设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7523|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
: e$ A( A( a& C7 zglobals( D6 J9 H6 ~6 b: o, A+ U
[+ D* v/ B! B  k! @) i
  max-grain   
% [3 ?" B4 q2 C. |" J8 T. L5 A) s4 \! l' f3 G5 p8 ]
]
& N$ E& j2 `! h* l
; e5 B5 o( D# z0 d) {patches-own
" k. f7 o; R9 U: ^' I2 C/ {[
  A: r& M0 g; B2 [3 M( g  grain-here      
; j- [2 u! R1 K1 d  max-grain-here  
# o1 d" V) k0 [% i+ @]& ]. I5 x2 s8 D0 V3 ?
, z8 z  U& w; l4 c% L. U
turtles-own
$ W- o- G( {  C& o* u) U[
4 ^' S+ K, h4 g( p" Y4 c5 ~* Q  age              
% f! z0 T4 }* M0 ?* [. i  wealth         
2 G  A9 W6 ]& H6 C* I6 {: ]  life-expectancy  
5 P% n4 K9 U2 s) Z$ [  metabolism      
9 ~+ S$ O- l( z8 Y/ X  vision
8 a( N4 J. D) @  inherited         
. v8 w; z: N4 d1 `- g]
8 t* A8 a' N8 r3 ~) \3 R) a) R0 e
& D: K6 b* e6 f1 M- t! E; g2 J' n  z
to setup9 V+ E, i: N' \; d8 ^( I
  ca8 L  h' |$ S7 w9 P( j$ D, W7 T6 C* H
  set max-grain 50
/ R+ o% ~7 F* P' L$ c  setup-patches
; r# n: _8 ^" @1 T6 A6 y# F$ y& B  setup-turtles0 m, o: X' i- N  F5 {% }/ f+ s
  setup-plots6 w8 s4 D4 Z% C/ D6 O* V+ O
  update-plots
1 @  L( ?& f& f9 c2 rend, ?! Y/ Y) C6 S
to setup-patches
% x, O2 O9 u# z4 Z4 T4 v  ask patches+ k3 E3 M6 P4 w2 R% F8 `  s7 [6 T
    [ set max-grain-here 0
9 s0 R' S8 c# ~/ V2 m( V8 b      if (random-float 100.0) <= percent-best-land
% i+ _9 m4 ]8 y5 M3 H, w8 ~        [ set max-grain-here max-grain
0 M, S2 b# s, T. Y0 j8 U          set grain-here max-grain-here ] ]
. s/ @1 z, y) r2 W( S  repeat 5
/ X3 U$ x: ^: f% p& V; C9 Q    [ ask patches with [max-grain-here != 0]1 V) R! Z. \8 [& g2 c- k
        [ set grain-here max-grain-here ], d( n0 a: S( u" r
      diffuse grain-here 0.5 ]
5 ?( ], G% w9 H  repeat 10
/ |( p. y, T1 L# Z    [ diffuse grain-here 0.5]         
0 W5 a. U' g0 J  ask patches: H; C9 _+ ^' o6 o& @/ C: I: J
    [ set grain-here floor grain-here    5 C; O7 s3 Y4 v3 t
      set max-grain-here grain-here      
4 J7 c1 {% x" I( `, t+ x      recolor-patch ]
+ c. j2 z( {* `2 w) G# Wend7 e  i) ]' O5 {! X% |- G
to recolor-patch  4 |: J( T* r( x
  set pcolor scale-color sky grain-here 0 max-grain
( t! h& C( G9 Hend% u3 X: X  q& K) x# |0 ]
to setup-turtles4 o7 p% I0 a5 a8 e4 V$ U- p8 Z
  set-default-shape turtles "person"2 @% i* b9 h, [; i4 \' t
  crt num-people
: X$ m+ f" h5 P3 F: w" `    [ move-to one-of patches  
0 x! W$ b& u  |: s2 C      set size 1.5  # k. I0 b9 ^- S& C
      set-initial-turtle-vars-age
7 e: w& h  j; N2 E8 p3 P/ l      set-initial-turtle-vars-wealth& t# A3 s" r& t( l/ M
      set age random life-expectancy ]6 ~1 D4 O6 W  g2 v8 [
  recolor-turtles5 W1 @+ F% u3 `
end
3 K$ f/ l* K6 b" o# G" e+ i+ @1 t, {& r4 n6 }$ U
to set-initial-turtle-vars-age2 q3 C2 M! [) }4 V
let max-wealth max [wealth] of turtles- m- M! {6 t# q! I% o. O
   
$ t: \3 n+ C; W. Q  K3 q     ifelse (wealth <= max-wealth / 3)& r4 q% u% D! \
        [ set color red
/ x' b/ O$ C- |% C, N  Q5 f          set age 0+ _* I7 P( v; p4 d8 C
          face one-of neighbors4 ! e6 A- [! l- u: |9 d* a+ g8 i
          set life-expectancy life-expectancy-min +/ m" t( q! D  w+ c0 T5 H
                        random life-expectancy-max ) N- c. D+ U$ B) N; f
          set metabolism random 1 + metabolism-low- N# z6 o' G5 ]. V3 d' g
          set wealth metabolism + random 30
& T( B* P# V# {' T. w, A  O          set vision 1 + random max-vision0 m, O/ w! ?1 l3 y8 o6 i! O
             set wealth  wealth +  Wealth-inherited-low ]
" z! Y& P' M$ s9 o1 E) z        [ ifelse (wealth <= (max-wealth * 2 / 3))2 ]) ^. Y* t* g" P. O9 J: i
            [ set color yellow / P, W- K" k( L( {3 C" f. v, D( z
              set age 0
( F* D  [/ O6 k6 `8 e+ _              face one-of neighbors4 $ Z. v3 `/ p$ r! r$ ]
              set life-expectancy life-expectancy-min +( ^. Z% F7 J; p
                        random life-expectancy-max + 1% l) y; ], }% {5 r
              set metabolism  1 + random metabolism-mid
# z: @5 C4 ]' h1 S              set wealth metabolism + random 30
7 t& [( I7 z8 \" w# S: g              set vision 3 + random max-vision
/ v) W1 X. ?0 m  F  i                set wealth  wealth + Wealth-inherited-mid]9 D  K9 q( F9 c+ F
            [ set color green
, C6 D; c) {9 Y  q              set age 0. G- L. {2 p6 b& K; g' r
              face one-of neighbors4
; q( ~1 \6 l# ^! o+ `              set life-expectancy life-expectancy-min +! ^! v0 r1 v5 r/ k9 V% {) Z6 H
                        random life-expectancy-max  + 2  O' j8 t: a, ~" ~
              set metabolism 2 + random metabolism-up0 |% u! j& v, J; e" X! Z* a
              set wealth metabolism + random 30
: m9 u0 |9 ]) \" d              set vision 3 + random max-vision
0 o' m0 D. y. k              set wealth  wealth + Wealth-inherited-up ] ] 9 l9 ?: v( z8 R5 k

; f0 X' U: R3 H; a8 w+ p, Yend+ H5 J7 p* A" M9 O% n
to set-initial-turtle-vars-wealth+ ~9 ~/ ^  U% P8 ~* z
let max-wealth max [wealth] of turtles
5 y" q, h$ M+ B. u          set age 0
2 ~) m. ]+ u6 @3 J, y          face one-of neighbors4   |  C5 y% Z9 ^! O
          set life-expectancy life-expectancy-min +. Y1 q: b' j' w% A5 X
                        random life-expectancy-max
  g/ G* z$ `% X& h  P; M6 ?1 T          set metabolism 1 + random metabolism-up
/ b- {$ H$ ~+ p9 q: G% a1 K( }          set wealth metabolism + random 30
3 M% s8 G  f# I4 p/ T, q          set vision 1 + random max-vision 9 L2 {4 t0 P: \5 Q, \2 F* j2 d
end
* [. T- t9 L- V) |6 G( e( M4 j4 Rto redistribution
. D% B$ T0 P; B& z8 F3 o5 H  C7 Ilet max-wealth max [wealth] of turtles
9 D7 s; ]8 B5 d2 c' x! Rlet min-wealth min [wealth] of turtles
. s# z8 D  Z' |/ Mif (wealth <= max-wealth / 3)1 I4 z8 D- ~& m- O$ t4 B
[set wealth  wealth + Low-income-protection ]
; {) V* u! B4 ?5 C; z, Y/ @. vend- w' K4 z, I/ T  i9 u' t
          / i, B6 \& M' Z( Z) w, j
to recolor-turtles
/ A+ ~& }& V* Y- y* `  let max-wealth max [wealth] of turtles
: X! E$ @, w, i. G- c  ask turtles
* y  G6 T' W2 x! F/ D   [ ifelse (wealth <= max-wealth / 3)
7 O4 t! {1 e. F7 k) X        [ set color red ]6 J* I' B* z4 B' U* s" R  |
        [ ifelse (wealth <= (max-wealth * 2 / 3))
; a" h; @6 Q/ @/ o* n  ]            [ set color yellow ]
7 r5 t" b  @% {: R            [ set color green ] ] ]
" X* S3 R$ e3 {( g2 [: @; L8 K ask turtles [ifelse show-wealth?- q  }* m5 Q* }0 I
    [ set label wealth ]3 Z# T% U1 e5 t; S, Z; {) O$ t+ T! \
    [ set label "" ]]
4 o4 L6 l% g' u% v5 Gend- M- H2 C( I, m7 N! P& Y4 J

5 z. P0 _0 f2 e4 `& K$ g$ mto go8 g! |5 a9 f* @* q' _) i* i
  ask turtles  {5 \$ c( O) z9 w7 Z: P) ~3 y( m# ]6 z
    [ turn-towards-grain ]  
( _0 [) z- n2 F* g  `% z1 N" P  harvest+ h3 v9 F# a# W2 F0 x& A
  ask turtles4 @, L: C  H/ U; P! Z5 z
    [ move-eat-age-die ]
- G( D; H- R# M" M: K  recolor-turtles5 Z- F1 C  S6 g& D2 o; u
  if ticks mod grain-growth-interval = 0
  J  f) U' j4 b+ @6 f8 u5 ]  V/ R    [ ask patches [ grow-grain ] ]  i! Y5 j" c. o$ D; e0 G  J2 h7 G+ Z
   
$ g( N+ c$ c% s) g! M5 ^  if ticks mod 11 = 0
7 `9 v5 s- c- Z6 I4 z, e  [ask turtles
5 H  r" ~* D, Q# ]  [ redistribution ]]
$ w, x( I7 |5 G$ j; ?( ^  if ticks mod 5 = 0
4 N1 l' t' k8 Q   [ask turtles3 Q, Z# Q7 m5 f$ n5 J
  [ visions ]]5 o' X7 N5 w2 a: z
  tick
2 t+ `+ I+ I" _: C* l3 u3 b  update-plots
) o2 a, A1 M8 R( N- b; G" v) qend& a! r1 H/ _& b. x
to visions
- K3 ^7 K" _9 ^7 ?0 u( y$ R' c set vision vision + 1 $ p. m( B3 ?  ^/ k+ j- J
end
9 ~5 N) q3 ~. Z5 h' Y
# s5 [8 Q! g/ G- P% }% N& W9 e/ ~! H
) E6 m8 f( _' t6 Y' t# H3 R' X3 d8 ^" h- R
to turn-towards-grain  ! R7 H  C7 S$ c: K" F6 k9 `# y
  set heading 0' v, o# I% W+ z
  let best-direction 0
7 G: C& K4 D8 x4 b" E4 L/ y  let best-amount grain-ahead& G& c4 k* L6 u0 m! j6 V
  set heading 90" |& ?- U+ S3 H- ?" W, H, a7 O3 ], P6 I
  if (grain-ahead > best-amount)% X- V  q, P) \
    [ set best-direction 90
4 A8 {- w" }" i3 ?      set best-amount grain-ahead ]: {% L4 A. ^0 s
  set heading 180& X3 M0 F1 ~! b6 @% a8 y9 h# s
  if (grain-ahead > best-amount)3 o/ v: p, V" K6 {# O4 G5 T$ E
    [ set best-direction 1801 F& U9 @3 ]( @' P4 B1 L
      set best-amount grain-ahead ]
5 u/ w4 O8 Q6 C0 @, h% `. H$ n  set heading 270% f; u! @$ O3 C0 c9 n3 O
  if (grain-ahead > best-amount)
5 Y. T8 t% {, C/ p7 a$ O" D; I    [ set best-direction 270# z% P& h6 r4 W/ {: e+ V" @% `
      set best-amount grain-ahead ]/ T0 Z# b# l& f* T% ^
  set heading best-direction
+ m1 j+ m6 F9 C' e$ E2 P3 ?3 D1 ^end  Q4 A: z/ _) U! R. o# S# q
1 x8 v, \( [/ ~5 J  |; O: h* e
2 T" n, d4 ~, f2 [
to-report grain-ahead  
5 u! V4 \7 D0 l! g& W' `5 O  let total 0
  f. j$ H" Z, l* o! F/ m. z  let how-far 1
7 ?# l1 `6 ~0 _1 p  repeat vision
. x/ n* {2 U% N    [ set total total + [grain-here] of patch-ahead how-far
) R& l7 |8 O" ?- ?1 e      set how-far how-far + 1 ]; {3 l3 _. \* j  K: Q2 g5 x
  report total
! N' `% J( R8 H, uend
/ k' x& O/ o0 w
, r/ v4 C5 l& ~/ Cto grow-grain : g7 S5 T0 H4 r# _9 v2 P5 T) ?
  if (grain-here < max-grain-here)
, p. n4 l9 j$ H" O    [ set grain-here grain-here + num-grain-grown
) V# u& s) v9 D5 m! r1 F      if (grain-here > max-grain-here)
2 s. C- H' x# ^- L* u        [ set grain-here max-grain-here ]% M5 M/ {- X) j" x% t. ?; G
      recolor-patch ]* ]# U1 `9 Y. `3 S
end+ t" ?4 t# `2 {8 w9 t
to harvest, ~( T& E( k1 Q7 J
  ask turtles1 \( Z2 i3 }- s& s& l5 |# f
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
3 T* ]: X) y1 Z5 g+ z9 {  ask turtles
* |; g7 C/ N" z* _4 S5 I3 m    [ set grain-here 0
' }; Z, n* I) ^0 o0 z9 ^) n3 _      recolor-patch ]" y. O! V/ y; ?/ r) [" a. J
  
, {$ B/ T1 _/ k. _8 Wend- M; S( c# J" w7 v9 i1 _
( r" s. Q; Q3 V# s: a5 O
to move-eat-age-die  $ n) T, `% G9 a. c1 j. m& ^
  fd 1! o6 R8 ]2 x7 l$ J8 f. Y6 E6 o
  set wealth (wealth - metabolism). X) l* a/ k: L# Z" i( m+ Z
    set age (age + 1)
) \+ s/ E7 K; |, e/ Z4 G( F6 O5 U6 m  if (age >= life-expectancy). ]' Z4 O/ [3 k+ e: g
    [ set-initial-turtle-vars-age ]
; @7 a8 m: l; Z0 `+ w2 M$ d$ D  if (wealth < 0)* B. n& j: z% h9 {/ X. K
    [ set-initial-turtle-vars-wealth ]* q" D2 q# U7 F# R4 ^$ |
   
2 h) _4 b: X: g4 {' A- |end
" m& D0 ]0 I% R. r# A  G
, n5 W7 _) G+ U' Q8 ~! y7 a" h5 n3 T8 X; a
to setup-plots
* e9 J. ]9 l/ C2 n- p3 U% c  set-current-plot "Class Plot"
' b( B3 ~+ B$ U  E: i( L. y; F  set-plot-y-range 0 num-people' u$ v; f2 V$ |6 a; c/ y
  set-current-plot "Class Histogram"
0 a; |; c2 n$ q" X. W& ~3 b  set-plot-y-range 0 num-people
- g8 {5 U- d; r% D, _/ a5 `0 vend
, D6 [( K, s0 G
9 f$ s' Y/ }" o( f$ f% mto update-plots
6 f) ]- a/ w& n$ G  update-class-plot) H: i. ~0 z6 L; ^5 z7 c
  update-class-histogram$ q9 i" I" M# h' A
  update-lorenz-and-gini-plots7 J* ?( I! n/ H1 Q" [9 R
end
* I. P  J& q$ D' z  ]' U. N6 Q: z% w4 J
to update-class-plot
; ~* \- h/ {8 V9 E) N6 }, U) h5 M5 k* A4 P  set-current-plot "Class Plot"- E$ Z$ V; E, Z* w7 k
  set-current-plot-pen "low"( Y2 `8 N" f1 u
  plot count turtles with [color = red]: a' j- ~8 G4 g/ J( k
  set-current-plot-pen "mid"6 |, j# [; R3 A/ O2 D  L$ ?
  plot count turtles with [color = yellow]2 z' M% p  U3 x
  set-current-plot-pen "up"; j* B) {- v) z" ]2 I
  plot count turtles with [color = green]! D6 H* o1 u6 a9 X) U5 f/ l& s7 j
end
2 k8 N! K( F. e" Z; i4 h
7 a3 H, i& S) R0 C  N( k2 e& k; O: Kto update-class-histogram3 P/ I! u+ C3 p9 t
  set-current-plot "Class Histogram"
3 c. c! s# g- D  t: y* N6 ?  plot-pen-reset) C5 l9 }9 p' m: q+ }
  set-plot-pen-color red
2 f) K- |4 H& }$ S& ?4 N2 M  plot count turtles with [color = red]
! G- ^1 O& O' e' `( D+ ~  set-plot-pen-color yellow
6 {. D1 y- R1 I: C6 B" A  plot count turtles with [color = yellow]/ V- V3 K/ w1 h
  set-plot-pen-color green3 V2 q* J  L6 p4 e% K5 ?7 G/ g
  plot count turtles with [color = green]
7 H9 o& I' b: H6 X* ~end
2 U( {. s% e9 O, @to update-lorenz-and-gini-plots
) \+ Y6 ?  b+ b9 A% b  set-current-plot "Lorenz Curve"5 X9 V" S  w8 Q) Z. x+ E5 P
  clear-plot& P' P) b0 U9 D/ S% Q; P- ^

: n3 Y+ {. ~1 U+ s' ~: z; n( k  set-current-plot-pen "equal"
8 g6 a9 @, U' X. Y( T, X3 ~  plot 0- n# i  O8 {; T" V+ X  C* C
  plot 1003 X* s8 x. t3 X8 t! b  ^
+ g1 A) k' U2 x- j, p5 m
  set-current-plot-pen "lorenz"& [1 F) q4 b' \
  set-plot-pen-interval 100 / num-people
; G3 [6 P+ {  R6 R  plot 0* h2 y- P) F7 g2 Y) z  g; A

! s* q. C& z' S' p" ^! J) \  let sorted-wealths sort [wealth] of turtles
) [' ^- U+ W4 C, X+ p' ]  f  let total-wealth sum sorted-wealths/ K0 Z- _% F: D( ?
  let wealth-sum-so-far 0- t+ ]! A7 l' Q' j" j1 _5 z! v
  let index 0
4 s3 }& O6 R: |  let gini-index-reserve 0- ~7 s6 E# N  `$ T, A1 N& {' X' p
# A* d: C9 t5 t+ ?; K
  repeat num-people [
3 M- `; }! ^& r! y% ?) V9 L    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)! z, L7 ~" b. A+ N% u$ t
    plot (wealth-sum-so-far / total-wealth) * 1009 @( r" d) s1 a7 ]9 W
    set index (index + 1)0 C. h4 U( f8 G8 P5 A4 y  U
    set gini-index-reserve, o; s$ B4 T  i9 X& {% x, [. [
      gini-index-reserve +3 j" u$ R' P  ]9 [2 `8 }: R6 ~: X
      (index / num-people) -
# E1 L, D" a, k% ]7 `      (wealth-sum-so-far / total-wealth)7 y; R1 a9 U1 B7 v3 c- u3 h
  ]
: u4 K+ n) t% q% X% C( e) T# g: x, P1 A
  set-current-plot "Gini-Index v. Time"
$ d4 {! y9 G( W: d- `  plot (gini-index-reserve / num-people) / area-of-equality-triangle. V3 t8 n0 J# M! j' j$ ?
end
7 m8 L" P" d; l! X' d' H0 c/ Oto-report area-of-equality-triangle+ e4 S2 a  p0 s8 x" d
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)2 V4 B/ M0 g- v. l% R6 X
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-2-7 17:03 , Processed in 0.015221 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表