请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现8 P( z' v0 d" E& E I! u
globals
8 G: S5 q( @! o- _5 t0 ~" h[
$ z, u! r" Y- w( d f max-grain $ D* |3 O" \7 {: G( \
! P3 Z/ {8 T8 O9 A. B
]
, @+ o$ A' a% f- N+ s% V
3 y- N# X. O4 Q# c, k5 [( o2 Vpatches-own
0 Y7 w4 m0 Y) X' C2 l& ^; ?[: ~1 e4 ~8 B0 v' `2 ^
grain-here
5 o* `* B7 I: d& @0 J max-grain-here
# X5 q9 g! R1 []/ D" e' j C, f5 v9 o
" W7 N& j' z7 h
turtles-own0 G' v6 I3 v( ~+ L8 `8 J0 X- v: ]' w4 y
[
+ G/ A8 b' D) P; F) J- i! B age ; s W5 u( Q& r; H
wealth
, Z" L' F! S/ V7 A; W# a5 H life-expectancy 3 X7 z8 x1 r) V
metabolism 1 B4 F! Y6 X' L
vision/ @, \0 s9 C( b. }: }, S
inherited
! f2 D6 z7 N. P/ Q( n8 N]4 V) M0 @' H" A2 K# [- Y* p$ h
: A6 ?6 p) v, \8 J7 L9 @8 W% W# p" s, h: E/ R1 ^. s
to setup
! R! t# a! O. B! P ca* d- W5 T7 |. a$ I3 e5 W& P* z/ h0 H% ]
set max-grain 50
% r. n E6 d7 {+ k setup-patches* s# ?# g' M Q- `8 ^: @
setup-turtles* t! P2 z* r5 p9 ~
setup-plots, D( _( d, v8 `! [! k' [
update-plots# M( J1 W d2 P1 z/ b
end* i! Z* ?) s5 E) O3 w( A/ A2 D: _8 {
to setup-patches
% X7 h- N" V" d$ e8 V$ p ask patches' [2 |! v2 f% z$ P" c# }+ l
[ set max-grain-here 0
& a+ ^8 B' D) x- e& U6 }! O if (random-float 100.0) <= percent-best-land
* l/ @2 H/ u0 h2 Y2 s [ set max-grain-here max-grain
; c/ h3 ]$ X& @$ z9 b$ J; U* Y) I set grain-here max-grain-here ] ], B+ H3 ?6 N6 G! t4 v/ [2 l
repeat 5
8 O/ |& D* l) Q w+ q [ ask patches with [max-grain-here != 0]/ s0 P& K1 [+ d; X$ b
[ set grain-here max-grain-here ]$ u# J+ h1 k }2 _! [# T
diffuse grain-here 0.5 ]% Q& S/ Y7 O8 K6 o6 }
repeat 106 {% s9 r, G$ H9 @( w* u
[ diffuse grain-here 0.5]
" h0 r$ b5 j* f5 E ask patches+ I' |9 C5 q9 S2 m3 X a0 s5 W" e
[ set grain-here floor grain-here
* g& ~1 H* v, \3 V$ [ set max-grain-here grain-here ) E2 U' L: I! ^7 o: D# m
recolor-patch ]
( |( }" ]3 x: E9 Y6 @2 oend! z, i/ j5 w: Q
to recolor-patch 4 l7 t: A4 _% B# Y6 M r
set pcolor scale-color sky grain-here 0 max-grain
) A8 X7 \# s) w. z* {end
$ V) J( B! V. B! cto setup-turtles
0 V6 Y; U+ {% L# f' E$ Q2 a. r set-default-shape turtles "person"
( L" C' J" R; D0 D crt num-people
* E0 i* r6 ~& ~. ^9 k3 [: h [ move-to one-of patches 3 ~! x: r! y+ J; Q3 n
set size 1.5
: \- R: t# Q( d+ v3 s% ~ set-initial-turtle-vars-age
0 Z0 ]$ E8 ]( I2 j9 N. }5 i set-initial-turtle-vars-wealth
8 J4 Q9 U, r" f# x6 D set age random life-expectancy ]6 F7 U& L) x5 J( z
recolor-turtles
% ^! I, q6 O$ M* D0 R8 z% K" Mend
* u5 q: a% ` y0 k! Y6 R/ L& _/ n d* D3 v
to set-initial-turtle-vars-age/ |" n6 E. P: y4 V" X/ U5 V
let max-wealth max [wealth] of turtles
. b9 y) F7 M+ q6 Y1 H8 z
9 f8 f# z% I4 ~8 N ifelse (wealth <= max-wealth / 3)/ ?* A/ {: R: t
[ set color red
8 h+ a. Q2 a; F, u. K6 K9 S& T) g set age 0
0 c% F- n( u" X8 l$ i& m3 N. R5 { face one-of neighbors4
( B/ K/ d: t# h' _6 S: A% x* x$ I set life-expectancy life-expectancy-min +
% C! K+ {' m. n; o( w random life-expectancy-max
5 [( J9 X* d' ]' s+ p4 d set metabolism random 1 + metabolism-low
7 b9 b6 Y4 R5 N+ @7 d" b: o set wealth metabolism + random 30
1 r: R9 z, \+ N set vision 1 + random max-vision
9 N* M9 m, l7 Q: P; K/ W; d& y set wealth wealth + Wealth-inherited-low ]
' E, w# n! N. Y: J [ ifelse (wealth <= (max-wealth * 2 / 3))
! ^6 S8 n) I" |# B; { [ set color yellow
4 q4 B2 s/ b5 }: C: Y set age 00 k2 X1 {" q; ?- {5 m, c. o1 O' L, r+ z
face one-of neighbors4
1 @$ u! u& X8 s set life-expectancy life-expectancy-min +
( c: u% s+ E* i8 x; ~# ` random life-expectancy-max + 1' E5 ^. J4 L% V0 Q# X
set metabolism 1 + random metabolism-mid ?& T9 x. ?/ V4 g+ B+ {
set wealth metabolism + random 30- c2 I8 U, V' A
set vision 3 + random max-vision9 |2 Z* J4 C# j: H
set wealth wealth + Wealth-inherited-mid]$ V6 s1 k/ m8 o
[ set color green
0 D4 _( c8 [6 n( S6 D$ s, N5 g0 _3 m set age 0
2 d% D& J- |8 r1 j face one-of neighbors4 - d9 x" d$ f1 s7 B- a2 n# S
set life-expectancy life-expectancy-min +
- \: E1 C3 N" A! Z! X random life-expectancy-max + 2
M2 b+ v; \: g4 G! a set metabolism 2 + random metabolism-up# C2 s1 X t6 d9 L) N m$ P
set wealth metabolism + random 30
* R" \" s6 ?* ^3 f6 ?0 o, n set vision 3 + random max-vision7 B" C. u u5 Y% q5 u
set wealth wealth + Wealth-inherited-up ] ] ! t8 h+ @" L) ]
( X5 \( q' x8 H. @; S$ v" X
end9 t7 m' }" V3 a' n# n
to set-initial-turtle-vars-wealth+ {. U. ?8 `& ]% A- D R8 U% W
let max-wealth max [wealth] of turtles1 g: A: g& v( b1 B
set age 0
6 `6 k4 V ^0 T0 m face one-of neighbors4
) ^5 {, \7 p( ?3 C- _/ @ set life-expectancy life-expectancy-min +% Z+ s* z3 z6 H2 S0 N; R
random life-expectancy-max
' [, {( v$ K& b; E5 n set metabolism 1 + random metabolism-up; I' C) D$ U% F& M1 _
set wealth metabolism + random 301 G5 a* j. k6 I6 [9 h0 H& B
set vision 1 + random max-vision
9 {' a9 a m/ O) W( }# oend3 p$ U+ o1 B8 n9 Q% D
to redistribution
) z' z6 [' D; y; x3 ylet max-wealth max [wealth] of turtles
0 n W0 h. r3 H/ z% K1 Dlet min-wealth min [wealth] of turtles
9 [7 g% v- c9 q' c7 a4 }if (wealth <= max-wealth / 3)
1 |4 c, k% F8 C" M- W( I/ O [set wealth wealth + Low-income-protection ]
, \& t0 Q8 x8 u) B- B( G% \end
. f' y5 J) |- S: }0 k9 k4 D + b+ N3 s" `0 u2 ?' x9 g d
to recolor-turtles: k4 b, b- A7 j; b7 Z% \
let max-wealth max [wealth] of turtles; h) T3 b: ]% D' B$ A; |
ask turtles
4 u: k3 y; w- k! |% N [ ifelse (wealth <= max-wealth / 3)4 z; ?; y$ X/ l3 f
[ set color red ]
7 k, i m G) c8 n1 | m$ Y [ ifelse (wealth <= (max-wealth * 2 / 3))7 z- @' V6 R9 v& B
[ set color yellow ]
* N9 c# g; [) s9 z/ J0 T- W" r [ set color green ] ] ]( x) m8 q8 I" d2 U
ask turtles [ifelse show-wealth?+ L' R7 e* @2 L9 j3 v7 `1 D4 _+ e
[ set label wealth ]
0 \$ r# v: j Z8 i ? [ set label "" ]]
3 d3 I1 {. }% Xend8 X$ x8 F; M* }/ z3 X0 C
2 @ j4 A u0 A
to go
0 U& o7 f% F7 b ask turtles( Y; Q& g/ Y5 A6 F* e2 z
[ turn-towards-grain ] # t$ z, g3 k; v
harvest
6 B3 a/ b/ A# W3 t$ c+ D ask turtles, ?$ ]* A: ]8 P: j
[ move-eat-age-die ]
4 E0 Q" o& @7 G recolor-turtles) `0 z* d9 V! c$ j2 ~0 p
if ticks mod grain-growth-interval = 0: v* a) u/ Y- `; t
[ ask patches [ grow-grain ] ]9 ]! l- K4 X" s; D. y$ `5 m
! ~! H9 y- o. E8 P) J7 u+ y- T
if ticks mod 11 = 0
, J0 N; S. e/ {4 I1 }+ c [ask turtles$ [6 J4 w0 I+ p/ ]- M6 }
[ redistribution ]]( G6 I" ?! [- N! ^) K- k* S
if ticks mod 5 = 0) V+ [1 u& O$ M( O
[ask turtles3 n( K6 @8 T) ]* R8 W& P
[ visions ]]3 E- h0 j' R0 S8 d j% T9 n
tick2 a; s5 j7 H8 f" t7 V9 |7 I4 ~
update-plots! ^( G' }! {/ n6 F
end
! p0 Z+ @$ {8 m: y5 m! ]- ?- Q- Vto visions
; Y/ t" H; g8 H% h1 e! A set vision vision + 1
: Q4 k/ @ e Eend
7 W7 K0 V) U. F$ x" J" @) A& A
0 z7 u; `" q& a3 x! @
5 d1 H, ^1 }4 i4 U* N
2 ~# t: L1 j2 Z Cto turn-towards-grain
* N7 e+ o" ]8 N- f$ r set heading 01 j% {; z! n3 W) H5 A" f
let best-direction 0
8 s/ n: ^5 u1 P& {7 x" s let best-amount grain-ahead9 d/ u) Y5 C7 s8 h
set heading 90
! B# y- [* _+ s6 Z if (grain-ahead > best-amount)% E% G2 g" o' |8 N; }& g
[ set best-direction 90
; k, t1 I7 ]) c. P6 a set best-amount grain-ahead ]. |8 E9 G& o6 _ j; x0 I
set heading 180! h1 Y) d' `! a! v# ?5 \2 {
if (grain-ahead > best-amount)
2 {8 n: F2 V! ^& G [ set best-direction 180; f3 ?3 Y8 l6 U# z( a* x( h5 l$ h
set best-amount grain-ahead ]
0 Z5 B4 e' }, n; R9 e8 Y* I set heading 270' a7 X# d9 O3 d' d# ?, |
if (grain-ahead > best-amount)" |( l, t2 w X4 f4 |; O
[ set best-direction 270
/ f+ I3 V0 F( h. [) Z" K' V set best-amount grain-ahead ]
2 n# U0 @8 W8 \0 ?6 [! Z! Q set heading best-direction
) [' Q$ k. D% V/ Bend
6 Q9 X8 |. w' W3 S! w7 k+ Y
8 U8 ~' _! h' w9 I! Y* |, |: c! a' a$ I3 j
to-report grain-ahead : v3 m7 k: G1 \
let total 0
& O Z1 P( K3 S. g let how-far 1
+ _: c! Q9 V5 H& T/ k* i5 _2 ` repeat vision5 B4 B" p9 B7 B5 C+ R& f: G0 \
[ set total total + [grain-here] of patch-ahead how-far/ Z8 d, S4 ^% h. ^- p
set how-far how-far + 1 ]" _7 F5 m6 b) @, d( x
report total) Z9 ~3 O! x+ B) Y
end
( {7 q8 M/ b7 p
3 e, B/ f0 @+ j+ B3 ~" Tto grow-grain
) S& T, T0 }- e- q2 ` if (grain-here < max-grain-here)
, Y0 |/ s3 q) Z: ^6 ] [ set grain-here grain-here + num-grain-grown
! K/ F$ f/ h! M1 q7 b" W if (grain-here > max-grain-here)
' v: |3 g; b3 a" K" D w% i2 j% a [ set grain-here max-grain-here ]3 |$ G$ z1 }4 T& U- U! q
recolor-patch ]0 k# _( r) n7 g
end% \( e0 J( A: R1 K' l- v! I# z
to harvest1 V" @! i' g3 L+ y3 b
ask turtles* g/ z# t q( {9 T1 N4 J& t! j
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]' s+ ~. U* @8 I8 f4 _
ask turtles8 F7 g1 \- u, _! f j! C
[ set grain-here 07 n& P; q% J9 M9 r
recolor-patch ]% A% u- l1 E* P. E1 q l
2 }) v5 ?1 K6 D5 n- L9 S1 Dend! @5 j+ s0 r, X! V8 U
" F% M2 ~& y$ P- b3 A
to move-eat-age-die 2 S) Q! Q8 Z6 Z% k
fd 1$ U) K1 P+ X! w
set wealth (wealth - metabolism)
: D7 [9 h3 v; a1 S/ V& l# D set age (age + 1)+ L- e$ X( S' T3 ~& ] u
if (age >= life-expectancy)
, S- K4 @" W& B: T# B* L# b' h. P [ set-initial-turtle-vars-age ]
2 p6 z% t" }* c7 F$ \- S if (wealth < 0)1 W; H, m+ W) ^! B2 S' ^+ T3 ^
[ set-initial-turtle-vars-wealth ]5 k0 e. B# t& Q: N9 v8 q
$ Q; z' K$ q9 q8 s+ rend" t# p2 u/ A, H4 K# M9 ?
( J0 c4 W$ `! W. i8 V% z% `" W# U
to setup-plots
; U1 r* D. {' }$ ]' Q set-current-plot "Class Plot" L3 y7 j; C- R9 G9 C
set-plot-y-range 0 num-people
& B+ b( g5 @1 D1 A; `' {- v( e set-current-plot "Class Histogram"
$ y8 {6 u& ~7 L) @, _* v set-plot-y-range 0 num-people5 z8 U7 E( k; b, ?
end
4 K W, B* x4 T- _% X5 c; y, T4 O. }# O
to update-plots0 W t7 Q l2 @( c. c
update-class-plot8 _6 @6 r- i* h0 j- C( }: ?
update-class-histogram' K' e* a$ G0 w
update-lorenz-and-gini-plots% s1 `0 V% X6 O7 a2 r- o
end
' Y$ b) z& j8 K: }5 Z" J" B7 a2 Y. `
0 k; H4 W" V" b8 \; P6 C( Tto update-class-plot y" o4 X8 s# K4 U
set-current-plot "Class Plot"5 K c& o4 Q! h" d' d. n" V
set-current-plot-pen "low"
2 h e( g6 L# h4 T% ] plot count turtles with [color = red]
9 K- Z1 `3 r1 l5 K: j1 E* f set-current-plot-pen "mid"
E5 N1 D, W) C: Y$ j' G plot count turtles with [color = yellow]
, d4 y. c3 w$ N6 z: }* O- A set-current-plot-pen "up"
9 W- `0 ]: f4 m, c0 b plot count turtles with [color = green]8 h, R2 C5 c5 T0 n5 i! w# x1 B
end1 Y* j6 W, r' ~6 F: f( t
% T+ Z- ^ u" f6 v8 Z' Wto update-class-histogram6 t' q7 c' v2 i5 H. C6 H" t j1 U
set-current-plot "Class Histogram"
. S- i2 }6 T3 j- E4 _ plot-pen-reset
, G/ S$ ]5 I H0 B set-plot-pen-color red; `0 h6 [% p% F
plot count turtles with [color = red]9 R" j1 \! n, \6 {& s' Y
set-plot-pen-color yellow* ~1 u7 }/ s! o) R
plot count turtles with [color = yellow] A+ m% ~- _% r) y" _
set-plot-pen-color green
& O( X0 N6 y& Z4 V# ~4 p plot count turtles with [color = green]8 R/ G0 @0 v) E+ o" e
end
7 k8 q0 k5 L0 N/ ^* g. {( N# ?to update-lorenz-and-gini-plots
3 ~7 ~; C- s/ m9 k. v5 m) Z6 W1 E set-current-plot "Lorenz Curve"
- s8 q+ z0 b6 k! { clear-plot4 D% ]0 w7 `# H/ k8 {( {
' t8 r/ k7 _- _3 \6 y4 n: h set-current-plot-pen "equal"' y+ i; ~1 K3 O% W g
plot 05 ?& ~6 N1 [& ?1 [% N& e
plot 100" h8 b, ~- X: i" q7 j C" g
n! e0 A% h, Y! s1 G; j! k set-current-plot-pen "lorenz"$ k8 `$ }" [2 M2 }7 v+ y
set-plot-pen-interval 100 / num-people Y3 U3 p$ F% t1 ~4 |
plot 0
6 a& m" w' x6 `; ?1 p+ z; G" d2 H) I3 O' b
let sorted-wealths sort [wealth] of turtles
6 A* g g. @# N! s+ h( z; e2 s; } let total-wealth sum sorted-wealths
9 b1 Z# @& \! _. f' h* ` Y let wealth-sum-so-far 0
/ A/ m8 W K# i7 V) h let index 0
/ p _8 O9 _% J- t5 o/ z let gini-index-reserve 0
& m) W8 n- z# T( t- C3 P' c' a8 [" f" r4 W" ]: f
repeat num-people [# y( l! ~5 Q0 h- Q
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)+ Z2 Z8 H" w% k: a2 o- O
plot (wealth-sum-so-far / total-wealth) * 100% p3 p5 R1 k w6 e% ~
set index (index + 1)# G( _# q# Q6 W" |
set gini-index-reserve. a! r# z) c& m& T) W
gini-index-reserve +2 ^7 m7 G. l: Q2 }. v# B
(index / num-people) -7 f. T( H# C) t0 |. g) F
(wealth-sum-so-far / total-wealth)
: r: K9 W% h) } ]
V! {, H4 ~/ A3 i
6 @& G! ?5 n# Z1 b set-current-plot "Gini-Index v. Time"4 _2 S( c6 |/ l* q: e. _6 O3 A& c
plot (gini-index-reserve / num-people) / area-of-equality-triangle6 \- w: }% M( D3 y) |
end. z" ?. T4 x! p4 T( |, ]
to-report area-of-equality-triangle" v7 F; H. Q- Y+ X8 w
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
- K, }; v* \! [& i- T9 k- R/ k9 bend |