5 o9 p9 q! }
end/ V) ^/ \' C7 r( N
; d; w  r& w2 _, O3 w- [5 G& J
to update-class-histogram4 l! [0 S6 q! v) O2 x
  set-current-plot "Class Histogram") V+ N6 y* w% J4 U% @! m) u
  plot-pen-reset8 v/ }2 f" U( S* _
  set-plot-pen-color red# S1 z/ \" a* `# l( M
  plot count turtles with [color = red]
4 G" ]* a- ]( V; M, j  set-plot-pen-color yellow
' C3 T3 K% O1 Y% `/ V1 _: o; V  plot count turtles with [color = yellow]
1 D) [$ w  }) o8 }  set-plot-pen-color green
: M  ^" r+ R) M2 x, a) I" ?  plot count turtles with [color = green]6 ], |- {' J7 l* d
end
% }# m  G$ w$ o% nto update-lorenz-and-gini-plots
, ?& J- r% w. {4 N# t/ m9 _  set-current-plot "Lorenz Curve"
& x! ~9 ~) S( F  clear-plot- v% w6 w8 u, T2 A. d
( Z5 X8 C$ y: ~, C0 \
  set-current-plot-pen "equal"
* \# y8 ^0 R) a  u  plot 0) D& J& H1 c' w; O. u
  plot 1008 F2 T$ N! w5 D9 k3 u, a: z
' I' t. y) x9 U0 @/ Z
  set-current-plot-pen "lorenz"
- s1 w$ g8 n" \) u( O0 g  set-plot-pen-interval 100 / num-people
( t$ P* w3 Y( v3 M1 p+ m  plot 0, Q: j% s1 @  q7 ~: v

. L! Z: r; T. d8 a  let sorted-wealths sort [wealth] of turtles9 s# X0 q9 h  d3 `
  let total-wealth sum sorted-wealths( o# o6 P; N& z* B2 ?
  let wealth-sum-so-far 0
: U. g( m+ w6 O6 U5 ?5 \& Q  let index 0
0 }. R; U. H% z1 t, V, c  let gini-index-reserve 02 [; c  F" @6 `9 n0 ^

& `2 W" f8 ~( B' |- t  repeat num-people [0 p. M. ]2 U5 B) i/ o4 p! e# q
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
! V# o0 L! w+ c: ?$ R) d6 r    plot (wealth-sum-so-far / total-wealth) * 100
" c2 n) L" {$ G: F; V# g    set index (index + 1)1 l0 s7 {1 L; m. w" y+ p
    set gini-index-reserve
8 w5 i) q, Q( y; k      gini-index-reserve +; v6 h! T! ?! S) I
      (index / num-people) -
5 \8 X% |- h* D- j      (wealth-sum-so-far / total-wealth)# }1 f4 F- U0 x' t( P+ Y8 D; W4 K
  ]
5 g+ Z# }( Y( f, Y* @4 N1 p7 [3 f- H& J- {6 C. D2 X5 H& H
  set-current-plot "Gini-Index v. Time"  H1 b0 q$ K6 S  P* B3 X
  plot (gini-index-reserve / num-people) / area-of-equality-triangle7 a3 d0 J! ^& @. p
end
0 h3 b9 `' h& k# @. sto-report area-of-equality-triangle3 a. R2 L0 _2 C
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
. y& b- d7 W% k4 b1 @5 t2 i6 hend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-8 02:34 , Processed in 0.018985 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表