请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
+ q& ?0 t7 B* n2 k/ h- f" Sglobals) n5 {5 D6 F5 y* B8 p
[
9 @7 y) N4 z" G9 |1 I! l! F3 j" e max-grain 1 y; s% z% p: t9 l2 v ^
3 x7 P0 K8 ]- N8 J6 ?# N6 \" x
]
m# h( g5 E F) R1 T
: g* T5 m+ f* K' {patches-own
% {7 b7 G) z0 m$ A0 ^[+ Z- k" {0 o/ f0 D
grain-here
4 V: S. _4 j$ }. g$ B max-grain-here
% K3 c. m$ S/ G5 e0 [] G( y" `4 ?( I3 y1 A1 W
; v$ w" v* L7 k( q5 S' _+ u) W
turtles-own% O+ q: T; Q- g8 _0 M0 j8 F( G
[
4 w" P6 Y6 g1 t1 s( i# {! c age ! c& U. b( b* i0 ]4 O* T" W$ i
wealth ( `7 ^* y. g8 i* O# l
life-expectancy
1 X. S# |3 h1 I8 e3 [ metabolism 6 Q: ^/ X$ j! J9 B3 p9 l
vision
3 x' L0 q5 ?. c inherited ; V0 v. o7 L( T/ ^7 c
]$ u0 ^& \ t- x# `# Y6 h# S
8 U! u t7 p7 U0 g; r
: F* U$ B- E2 [4 L, p# c" Yto setup* R0 {( F' O1 X
ca
/ T* a3 h( a- e# O set max-grain 50' D7 T4 C- H* ^: f. ~
setup-patches! [, V/ R4 m3 s! S
setup-turtles
$ }5 K* e4 w0 ^! Y6 R0 e setup-plots
/ O) v% a1 W! ^& e9 { update-plots1 G: s2 W( L+ P% o
end, M$ L! c. [3 a1 P7 }4 r) Z
to setup-patches
3 c' [7 r$ ^2 Y! s" p% e6 N ask patches* g+ a/ V" b$ q4 q
[ set max-grain-here 0
5 X! l# r7 G$ u* y if (random-float 100.0) <= percent-best-land$ t- O/ c$ D7 e, V
[ set max-grain-here max-grain1 c' G! x3 Z0 I" L
set grain-here max-grain-here ] ]
9 G3 c/ v: @6 B0 ?2 r8 a% Z repeat 5
8 |* G. L+ Q+ o! T5 t$ { [ ask patches with [max-grain-here != 0]
$ ~: V; T( b* Q8 \8 M& o y" K [ set grain-here max-grain-here ]/ o7 K+ t e" Z% v8 O
diffuse grain-here 0.5 ]
1 W7 i" f; L' j repeat 10/ a3 v8 B7 k4 _ J
[ diffuse grain-here 0.5] & x# d! N% X3 N$ l. c0 @3 [
ask patches1 r; P8 O/ z, v i& s9 ?; U
[ set grain-here floor grain-here 4 w, R [5 F* ?" U6 F
set max-grain-here grain-here 1 l* l0 H/ ?2 P# q" J& s9 @+ v% q- M
recolor-patch ]
. q8 J* d9 B3 Vend
- P! ~) \7 b+ \: o3 Ito recolor-patch . P6 }$ _! z ?5 f- T w! S
set pcolor scale-color sky grain-here 0 max-grain
- y* {9 {; F5 `. q$ ?end& q1 j& i' E/ ]! z, {) Z
to setup-turtles* [ c/ k8 L% g. k3 |/ f
set-default-shape turtles "person"+ s9 F- J' D3 _! Z2 p' r
crt num-people
3 `% r/ I4 N7 A9 M7 z1 C5 V" Z; e [ move-to one-of patches ; h8 i) G/ |4 R f1 c+ U+ E0 S
set size 1.5 9 z: S5 i, t; m6 K$ a
set-initial-turtle-vars-age7 l6 X i) W6 t6 ?
set-initial-turtle-vars-wealth
6 g5 G3 i2 X" u/ F0 ] set age random life-expectancy ]
0 R- a+ ~) p/ ~) i7 m& t recolor-turtles/ k' h: w3 L% b& ^1 z
end
) h& ]) \' k. `5 \6 r' l$ i7 a/ R7 H% c8 b8 _( G
to set-initial-turtle-vars-age, u p8 ^. F% e; d1 p6 J
let max-wealth max [wealth] of turtles
7 K) `& k* F; [* ~2 A/ h, `* T 6 B: x2 [9 M" G b8 ~9 c' X4 \2 s' r
ifelse (wealth <= max-wealth / 3)
- x- Y8 A) X- D0 i3 J [ set color red
, M" P5 V2 x( N: [ set age 0" B* i, v! Z: ], F
face one-of neighbors4 9 Q$ s7 y) q, j8 `8 n Y; }9 Y! I
set life-expectancy life-expectancy-min +
! ?& t( S: g- B6 x0 h random life-expectancy-max
6 |" ?2 g# J0 U+ J set metabolism random 1 + metabolism-low
- d; s4 G2 A# n( r! X" ^8 B set wealth metabolism + random 30
4 b6 Y6 H. s" D O set vision 1 + random max-vision4 H2 Y; p7 {* x) s1 e' x, M
set wealth wealth + Wealth-inherited-low ]" A- J; f2 C7 a8 V: Q' H- D
[ ifelse (wealth <= (max-wealth * 2 / 3))4 Y! q, q& Z& F! |6 p9 @% ~
[ set color yellow
& _5 R% r& d# B/ Y7 b. X& q' K set age 0
7 F- }* l5 ]* B9 z Y8 \3 J face one-of neighbors4
- H! H" z: M9 Y set life-expectancy life-expectancy-min +, b1 L. ]% P( p/ y; R" @* ?: _8 v) b& Q
random life-expectancy-max + 1
; A D9 R4 k+ r9 K, n k; P3 V set metabolism 1 + random metabolism-mid4 W7 W. a; }+ m5 V# V7 z* b& q
set wealth metabolism + random 30
) t1 y7 B. E b1 A2 O set vision 3 + random max-vision
& n. r1 S, a' K8 L5 \ set wealth wealth + Wealth-inherited-mid]
P2 w7 Q; ~( z, x% b [ set color green ' \; }. w% t: p2 n9 I- k$ C
set age 0
4 J# h3 F9 D( `! Q0 K# Z. b face one-of neighbors4 % S' a3 i2 J5 x' a0 }
set life-expectancy life-expectancy-min +, I8 S, [( y' |: U" {. V
random life-expectancy-max + 2
0 M$ z: N& l. ~ set metabolism 2 + random metabolism-up+ A* y/ V% d$ r) c. F+ G$ m
set wealth metabolism + random 305 a1 T$ m |) k& r
set vision 3 + random max-vision0 Q. Z# U- H8 {$ O
set wealth wealth + Wealth-inherited-up ] ] ! Z8 a- Y. f, S' S) u
4 ^5 G) N$ U# u
end
4 H+ {' M& f# \- Cto set-initial-turtle-vars-wealth( y5 D( {: E7 X' J9 `( o0 Q- R
let max-wealth max [wealth] of turtles
# i- X7 w, w* }* t set age 07 l6 B- a7 Y$ Z- L5 q( e
face one-of neighbors4 8 k! ~$ {+ F6 Y
set life-expectancy life-expectancy-min +3 Q, F" x) n0 w& j
random life-expectancy-max
: d/ Z4 A) c8 d set metabolism 1 + random metabolism-up
5 v+ W$ A" a; y8 j% m0 |; J7 g set wealth metabolism + random 30
- I+ K9 v& T8 w- x9 r9 h set vision 1 + random max-vision + E7 @$ g5 A+ m
end8 p6 K& ?: b1 p) N
to redistribution9 L( A' W/ ~# w8 w1 R' T
let max-wealth max [wealth] of turtles: E$ C7 K! j' I/ p5 @
let min-wealth min [wealth] of turtles
! a; Y+ R3 H; i1 |, sif (wealth <= max-wealth / 3)8 [5 T6 Y$ ]; ?9 w, `
[set wealth wealth + Low-income-protection ]
; w9 |6 [- n: }% R, tend
' O9 \9 G" d( U- q1 F+ z; F# C% w8 b / m5 o! `/ ~- e/ L* h) S
to recolor-turtles
+ N1 K) c1 t! U8 S7 h let max-wealth max [wealth] of turtles3 T! p* Y4 C: |1 v" |6 K
ask turtles+ E2 G% @ W* ?: G6 W
[ ifelse (wealth <= max-wealth / 3)/ _$ `1 k! e* x3 g
[ set color red ]
& m" E/ _: j" y" J& q [ ifelse (wealth <= (max-wealth * 2 / 3)) e# g2 n/ z# y3 c2 }7 ?
[ set color yellow ]; M" j" e8 U4 p- U7 u/ x, j
[ set color green ] ] ]9 k& o' E7 F' l) m- G( a; j1 W
ask turtles [ifelse show-wealth?
9 }1 N; |, |. V: i [ set label wealth ]# I, F) X: Y$ F9 y) G, R
[ set label "" ]]; [; ]& t" n, D9 S: z) a9 M
end
* V/ E6 G7 U1 D/ E! z
$ ]( k+ |0 g) X) K4 J/ [% [to go7 X% K* S, j- U: C* w, U4 v
ask turtles- X: F2 ?+ b& J" C
[ turn-towards-grain ]
" Z3 U% X9 _9 Y8 V$ @ harvest7 c4 U8 ?; C7 C- r) a3 r
ask turtles% Q9 i7 g: B# W1 {3 |$ G
[ move-eat-age-die ]) Q* ^6 O: w4 X0 x
recolor-turtles' ]. v; J" Y6 r( r q4 @! M
if ticks mod grain-growth-interval = 0+ T( e; ^3 u6 Y4 s; h3 S. k
[ ask patches [ grow-grain ] ]
- _% [; p9 U( {$ ?. ~ @
( W! S2 E; `2 [- Q+ h: z. E; p2 J+ g if ticks mod 11 = 0
$ T' ^/ E% Y# R" Z7 C [ask turtles+ R* u4 X& K, O6 s0 u6 `( R; Q
[ redistribution ]]
4 E2 i; D$ t5 r! m if ticks mod 5 = 0
$ ^# D. b8 A1 l* a$ A* c [ask turtles* P. ~ K' t+ |& @# }
[ visions ]]5 _- y& S4 y) o7 Q! X7 J: r6 y" J
tick
6 ?/ r( m+ O7 c9 f& l, w* Q update-plots6 T& ]7 ?0 ?/ B
end
* S) {8 A1 M. C2 Vto visions
; ]* `. `% {, R set vision vision + 1
- E, o% J( M+ [( E: r& V uend
& O8 G) A, h" Q% i5 k6 x0 O/ E& h" P3 p n
, s) L* _* g8 q! _( n) O3 S3 B
& i S6 b! o3 u8 J$ f! x, B/ ?to turn-towards-grain
) v) q1 ?0 j0 W. Y F% {/ M0 Y set heading 0
`" `$ ~" g6 T, V( j3 M+ P; d( c let best-direction 0' L# c6 D) j0 p* N! C4 q) S
let best-amount grain-ahead
( e( }: y4 }! K: e% V: [ set heading 90
( V) J$ {5 Y# ^* A% o if (grain-ahead > best-amount)
& k. m" _/ }9 u m [ set best-direction 90: y0 ^! \/ h! U4 X0 x* B$ _
set best-amount grain-ahead ]1 V/ q" Q. r4 ]4 O. H$ `
set heading 180. p. d1 v; N. e' T9 s
if (grain-ahead > best-amount)
7 |0 W% v5 p V3 h. |7 h# @! }8 R [ set best-direction 180
% K! A; s/ g# d& j a' S set best-amount grain-ahead ]. V ~& Y8 o8 }
set heading 270
0 ^4 P. A' i+ ?) L if (grain-ahead > best-amount)
4 d3 C( Y: ]" m% T2 a, E [ set best-direction 270* ]) `1 s, x& R/ k
set best-amount grain-ahead ]
- O' x: o6 E' d2 p. f set heading best-direction; p0 l+ }- ]3 p! {! @7 J
end5 w$ @+ k4 E2 A( A
8 ^+ R! U# W: g' R5 {6 q2 J
, j0 ^' _4 r K: ?- w0 N
to-report grain-ahead
; A, L' ~+ L* c, }! z0 G let total 0
) H i/ Y) E, l, T6 ]( D9 u& R let how-far 1
) p. @9 u. X ~5 ^ repeat vision
" t9 V' r* S; B+ |# b [ set total total + [grain-here] of patch-ahead how-far
5 ]& }& Q9 e1 l. J9 o) g: n8 m set how-far how-far + 1 ]
4 m- i; Y+ z- _& P& b* j report total
+ U7 | \7 I1 S" f b: k+ E2 _end& T/ f7 W i1 s9 k( q# r1 [
! Y9 P& L6 W! P6 [0 F+ f- h
to grow-grain
9 X* I0 @: P: V' M( { if (grain-here < max-grain-here). | i4 \( C$ }# m6 r6 n
[ set grain-here grain-here + num-grain-grown
" r3 ~$ M6 W3 @$ s$ Q3 L4 y if (grain-here > max-grain-here) ( o4 z2 |& G$ g" Z5 Z$ x1 ^% }
[ set grain-here max-grain-here ] d0 R3 u2 [! R# Q% A4 v( f
recolor-patch ]% ~, N5 }! c; l5 ~1 h
end, o7 M% D% }' M0 M/ |) ^" v9 Z
to harvest; N" [0 O! \: j) u1 q/ ?
ask turtles/ d# d0 x& q f5 T
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ y. v; I- ~. ` ask turtles
5 G/ o9 f+ P d6 z4 { [ set grain-here 0) M m4 F5 q; u7 {2 x
recolor-patch ]2 N' C) c" a1 \, P5 y. C7 b
& [# ^' p M! J6 z3 K; g/ j
end2 t+ ~ o9 c" `" W& F3 S/ N9 T6 K9 Y5 H' e
2 D3 s) p3 g4 A% Rto move-eat-age-die $ y- R" e8 q/ I5 P6 H+ p
fd 1
0 {3 H* f& \' `5 B$ |- {, \ set wealth (wealth - metabolism)7 W6 s; o' x- C8 W; q
set age (age + 1)& w* Z9 U5 j, i1 A
if (age >= life-expectancy). A& v; a/ s# k) W7 S3 S2 I
[ set-initial-turtle-vars-age ]6 N4 u# I' N4 k2 W9 U; J9 l
if (wealth < 0)
) j3 S+ {! [$ i [ set-initial-turtle-vars-wealth ]
+ `7 y. s( s0 `1 H1 |, v
8 |( r9 p) ?, d2 d8 j" l, P2 w& pend1 D4 S- E+ C# m5 L' U2 k
/ }& o$ e$ `8 S9 @* C" E
9 ]. p$ C5 \3 \9 f6 oto setup-plots
0 o3 Q6 z2 _$ O, W set-current-plot "Class Plot"
{6 q, |6 U6 \: h) Z/ y set-plot-y-range 0 num-people1 E: J- Y! V g- V
set-current-plot "Class Histogram"' w: i& K( L2 W# N4 y' J
set-plot-y-range 0 num-people
8 V' ?) @( F! ~5 j) C* z4 Send
: O( J4 |2 N) h: i! O9 f; C
/ }4 z, L9 u1 ?( H- q3 M7 jto update-plots' ?7 ]7 N$ ^% ]6 Y' M
update-class-plot8 _' n5 N4 J# ]9 H+ d
update-class-histogram
3 G5 t# w% {7 X# ?, U/ f/ G update-lorenz-and-gini-plots
G( q/ O1 k7 x f0 e+ ?% ~! s# nend; A& |6 q- z0 z* v9 i& c/ q& }
; ]- A; Z3 H, |2 r6 c! J/ ^
to update-class-plot
1 y4 X7 W* F# M% f7 Y9 [ set-current-plot "Class Plot"
$ c- P4 [* ~* G: l5 q set-current-plot-pen "low"
3 y, U; S' ]- L; [ P plot count turtles with [color = red]
# h+ r2 C5 x& w set-current-plot-pen "mid"; N* h1 a- G0 Q* ]7 c/ k, [ B8 V4 q
plot count turtles with [color = yellow]
* _/ w9 c2 j9 R: { set-current-plot-pen "up"
$ H2 _$ R Z& n, e' [ plot count turtles with [color = green]+ q, y& ^2 }9 k7 `$ E& k- [
end( S& o. n, o& n
L8 c! @: o3 n# L9 j% f/ cto update-class-histogram
. p3 a L* O; B: [* }+ J% e set-current-plot "Class Histogram"; B: u. k8 E. G
plot-pen-reset9 \3 X. i V! t! Y" J3 ~7 D2 s
set-plot-pen-color red+ s/ f4 D% m; T' J( c! [3 Q
plot count turtles with [color = red]$ t4 I7 D4 S- Z: _* r5 G
set-plot-pen-color yellow0 C+ J. v* [ h! v' H) y, Z8 @
plot count turtles with [color = yellow]
% x$ a3 h/ s* \; c% d set-plot-pen-color green
$ S6 n2 R8 l; c e) ^ plot count turtles with [color = green]
" ?* Z* x9 ^' [# Yend' V! {0 s5 k1 c% j3 F5 R; ?
to update-lorenz-and-gini-plots
1 n" C% c! w, C+ X! O. {& b set-current-plot "Lorenz Curve"5 I# [5 q( j6 t2 i5 O6 P
clear-plot
1 x7 Y! w# P3 C! P0 h6 y$ X
: H0 y7 m! F0 t4 N set-current-plot-pen "equal"( ^* w6 b4 Q. j3 W7 l
plot 03 b; {% O1 A/ s! O; W
plot 100
8 t8 q/ w0 X2 g' A: e" C" k- h) x7 f& F; q, k% `: V
set-current-plot-pen "lorenz"* y# F W/ u: k
set-plot-pen-interval 100 / num-people2 J* i5 S+ d* k5 `3 k
plot 0
0 C2 H A2 H! I, F) Z" W# j9 M4 o4 L
let sorted-wealths sort [wealth] of turtles8 O7 D' o2 Q# i. v0 J" c7 S
let total-wealth sum sorted-wealths
4 s/ f3 w0 D2 W; j4 m9 l( u' T let wealth-sum-so-far 0
# {% b' h" `' o. }9 e5 G3 B let index 0
a0 F% W& f7 C" n let gini-index-reserve 0& x. j" ]# S# \5 E
' J8 O: U7 R S
repeat num-people [9 d1 U' f+ Y$ q' Z
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
% N/ {, R1 ?* Y2 I plot (wealth-sum-so-far / total-wealth) * 100
$ M0 x6 g9 o. U- b z set index (index + 1)7 H$ c, A) V& ~: F- m2 @
set gini-index-reserve
8 m' V- k8 X. y$ j4 c! Q gini-index-reserve +
) s6 R ?9 ~/ }# ` (index / num-people) -
; B2 S" i( K, y1 ~. X. L (wealth-sum-so-far / total-wealth)- Y, B( `6 z& k% g" A# @/ v
]
$ _$ N; v0 ~, W7 o2 H% }, X L5 L$ v' @
set-current-plot "Gini-Index v. Time". s1 T4 Z4 G2 I' T2 S% q _# `8 e
plot (gini-index-reserve / num-people) / area-of-equality-triangle& I# K- {' H0 y4 m* o& M
end8 K& u3 f* ~ q
to-report area-of-equality-triangle
/ _+ r/ w+ k# g report (num-people * (num-people - 1) / 2) / (num-people ^ 2)1 ^' n- `; Q; W1 w8 _6 b% i8 X
end |