设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7224|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现- r3 h; s. Z: [. X5 C5 r! e( z: j
globals* P9 W8 z* Z& r) @4 H# s+ q
[9 R1 V& F8 O2 Q( T, ^
  max-grain    3 K( y1 O$ i3 T5 a
7 E5 C, q0 }( F; t7 z
], r6 V0 z9 P  x: a: z# A- d
1 E! c5 z4 f# S6 O, i
patches-own
& l( z$ z' i/ Y7 _7 i/ O[& U0 T: R3 O& P, t) s
  grain-here      + \7 [) M, j  G
  max-grain-here  6 [% A2 o0 L4 i/ {8 d1 U
]. p# O3 A& t4 O

* W* P/ o0 |0 Z" o, R( Z5 b  }5 fturtles-own
* s% O. o5 j7 B3 ^) o' ?7 y: x4 C* `[' X5 M+ V% b7 e% Z7 c) \2 f! M0 K
  age              # v4 Q3 G% N- a7 a1 Q6 d  O
  wealth         
- ~" ^5 ], s5 g5 v" V  life-expectancy  9 o; X2 j8 g  p0 F, n# y& Q
  metabolism      
$ Y9 h4 s1 [0 [, I5 z/ a* r$ B  vision4 u* g8 R* X& {2 R, \9 K
  inherited         8 _( S0 y! |6 ]- B4 `
]
2 n" o" Q, Z7 a
4 v& e# a0 q) f' z  w4 J( z0 L0 w
to setup
7 p9 K6 {! f" O  ca
& B# x; V) R$ a& C  set max-grain 50& [4 ]6 H5 N6 ~8 T8 s: S1 l
  setup-patches
9 t/ z6 I7 z! K% ^0 m  ^  setup-turtles  p* u, X' R1 s( b; b* E
  setup-plots3 E2 _2 r" X) e9 B( [0 v% b' k  i
  update-plots/ D; ]2 w( J6 h4 @/ i4 A1 D2 r( b' M9 A
end9 B+ Q* Q# l7 L
to setup-patches9 h2 d8 g4 X- W# q1 X
  ask patches( }, M$ O: q9 W, e
    [ set max-grain-here 0% |  m- j% v! _& c! {
      if (random-float 100.0) <= percent-best-land& z1 @9 |: d. g' n' E
        [ set max-grain-here max-grain8 P% g, e6 U% x# E- k7 q8 f+ l
          set grain-here max-grain-here ] ]1 ~1 v% o& r  K1 S4 U( Z4 m: P
  repeat 5/ J+ b% i, Y9 V! n! w
    [ ask patches with [max-grain-here != 0]
( {1 }7 G% r% ^+ j9 T        [ set grain-here max-grain-here ]
! B) ^/ f" k" f7 z      diffuse grain-here 0.5 ]
, B3 N2 }7 e8 d  repeat 10
5 y" P( e3 I. K8 }    [ diffuse grain-here 0.5]          4 P9 ?5 s4 A. r. X/ S. M
  ask patches+ Q6 ~- b4 a! p8 L. y1 D8 Q
    [ set grain-here floor grain-here    + g! _; ?; }7 R9 K5 Y
      set max-grain-here grain-here      0 @% g3 ]. f4 ]; @
      recolor-patch ]
9 O& U6 k; ^# S$ P- y' E; t! M: r. \end
5 D5 P' B; C" d# m2 b, {6 `7 zto recolor-patch  1 H  @  }$ Q4 P" V# j
  set pcolor scale-color sky grain-here 0 max-grain+ o5 X; v. d$ J' k0 Y2 @
end! m* c' R% K3 ^% F
to setup-turtles
* x# z' n! r) v) D7 ]9 `. L/ q  set-default-shape turtles "person"5 P; M- J. K3 ?3 ]
  crt num-people9 o% |" ]( \' R8 h' k! E$ e$ E( N: |* g) Y
    [ move-to one-of patches  
! ^7 ?% C' w) p* w4 x1 y0 o      set size 1.5    Z# [* Z' n. l1 a: @8 M
      set-initial-turtle-vars-age
! X4 g1 I* D3 V: Z! ~, [2 z      set-initial-turtle-vars-wealth
. y* c. i3 q1 G5 C* [      set age random life-expectancy ]
6 j3 K0 I" V4 E% U+ \  recolor-turtles; n: X/ P9 i' V2 i- |
end3 @! p1 F* ]8 Y  I  _: ]2 J3 l

! i- g. N5 a, ?# }3 }3 N4 pto set-initial-turtle-vars-age0 j, C# ]& k3 G% z% Z+ ^5 |
let max-wealth max [wealth] of turtles+ |$ h9 r0 q% k6 r8 d: u
   
# K& N( ?6 C% r3 E! ^. f) j0 x     ifelse (wealth <= max-wealth / 3)- n/ [( Z4 q$ w6 y6 L; J4 R  L
        [ set color red
4 {# X. |+ r" \4 r. @, }          set age 0
5 l( N* g2 X% M* v7 R/ ^8 F          face one-of neighbors4 $ c; u3 T2 ?' l6 ]' Q3 n2 V7 u+ r
          set life-expectancy life-expectancy-min +
3 x+ G4 r5 d4 ~                        random life-expectancy-max * e, N  s4 X) M/ ?; }
          set metabolism random 1 + metabolism-low
% ]+ U7 C' T1 \4 j! o: L% J          set wealth metabolism + random 30
8 i) i6 g8 r, T. ~& E. X          set vision 1 + random max-vision  x5 W% b' V% W
             set wealth  wealth +  Wealth-inherited-low ]. j9 O3 W' K9 n1 F0 Q/ H
        [ ifelse (wealth <= (max-wealth * 2 / 3))
& Z3 m- Y7 j2 o0 I9 D% ^8 j* w# ~            [ set color yellow
; f/ P7 j2 \; G/ o) R0 l) @& {# Z              set age 0
5 o4 m9 `$ N0 X' }0 I/ f$ W              face one-of neighbors4
) T9 u% y& X, ~. q, V6 I) f# A  G2 |              set life-expectancy life-expectancy-min +* i/ l7 k3 Y' I3 m* N; V
                        random life-expectancy-max + 1; ^' d/ [& h8 z$ a  f
              set metabolism  1 + random metabolism-mid# L0 J; f- t+ S2 E3 R
              set wealth metabolism + random 30
$ d, z3 I# j' C, S: z              set vision 3 + random max-vision
: `5 D$ Q% j8 D& P                set wealth  wealth + Wealth-inherited-mid]8 i) h/ k* d  W" F2 t
            [ set color green 2 [9 O4 P- m5 w$ P' `& u
              set age 0/ s4 t/ Y9 w1 r. F4 f
              face one-of neighbors4 7 \* P/ C5 x3 r+ l: M5 L
              set life-expectancy life-expectancy-min +
; m* g+ q# x& X; w                        random life-expectancy-max  + 2
& H2 z4 V! R2 O. _              set metabolism 2 + random metabolism-up; E3 E' O! L3 {( n) e: `. j. R
              set wealth metabolism + random 30$ x& |% G, D4 S
              set vision 3 + random max-vision
( z4 P: U- E0 X# T              set wealth  wealth + Wealth-inherited-up ] ] 2 _; q2 j- M3 O8 ^) f

0 V1 _& y! m3 K+ Tend9 l+ O0 R! b" D2 B4 T" y9 F
to set-initial-turtle-vars-wealth9 ?6 c3 s- ]" d/ n6 d
let max-wealth max [wealth] of turtles0 J( e; d4 I7 k$ W4 }" `# F3 O
          set age 0, X; t7 b2 Z9 g1 v
          face one-of neighbors4
# B5 [! \9 F6 j, ^; s, ]          set life-expectancy life-expectancy-min +
1 b# y* C' N/ v* J4 m                        random life-expectancy-max ' d$ J6 X) x5 h+ Z' g; I
          set metabolism 1 + random metabolism-up8 F' ^* j5 D8 K% z
          set wealth metabolism + random 30! V! J# ]) v# t! @* d
          set vision 1 + random max-vision & f0 ?0 T' H! H2 |) X7 _/ W8 p
end
0 ^: `# a4 z* [/ z- t! rto redistribution7 T7 j7 ^# V  E9 W6 ^4 j
let max-wealth max [wealth] of turtles
% ^' r; @' t9 e. llet min-wealth min [wealth] of turtles
  j6 @, B" p, Y$ fif (wealth <= max-wealth / 3)3 [' |8 @' R9 W7 A
[set wealth  wealth + Low-income-protection ]
& D4 K1 E# B5 A! p2 |, o: i6 ~$ G  hend7 g2 u% i6 i4 d0 K5 h
          ; }4 h$ V4 t. B9 }' _- y
to recolor-turtles) G! x" @. K0 m, x- a, v
  let max-wealth max [wealth] of turtles6 H; |* j0 F7 h4 \% w8 f, i6 C( [
  ask turtles" b* j0 P) b) T  Z$ Q2 }* v0 M
   [ ifelse (wealth <= max-wealth / 3)) I3 a9 P' E. [% B
        [ set color red ]
: i* \5 ^5 I+ a. ?) K        [ ifelse (wealth <= (max-wealth * 2 / 3))
0 S, c$ m' }2 h' |# y/ Y            [ set color yellow ]9 q- C8 u/ {1 ?* U
            [ set color green ] ] ]
. x/ X; [* C! b3 B9 ? ask turtles [ifelse show-wealth?
. |3 ^# s' s" l9 s% X" }    [ set label wealth ]/ z  l" i* \7 W% C. s/ A9 l7 D
    [ set label "" ]]+ m0 ?0 j# r+ P5 v% w
end) G+ Q6 T" u8 _2 i% v
6 I: u7 p: I# y! s! c3 M1 A
to go1 d. e" w! x, @
  ask turtles
" `$ h8 e4 F& I4 Z: _# n- P    [ turn-towards-grain ]  . x$ s4 b6 M  {" v- [$ H
  harvest
$ N. X$ }7 k6 ^" d  ask turtles
% L; b( \. Z: h6 w* |- R    [ move-eat-age-die ]: ?, e/ c3 q- |" Z( E
  recolor-turtles7 X8 J. h4 `: E/ D- K' A
  if ticks mod grain-growth-interval = 0% ?0 s6 w2 [$ E% b; B1 t
    [ ask patches [ grow-grain ] ]! C0 C# R* A( O/ i9 Z9 ^& \6 x' _
   
. Q) S4 D3 N2 p/ B& {; c. \1 D  if ticks mod 11 = 08 g  x2 N7 z0 t! V0 `5 d& p
  [ask turtles& f; M, F% O6 n2 B4 A
  [ redistribution ]]
3 l) m! g3 m" }- s  if ticks mod 5 = 0
! l: X/ i# [/ o$ h4 D   [ask turtles
# e. J1 J6 W; R- Y$ W1 b2 i# l  [ visions ]]# ~) c* S& b; w
  tick$ V7 K/ `0 [5 \# p( ]  W: y$ ^
  update-plots
- g8 a, |! s' U- ~' X: C! gend% n2 H1 \' c& V; f3 g
to visions7 _5 p) F2 a5 X8 l8 @: h
set vision vision + 1
& l0 c# Z: Q6 j, iend- Z! z) ?; j2 \+ i5 w8 H7 Z# ~0 a1 `
- e# d! }, M2 ~* H+ r/ Z

( t) m. y. v4 k& R% Y( O3 f" m4 u+ Q1 d1 V
to turn-towards-grain  
% Q- X+ z9 A: s0 F. S( ?  set heading 0
8 d( D5 J1 h: `! [3 {4 _  let best-direction 0( G: p: p, A3 P) l+ x! S7 E' {
  let best-amount grain-ahead4 p, V0 w- ^3 c9 o; R4 N6 V
  set heading 903 C( W% E6 d+ o" r7 S
  if (grain-ahead > best-amount)
; r5 g' p5 L) g! V& `    [ set best-direction 90
. ^6 u- R! T/ M# o/ E: Y      set best-amount grain-ahead ]+ G: O5 R+ ]7 U* ~
  set heading 180
' n3 F$ `4 F) W* m  if (grain-ahead > best-amount)3 F9 @, V3 z: F, F5 M( [( F
    [ set best-direction 1804 y4 S; D# p9 v3 w. w
      set best-amount grain-ahead ]
6 U6 K) T' E1 K5 K1 ?: R# P' R& t; @  set heading 270% N5 y, l/ z8 T0 B$ Y3 n
  if (grain-ahead > best-amount)$ m, h; l* V9 r" a  k
    [ set best-direction 270
. ]0 }$ j% i7 U  f) m0 V9 f      set best-amount grain-ahead ]
) e! _0 {3 U, u/ w+ v4 h  set heading best-direction
: z' H- T' x/ v/ B. Rend( ^3 Y; @  D7 \1 j- I: F
5 f0 V- m% z( @- F* u
8 V: i3 k: @4 a# u; U4 ~
to-report grain-ahead  
& {" a/ J+ D2 A4 u$ ?  let total 0
7 a& I; P+ r) k9 R4 T" a: d( X  let how-far 1' Z: |. ^3 U) K# C0 b1 h2 ^
  repeat vision: J+ I% |1 G9 _) s( L' L# A
    [ set total total + [grain-here] of patch-ahead how-far3 ]$ ]6 d1 o: Q) r
      set how-far how-far + 1 ]
+ ^% x7 q8 j' a2 _8 d* E' r  report total
5 d7 U# ?+ ~7 R# Iend
) k/ |0 w  a3 M3 w
- s$ s( k$ p, \! S* n5 }6 @to grow-grain " c( u( O( K+ G
  if (grain-here < max-grain-here)% A5 Y7 {) T/ o5 g# h0 s$ A1 j
    [ set grain-here grain-here + num-grain-grown
, I- b# K3 c% i# b      if (grain-here > max-grain-here)
: b0 T: z4 z3 F        [ set grain-here max-grain-here ]
& @0 f8 p5 H/ \& y5 |) W: k' D      recolor-patch ]1 }1 g8 U6 T( X4 A) t- p/ o8 N: g
end; j; X; `; o4 A
to harvest
6 I; t' ^; O9 A" |0 }; D  ask turtles: j( w) V! K/ ~* N; F& Y
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
0 q' c' X9 U' c$ |/ K6 D+ F  ask turtles/ `$ ^/ T8 w/ Z8 p0 G5 |" Y
    [ set grain-here 0
; }/ ?8 U0 z. Q$ V1 ?/ Z      recolor-patch ]
  Z2 c/ ?5 y$ ^- j" A/ d  
1 N/ T% @2 p$ k  [" }end5 |" ~  Z" f+ b$ b  P  k, k7 H
8 X4 m/ I1 _  ^5 U0 n' D" H5 d# b
to move-eat-age-die  
5 A4 Y9 ^6 B& }2 q7 F* e+ [1 F  fd 1( z% I! s; g5 f4 U: q
  set wealth (wealth - metabolism)
/ H+ y4 m& Y; \) m4 U6 p/ |, g7 _* X    set age (age + 1)8 n, Q: u  H- k/ Q
  if (age >= life-expectancy)
1 `# ~+ O; \, N: q    [ set-initial-turtle-vars-age ]. n2 I) g& W4 L
  if (wealth < 0)" R4 A0 _' k4 s( A6 d" T3 R9 L
    [ set-initial-turtle-vars-wealth ]! H0 q" h+ \. c: G" l$ W
   
9 i0 w* r! ]  n8 g# M) @end+ F6 H' ?; ^# Y  O3 E( O# S# Z
9 j9 i" z, b9 B3 f1 Y
* Q8 B' x5 p8 W  ^* @
to setup-plots* }; i7 R' i. Q! ~; ?
  set-current-plot "Class Plot"
: w' `% N. P0 L  set-plot-y-range 0 num-people3 v! C$ p8 R2 \) Q3 n
  set-current-plot "Class Histogram"* q5 t, j$ U, {7 i* b/ n
  set-plot-y-range 0 num-people
+ f6 t' c5 @1 h) ^5 \end, t1 c5 A; }4 ]9 Z$ c
; L- w* ~% A3 `" k( h
to update-plots
& r3 @' {/ h9 P8 S* y  update-class-plot. W! w9 N# j, o+ k
  update-class-histogram
4 w# ^: d2 r; y9 i# L  update-lorenz-and-gini-plots
4 {  \9 L& f, C8 l3 a6 P3 Qend
& H! K0 N4 f: t6 W# l% Q
( |. N+ d5 v( `# lto update-class-plot) K+ _! L- W' ^- m$ X0 P
  set-current-plot "Class Plot"
* w8 s" _, N, C6 N) a* b  set-current-plot-pen "low"
" [. e/ n8 l( X" g& h  plot count turtles with [color = red]$ \4 O9 a2 l* z* O7 {
  set-current-plot-pen "mid"
/ x, L4 p8 `) _, Y+ s- H! H$ _  plot count turtles with [color = yellow]
: \: Z/ K" ]6 U5 T  set-current-plot-pen "up"1 @" t2 ^2 p' s0 h5 X1 ]3 O4 U; h
  plot count turtles with [color = green]6 J' i* e+ \* b- Z1 D4 a- K* F5 ~/ _% [
end1 b! A5 u3 k- s' K2 M& k- Y

# n/ @% D, n/ y7 V+ U' xto update-class-histogram) L% y$ A) Z! V: n- l/ t3 b
  set-current-plot "Class Histogram"
, Z3 Q& e4 Y/ @  U( F. N0 v  plot-pen-reset  L$ X7 L( o' n# W% o# v
  set-plot-pen-color red. Y1 R; x+ a$ _
  plot count turtles with [color = red]: E9 m; i2 ~- \: T% E3 B: ]
  set-plot-pen-color yellow- V4 P# \" [  S, @6 c) f4 F
  plot count turtles with [color = yellow]8 Y  B) o9 C- y# |
  set-plot-pen-color green. U4 g- i5 N4 A$ D9 k& W
  plot count turtles with [color = green]: {8 }) Z$ n) ]2 s
end
6 R+ |1 v" B6 B2 Dto update-lorenz-and-gini-plots; \$ z2 y& _+ [8 h
  set-current-plot "Lorenz Curve"3 L$ ~* y( _; V
  clear-plot7 i- M" n6 ^4 }# `$ k! t

+ h/ [) R+ e$ S% T4 B' v8 M1 V: Q( s4 @! C  set-current-plot-pen "equal"
- |& L6 _, h) s2 e& t  plot 0
9 x7 @$ ~: j% w; _. H( s; T  plot 100
% ^. u+ ~; ^2 `, f% B1 r
: y3 X" j$ @7 V! V! v% E  set-current-plot-pen "lorenz"
! k4 I1 q! Q0 |. C; W  set-plot-pen-interval 100 / num-people
+ T5 g  G- T! A8 q  plot 0
" Q/ y/ U/ h, H& m% [
2 e+ }# q, ?# K! y" v3 R2 S  let sorted-wealths sort [wealth] of turtles
  o# k$ `  d; x4 D4 E& G5 o( e1 w  let total-wealth sum sorted-wealths4 V. S2 ?; |8 s8 u- |) ^- l) [
  let wealth-sum-so-far 05 k+ v( [! H/ y7 K' M& E
  let index 0
: {1 H/ ~/ b8 J# c1 |- i2 N  let gini-index-reserve 0
2 v3 i2 @. O6 R( _. y
6 x8 s/ I5 \) {! j/ j7 C9 h  repeat num-people [7 |" z3 p$ f, P$ o* ?( L4 J
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
4 \- u6 e. U+ e    plot (wealth-sum-so-far / total-wealth) * 100
) g2 G& ^. ]: N0 U, z    set index (index + 1)
+ d+ C8 `; n) r' J    set gini-index-reserve8 e8 \- n! {- f
      gini-index-reserve +
& M) l2 C4 ^" B0 P: t. q" w      (index / num-people) -% i0 x) J. j  L3 }3 X
      (wealth-sum-so-far / total-wealth); P8 {" J. s+ T8 j) T' f  a0 G
  ]
( w1 k% O; K1 A: o# l
6 [4 K1 E' p5 |& }3 O  set-current-plot "Gini-Index v. Time"
, Q* F2 V6 S4 D( ?6 D3 o  plot (gini-index-reserve / num-people) / area-of-equality-triangle( S$ {$ h8 D* r9 U, h( _8 @8 z
end
1 b/ b4 o$ w9 Uto-report area-of-equality-triangle( x2 u2 h: E; \9 k7 H) D# f9 a6 v& I) R
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
# i4 W) ?, U) P5 T% N. Tend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-18 21:11 , Processed in 0.017197 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表