请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
& f) K; y" X6 O6 t; @5 D z# \globals
3 `: Q$ D! f& x7 s[
3 I d! A+ b; H0 |0 K5 u1 ]2 c max-grain 1 ?+ T m# O/ U/ ~) S" N) C+ A
* A8 c/ u! l8 Z% B]6 X% `9 m Q; _" }" V, x" P
0 G8 W* Z5 l/ G7 q! _9 S
patches-own1 ?$ K/ f2 ]' }! Y! \3 E
[2 N+ u, u) N0 ^9 o
grain-here
3 }. a6 L- M+ k! E, ] max-grain-here
, q! w% L: Y. ?6 w: D l2 v7 C/ u, U]
! ?* ?/ l; E% t1 {, E0 r" |' _" y6 r7 n9 K. o
turtles-own
, s3 V1 e' K0 x5 D[ U ]0 H6 F! V+ m$ A
age
: u( f! c3 F+ ^ wealth
8 I7 t* `* ^" d9 G) V life-expectancy
# y8 x: T7 o; p; S metabolism ( p/ [7 f2 R; y
vision
. v9 W$ \6 {! } inherited
( E" M( ^7 e/ w9 U3 O3 q]! L1 p' ]) P8 @" U. c9 H+ E
0 A7 ^0 e! ]$ a* w
Q# T5 L5 f1 Y4 [to setup
5 Q% W4 p' j1 F% v ca
9 x! d9 o; [0 r set max-grain 508 w$ C/ @) w0 a
setup-patches2 c4 M' x5 y2 _( [- L% B. U
setup-turtles; _: i$ U3 ~2 ~! x) F5 J" r4 ]
setup-plots7 }! W9 ~4 D* y- n
update-plots% B. z4 I8 m. W3 p9 p+ S; S
end0 ?1 b% r" E4 u
to setup-patches
w1 I3 h- K) ? ask patches
; T: i* t2 H6 _* I+ z$ d& m [ set max-grain-here 0
4 E7 }5 t$ I5 s+ {* ]; L* i# | if (random-float 100.0) <= percent-best-land, X! X% _7 M: G3 ~; N7 U
[ set max-grain-here max-grain6 f9 e! ?. ]0 G; t( P/ v
set grain-here max-grain-here ] ]! }& a1 f" f7 O) d* D
repeat 57 G( {) t: B3 N
[ ask patches with [max-grain-here != 0]7 _. T- m4 T; E4 y2 [
[ set grain-here max-grain-here ]2 {5 Z1 I, I0 T5 S5 \ e& s% N
diffuse grain-here 0.5 ]8 \ \( c2 ~* L( @
repeat 10; S) p# ~4 j+ ?% P" i
[ diffuse grain-here 0.5]
2 d5 l- u0 E4 f. b. Y ask patches
5 t# ?1 ]/ j0 g9 ]* t7 E# V [ set grain-here floor grain-here
! @; W: N/ _ _% j4 @. M8 R9 g set max-grain-here grain-here
1 J& Q1 ?9 ~ J recolor-patch ]
, R; P" A% z2 Lend/ }5 X" b8 P9 d% g
to recolor-patch
. V8 }% X& K- k7 |# s t" a set pcolor scale-color sky grain-here 0 max-grain
4 s! d: h8 y2 i( u: P& b0 m$ eend
# V7 ?1 t0 G s- ~' _to setup-turtles6 { o( k. q4 B8 H6 L4 k$ S
set-default-shape turtles "person"
- t4 N# O" J- B" M$ f crt num-people' R2 q8 R+ o3 P- a7 F1 i
[ move-to one-of patches ( N. f! _; m: S0 ]9 V
set size 1.5
) M1 d9 }5 v9 i" B( x* U& n9 o set-initial-turtle-vars-age! y, K2 ?7 b, d. I0 w7 i4 t* T
set-initial-turtle-vars-wealth
5 w3 p( ^- M* z! H set age random life-expectancy ]# c2 U# i' W6 P# k
recolor-turtles5 W# P: _* u7 W- X5 C
end
& T- u q0 d) L' f( V, T
+ V, z1 d' i3 m( uto set-initial-turtle-vars-age+ b, |( r* \6 t9 ~. {* n
let max-wealth max [wealth] of turtles$ k @' t- K7 ~$ f
5 g# L; p B/ d$ U% x0 E5 Y ifelse (wealth <= max-wealth / 3)
g5 q2 Z0 N+ ^* |/ \5 d [ set color red " `0 @# k1 M+ K5 b( `
set age 07 A# L% {0 X# W- k0 a
face one-of neighbors4 7 g( M7 B. L; t- O
set life-expectancy life-expectancy-min +- @4 i6 ^. Q* {; f, j* g
random life-expectancy-max
; e ]) M+ F7 }- S set metabolism random 1 + metabolism-low
8 g7 u; V$ x1 r8 @* M set wealth metabolism + random 30
: F1 x5 I( e ~( W set vision 1 + random max-vision
C$ E. p2 c* l- T3 l set wealth wealth + Wealth-inherited-low ]
& S9 X: H2 ~( E- o! W4 F [ ifelse (wealth <= (max-wealth * 2 / 3)): t7 T+ E7 x5 [/ t# q* K& w5 w' }: A
[ set color yellow 1 t; K0 U, U; y) r9 X; U& a4 {
set age 01 u0 |' F/ c/ Q7 U( z, \% t
face one-of neighbors4
: U; ~. F% f5 x& \. R set life-expectancy life-expectancy-min +4 E8 R( n1 V2 r5 J3 K1 H+ W
random life-expectancy-max + 1& b" @* x, o* W
set metabolism 1 + random metabolism-mid
2 ^: D2 T( F! H1 y. l; N set wealth metabolism + random 30/ e0 e8 w+ v0 A5 ]/ s3 i( |
set vision 3 + random max-vision7 A* P! M; Q! v$ m' c
set wealth wealth + Wealth-inherited-mid]
, Y0 S* t. F% D7 x* o# a) X' O* ^7 q [ set color green
9 `* X! _8 `& i- h/ U9 l set age 0
2 @# G0 Y9 Y# P! D face one-of neighbors4
* F/ a7 {) O! a- ~' n6 W$ x I8 S0 J set life-expectancy life-expectancy-min +
5 c( t+ C8 m" G( ^ random life-expectancy-max + 2
t* o' m$ i% S* O% J0 ~ set metabolism 2 + random metabolism-up# C- z. L/ N9 I$ B Y- i# Z% v- H
set wealth metabolism + random 30
+ u: `9 A4 x: v$ n! ~8 E set vision 3 + random max-vision
# W) F- X; K a set wealth wealth + Wealth-inherited-up ] ]
" @' P. D5 U+ T% U3 K V
2 n" v* U; g+ w! X G! b0 pend
8 c1 t9 u8 y" Q. h/ ~6 p+ J' hto set-initial-turtle-vars-wealth. C# x c; h5 F/ n8 ?3 k1 |! q& a
let max-wealth max [wealth] of turtles6 K U2 x' X7 K$ j6 y, n" |# i
set age 0
_. p/ Q8 v0 E face one-of neighbors4
3 r5 ?" l* v4 E* l9 i set life-expectancy life-expectancy-min +
: k: D+ A+ x1 J3 C0 \( N random life-expectancy-max 7 L: C. A& I5 G
set metabolism 1 + random metabolism-up
' d, m! z! V* P8 _) Q0 p2 M set wealth metabolism + random 30+ ?" d) Y9 J( p8 U8 V/ f
set vision 1 + random max-vision , s% \+ q; U- A3 {: G/ V' Z" _. H! H
end! y3 ], h- I0 Z$ {0 J
to redistribution
: \7 p: _# Z9 ?) f( }1 D' Y7 hlet max-wealth max [wealth] of turtles r0 P, o& z0 p# G2 }+ O3 p' q Y
let min-wealth min [wealth] of turtles
; n. n2 u4 W2 X2 }# ^$ |* e$ l$ V e/ {if (wealth <= max-wealth / 3)/ k m1 V! r' L( [! Q2 R
[set wealth wealth + Low-income-protection ]
. I$ O) F- c- c, f( Wend8 B1 v8 d' c- }5 a/ b7 k0 E
4 B" u; o7 ?, {to recolor-turtles
0 e- ~( j, d) _# S; ` let max-wealth max [wealth] of turtles2 W$ b0 d( K0 L0 V
ask turtles6 o( G% M0 O7 D- N/ C6 ~4 l1 g7 u
[ ifelse (wealth <= max-wealth / 3)
* P8 R; K) u) F [ set color red ]6 X! k4 X, H" ^- K% N
[ ifelse (wealth <= (max-wealth * 2 / 3))( G/ ~: e) c& |# [
[ set color yellow ]
, I/ H( m& d) W4 b [ set color green ] ] ]' L' v7 [. |6 g0 R2 ^
ask turtles [ifelse show-wealth?
+ Z: L9 G" P+ L5 j& q3 ^; b, ` [ set label wealth ]
" Z/ c8 l M- p [ set label "" ]]- F2 R( [: c% ~" p/ q8 I
end
/ Y5 D G0 N* y/ w, E7 b( t; B6 N: U2 p; U7 E& L
to go$ g, j. C% [7 N& {# i
ask turtles0 P1 K3 K% ?, n% O
[ turn-towards-grain ]
/ f. O/ e: m2 x( ?) a harvest, Y% w% e" l4 c! M' Z
ask turtles# H6 `( Y' t5 b
[ move-eat-age-die ]( p2 G9 D6 N& U! H' j9 E$ _, @9 x) ^
recolor-turtles
* d r5 A$ i& y6 i3 F" @+ O if ticks mod grain-growth-interval = 0
: N @ f6 W9 Z [ ask patches [ grow-grain ] ]$ D; M# \: V1 l( w4 h
* g' C: K! g) [$ d2 i if ticks mod 11 = 0
4 ?- h9 ?! L7 }, E [ask turtles
8 ~# _: \6 T2 _. E. b: p" E1 K& r [ redistribution ]]+ j7 X& N6 i' k6 s
if ticks mod 5 = 0
M1 S1 [6 \0 `8 K+ I [ask turtles
7 ~( J# p& J9 r' [5 e2 Z8 D3 i [ visions ]]
5 j! D w, B' L( b+ Z tick
! [" J% `) ^+ }" u9 K& @( @ update-plots. O" O) p/ r1 L" G1 W1 x$ [& g2 X: G
end
* f F; @( K" z1 s$ S& N( mto visions; c; A' T$ m+ Q1 t& Y9 d
set vision vision + 1 ! w4 k9 f! a) x% h! u( m- s# _* ^
end
8 ^: V/ D3 D6 D$ J* j
% y* b+ q' A& P, |( L# ]( D9 B2 G" m' ^# r' B
) A; `1 b- y7 {9 S$ z5 @- W4 nto turn-towards-grain j3 A9 k: G( P; B
set heading 0% C ^ g# [0 P% Q3 E
let best-direction 0% q: C3 i% H- D9 ]+ k
let best-amount grain-ahead9 [5 U: f6 k6 O6 K) V2 X
set heading 901 a" I& ~3 l' O
if (grain-ahead > best-amount)
3 E! d0 E* W: G) A) s1 V' V q [ set best-direction 90
) K% R# x8 r% r& L r( d+ [* L! z set best-amount grain-ahead ]; Z j7 F0 l6 ]1 j0 ?$ x$ e
set heading 180) B; L1 \! j& M* d& [
if (grain-ahead > best-amount)2 F) L: \7 J% ~( `1 j* k& _
[ set best-direction 180
' t1 e" W8 f" W, d' u0 |3 O( o set best-amount grain-ahead ]
7 L+ N- ^& H/ k6 L: R set heading 270
& w1 g0 w& w! ^4 l# b/ G1 N if (grain-ahead > best-amount)
7 ]% j( B0 |0 ?+ @ [ set best-direction 270
" [4 W; m# n$ O( t- Z( w set best-amount grain-ahead ]
0 J6 H C# y% d; ~8 y P) t, G set heading best-direction
) t! q: p; R9 p4 k0 Send, [ N- p8 H7 C# {# K4 y
) Z: A9 }+ Y, \1 T( m3 h+ U3 b* W( K0 N% A
to-report grain-ahead " R8 z) a+ \: b
let total 0' r0 n8 \- F8 G& {: r
let how-far 1
% B6 b1 `3 u7 T3 p8 }/ M repeat vision
4 _ Z+ c* x: n [ set total total + [grain-here] of patch-ahead how-far
" _, W0 V2 Q0 h4 z$ a8 l set how-far how-far + 1 ]
1 ]5 m3 k* ?, U( C' U v4 R report total
7 [7 o, `: N# a/ G Lend
7 C1 I9 N8 a1 c$ ]) G5 J6 L0 C$ |+ n' T' K7 Y7 \ `
to grow-grain
/ c$ J' n0 {+ ^2 g4 P i' i if (grain-here < max-grain-here)' f5 O0 C4 V: @% K
[ set grain-here grain-here + num-grain-grown
3 d( s5 ~% P; [; e! u' x; @: I if (grain-here > max-grain-here) + b& z7 N6 F+ l+ G* e5 M7 t |
[ set grain-here max-grain-here ]
# u, V5 t, B' Q! @ recolor-patch ]& w W1 d& H6 [. G- c+ B
end
O( R: E6 q5 ^- x; q+ Dto harvest7 U! z& A8 m5 x, M3 |, E
ask turtles* T \6 ] i, s2 i/ D* f B2 R/ Z
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
2 O( l: X% _$ P. k8 i ask turtles
" F2 W& k. e; g* I/ } [ set grain-here 0% h" x& T( J/ c* i' m6 M, @
recolor-patch ]
% ]4 L2 _# x" s4 y$ y
( N/ E& \7 d7 N) T6 zend1 f# a/ d# ]9 @& ^: \. `* l
2 ]( A( { G2 K4 b5 Z; gto move-eat-age-die
2 J% C# B; ^, i. K2 l; v fd 1% @! z* J# }# C3 G4 \
set wealth (wealth - metabolism)3 E1 e w P" N# z1 I
set age (age + 1)
7 |. Z! \+ `$ L% K; l if (age >= life-expectancy)
, V4 `, W& U* E2 f& B [ set-initial-turtle-vars-age ]
3 u) r9 s. D2 ~5 [ if (wealth < 0)! b+ Q8 H, C& k* ~2 W' T3 v5 q
[ set-initial-turtle-vars-wealth ]
1 |, m' _% e( y! k0 z: e : Q& a, \* u0 w$ T) |+ Q
end
F# o4 M/ ^% r2 C* K% W5 I f6 j1 U- H$ c' u3 b
3 @% ~1 y" J+ e6 H8 ^4 j$ Bto setup-plots+ C% a3 @- y* F+ N: l
set-current-plot "Class Plot"
2 M' t: q/ G5 b" g9 g# F+ c3 o8 q. J set-plot-y-range 0 num-people2 Y! G! K0 ?0 Z0 i. O4 E0 A
set-current-plot "Class Histogram"# E! O. P" a! G% ]6 B/ z6 T" O" x
set-plot-y-range 0 num-people1 y: H1 U: l8 s5 D: P
end* _ z$ D1 w o- ^
6 t9 t. W# d* [3 ]* K" U: `
to update-plots
* [2 z" F# _3 ], C update-class-plot& m* v5 ], S/ s; W
update-class-histogram
' s. ~5 Z& l+ B0 X3 Y9 D9 Z: \ update-lorenz-and-gini-plots4 |: F! ?8 ]' ?8 f
end
2 b5 y; m$ _8 U, z2 H1 c3 _2 w8 H2 T9 ^: F; n! B
to update-class-plot4 x6 x9 J0 \/ K
set-current-plot "Class Plot"- _6 u5 F- t) Y* J0 e* P8 Y
set-current-plot-pen "low"
$ L2 i: U9 O9 t @9 F7 J$ i plot count turtles with [color = red]+ }2 h) J R; @
set-current-plot-pen "mid"3 \# h: e- i& `- z
plot count turtles with [color = yellow]( j' T( D4 x% z" N5 y. c' \
set-current-plot-pen "up"& X" g2 w a& s l
plot count turtles with [color = green]
2 G+ L8 z- N0 M$ h3 D6 J0 Hend
6 D v( Y2 C$ [2 u4 l- U- v- c& s9 L5 l
to update-class-histogram
2 V, `8 I: z' f+ ? set-current-plot "Class Histogram"
: X; G4 G( {; J plot-pen-reset
; W. z( |0 g$ S" V! R* l. n& Y set-plot-pen-color red) U9 V; Y6 {! ?- O& ]
plot count turtles with [color = red]1 j/ s& e* k( h5 ?; x9 l, s% D8 W
set-plot-pen-color yellow
0 u6 x3 o) m- ~( Y2 d& y5 T! { plot count turtles with [color = yellow]5 |4 h* P9 O- h, k7 r0 v# {
set-plot-pen-color green
+ U# ` r# X* l: u plot count turtles with [color = green]
, m% e( t. H" z$ g/ S8 Pend
, H: O; Z( y% u0 `. f. `to update-lorenz-and-gini-plots
4 i. F+ S$ t! r; e" x6 Z set-current-plot "Lorenz Curve": n4 I! ~) f9 n2 m: o/ h
clear-plot
' _+ S0 M4 [8 Y2 Z/ |
% i; i# o# ?4 ^* T, {" T set-current-plot-pen "equal"' {. V/ z# V- W- n4 l
plot 0
$ M& g. P1 P$ E7 E# E2 l plot 100
7 `( a7 s: Q6 a0 ^- V3 m$ G4 P- g; G
. Z* ^9 v. S, C set-current-plot-pen "lorenz"; ?+ X5 y9 M! k6 R! Y& z# K0 ~
set-plot-pen-interval 100 / num-people
' t4 f, J6 \; h plot 03 [ |; u4 w5 H
K( P, Z/ I [$ ]
let sorted-wealths sort [wealth] of turtles! E3 y$ P1 J, \3 H1 r. R# U: M3 q7 u: Z
let total-wealth sum sorted-wealths# d2 ^, x& u1 I& [2 X( r- _; a
let wealth-sum-so-far 0! q$ `" e5 E4 E6 q( H$ Z+ O
let index 0+ n" k3 p3 `8 C% I! c
let gini-index-reserve 0
; B( A5 k$ T0 t8 a* q
9 k! ^' h4 }& D& ]/ Q8 R repeat num-people [
% G) z1 G3 O% G; i set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
% u7 |, ] O( G+ \5 r plot (wealth-sum-so-far / total-wealth) * 100
6 H& }! B0 r/ o- n& R, L set index (index + 1)4 `; `$ u/ `+ ~# Y: y* T: e8 f: u+ E
set gini-index-reserve) p" n( o6 @( M; H: e3 c9 d9 ^
gini-index-reserve +5 y( [! A1 ?4 y. m
(index / num-people) -
: d1 }5 |4 j& u9 w) l( C (wealth-sum-so-far / total-wealth)) O6 p0 T% M' {& H" m( x+ ?
]
$ Q! s/ }, v! Q5 {5 K
, s1 m8 W% a" P' U5 M4 A, d set-current-plot "Gini-Index v. Time". J* y/ K8 |+ `' w# U& i
plot (gini-index-reserve / num-people) / area-of-equality-triangle7 p( u ~' {* B5 h
end
6 H8 r) P1 Z0 J: `# P* | pto-report area-of-equality-triangle
/ H5 B O0 G( i, Z K report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
9 N; a4 V1 b# V# E Rend |