请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现9 a) r+ V( P- ?
globals# ^6 ], ]7 I3 C. d
[6 M; N0 `( Z0 I% z6 x/ g& M3 N1 o
max-grain 1 @; N" w5 m! {: j
. P7 e7 u; Q& f# y" l]
# s: A6 o2 I& v9 V, ` e
8 P, _6 k* L2 ~7 Q& epatches-own0 ~4 p0 b2 J8 V
[
# [* j2 n* G3 E1 W- ^. @! w+ T grain-here
' e* T6 j$ \; {3 _. y3 c$ x max-grain-here
- \$ N: [9 d0 Y* Z: ~]
+ d/ R( L3 ~5 O) Y$ M q; g/ i
' q9 z% N! a% a7 k$ q! Oturtles-own
& A3 P. n0 u3 o" ] M. Q+ u$ M[, l9 ^, e' J; j8 H
age
% o9 x3 h* w+ R wealth
. n7 Y" E& n1 q( V! \# h) T life-expectancy + v* j+ E1 m8 x/ l
metabolism 6 x$ G; p! P2 ~6 C$ l" O& h
vision8 a" c& ?- x" }. g* Z# Y7 M# P
inherited 1 Q* R5 _# ~4 t! Z7 Z) d F
], \ L1 v) y7 i# D% p$ Y
0 d2 S4 A8 t, \ q" A3 x4 G! e& s
( s, E* s; J' ~- q4 rto setup
W9 k Z; U- u) C9 M9 A ca
' E+ b& O$ I! B" S0 h1 C# | set max-grain 50
H8 N7 h% W2 \- I0 t! F) G1 m H setup-patches
7 l- E# x% |/ L setup-turtles
0 ^4 E/ x0 ^: M setup-plots
2 I% k% G; A( {% t update-plots
4 N5 M2 ?( ~- q2 Gend
! s4 E' i8 Q' M$ s9 m) n- i. A+ {to setup-patches# M6 e( L: V! H6 S
ask patches! ?/ f3 J M3 n" j4 t1 M
[ set max-grain-here 0
' a2 U1 K0 L. S0 B F2 W if (random-float 100.0) <= percent-best-land
5 `0 N* b8 V- L [ set max-grain-here max-grain/ y! F4 y+ _; J8 ^& d% V
set grain-here max-grain-here ] ]: W3 Y9 u; o$ d- m
repeat 5. V' s- |: m8 [4 \8 k& ?
[ ask patches with [max-grain-here != 0]1 O2 O @5 p8 O# t; {* x
[ set grain-here max-grain-here ]
+ b/ R0 z( G5 Z4 [, A( D diffuse grain-here 0.5 ]5 E H0 F$ E c/ F) w2 _* \
repeat 10# ~+ a% A( k5 X9 V3 J6 J
[ diffuse grain-here 0.5] & Q& h, g8 G1 J' s
ask patches% J K. V+ s, g3 a
[ set grain-here floor grain-here
9 B; F9 ]8 b, _; e" d# t2 i6 N" i* H set max-grain-here grain-here 8 S. L+ U6 N# m. }4 @
recolor-patch ], x$ F7 ?+ ?, F& E6 X
end5 p: h; W: k7 W8 o, A
to recolor-patch
& @2 X) X/ \4 N& Y set pcolor scale-color sky grain-here 0 max-grain
; J& {7 W$ `3 M8 Send
. C0 h1 l: V3 T) H4 ~- K* Jto setup-turtles
; n" k# s) G. q" v( g0 `5 t set-default-shape turtles "person"
' q& x, \: N- _# M, T" [1 X crt num-people
5 a( `' A0 u9 w4 o! @" O# x [ move-to one-of patches ( D ^- k+ i9 ~) m% w- {
set size 1.5 ' _% Y" x8 Y, O% B- w
set-initial-turtle-vars-age: X% A5 B3 |* [% Y
set-initial-turtle-vars-wealth
2 { z9 N7 q2 x5 E x set age random life-expectancy ]
6 q7 d2 r0 N# g4 r/ v9 ~' n# q3 J recolor-turtles; m9 E! E# X0 n& }( e
end
/ K+ ~5 ?! ^" F4 i4 D# ]
- N! M) [& Q1 \" o/ gto set-initial-turtle-vars-age
$ O! p9 |4 h- I7 N let max-wealth max [wealth] of turtles. A; a7 G9 z" Z2 B: y9 k9 ?
& C( L7 X$ n- ^ ifelse (wealth <= max-wealth / 3)
/ G) r3 u: P7 o! t" T% Q [ set color red ' W' P i# E+ y, Q# j) Q/ `
set age 0' V* O7 F6 ?, r/ v& o( h
face one-of neighbors4 - m+ }4 ^/ ~# e6 r
set life-expectancy life-expectancy-min +
) ~9 W3 \# s% |3 W2 Z random life-expectancy-max
2 w* @; d5 z9 h+ m set metabolism random 1 + metabolism-low. d/ L1 r8 F1 Q% c8 i8 r& J
set wealth metabolism + random 30$ B! e, t O* L) {$ A+ E! d3 g" q) Z
set vision 1 + random max-vision: p* r, ]6 T8 F2 k
set wealth wealth + Wealth-inherited-low ]) n1 B% @0 ?6 Y5 d1 j6 ?: l
[ ifelse (wealth <= (max-wealth * 2 / 3))3 I5 K: {( p% T3 l; x
[ set color yellow
; O: n+ P( N: ] set age 0
+ V8 S+ {" X8 H+ a3 |; \9 ~ face one-of neighbors4 2 J- [5 R- A8 r. Q
set life-expectancy life-expectancy-min +
" z; V; f8 u7 y6 S4 ?2 C2 e random life-expectancy-max + 1! Q' S- E5 D7 |
set metabolism 1 + random metabolism-mid0 V% v$ q5 b+ r1 @0 Z" } }
set wealth metabolism + random 30* \0 o8 b( N! M7 O, z8 U9 I, B
set vision 3 + random max-vision8 a# c" [. e4 T- [% X2 c
set wealth wealth + Wealth-inherited-mid]0 h( D- e% ~( T, c3 j6 F+ v4 V
[ set color green
; Z0 X O- M% b" p+ E8 F& s% M set age 03 |8 t: `$ ~$ I$ k& _; H! M' J
face one-of neighbors4
* ^# a3 f3 G2 E1 s& Y set life-expectancy life-expectancy-min +
1 F5 Q3 Q* |( V random life-expectancy-max + 2* L; D. h! w& c
set metabolism 2 + random metabolism-up A5 R. r3 f1 T/ y: m$ W0 n( E- V. o9 S
set wealth metabolism + random 30# }' H" U9 t4 o. c
set vision 3 + random max-vision
8 P2 F, u- J `4 X2 A set wealth wealth + Wealth-inherited-up ] ]
: @) F9 x/ y: a, C& m
( H' P V' E" x1 `6 a* [end
2 z. V2 m2 C) Z3 O% u: Kto set-initial-turtle-vars-wealth O: ~0 G. u1 n$ Y( L
let max-wealth max [wealth] of turtles' B1 I9 c+ @1 P3 `7 V) w
set age 09 ~" b) Q( n* T$ q
face one-of neighbors4 0 u6 ~$ w" T# g8 B( I
set life-expectancy life-expectancy-min +3 Q' S) H! F Y9 N4 s3 |3 W2 e
random life-expectancy-max
! u# X( F* g$ k+ h0 u set metabolism 1 + random metabolism-up1 l$ I6 k& [9 V/ p( p
set wealth metabolism + random 30
n2 G+ X4 [ s8 s+ J set vision 1 + random max-vision
1 F9 D4 U+ J9 a2 w5 G" l0 C9 S! { rend
7 f& B# s1 L% K# A/ W1 tto redistribution) D4 v! x0 f8 o! O; A
let max-wealth max [wealth] of turtles+ U. N' @' b2 R$ m
let min-wealth min [wealth] of turtles8 p% W7 j- j- ?7 C" r$ |2 \
if (wealth <= max-wealth / 3)' U: ^9 b( I& @, N- U
[set wealth wealth + Low-income-protection ]& @/ W4 z* W) A2 x4 N P
end; x* \( g0 |% {2 V0 \
6 \+ I; r/ v' H3 Mto recolor-turtles
! y: S ^; p/ g/ c: ^; o5 Y4 P let max-wealth max [wealth] of turtles; }$ |- X* K/ W- o* l( C& I+ z
ask turtles2 v& E6 ?2 o+ C/ k a( T, ~
[ ifelse (wealth <= max-wealth / 3)$ X+ N9 F0 _6 _ t
[ set color red ]
" w; _4 I Q' n' r3 E s' q [ ifelse (wealth <= (max-wealth * 2 / 3))1 P4 G7 h5 I2 i0 N7 C% \. b2 _
[ set color yellow ]
/ U4 F# B r: A: H [ set color green ] ] ]
4 w6 r- G4 c' K$ m0 {1 k4 F* X ask turtles [ifelse show-wealth?
7 S' P0 q. Z7 j+ J1 f [ set label wealth ]
# x5 v/ n. ^' ^% X, x [ set label "" ]], ~ A# x1 W/ V+ i
end8 _# A' y" ~/ h
, A$ W$ J, g% ~, n3 p, ~* qto go
# H, A2 f9 n$ V6 L ask turtles
4 u0 s; d- @$ n. l# M" ]1 t [ turn-towards-grain ]
$ R2 t7 I# S3 y$ `2 b( J) |$ x harvest
: U) Y' ? k) u7 {4 X- L4 l ask turtles
F2 p- V: d. d4 {5 k1 x' Q6 i [ move-eat-age-die ]
/ X5 o" U" @; ^9 x \3 o" Q3 N1 g recolor-turtles9 C& O4 C( _1 x3 X
if ticks mod grain-growth-interval = 06 A7 _% m! a1 R3 ^$ `& V
[ ask patches [ grow-grain ] ]' z* c" o; u) h3 q N2 s- ?
{2 _* F) z* r8 A, z. s1 }. [* F" S
if ticks mod 11 = 0. P* l O2 a$ G8 A/ w; {. f, B
[ask turtles9 B0 z" R- c3 {2 q) Y5 H
[ redistribution ]]
6 R! G$ i, Z7 _" b/ }6 J if ticks mod 5 = 0) j: i# [/ G& O& _: ]1 y% x, a' u) s
[ask turtles$ t2 d) r5 F+ z9 Q% h9 M
[ visions ]]
: m" l {1 j5 i tick
- M9 B5 C' ^6 G2 k' @ R6 m update-plots
$ [: M. T5 i4 y- H% rend' I2 Q* }& J: Q
to visions
3 q# H! t4 b: O$ r set vision vision + 1 ' B5 l! R/ `! a- e2 }& O
end
/ N7 ?: P2 Y s; c' b* o, b5 Z; H" @+ W, g( I0 }
0 s: B# o2 i r+ R9 |( x7 M4 }
+ t- C! V% b* hto turn-towards-grain / H* h( I9 [/ K3 b1 g. E) c
set heading 0
, f+ S' x+ C. O5 J let best-direction 0
, J; z7 t; q' s. U let best-amount grain-ahead2 r2 y1 {: X2 H8 E; E8 h' h7 J
set heading 90/ k, ]) V4 u3 F% s* v
if (grain-ahead > best-amount)
0 s; ~ l# S4 Z/ ]7 N4 z5 H8 C, [ [ set best-direction 90, F) ?- V2 Q8 y1 s8 Q% u, `
set best-amount grain-ahead ]6 _6 ^4 g9 U2 `8 \4 q& g# [- d
set heading 180
( J! Y+ M' ^4 ~: b: T if (grain-ahead > best-amount)
7 @. e7 I" N/ ~* j$ V8 R [ set best-direction 180
! C( G0 Y4 G( m% N set best-amount grain-ahead ]
( U4 j( |$ H/ h* Y7 e _ set heading 270* F' @6 D9 A q) S# n; s3 k5 X* p
if (grain-ahead > best-amount)7 s$ M5 Y, \" I" a
[ set best-direction 2701 ^1 a- Q& W d" `
set best-amount grain-ahead ]* Q$ ~4 R* z) C, x
set heading best-direction
U* y \/ R" K2 P4 Gend8 }6 T5 u. }' ]* K+ U0 d2 \
8 G; P( @) ]9 o0 e9 F. L
! v4 U, ]' k. Z+ T8 m, l
to-report grain-ahead
+ I% \( Z( ?/ z let total 0
& Q) Y$ G' p3 O5 C" ~ let how-far 10 a1 b& \8 }9 C6 r) A7 y5 _2 h9 N
repeat vision
+ y$ [ t1 k7 V) w [ set total total + [grain-here] of patch-ahead how-far, e6 T, p) [( J9 K
set how-far how-far + 1 ]1 N) }5 ^# C$ |1 U$ C
report total0 v. S# S; @! r1 M# C
end
$ |/ O' e5 \+ I
B! ^" V! ]# H i3 F6 gto grow-grain
, S. [# J$ s6 r5 m if (grain-here < max-grain-here)* [4 q4 I) | c8 |6 J' k
[ set grain-here grain-here + num-grain-grown
1 F& O3 Y* Y- H! ^$ \* S8 A* P; x* \ if (grain-here > max-grain-here) $ b# Z6 S1 r' Y0 o2 V- O4 `; q
[ set grain-here max-grain-here ]
3 L9 a2 L7 j! q5 F6 j$ s recolor-patch ]
) h$ x9 |) J! [2 I$ { cend
3 R. N# c! w h, K- Lto harvest
+ V+ P" r0 r+ K ask turtles, b K6 `: T& D7 D' |
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
5 o) a: Q. G- j ask turtles
" H- l; F+ y7 j) S& ~/ J# ? [ set grain-here 0
! @0 l$ T2 U: O! o recolor-patch ] u, q4 f5 b- d
# H0 L! Y! Q3 U6 i" S/ N |end
; O0 `& m% C) U3 r2 V! R3 q1 \5 L
/ d7 i( \8 T- i' [to move-eat-age-die 3 }, j z; l! ~, \3 J6 B7 t: Z
fd 1
* A7 w. o F) ]. f( l( F3 n. e' ?& C set wealth (wealth - metabolism)6 S+ M0 O3 l/ W$ x$ G2 I
set age (age + 1)0 _4 g/ N* ?' S% x: Z
if (age >= life-expectancy)
6 i6 k& @& z. z* H6 T* C [ set-initial-turtle-vars-age ]
, _" [$ a" f# O/ N% [ if (wealth < 0)
; G3 [$ [$ W% F3 V [ set-initial-turtle-vars-wealth ]/ w4 K4 m" f! }$ J! w- z6 J2 Q
2 `2 w. e) s. q5 X' H
end) x4 j& @) x8 Q/ j3 w
j$ g; q& g* g0 G' Y
$ l) N$ ^7 k# d7 s( K, W+ p
to setup-plots
_3 n9 P8 K+ w# g; x3 n set-current-plot "Class Plot"$ t ]8 _( T5 P1 F# O! P
set-plot-y-range 0 num-people2 A: W2 x. }# T
set-current-plot "Class Histogram"
$ |) ^9 a C/ ?5 [# `5 N set-plot-y-range 0 num-people7 g: o# T) i1 S6 V# n
end& Z; t/ @; o8 T( z; k4 v5 c4 k5 H
1 `. o1 d- n9 H2 R) q+ N! d
to update-plots
w4 i" y& L1 F6 r update-class-plot3 r/ V ?$ B$ u! X
update-class-histogram
! c# e, ]( X# ~$ u update-lorenz-and-gini-plots+ n4 z3 U$ X; N# w
end
7 F1 I* {; u% `3 l" K9 e6 |; w3 K( l* h* A* Y
to update-class-plot. q, Q# A0 M' k9 h6 M1 ~
set-current-plot "Class Plot"9 _( g$ k. j1 I% d, I9 _/ z
set-current-plot-pen "low"
9 v5 V9 j, T P9 {0 Z& E plot count turtles with [color = red]
8 V! B% g E! t2 L8 ]6 m0 C set-current-plot-pen "mid" _$ o: b& X I& p8 e
plot count turtles with [color = yellow]
2 N+ I& U( ?/ e1 G2 {" x4 ~ set-current-plot-pen "up"+ r( p- h, @' U5 i
plot count turtles with [color = green]1 b7 `2 D4 N6 s& l& N5 Y O& U
end
3 R% C3 v- X' k- P' P: a
! `: A1 U3 d4 Cto update-class-histogram
7 l/ \2 v( C7 D' R# ?* q4 h set-current-plot "Class Histogram"" m5 o% e8 d/ w# G* C
plot-pen-reset
' q" b3 k8 u% P1 L# o8 Q set-plot-pen-color red
5 e7 C5 e: d+ S+ C1 _9 { plot count turtles with [color = red]
0 |2 ~2 `; k1 l. I, L" m set-plot-pen-color yellow
" {' o+ x/ u! [! E" j2 h& Z4 K plot count turtles with [color = yellow]4 u" a5 d2 \0 u4 }' E: y* E
set-plot-pen-color green$ D" o4 N' ^, d
plot count turtles with [color = green]/ ]: v1 q% ]( v! M. k6 o
end
. u5 q5 D$ q- T+ z1 vto update-lorenz-and-gini-plots
' G8 y- ?. C2 `" a# J8 ? set-current-plot "Lorenz Curve"
4 _) E( l4 V* L9 n; k( \" ^ clear-plot
* w; O! E2 I& w2 @% I4 B Q) u2 F9 G* F* a7 b F
set-current-plot-pen "equal"
, e6 E p5 [$ u% t% j2 M: N' ` plot 0
: M$ n: a. {( t! c plot 100* U# S m) u2 e$ b
8 R: G& _6 k2 O3 C
set-current-plot-pen "lorenz"
3 z, d9 E C( o set-plot-pen-interval 100 / num-people, ^ k) g( h0 i* C
plot 0' T5 y! f5 F2 L2 e) R, F, @
5 O7 B% k7 G* J' @ let sorted-wealths sort [wealth] of turtles
0 e! E" Q6 e6 u) T. J' I let total-wealth sum sorted-wealths g) B* _& u# ?% l% `
let wealth-sum-so-far 0. z5 E( ~, w f, n6 ?
let index 0
+ d5 b- @' i+ g# b9 W4 a& c; u let gini-index-reserve 03 L' L3 t8 W. n: {0 K; o
) l6 @# G3 S3 U repeat num-people [
4 X' |" L0 N: Y& @' D! y% l3 B set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
Q- G: z3 o( q6 p2 [& i6 B5 e" D3 n plot (wealth-sum-so-far / total-wealth) * 100; @$ O5 V j8 |9 T# \0 K- J) ~; `" B
set index (index + 1)
- D1 C2 c2 P. [ set gini-index-reserve8 w E) ~! g- [3 U
gini-index-reserve +
/ d( ~+ e" T/ @) D4 d2 w$ _2 W (index / num-people) -
) g# s* w3 x; R' o8 k. w2 Q (wealth-sum-so-far / total-wealth)
. x/ O# T( Z1 i6 B9 ?& z+ O ]" A/ k \* Y' n9 [- C
0 m" |1 v; A" r2 h
set-current-plot "Gini-Index v. Time"+ j% `6 O9 L! m- i0 X% O
plot (gini-index-reserve / num-people) / area-of-equality-triangle
* W% h3 Y! X0 i/ l8 bend# X) y+ { E8 {- ]; A( q
to-report area-of-equality-triangle, F# u$ n. V6 G5 }$ m' r
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
6 @9 N5 Y. S1 }; b7 Uend |