请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现/ O! ^1 X# ~. H, } m! C
globals
& l1 N$ E: f5 k; i J, y2 l[
1 @: Q4 z$ L$ | max-grain
0 \1 p+ B6 Z+ T( ^% m' ~7 M
1 D; q7 W; d8 `- Q6 i, l, z; L]
! b* Z* u0 B7 N" I6 L7 P' X; k5 E# W0 ?: x% O$ u, H' L9 O: g
patches-own. U2 z" s m& a4 ~7 w- ^
[% f, W. [& \# y
grain-here
( y! |( C3 |* N' x. z# s, ]1 H max-grain-here , o( F! l' d( M$ U" L
]
& d* o4 ~! S& ]2 d' j* B& n9 S! o9 p. {* e9 Q7 v. |
turtles-own
& x1 U1 w( t3 D0 e/ `[4 I: M T. `) {
age 6 n- q6 A# t' T, p/ p; ~* S" k
wealth
; y) X" M9 ^; E: E; [# w! }% B) h) W life-expectancy
7 ? `( v! A0 x9 f/ W( C" V metabolism , `+ P1 Z6 A: j6 ~+ b; U8 s
vision
- U$ Z6 r- `, s3 S/ |' M1 ` inherited ; t9 `( ?; K! I2 a, _" @
]
' P2 F- H' r& R7 z
, m; ` ~/ S# o/ d7 E, c, H% R1 E! K4 L) R0 P% Y
to setup; D$ ]! C- Y' y# f% Q- r6 d
ca
6 H; c0 @6 [2 G0 O- u U set max-grain 50
( r5 e+ @* X% j. ^9 T" ~ setup-patches
) K! Q/ q+ S8 y/ ` setup-turtles* Y% {+ C3 S1 g# }# T
setup-plots* i5 W" {( t4 L
update-plots, r! g/ W' y7 X+ t5 v4 c
end. b. y3 c. E1 ^ |1 x9 F
to setup-patches
; W/ \/ \. L- o0 q ask patches
& T0 R; f/ A4 l" z. i# [& x- H [ set max-grain-here 0
# G' x" v" R4 V( q6 O: O- {; M if (random-float 100.0) <= percent-best-land: G, N0 f6 l: e% {3 `
[ set max-grain-here max-grain% L1 b/ v9 a/ d) j4 a# l4 n
set grain-here max-grain-here ] ]
3 l# q" i) E7 s: [& J repeat 5
9 D$ _) z' {9 W" X; _7 A [ ask patches with [max-grain-here != 0]
8 U; J1 I4 s* K% Z1 U [ set grain-here max-grain-here ]; E9 j, m! M: x2 Y7 @/ ^6 `
diffuse grain-here 0.5 ]3 x4 m4 r! v; v
repeat 10
) O6 |6 A9 O* I1 _ O [ diffuse grain-here 0.5] 9 H# e) c3 ?, ^5 B* [, [4 l/ U. }
ask patches
, A5 S& s; c5 s8 e, r7 q7 |; { [ set grain-here floor grain-here ' {/ a o2 h+ o
set max-grain-here grain-here 2 K( l' S1 w0 z9 N/ j8 @ Q
recolor-patch ]
; L0 d" J' V8 W: ]0 _7 ~% l: Aend1 M: s' S+ H4 c( X
to recolor-patch / y( h g6 v6 v+ {2 {: I
set pcolor scale-color sky grain-here 0 max-grain
* }6 f" b) E+ e' \end
$ S% V+ a. X9 |; Bto setup-turtles
1 W+ T+ v( x' X; h7 _: \- ] set-default-shape turtles "person"
% L' L, l% a; z: s* U, ^( X crt num-people# \5 d" u9 r3 H
[ move-to one-of patches
0 a* |, E. A4 u1 i) |3 D set size 1.5
) \6 y7 q q( s6 ~$ M6 f set-initial-turtle-vars-age* o) `) U, o- K/ N1 y5 {
set-initial-turtle-vars-wealth0 ] e0 |, [3 F2 \: A
set age random life-expectancy ]
% o& E3 c8 Q/ V6 u recolor-turtles" P5 [9 P9 M$ m4 A( n
end
, r- l5 R) [3 b9 S9 \
) ?: [0 B$ H S$ s4 i- N/ J! Yto set-initial-turtle-vars-age
0 S' n1 Z7 V( G0 b let max-wealth max [wealth] of turtles
9 s& u4 w6 S! @' G7 ]' |* K
& I, a" ~2 k6 P1 j1 S ifelse (wealth <= max-wealth / 3)
! A. X& s4 X B" @ [ set color red
* w0 x4 p/ V: f( Z set age 0! K9 [% X! \2 j0 K6 F
face one-of neighbors4 * M- p7 y5 ?) o
set life-expectancy life-expectancy-min +
. y: b0 l$ H% g: s8 b2 I' S4 o0 | random life-expectancy-max 3 T+ Z6 Y5 O$ N1 a1 t% ]$ ]) }4 q
set metabolism random 1 + metabolism-low- M, C3 e; \, S' p+ [! N
set wealth metabolism + random 30
. J" }) U2 E3 | set vision 1 + random max-vision+ V7 y" z$ G& Y7 v6 I8 U! A1 T
set wealth wealth + Wealth-inherited-low ]
; b$ c' v3 W8 f; t) P# x1 e [ ifelse (wealth <= (max-wealth * 2 / 3))0 t0 ]% i+ W1 a" e1 v& W( }8 A6 G
[ set color yellow 4 I( C. {) f1 r: \( P, ~7 q- o9 l% _
set age 0
7 m- Y) c2 h: N F face one-of neighbors4 ) p) r) }8 O7 ?, |( n! @
set life-expectancy life-expectancy-min +
3 C8 |* m6 |7 c4 j% ~5 m/ [ random life-expectancy-max + 12 {0 [- Q% O- |- z ?9 w1 d; t
set metabolism 1 + random metabolism-mid
2 ?3 t8 A+ X, D* u4 D. Y; d set wealth metabolism + random 307 H$ X6 y+ H( x7 D( X+ p. }! ?2 ?
set vision 3 + random max-vision7 P9 l6 {: n0 I
set wealth wealth + Wealth-inherited-mid]/ Q# k- o# S$ R% w
[ set color green
4 s) d7 W8 `3 ? set age 08 B) } N- j$ {% Q0 p
face one-of neighbors4 1 u. j% i1 {9 U$ H
set life-expectancy life-expectancy-min +
7 F& t" ^" A2 C0 Z7 C' ]' q random life-expectancy-max + 26 L9 Z2 E0 k9 J# R) U& {
set metabolism 2 + random metabolism-up
% [9 J. I. }# w8 R/ o set wealth metabolism + random 300 {3 T' p' T1 Z7 }" {: s3 @
set vision 3 + random max-vision
6 i6 N& U1 x& B* r1 ?" o$ b7 I0 m set wealth wealth + Wealth-inherited-up ] ]
; \- I2 n2 s( T @ 1 b, `0 k: c; q9 E# m
end
5 u) A- P" N( U( i4 ?! `7 fto set-initial-turtle-vars-wealth* J2 Z* f: O& m# E
let max-wealth max [wealth] of turtles
- p4 s- b8 \: o: P0 B7 a set age 08 {7 ?& W6 x& ^; d
face one-of neighbors4
& Q& H0 p$ e6 }$ ?) j0 Q set life-expectancy life-expectancy-min +
9 @1 {7 c/ I5 K* x- H$ i+ t random life-expectancy-max - f6 E3 H, D/ ^# B. m' A2 J
set metabolism 1 + random metabolism-up: }. {" n) \' `4 Q- }9 s% q9 [1 N* \
set wealth metabolism + random 30+ F# P$ F( _2 H3 I& z2 O6 ?$ V
set vision 1 + random max-vision
/ j) v( I/ E8 c+ Tend/ Q/ u9 a M7 H6 R' D/ t
to redistribution2 {- ` B1 z! a
let max-wealth max [wealth] of turtles( K4 R1 V& F9 ~) ~9 G
let min-wealth min [wealth] of turtles
8 t5 P) ~9 N# y' d( vif (wealth <= max-wealth / 3)
8 g1 J* E$ N: x- F0 S$ ? [set wealth wealth + Low-income-protection ]* d4 n m$ h% y6 L: _6 \4 y8 L
end6 p, g G! r, H s
! `0 y Y& h0 E3 j" `" H& b6 Uto recolor-turtles
+ F7 M, g! M8 B6 w let max-wealth max [wealth] of turtles
* E9 |( E% m3 o; |% \ ask turtles
- E x1 Q( U' ?" J9 w" b4 S b5 y, e [ ifelse (wealth <= max-wealth / 3), s: O M1 n+ g9 _9 ~0 I5 Y
[ set color red ]
! k$ {5 ^+ v- m! r& N7 R [ ifelse (wealth <= (max-wealth * 2 / 3))
9 Z8 A) \& ?6 i& b! f [ set color yellow ]
* o* X2 [" ^$ P9 m+ @; c% t [ set color green ] ] ]* a( J, U# u: _) \4 |# G
ask turtles [ifelse show-wealth?
2 A! o- u( B# z) @# s4 h [ set label wealth ]( s g3 j9 f) J2 o1 r9 e$ y
[ set label "" ]]
7 e9 B {4 N& O$ Y5 R( V8 Fend
' \) k; {' N- r* F: f' j, N
; _( P) ~" z% O/ {; w0 Q0 }/ N" Pto go3 `! C' G9 L& H. _$ A2 `
ask turtles: F/ K9 s! j6 s+ E6 a# X) S# J/ Q
[ turn-towards-grain ] . W3 ?3 k- ~* _4 ^) a( \, s' z
harvest
8 a8 ]8 j9 }/ C: `: a8 b$ W ask turtles- J1 P) U0 }; \& A) e
[ move-eat-age-die ]" t( d, L) H! M8 A% d
recolor-turtles9 W1 }+ P! @8 F0 [5 d+ h
if ticks mod grain-growth-interval = 06 c! C( G8 w5 F( h0 |
[ ask patches [ grow-grain ] ]( }+ h2 f/ H( ?- i
6 q1 h/ K o/ D$ s" S
if ticks mod 11 = 04 R# r8 Q/ }3 S+ f, d
[ask turtles! A( P9 v5 ]1 U
[ redistribution ]]( n3 w6 V9 P# k/ \9 @; X: c
if ticks mod 5 = 0
) p% L0 i0 i1 G* _) f' W, z [ask turtles
3 y, q2 @2 K/ s [ visions ]]; b2 u$ S' i8 [* s1 @+ C
tick
9 V* H% b5 A- ~% L update-plots! O8 ~5 L7 w Y; c
end
/ p: ]; Y, V% b( [3 hto visions( b, V. x+ P: _- p
set vision vision + 1
. `9 Z# O K$ P8 xend5 w x+ t- Q4 E6 O3 U! _# b5 ?4 x
% B. q+ s+ B* y" Z
. N5 h, z$ a3 {8 i$ I
) h7 A4 a3 U; b, Qto turn-towards-grain ! h1 b, v: Y( R. [% d3 A) u- P
set heading 0
; G* m2 `4 n) u, a: j3 G; H$ I/ V let best-direction 02 u6 q. P0 b( ^' W/ Z
let best-amount grain-ahead
1 K ]8 [4 H) V% F: Y* W. A set heading 90
. U' U7 Y$ y0 w/ T( e' B if (grain-ahead > best-amount)
& A5 i& `6 ^$ i% `3 u2 A {- E$ c [ set best-direction 90" {* j B+ w6 Q
set best-amount grain-ahead ]4 c6 m5 H7 i! T0 x4 M1 Y
set heading 1804 e# F/ q; U5 J0 A" }9 X2 P
if (grain-ahead > best-amount)
4 b W# E3 |- L, R+ Q [ set best-direction 180 A5 M7 T2 z- [" c4 ?3 ~/ d$ ^
set best-amount grain-ahead ]3 I$ R2 ^/ d. v, D& y, J$ t
set heading 270" V* E& S6 Q. U2 e
if (grain-ahead > best-amount)2 {) `0 D/ n! A7 }
[ set best-direction 270! z0 U6 M( M' a9 J$ X1 ?7 s( P/ M
set best-amount grain-ahead ]
. I9 ?4 b9 Q: W" f& w set heading best-direction
% B2 o h, j$ D2 m i, ?' `0 h8 ~end
{5 b" ]. r" w/ V
+ R; v2 h' {; u" D+ v: U4 V+ I! U3 I9 m
to-report grain-ahead / O3 m8 h# f" k% d
let total 0
, _( k6 x- K7 {$ z* O7 H" D) } let how-far 1* z/ K/ r' r% d7 a$ @8 D0 i
repeat vision
1 i" V2 R p: I' D5 F& o: U [ set total total + [grain-here] of patch-ahead how-far
9 T7 {( v5 k$ h: K& V: t set how-far how-far + 1 ]$ X' ]4 m- c# r: l) ~; m }
report total! q# c5 }3 l. e* l' v( e* J) K6 T
end& Z v8 }! t! A1 L. T5 Q/ @2 b
1 _" h1 Y) j( k% u% ` J/ K3 Eto grow-grain
0 V, d$ ^, o2 `- j- v. @ if (grain-here < max-grain-here)+ {. M" W/ Q$ @% M9 K
[ set grain-here grain-here + num-grain-grown
, C) x. c7 @* v4 d8 n8 } if (grain-here > max-grain-here) 8 `! Z* N* k1 v$ w
[ set grain-here max-grain-here ]: h% u' ~5 Y' V
recolor-patch ]
2 ?* o: F" j( M( J# N: {- \end
5 i+ K+ m5 |% A- c7 m2 gto harvest
6 O' s& K2 i* \( r- B ask turtles: u+ [+ h) h$ g. K. X9 E
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
: N$ v( l7 R, J( z. ^ ask turtles
# O0 [+ |; O( `+ p8 d. `, D% t [ set grain-here 0+ D/ ~( K1 c! J, i" ~( k
recolor-patch ]* O$ [7 H( `! |/ f! }
6 f, `& B* w% ]1 ?$ d) T
end) C4 R! C, o+ R3 h7 G3 }( H- `
. Z, D+ }6 z; y
to move-eat-age-die ; k8 Y: `5 K. B* `
fd 15 M6 b6 d$ ?$ V- X/ |* u6 h9 u
set wealth (wealth - metabolism)% W- y5 ^: a, I% o
set age (age + 1)
w7 ~4 X1 t, K0 B& u if (age >= life-expectancy)
I7 \# a1 V" \, V [ set-initial-turtle-vars-age ]
5 n* A# D; O3 I* B if (wealth < 0) g8 ?% B3 L6 C( _
[ set-initial-turtle-vars-wealth ]* }$ B! I1 ~" B+ b" j6 U
! L2 o# z( N# b4 N
end0 A! [" o+ K1 E% j1 y% J9 l; u7 v
; x) f1 p8 [7 b7 [3 _, _7 g
. q2 B6 j. w1 Z8 l" Gto setup-plots
! `/ Q; `7 b( a2 A3 g0 X z: z set-current-plot "Class Plot"
* ?* C9 L; G5 _' ^. ?1 u+ A3 s set-plot-y-range 0 num-people
4 `/ z9 F* r0 S7 w, \% z set-current-plot "Class Histogram"% L7 O# L4 u, ?& T4 J4 W/ E
set-plot-y-range 0 num-people/ j1 d/ _5 K2 q: J" H
end
, J1 Y: e+ }+ j& c2 w- V9 J6 O6 W# V, ~: a/ S$ O9 L+ @, A% C
to update-plots+ s4 E+ ?( U; m) a o, n
update-class-plot7 ^; d1 W# n* ^! U7 p0 w
update-class-histogram
. C1 @" Q: x: r5 P N0 I update-lorenz-and-gini-plots; u# m1 b5 o3 i' h
end
9 P$ h8 _; _; T Y( O8 y
5 j8 S$ c+ M9 X# v/ u& |5 pto update-class-plot: p" `, y3 j% H+ ~
set-current-plot "Class Plot"$ q, G% s4 Q! K; @9 S+ W+ Z
set-current-plot-pen "low"' j! g/ G5 _! N# D: x, x. ~9 V
plot count turtles with [color = red], O' Y4 V, R% \' R; n4 m8 |
set-current-plot-pen "mid"
, u& h# E/ e( v& J# q3 z plot count turtles with [color = yellow]; `0 B! ^- E. E- @& {0 ~
set-current-plot-pen "up"$ i: y+ q4 R6 u. O. x3 |" e
plot count turtles with [color = green]
* N) Y5 Y( t8 S" C3 s g0 \; }end
3 G( j0 l6 Y5 Y4 n
3 Z- e! x: W8 K9 R1 U. Tto update-class-histogram
! M3 `* n8 N$ V! O6 @, U9 T set-current-plot "Class Histogram"
. i' l; v6 o" m0 ]( Y plot-pen-reset
{0 r& s2 M( q3 B1 I; K* }; D) Y5 d0 H9 @ set-plot-pen-color red; j0 l8 a# Y. P+ G; c
plot count turtles with [color = red]$ ~, `, X4 U5 `. X" E! d
set-plot-pen-color yellow4 J. L0 E9 x0 ], ?5 F
plot count turtles with [color = yellow]7 Y+ ^! s; u! W) Y
set-plot-pen-color green
: m+ j% `& E$ \( x plot count turtles with [color = green]
" M' a( u% Y" d) h5 k. O8 xend/ p& T( z$ [2 N4 `
to update-lorenz-and-gini-plots3 \* g" _7 H3 m
set-current-plot "Lorenz Curve"; C# `% H9 o. _6 }' K* N
clear-plot
9 B6 O- E# v: E( S
/ p1 N+ a! L& o. ]+ \8 C8 ] set-current-plot-pen "equal". ` U& `) [+ _+ r/ I' c4 a; B
plot 0
7 w5 {/ q; I" ]- Y# N( B plot 100
6 @$ S# ?( U/ ]6 A. Z9 ` c% V& ]4 m2 e
set-current-plot-pen "lorenz"
) x) J4 h7 @; s* g8 [! k set-plot-pen-interval 100 / num-people2 o& W& V( l1 d' P: f: s+ \; b0 U
plot 0' L. ?' b3 f; s$ V# Z- R! b, C0 O" ^
. |) h1 m+ R1 J
let sorted-wealths sort [wealth] of turtles
: {, [9 g6 S, U let total-wealth sum sorted-wealths- g3 \- G; Y y) S d
let wealth-sum-so-far 0
- \6 j0 w# q3 U( R0 g e% f6 o9 p let index 0: |1 L+ H- ], L _4 `! I: |
let gini-index-reserve 05 ^( N2 @) ^1 T$ o+ m
) h( z/ L9 w( }6 H" } repeat num-people [
9 Y/ {2 S% M9 W( O) q set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
. a+ Z+ ^/ h: V1 K$ j plot (wealth-sum-so-far / total-wealth) * 100" \! t. L" s' [
set index (index + 1)9 T6 z2 P" e# e) i( S
set gini-index-reserve$ j" x$ v8 Y" f+ `. E! A- J
gini-index-reserve +
8 P' f. ?2 l+ b (index / num-people) -
' W5 Q1 ~+ F# l! M$ U0 U (wealth-sum-so-far / total-wealth)
2 @7 R* O) ?: W$ H1 C' J ]
- P p4 e; Z2 `8 d1 \, G1 U( u3 g- G8 T/ m# I
set-current-plot "Gini-Index v. Time"4 `: [% @" x' ^
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! f$ j5 i) r6 F* y& P7 _end7 m+ d, a" q- P6 x! u9 B. p- C6 k
to-report area-of-equality-triangle3 k: |3 h' _' H9 q, S8 Q. W
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
8 K; o3 P" k3 }/ K. Dend |