请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现9 E- w5 f( i" L8 q
globals2 D8 ~: i9 l0 e3 H; J
[
* e& X3 z# f# c+ ~ max-grain 2 s0 ` B: j8 o N/ ~; @! A7 ~0 r
& W, y1 N% T7 ~ ~; k' a]1 O# `7 W# u) e& ^1 ~
9 M! C+ @2 n( t
patches-own
% Q5 C, q$ u* [$ |1 v) s& y[! s0 s* e3 k$ Z% e& n, ]' E8 a! d6 D& Q
grain-here
5 `" C; d% ~. { max-grain-here
9 X. w8 S+ D/ Y# v! j]
) z$ c0 ]4 W; v. o+ x. @" V) c& r& I4 ~8 s% \4 N
turtles-own$ P# \7 \7 ]: ?- \2 }
[
0 l6 F8 F7 }2 u; j+ }8 V# g" n4 d age
" @/ W1 @/ ~. Z" r wealth
; s" X( r' I+ G8 r# i8 F. y, V life-expectancy ) R+ d$ F) G4 \
metabolism 4 Z! s$ o2 ]0 V
vision
; U/ _( ^* D9 \! F0 o" b7 i& A1 J8 ~ inherited
: q6 m2 O7 c! U7 B- {]2 i4 a" f* a+ f4 I
' z3 N# _% L$ _5 Z2 q# q. v' C% I( j k C7 P, x4 g) x
to setup
5 B* o% U; g5 T( i; z/ n ca
' n; x" u$ U- p$ o. |5 y set max-grain 50 U1 ]- U: N* I2 c
setup-patches7 V t, S+ ~+ k4 z
setup-turtles" @& C V* v' D, y7 b# M/ l
setup-plots
) N& F# l1 q0 v# [% }' r update-plots
1 h0 L5 _* o* F; m @0 @end
. r) z7 y2 j. s1 bto setup-patches
- y% |. S$ U# z0 E ask patches
; ?0 M% ~8 j6 H s [ set max-grain-here 0, a& Z2 F4 a/ Z2 o' ]0 Q
if (random-float 100.0) <= percent-best-land
$ N( Y1 K5 |% C/ y6 x [ set max-grain-here max-grain
1 g* P. ?0 q: }9 S% E! D set grain-here max-grain-here ] ]
1 p/ u1 N$ y/ j/ S+ t' D0 R repeat 5
: W& @! p/ X8 _5 ]* `+ _, q1 ?8 p [ ask patches with [max-grain-here != 0]
2 i; t( w& } L* x [ set grain-here max-grain-here ]0 L9 a+ B& ~' k, ~
diffuse grain-here 0.5 ]9 K X) U/ ]- I" X2 s0 [
repeat 10) O0 j" w5 P! p
[ diffuse grain-here 0.5] ) v5 |+ e6 ~: g, ~6 |3 y/ b
ask patches
7 ?& ^4 E; Z; K0 Y# ` [ set grain-here floor grain-here - r" k: q2 r6 f% l9 H
set max-grain-here grain-here / Q& R7 b$ s, |- u9 z: ` t
recolor-patch ]
4 t) s! c/ P- a( ^* B, y+ ]end
( J+ S, E5 s& j5 r$ b/ y, ato recolor-patch
n& G3 b+ l! t; o1 d; t% e set pcolor scale-color sky grain-here 0 max-grain
5 G( R4 ]0 e# M8 K. J9 N0 qend; N E4 H5 c; n" x9 l; R
to setup-turtles; O8 Y7 P0 L' x* ?# X
set-default-shape turtles "person"
. I* F2 F; B$ l; \. `" P crt num-people
' @$ N4 A% u0 T) ? [ move-to one-of patches
3 Z" N* F0 H$ z6 l% D) q2 U" K/ Y set size 1.5
& F7 y. F( ?4 }" t: d set-initial-turtle-vars-age4 [; U( d5 O( X' a8 P0 Z$ w/ ^
set-initial-turtle-vars-wealth
. V- S( @+ v2 [* ?6 H4 [ set age random life-expectancy ]
1 O8 V& E. n1 L: k' I9 a recolor-turtles
+ N) y% L0 H8 D( Aend- w @/ v8 Z4 u8 \& }
) @7 t8 a' V' k H# z
to set-initial-turtle-vars-age
" |, l+ k, f! P5 E let max-wealth max [wealth] of turtles3 ~- a3 |& E [' f# `, N
9 _. Q a7 x+ ?9 T ifelse (wealth <= max-wealth / 3)) ]- o, L" @9 g
[ set color red . k% P! a- n4 M% v. }+ `& W
set age 07 z4 j' O+ N9 L# t/ u5 R6 ? S
face one-of neighbors4
* l4 l; R' F: ]' A6 {# {6 e) F1 T6 d set life-expectancy life-expectancy-min +" Y' A. y Y" `( f4 o
random life-expectancy-max
+ e" o5 B. }9 I }- ] set metabolism random 1 + metabolism-low7 {9 R6 R, D6 A! G
set wealth metabolism + random 306 i ^ }! K: o4 M
set vision 1 + random max-vision
1 d( y, C5 k J8 k: o set wealth wealth + Wealth-inherited-low ]
& O# Z8 }/ d' T# Z6 k [ ifelse (wealth <= (max-wealth * 2 / 3))
% f3 W8 m% r2 g4 f' z' D [ set color yellow 4 J _% U$ Z, N
set age 0
x0 h: v0 o( b' x4 ]7 u, w face one-of neighbors4
1 j6 x" }, F8 U$ ? v$ o set life-expectancy life-expectancy-min +
% I6 a7 w6 W; | random life-expectancy-max + 1
* k* L6 c9 f7 H( H set metabolism 1 + random metabolism-mid9 F% k( N0 H1 l
set wealth metabolism + random 307 m6 X2 M" i3 n8 f. C
set vision 3 + random max-vision8 B# T) j& t& n! @
set wealth wealth + Wealth-inherited-mid]+ x( I9 X0 Q, }0 h* _: ~
[ set color green
2 y& D5 q# A: O- _" R: s set age 0' \+ [& k9 s' ]6 b r9 ^5 E
face one-of neighbors4 5 Z; ~, G4 Z. E
set life-expectancy life-expectancy-min +
2 }3 u% B9 a/ Y1 j random life-expectancy-max + 2
- q, r6 a9 e; n0 g set metabolism 2 + random metabolism-up3 ?: C2 W; {' i. m$ i. n
set wealth metabolism + random 30
; x; K$ ~' p, H" X1 {! Y% P1 N, ?) L set vision 3 + random max-vision
& v: @- c! k4 D set wealth wealth + Wealth-inherited-up ] ] # \7 V Q+ t' E5 Q5 i$ w
7 O5 L5 D( W: O& z4 X: jend
: M6 Y, D* [. S9 {# v8 v9 |: \# |& Z* nto set-initial-turtle-vars-wealth6 \# p; U9 [7 ^' V
let max-wealth max [wealth] of turtles
' _9 r3 J3 _; @! }' _ set age 0
( B3 h. k9 i- G- P# H: _ face one-of neighbors4 - N+ [$ V: r) O! |; ^5 B& J7 X6 Z
set life-expectancy life-expectancy-min +
2 \! v* M$ x6 a random life-expectancy-max
' K" [5 A5 ?$ F set metabolism 1 + random metabolism-up
8 E# W. v$ V7 @5 S( r# H! ~ set wealth metabolism + random 30
# |. Y, I3 G: c7 o) _ set vision 1 + random max-vision 7 ?: d" g! {# d8 n, N
end8 h5 Y9 S9 R5 O
to redistribution* C4 n3 f& U: M5 p$ a M( Q
let max-wealth max [wealth] of turtles
* o, T$ S* P/ n* G4 [* v! u, Hlet min-wealth min [wealth] of turtles' [, f. w' D4 f. @2 S
if (wealth <= max-wealth / 3)7 {/ x3 [+ k9 ?# H- k& e% D& ]
[set wealth wealth + Low-income-protection ]. d/ ~3 A$ E3 \9 \, ^% H) `
end) B; h/ U2 ]" B& f
, o [& K/ S3 c& j+ N: l3 k6 s. {
to recolor-turtles" X$ \; a! {. m d8 W n9 P7 o, i
let max-wealth max [wealth] of turtles
: m( q# R) x) Q; Y* C# S ask turtles# o$ k+ i1 A, A, H5 d! P
[ ifelse (wealth <= max-wealth / 3)6 B/ c. d* Z1 V1 a! G( @5 r
[ set color red ]
) Q9 G3 u; t( f [ ifelse (wealth <= (max-wealth * 2 / 3))8 R! M. Y+ j+ X
[ set color yellow ]6 R7 _% W0 x( ` W( t
[ set color green ] ] ]
: G( G3 [+ s: d( p9 i ask turtles [ifelse show-wealth?
4 h0 a1 G! O" _: m) D6 j [ set label wealth ]
! J! c5 H7 {7 ]6 @) o2 _" n+ Q, s [ set label "" ]]' i$ z( V; J$ z6 Z8 d) O/ E
end
" T2 B9 C$ D0 l3 n. H& j! w# |! x9 M4 s) j
to go& T# d* h9 i% J) s
ask turtles5 L u ~* `7 j, _: S
[ turn-towards-grain ]
2 P$ ^; A5 a0 J* l harvest, _* A; d6 w4 _* W; y: ]
ask turtles% `5 L- M1 w. _+ F
[ move-eat-age-die ]
* F# C( R1 Q# e6 s b recolor-turtles- s- O& ]7 C: ?5 j
if ticks mod grain-growth-interval = 0+ u; u% e, r8 }; e. M- `( ?2 p
[ ask patches [ grow-grain ] ]+ |1 Z& |6 M3 b \
, C6 Z+ T) q8 B; P) l R' O if ticks mod 11 = 0" r) V" Z |( b1 b7 |( o& I2 I
[ask turtles
. M# l4 R9 k2 T2 y [ redistribution ]]5 Z" |3 m5 k2 Z! S8 M
if ticks mod 5 = 0
6 O' T$ n0 I+ v8 x [ask turtles
2 L; z9 H: g. I7 t+ v: `' ?$ P [ visions ]]- p0 l' N2 b0 `! l. J. K$ g3 j' {9 o
tick
, ^, a' B! {% i) ]% H( d update-plots" `5 `. i( O$ n+ W$ ~% ], n
end k& P2 N% F/ s) }
to visions
6 \% T7 {% ~& _1 s8 Y; M- \ set vision vision + 1
, a% d4 C9 w( ]3 c1 g1 k! _7 i) Eend) u: Z' z$ P7 J# U
0 T" [1 m/ z+ O, s8 A2 d" x3 m! U3 a! O# l& B
1 E, C( _! H$ ]* ^9 w$ r3 R' Ito turn-towards-grain
, x* m. i, h# f set heading 0% m: i) Z% T7 D1 v, X
let best-direction 0* I0 Z; C7 L! `7 a8 t
let best-amount grain-ahead
" ?6 b7 j" X! z* L: \ set heading 90( v8 X! P! m* ]/ ?
if (grain-ahead > best-amount)
$ h7 k8 A) S1 Z) Z% O [ set best-direction 90
5 _0 @. ^! _2 b. k- x set best-amount grain-ahead ]
6 H& b5 G7 U3 ?# S# X set heading 1806 C1 P/ [% b0 {! L
if (grain-ahead > best-amount)
' y) e: T' i7 K7 E: `8 m [ set best-direction 1805 A0 a4 y7 \0 B& v' G9 h- L7 [6 s( c
set best-amount grain-ahead ]3 ^1 b! `8 Q# V) y0 `- Q
set heading 2702 |% ?4 W2 D$ f7 k: b `
if (grain-ahead > best-amount)
% p2 R# H. s" V6 p; { [ set best-direction 270
' L7 v, k( F+ i/ r set best-amount grain-ahead ]( D3 X% a0 t) d6 j5 ?7 D) y6 U$ m# I2 T4 Q
set heading best-direction
# u( B8 V; k; P- z: \6 R; rend6 \/ ?; N7 e8 W7 W& w$ W4 h6 x
3 c9 x! {: k$ @
$ Z4 p/ v! A' `0 D N% H p9 zto-report grain-ahead 3 y9 P' j2 p: t' ]7 H5 l8 P
let total 0. t% a( x6 l) u* k; q u! q! ^
let how-far 1" M' p% t! E) m7 K* W* J6 V
repeat vision6 N; T# c+ W {' F. d
[ set total total + [grain-here] of patch-ahead how-far
: i$ G; n( _7 N9 H set how-far how-far + 1 ]) v/ \+ ?/ y% h; W# R1 b: c7 Y
report total
4 s/ Q" q6 m/ q( X. N& hend$ J2 n( A1 o+ `0 s3 z
7 v+ j9 H$ G, o! R! P3 c' c
to grow-grain 6 q0 r* A, E. b( l
if (grain-here < max-grain-here)9 f( ^$ u% D; A* i3 n2 G- V
[ set grain-here grain-here + num-grain-grown
; f% ^$ w: B! Z3 a3 \ if (grain-here > max-grain-here) 5 a1 w! s- i) \1 j7 _
[ set grain-here max-grain-here ]
) R; |1 f$ ^% s& x recolor-patch ]* P+ f" T6 |5 @; Y/ R( y
end- _$ M! J X8 f* l) \
to harvest/ ?, E5 Y, E1 L$ x. b
ask turtles. u5 ]4 R8 q+ f% Q M6 L i
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
. u" W: o% i, A, F ask turtles
8 a$ {* v6 N* _) E [ set grain-here 05 N; o4 I7 C; D
recolor-patch ]. x8 J% _9 M7 c
; N: a9 K4 z% |0 Yend4 \# r* `) |3 g6 o6 i9 F' G
( T& m) W2 V2 G0 l0 {0 p. rto move-eat-age-die ' w, F( r- t N9 f5 \! u
fd 1, J/ H e' B0 i7 R+ {1 d
set wealth (wealth - metabolism): N, ?% v& _& j2 N8 t
set age (age + 1). s) N1 X! Q) [6 \4 Q- [! @: @
if (age >= life-expectancy)+ n/ d/ B* O9 M: W y/ }
[ set-initial-turtle-vars-age ]
v; S" l$ e; T4 p7 |' y! e7 i if (wealth < 0) N# x6 M7 y0 E. A
[ set-initial-turtle-vars-wealth ]
1 T0 x# O2 i/ S& j) ]0 \; X: G
: E, m4 C/ }; ^3 B6 Rend
6 t0 [% e: c9 [" |' `
5 ?8 Y7 L: X; ?" x( N. Z- x0 n# N/ d. C% C& I. [" I
to setup-plots
: n; P& F. O$ C2 h8 o* G- f# ] set-current-plot "Class Plot"
' H& P/ I8 J0 g set-plot-y-range 0 num-people
. W! t* i; f4 v7 z9 k* W8 F set-current-plot "Class Histogram"' z, S. a q7 C" m/ l m5 x! s
set-plot-y-range 0 num-people1 @8 P7 W! n% D" x9 v* n
end
* x& L4 L+ x* o% H; \+ {, P7 e+ y# n; d
to update-plots h5 s1 K }6 v; H) e2 E, h
update-class-plot
/ D) t( v- @% { update-class-histogram
3 ?' k9 M$ F" k' Q3 a2 |9 n update-lorenz-and-gini-plots8 ~- K/ d* T1 {7 i* J; H$ Y2 @
end
* i! H" X9 [8 F8 b4 Y2 J0 D' c/ r1 d1 L0 d0 k, @
to update-class-plot5 o; ^ q/ l5 L( F
set-current-plot "Class Plot"
5 i( s" S( c6 E: V set-current-plot-pen "low"
* p& A$ ~# n, D# j, |% p& d4 J! n. A plot count turtles with [color = red], N0 {! E$ w8 a" O1 u! ?
set-current-plot-pen "mid"
) [% a3 a: }9 m: P( g' h plot count turtles with [color = yellow]
( O/ g) H% H; K8 j+ u4 l. d set-current-plot-pen "up"
2 [+ ]. J/ @9 Q% V$ \ ? plot count turtles with [color = green]
; W$ J( j9 D. x2 aend
( R1 B# m: y) m2 }* F) E" `0 K6 @* `# z
to update-class-histogram! X T# {5 S2 w, a2 M* S6 Q
set-current-plot "Class Histogram"
2 F6 Q0 ^% m& ^ s! I7 \( L1 Z plot-pen-reset6 j# \" {4 y- M# C$ l
set-plot-pen-color red' I" m- f/ i% t d- }
plot count turtles with [color = red]; |0 x, H* `$ E6 i5 H& }! }
set-plot-pen-color yellow5 s: V7 O* t5 e" d& T. N" Q5 O
plot count turtles with [color = yellow]
% J# \7 x# B& _9 P8 c8 ] set-plot-pen-color green
1 b) C0 V* u7 h8 o/ Z6 Q) K2 t plot count turtles with [color = green]
6 k7 Y7 U2 q R) {* o" ^+ ]end4 i1 d+ b' s z% @* [8 V& a& ~7 a
to update-lorenz-and-gini-plots4 r; U% |4 X4 N
set-current-plot "Lorenz Curve"9 r. V( u% v |5 f$ w
clear-plot/ j* Y( Z6 p$ }9 ]# [" {
! s, h" n: \ b! c
set-current-plot-pen "equal"3 M6 _. ~7 X0 x! L: A( f
plot 0
- b1 F' B% I1 F; e& {% N plot 100
/ g0 ]1 D8 p; h& w0 | U6 G* K z5 B' L. L9 z- [ |
set-current-plot-pen "lorenz"3 T e( m u7 M5 x; Z; {
set-plot-pen-interval 100 / num-people* |! Q" w/ ]2 f' U ~
plot 0/ c, N& k, ]2 {: @/ _, k! W' }
4 f V. f7 o0 H8 s
let sorted-wealths sort [wealth] of turtles2 M! @4 C6 F4 U8 ~0 b
let total-wealth sum sorted-wealths& k' k9 z5 Z, O
let wealth-sum-so-far 0$ V6 {2 B: O! x
let index 0
$ M* x& U& D) o$ Z4 ^. D0 y% f let gini-index-reserve 0
( o2 e1 P1 b% ~: R& Y0 a/ a G2 f9 d/ J0 s1 y/ L, L% K
repeat num-people [& @4 s4 j; @) q. R' O |" B
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
3 c, R( g7 ~, X1 T& O( |: z0 c plot (wealth-sum-so-far / total-wealth) * 100
( P n \# a+ p3 {. n set index (index + 1)$ e% a% Z+ a4 w, \- X
set gini-index-reserve! Q' r& u' k0 ^; G* z
gini-index-reserve +, H2 u( S- E8 M& \0 Y, U- d! ^7 G
(index / num-people) -
% |# `) x* ~, @. F' `0 A4 n- S (wealth-sum-so-far / total-wealth): B7 h( j% n0 K% ?
]
# K( p# V# N6 {) {+ O% C, s) P4 s" p2 B& H" K: {6 X9 m
set-current-plot "Gini-Index v. Time"2 W3 a& I; D2 u3 `4 s* L6 K" } k' |/ j3 G" Y
plot (gini-index-reserve / num-people) / area-of-equality-triangle4 d# x! u; L7 E4 x6 t$ }
end
- ^4 p* Q7 U+ T3 d) E" v4 Pto-report area-of-equality-triangle9 M) Q& U4 e6 D7 F2 D
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 x* l6 r& _2 d7 u* t- O
end |