请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现! V2 ^8 T: z% U" A4 U7 r3 T
globals
1 f! Y7 y+ v/ r0 l4 h4 N. ~8 S8 B[
. B4 |* ~7 E- g! d$ v1 @ max-grain
' e$ O+ d- X- E; [4 a6 C: `: b2 b f$ s
]9 ~. _: R/ h% K
2 v( z7 E3 X% apatches-own
, T, G @6 N% Q6 w0 J[
- s4 h. Z* {% N8 S' p% c, \ grain-here % j2 @# Z; I" u; T( F; q0 n4 h
max-grain-here . s( Z& {$ P9 P& n& X! f
]# G/ q0 q b" |) W! i% f% f z
& j6 P( E% }2 R8 kturtles-own% {0 D- f5 i, g0 o
[: A. w; m& i& {5 o2 w
age
$ z( W( @8 [/ y* S: G8 W6 o2 R wealth
- L6 ]/ h! T: a3 Z5 U life-expectancy 1 `% ]# h7 B0 C; b
metabolism
2 d( `, }2 w, v' V) F. q `4 B vision
, ]3 C# Q' q9 O1 @- O inherited ( e' ?- K2 Y7 n6 l$ a. X
]
4 j, J8 K5 L: Q0 \* h% t7 u
1 W/ J/ @. Q+ F, r/ I* C2 d, @) d; Q& T# F
to setup
6 W/ E F V) p, c' @* R$ F ca" M6 m- s0 o- K+ U7 a; D/ n
set max-grain 50
3 \0 q5 K" L7 c* _ setup-patches( `' l, \ o' t4 a' E0 N
setup-turtles& r) a" b4 }. o8 T( G- d k
setup-plots
5 T4 G. \6 t8 H0 [ update-plots4 \6 N- X8 \3 _ Q' D0 A$ t
end
& D" n4 z% m9 D& T7 i/ k, ?to setup-patches6 R7 Y9 l' K$ Z
ask patches; F" J! i3 e9 F
[ set max-grain-here 0
6 s2 P) ~ s. B) Y5 U4 k; r& J$ ^ if (random-float 100.0) <= percent-best-land7 d& t8 g, {& U
[ set max-grain-here max-grain! Y" o( Z) O# x: O6 b5 w: Z
set grain-here max-grain-here ] ]
. g. t8 D! u! i! r% o repeat 52 U7 o J8 M7 R7 ]4 N* d
[ ask patches with [max-grain-here != 0]5 x8 Z. d2 { N5 j% v8 B
[ set grain-here max-grain-here ]4 ~5 t C g( k' s7 Q( S& w6 C. F
diffuse grain-here 0.5 ]! r( r5 l8 i, Q% L
repeat 10
9 Z5 R& V% _5 Y* ^& _* q, _ [ diffuse grain-here 0.5]
- o" n6 }! j0 ^- _4 F* k ask patches
& ^; g% n4 y9 g6 b [ set grain-here floor grain-here
* P1 m' |3 q' ]9 p* K' `5 @- M set max-grain-here grain-here
( m4 F& ^/ F3 O# T recolor-patch ]/ ~9 z2 g+ H; n% K0 D- \
end# X6 H( d& T: A, H
to recolor-patch : G# E2 t1 }: j# ?# z6 v1 y5 s
set pcolor scale-color sky grain-here 0 max-grain
1 t# l7 V. s+ p' \; _" Mend4 E1 C9 G# X0 f# ^8 T% U3 N# z
to setup-turtles
) o: j; B* e5 q) a3 ] set-default-shape turtles "person" H% l/ t+ k, t. K
crt num-people( f: ?% J' l: v! C' E3 [
[ move-to one-of patches L/ X# U& N" V- b9 y
set size 1.5
- T! y* v0 U: M set-initial-turtle-vars-age
2 \7 b9 i7 f3 l! _& T) _ set-initial-turtle-vars-wealth
4 s+ `9 T0 ?4 ~ set age random life-expectancy ]8 J5 D: w' N: s [% S
recolor-turtles
- h' {: Y, Z& { {# wend+ }1 d( q! D, ?
" \0 z7 I" @" n3 j1 }to set-initial-turtle-vars-age
: U7 a8 S3 B% [! _ let max-wealth max [wealth] of turtles$ ]$ K. ^4 ]4 j: v% w
f3 k9 h+ M( v. A/ C6 q8 c1 m ifelse (wealth <= max-wealth / 3)
4 Q" U( D4 d5 H# k [ set color red
/ b4 \& T$ ]. e7 A- y3 n set age 04 H; I9 @* X8 ?4 k2 S1 @
face one-of neighbors4 $ Y' [7 k0 Y# K" r5 m, E3 S
set life-expectancy life-expectancy-min +
& I4 i: Z5 w/ z$ m ^/ Y! H random life-expectancy-max
+ x8 L$ a1 {6 A5 G: r2 ` set metabolism random 1 + metabolism-low$ p V9 l+ v0 g; `
set wealth metabolism + random 30
8 t3 t# N4 m& h' } set vision 1 + random max-vision
2 q" v1 R7 c/ m3 n9 d7 H set wealth wealth + Wealth-inherited-low ]
9 K( E% C/ J. j- \: R; L# Q* l0 a [ ifelse (wealth <= (max-wealth * 2 / 3))7 n- r) R0 Z. D6 T
[ set color yellow # M* p( ]3 Y7 n& E
set age 0! X# l5 F. A) N4 M2 o, X
face one-of neighbors4 0 F! j8 L$ ]3 k; c1 ^5 _# v# D
set life-expectancy life-expectancy-min +
7 Q6 A' y: b7 \ o random life-expectancy-max + 1$ i# k8 B6 U2 M& N$ h
set metabolism 1 + random metabolism-mid
/ J: O) C& X/ }8 D0 x2 v set wealth metabolism + random 302 U) q- V" g$ d* H8 i5 H3 C# H3 N( v
set vision 3 + random max-vision4 M- F6 w I& V+ r8 }; j
set wealth wealth + Wealth-inherited-mid]. B1 ?7 O9 F- K, |0 O& d
[ set color green 4 {) b# e4 a0 @
set age 0
- K! U8 u' _7 A3 L0 H! B face one-of neighbors4 , e( o! U' e$ K' p3 [
set life-expectancy life-expectancy-min +
: b2 c$ I$ {$ P+ g8 m _ D random life-expectancy-max + 2. X+ }) R6 k% j. y0 j
set metabolism 2 + random metabolism-up3 y9 z- M1 P7 T9 E/ e
set wealth metabolism + random 30 w7 M; w" n3 |+ P4 C7 T
set vision 3 + random max-vision
' n7 c. ~9 S+ }. M7 k# w0 @ set wealth wealth + Wealth-inherited-up ] ] % y5 P" j& K, p# g2 S
+ l9 S& T/ a+ F$ ~$ W- a Mend
: }# t; @6 M% k1 B8 C2 U( fto set-initial-turtle-vars-wealth9 ~# D! ~3 R: e( P$ G8 o) z2 s" } e2 a
let max-wealth max [wealth] of turtles) p. r, |& B: n6 y/ t
set age 0
3 P% \. T& E$ |/ h: T( z2 \ face one-of neighbors4
( R/ V9 B! I4 I set life-expectancy life-expectancy-min +
) }( @2 X( |9 }5 J1 a7 Y2 j# d random life-expectancy-max 5 G: n$ E, R; I6 @/ R' G" f* w
set metabolism 1 + random metabolism-up, {9 y: v0 }2 I* C# \
set wealth metabolism + random 30) u7 u) n1 |$ b: Z. ^/ S3 P$ D
set vision 1 + random max-vision # H1 y" }) S i$ R
end) f9 p# g. c' r7 K& i# k
to redistribution9 W3 n, p0 M, l: S1 g5 |, o
let max-wealth max [wealth] of turtles+ s& o2 a" P( j" T
let min-wealth min [wealth] of turtles& u r! e4 V$ O( O* }( m( d
if (wealth <= max-wealth / 3)
5 K) M, G5 S! o+ e/ Q [set wealth wealth + Low-income-protection ]2 D& X/ {4 [9 X4 B* p' s5 ^
end
) R! o. y7 V. E 1 u) h) w' _8 d- R0 }- z
to recolor-turtles
8 I K& O T/ }7 `# `5 P) z let max-wealth max [wealth] of turtles
% b$ i8 M/ ?1 ~. |- e6 k/ d% | ask turtles7 X, k5 E: Q8 K- h3 i8 |
[ ifelse (wealth <= max-wealth / 3)3 W- a& l" N( L# d! K. \9 e
[ set color red ]
9 b% _; V9 _/ `: \ [ ifelse (wealth <= (max-wealth * 2 / 3))
5 Z2 h$ p& O0 U0 G- ` [ set color yellow ]% M; t$ l- X( {- @5 g4 c( p
[ set color green ] ] ]1 q+ c9 R1 p8 g3 C
ask turtles [ifelse show-wealth?
3 o' ?, g* O7 K. }0 ` [ set label wealth ]6 W* d5 I) r- n6 a
[ set label "" ]]
) c( d# h8 E6 s: m' N1 C1 a1 qend" ~& w. X) ~6 k0 S8 t/ n
- {4 V5 I0 {# i; O( g7 f) Tto go
# M7 ~+ x) q0 X b ask turtles
9 ?; e2 |- t6 e" Q1 E# K+ z [ turn-towards-grain ] / p$ H! f$ ~ j1 X# n
harvest
; g. H2 E( T6 } ask turtles
- _. W0 Q3 s, w0 @% A [ move-eat-age-die ]) _0 G' p% d; _8 l4 Q
recolor-turtles0 V' O, ?; L( B5 g1 y
if ticks mod grain-growth-interval = 0
* l& D+ y0 d) j6 i [ ask patches [ grow-grain ] ]6 G. S7 d" q4 O) Z$ k5 F
" {$ B7 Y( e$ T$ f if ticks mod 11 = 0
2 I7 k7 v$ P6 }9 N, o+ M( p4 m% d0 w [ask turtles
9 X+ B4 f' K+ t9 N1 G, H0 ?0 |9 | [ redistribution ]]( ^$ \# ^: L' t7 [1 t
if ticks mod 5 = 0
: {4 _# Z9 H) b. z% D& ~ [ask turtles% L w* @& P* t4 o
[ visions ]]3 d2 Q; j& E3 W& M
tick' M- \8 ? L( F0 a, O# J
update-plots
# w$ A; J! j; G" C8 h U. lend: u; t4 q" z2 H n$ Q* _- [
to visions7 U2 V" h2 R' z" x' J+ N
set vision vision + 1
2 R. [0 l# N7 G+ ~5 P1 M9 d1 _6 P4 ]end
. H% e, N2 l2 h/ q1 m% l/ a% k1 s' B$ o, @4 F: v
9 A, j- p: I- m' L
+ g% Q- m: m- f2 I4 Zto turn-towards-grain 9 ]3 }) B. D5 G( y2 T
set heading 0
7 V |7 Q% E" m" [ y2 d let best-direction 07 ~, i0 K& m2 R2 b; }' `
let best-amount grain-ahead0 A' E9 G! L2 V$ E
set heading 90
& K- F9 B( \$ ^) _+ e6 l if (grain-ahead > best-amount). U" k( l+ Z/ ^0 u1 I- m' Q3 L
[ set best-direction 90
0 y; W3 r5 g$ O. d set best-amount grain-ahead ]3 L9 i6 h/ m) t- b) p5 _
set heading 180
& \, X r( L `+ ]# U+ ] if (grain-ahead > best-amount)
, {* ^, G& G/ g+ L+ j8 \ [ set best-direction 180: c' z8 A2 l$ r& c1 T+ ^
set best-amount grain-ahead ]) h, o2 \) z: A; o' w
set heading 270! ^1 v7 Q, u8 K- w
if (grain-ahead > best-amount)
7 u9 Z$ o) G+ ]8 D; x" E [ set best-direction 270
. t$ L0 r- b/ p( `3 Q set best-amount grain-ahead ]' n( d' X& ]: \2 F% k5 T6 H$ C" t
set heading best-direction+ T. _; S, f: T8 T2 a1 ]
end$ y$ ]$ o( n- r2 ?2 J) @, {
. \% Y; K( L' b3 S" _" f
4 D7 L) U8 d3 a3 a- Hto-report grain-ahead # ?9 Z, u, {' \$ B* I! o8 Q
let total 0, G G( @, ?0 w7 ]
let how-far 13 D( z, F. `* S+ S
repeat vision
/ R6 g' _% Z' M# w [ set total total + [grain-here] of patch-ahead how-far
) s- O- _8 x R& { a1 Y set how-far how-far + 1 ], B- M* A5 [# Z1 O' ?- w
report total
, O# c+ Q* \ j9 D" P$ }end
0 Q" ^: l3 h- {, s: d6 s% ^- S1 d
to grow-grain
' w$ S' ?) \# e0 o if (grain-here < max-grain-here)3 |, _; W: R& I4 [# C
[ set grain-here grain-here + num-grain-grown
9 `' s- g* @& v7 H% w* t if (grain-here > max-grain-here)
1 `7 j5 m) o# u# N7 K [ set grain-here max-grain-here ]
( C7 x, f) n: y% v# X recolor-patch ]
9 ]8 g* n' P" G+ _0 y Vend
4 q% a2 E$ Y2 a, h- p* hto harvest7 p* U2 T8 o3 U4 [# e
ask turtles9 e: R& d& [( g8 S$ b/ ?0 w4 q+ k
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]3 H+ D- b c6 \9 k
ask turtles
T3 {" x7 a! p# c [ set grain-here 0
$ L1 o6 O6 N" z8 N4 p* _ recolor-patch ]
s9 x# O6 s Y
, n( n& a, v' `7 @$ v; iend
0 E( h! [4 A5 Z3 ?. x% i
0 U) Q$ X# c& W) U0 l) T! Bto move-eat-age-die " B) c0 X& L0 m9 g6 q9 J' x
fd 1/ D- y8 w" P- L- Z6 b+ N+ T( e1 ~
set wealth (wealth - metabolism)' W+ O0 \8 C2 z! o2 ]% W, N- p: }' |
set age (age + 1)+ D; |. q( w$ G: A$ V
if (age >= life-expectancy)
- R- Z$ g8 _3 `$ m3 y: u) F [ set-initial-turtle-vars-age ]
) f( V7 G- X2 n3 }4 N' G* p( x9 ~" u if (wealth < 0); v% R0 m5 r, q. v- a8 I m5 C
[ set-initial-turtle-vars-wealth ]- O. u' b+ e) v9 a S9 @3 R R
3 ]. Y7 g* j& ?- kend
& ~) B; w, P4 V$ b- ?- Z4 s
7 R# g9 S" \8 C- Y
/ A+ B- {3 ]+ U% W' d; S8 vto setup-plots
8 @* e7 J+ x$ z5 I& X set-current-plot "Class Plot"
! a3 p9 Z7 `7 r9 a set-plot-y-range 0 num-people0 O7 d: J3 U+ Y
set-current-plot "Class Histogram"! k+ [; |8 z: M5 Y# l; ?
set-plot-y-range 0 num-people
- `' x/ p$ ]2 ?) aend
6 P2 Z5 q- B! c; f' @8 u2 F
8 U) L7 M8 [4 _, h( ^+ yto update-plots+ t+ u/ E @% w; g! Z4 H
update-class-plot
- X" P% [4 x: x/ f update-class-histogram
* |9 x9 ^6 v7 ?# ^* \ update-lorenz-and-gini-plots4 }# j, p( D/ n. Q' U* H/ ]
end
4 S. t C1 A" n- A) [0 \* n8 [8 u" g! C& h' @% y7 S# [) s) V" @
to update-class-plot0 N ~5 f8 `6 g, |1 [, m
set-current-plot "Class Plot"
; w5 Y, R' I# V8 J9 t set-current-plot-pen "low"5 p1 C f; W, X/ h
plot count turtles with [color = red]
' o; o8 `/ ]0 w/ o$ y set-current-plot-pen "mid"
* ]. Z/ g, l8 P7 v# t- {: Y plot count turtles with [color = yellow]( D1 Y* O1 H- x g0 }. y* k1 N
set-current-plot-pen "up"
! J8 [- @+ F; [" V) n+ w; h plot count turtles with [color = green] ~4 J7 G; `# ?$ j
end
% M* v. x1 B; J! G$ n/ H8 H/ z1 W }& ~6 e: q, ` e
to update-class-histogram7 U/ e. I/ w* N( I
set-current-plot "Class Histogram"
1 T9 D9 v8 v/ M) g4 y- p plot-pen-reset5 Q2 g) P0 Z* \/ K% M7 P6 I( `8 p9 m& x5 c
set-plot-pen-color red
. p$ N3 U3 H2 \* i( h plot count turtles with [color = red]
- s- U: Q& S' S, B" i5 I% |7 ^ set-plot-pen-color yellow5 R' m7 @+ h" x4 ]
plot count turtles with [color = yellow]" K2 m, U3 o! v1 k. k
set-plot-pen-color green' b; b- N: x) E" h, r7 W
plot count turtles with [color = green]
% a' L9 I$ s% z1 {end
8 Y/ _5 C! d: ~. zto update-lorenz-and-gini-plots
M- D) j: ]( P+ G5 P' V set-current-plot "Lorenz Curve"
b, b) u4 ^4 k2 H, O/ _0 H clear-plot
$ c$ K1 T8 ]' U( ~2 {$ E) k
: i. l7 }% g- [; W; x& D$ }5 l set-current-plot-pen "equal"8 E1 n) a( T8 k+ w# x+ t
plot 0
) N0 E. \7 Z- n- r plot 100
' y! w, N, x% Z$ [7 @0 H9 s8 X4 e3 l' i$ e! K- l# U* h
set-current-plot-pen "lorenz"1 [! x- a# C/ ?9 n
set-plot-pen-interval 100 / num-people& C) v( f7 y& m) i. v- c- D; a
plot 01 d2 O# o$ N, [( F! L
7 N, w/ T; E6 Q" W$ q
let sorted-wealths sort [wealth] of turtles( H% o4 C$ Z) V2 `9 ^( g! v
let total-wealth sum sorted-wealths7 M) W) _# R; d9 d$ M+ ]& j: t
let wealth-sum-so-far 0# ^5 k4 |+ @' O& U+ C: h0 N
let index 06 u$ b) X6 O G; H
let gini-index-reserve 0+ U4 }& G5 z$ ~2 |: d, `- _
5 A1 t2 x3 J5 x% `! A
repeat num-people [
; [- T |" h( m. B set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)7 z7 Y) c# M! z6 D& H& `
plot (wealth-sum-so-far / total-wealth) * 100
2 T! n( S/ L1 N/ @% v- S3 @ set index (index + 1)7 K: U9 |8 ?/ T( @: y. b! X8 ~ w1 e
set gini-index-reserve/ F. P& G! c' i7 p) ?) z
gini-index-reserve +
7 g9 m! d! `2 Z! W: i: s. a (index / num-people) -
( I5 d! y# s' o c4 x( K6 L* |: a (wealth-sum-so-far / total-wealth)" I a$ C" x1 t M( ^& K n" n
] f9 Q+ \0 n* F% J
& ~0 T0 z) _, p- `+ | set-current-plot "Gini-Index v. Time"
+ O, S- a: e# |4 a plot (gini-index-reserve / num-people) / area-of-equality-triangle
4 b; P( e$ w/ F+ Send' |( `; \1 M3 ]; H) t/ a
to-report area-of-equality-triangle- \* P+ n2 x; O, w
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
# f6 n! G, k. n! D) S! H' L6 Eend |