请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现5 W& t) y) A+ v1 ]6 H5 R/ ~) S
globals0 w: O; Y7 ^) k) A" E4 U9 h9 j( P' ~
[1 B6 L$ p# X* v, t' }2 ?: r
max-grain
D0 p# j1 {! b2 E# F5 o! v" C: h) @5 w; b7 L( @* w1 y
]6 j" o5 s% Y4 m) c( G$ ~3 h# y
8 _$ f* l2 N: `& Z( Q
patches-own
4 ^1 l& e; t+ P/ p/ G h N$ L$ t[9 F* F4 g9 `) b; ]# k& r
grain-here ( X3 i) E' j& J6 c: A) y. s- w. p+ a' y
max-grain-here 5 J5 Z% f) ^# k8 O7 p) H. F$ ~
]
, s+ R0 N8 y9 ?9 @( {0 r
4 j+ p+ w0 n+ E- g' b8 Y/ D6 ~7 _# ~7 ~turtles-own# \4 J2 U9 i) M+ }6 `" ]$ t9 ~- X
[5 c( N- l7 y; m
age ! L U! Z ]6 _$ B
wealth
# L1 w3 [, A. Y/ @ x' B% Z o( x life-expectancy
: W* W0 p' Z9 u0 z6 M metabolism ' n. g& z- z* d2 O% Z! ?" ?
vision6 ^" G+ U! v' p# p- k( f
inherited
+ t5 E+ [7 S6 a% L+ v- E) @( W]# Y( ^! k5 L3 F9 m" ~% S
& f$ O( {1 A5 n# }1 K
" \- B- M6 w' }0 a
to setup
1 R7 |2 v7 X) B2 O" ?. u ca
- Q* D w* |# w5 S4 d( _) c i6 Q8 G set max-grain 50
- I$ I) H) n- ]4 T' o setup-patches
9 u, V5 O( G0 y" `3 m, X6 A" F, S setup-turtles
& u, g, x% c p4 v$ T; U0 V. I! J setup-plots5 S/ c8 Q4 L# F; @" p( O
update-plots
! O: x0 Y5 k- T0 n, cend: f0 X5 v6 v) A, ~1 P
to setup-patches
5 E) `' H, ~% L3 f: L ask patches
. b7 p; l2 [2 J& x [ set max-grain-here 0" R8 t- N8 _9 w1 ?2 C4 {
if (random-float 100.0) <= percent-best-land
! E/ _( e! v7 b7 M [ set max-grain-here max-grain
/ ]9 {, |8 E% O set grain-here max-grain-here ] ]% k( B, j; Q/ c
repeat 5 j9 E! k6 u# H% S! @1 j' y- D- Q
[ ask patches with [max-grain-here != 0]
+ T2 k9 B- o. [5 e2 e% Z- f [ set grain-here max-grain-here ] S3 R. {% l7 V+ h# G4 q5 a. z6 F* Q
diffuse grain-here 0.5 ]9 a" E' ~: f/ }) B
repeat 109 h9 Y( @% Q- {
[ diffuse grain-here 0.5] 1 B a5 E: T" O* |
ask patches
& z& a' Y, ?' m1 c. \% L8 |. D9 J [ set grain-here floor grain-here 9 A4 ^9 D9 k' }1 p' ?
set max-grain-here grain-here 6 m" o& W) E) Q) Y n6 }' ]8 S4 @
recolor-patch ]- |; Y- R8 B2 w' a A
end; `3 l- y7 F" l9 H: G* c' r. K
to recolor-patch 0 t4 a7 Z2 U+ o: `9 \
set pcolor scale-color sky grain-here 0 max-grain. Y+ y' U& v* g0 U8 L' L* E2 g
end
* O: O$ o1 G1 p' dto setup-turtles
$ ]+ C I8 N6 J A* j+ y set-default-shape turtles "person"( P" d) u9 n3 q7 A% G
crt num-people% u5 O9 ^0 [$ \9 y0 a& [$ [
[ move-to one-of patches
1 \$ i1 _1 T. u3 C+ E2 ~ set size 1.5 9 X Q: F1 J6 ] `8 D
set-initial-turtle-vars-age1 I9 m# L/ l( z$ [' a) w3 v
set-initial-turtle-vars-wealth7 r7 Z. ~, _0 _9 E) f. x" ~
set age random life-expectancy ]$ \- L) R9 m0 v2 }9 |$ |" D7 k
recolor-turtles
- q1 F, y/ D7 Iend* p: z0 P' X I& s, c, G
( j, o" a1 n. K1 {to set-initial-turtle-vars-age* O3 O) q: j9 N7 I9 b
let max-wealth max [wealth] of turtles
8 L6 K) s% V$ Y" `* U4 H6 `0 h
3 z/ a. D7 @/ k6 L, u ifelse (wealth <= max-wealth / 3)( P/ M0 m9 U( R! }6 E6 [
[ set color red . y4 W: L+ s3 _8 t8 ]$ H
set age 0
0 ?# H; K; M! x. g" j8 g face one-of neighbors4 , J* [' w" U; r* y7 Y$ L5 m9 Q
set life-expectancy life-expectancy-min +
[3 ^2 k0 P: ~9 G random life-expectancy-max
' B* s3 L2 F' h9 q) M2 \ set metabolism random 1 + metabolism-low
0 L" b$ _; Q8 C8 g& y- k set wealth metabolism + random 30
" F' ^3 L: w1 N, ]! m1 Y) q set vision 1 + random max-vision3 Z# x- a; U J" V: {1 a
set wealth wealth + Wealth-inherited-low ]
) r( B6 a! [# [ s [ ifelse (wealth <= (max-wealth * 2 / 3))$ K9 `" K4 w1 E, l5 S$ Y0 z D
[ set color yellow 7 _9 x" }* c" U
set age 0" h$ U% M& k5 |: Z0 D
face one-of neighbors4 2 D) K7 @, X! @
set life-expectancy life-expectancy-min +
& E' P9 D/ L4 j4 q! z2 @ w random life-expectancy-max + 1) ~ D/ Z, K: v* y" h- O0 F5 _
set metabolism 1 + random metabolism-mid
8 K( u0 j- F! ?3 H0 _7 M set wealth metabolism + random 30& Z. {5 `, h8 T! a+ d+ q2 ~0 V! C
set vision 3 + random max-vision8 Z% s/ ~- ?; D0 c
set wealth wealth + Wealth-inherited-mid]
4 ]8 v2 G, v+ l/ ^' t# h; j& U [ set color green 0 a- g# n* {! m: t+ ` h
set age 0! K4 R7 q0 g4 w. ]
face one-of neighbors4
1 y7 V" s5 L8 n set life-expectancy life-expectancy-min +3 I) m! p5 E/ |/ W9 {
random life-expectancy-max + 24 E' t- u; Q' N# O+ I6 b$ h1 x
set metabolism 2 + random metabolism-up1 V \( ^, F8 b# n0 a' P" z0 U! v
set wealth metabolism + random 30
( l. G5 m8 p9 v) Z set vision 3 + random max-vision
4 ^8 J$ A5 h( K7 C set wealth wealth + Wealth-inherited-up ] ] ( I' L; e' P5 r0 X) U! B
( K/ d7 E' D- v8 B' J7 \% i) zend
, m8 z2 _* T/ |1 Cto set-initial-turtle-vars-wealth: \2 a, J- L0 t6 J1 Q
let max-wealth max [wealth] of turtles, E* }$ V* O* R$ N
set age 0/ l# X) C8 r% T+ ^' P2 z3 R
face one-of neighbors4 * F; T; {1 t5 p' B- S
set life-expectancy life-expectancy-min +6 d4 K+ } A/ \7 I5 q* ]* G
random life-expectancy-max
. K! L( Y c& e) Q set metabolism 1 + random metabolism-up
x* ~, b% X0 n% ^ set wealth metabolism + random 30
! k1 h& T7 m, l% I set vision 1 + random max-vision
" b* I& E1 t6 H# B" x, T kend
; T6 G1 k2 ]# R# W/ Q3 Ato redistribution
& r2 _, z8 q" d: |; Ylet max-wealth max [wealth] of turtles5 b1 I1 i! D: r: L( Y# x* q- F
let min-wealth min [wealth] of turtles" K% X! Q( b1 m3 z R
if (wealth <= max-wealth / 3)5 l. f4 G7 }# ?, t8 B: e0 B+ O6 D
[set wealth wealth + Low-income-protection ] G: [1 r: H3 i' V
end
# b1 U J5 H- o
) J: z5 @% O Q6 [to recolor-turtles' W4 y+ A4 g1 W! t- s/ w
let max-wealth max [wealth] of turtles
+ s8 b7 g0 B* f ask turtles8 ^4 _" [* h4 d) v2 g6 N
[ ifelse (wealth <= max-wealth / 3), Q# Y# q3 r ?* M
[ set color red ] w$ \3 P' L) s$ |8 o
[ ifelse (wealth <= (max-wealth * 2 / 3))! \* [2 h9 O; B$ t0 t- T% \6 P
[ set color yellow ]8 r8 f e6 r1 j' q' }/ h+ ~9 ~
[ set color green ] ] ]
$ n |* c& s, T& V# e' \ ask turtles [ifelse show-wealth?
5 V. Q4 M' `6 h [ set label wealth ]3 P# \0 K! I! V+ l( P0 g
[ set label "" ]]9 Y: E/ D; }. G& J8 S& i
end
+ X" E" u; Q0 E8 q7 h0 H) z3 V$ W. G7 Y+ ]6 d8 ]- V2 m
to go
1 Q- e* K( A/ ?5 V ask turtles
2 s$ k# B) Q% G2 B# S [ turn-towards-grain ] + m# n( C3 @; T( O
harvest
7 ^, A D# i6 z8 ` ask turtles1 x, S/ W' T4 G$ l# p
[ move-eat-age-die ]
2 t% k7 }9 G% H/ Y2 K6 S recolor-turtles0 m( a# M$ _' f5 }
if ticks mod grain-growth-interval = 0
5 a; @/ s3 G" u6 Q2 E [ ask patches [ grow-grain ] ]
# `% G* v7 t- J8 a
* N; q' \* U& O$ n8 u if ticks mod 11 = 0* B4 S. u$ _) g/ U, O
[ask turtles
* u( H5 M' S- s [ redistribution ]]' c8 `: t: h& w1 h. a' @
if ticks mod 5 = 0
% q% O* u8 T% c5 h [ask turtles
! `7 I; }5 N% G9 X [ visions ]]8 E! \1 l) a$ C+ A/ f; i! h* D1 y
tick
: v" {/ d( `( P6 ^: G update-plots
0 H! a9 V3 Z; n( I b$ Nend
4 O6 c3 E4 a% M3 S) a4 Nto visions/ ~+ m* S; W' [: a
set vision vision + 1
3 X( I7 e) t2 E" Z/ ?; dend
2 e$ ]: Q& Z j2 j- s$ U% N. w. C& C
2 \8 Q! C; E8 g6 O" P0 f
& I# X9 L# Z8 l6 sto turn-towards-grain 8 b3 _5 G, x* `
set heading 0
4 v- K! K( K+ I) b! j( t let best-direction 0! H0 m3 @6 y, _6 \6 j X& g
let best-amount grain-ahead
6 x6 s) D5 N; ? set heading 90' e$ o: G, b- l- e
if (grain-ahead > best-amount)" N5 F. {" V3 y! a( F" ?6 `; ?
[ set best-direction 90
( Q" J6 N: b/ h2 v+ U set best-amount grain-ahead ]5 }# K# {6 q6 M1 r8 M: b+ `
set heading 180
1 p1 s, S9 ^8 R if (grain-ahead > best-amount) @9 r; ^. P+ l! _* }1 Z: W
[ set best-direction 180: T) q d: K' }! S! p5 r' I
set best-amount grain-ahead ]
# C S$ }9 \3 v! Y7 U$ ?9 { set heading 270
7 b/ ]% U( m. ^! t) \& w/ d if (grain-ahead > best-amount)8 h! S& ?0 e. A; ?2 K) ^- V3 Y
[ set best-direction 270* }+ H$ k, p# ^8 e
set best-amount grain-ahead ]
2 v$ |0 c# Q0 R$ {0 v" y; O/ l set heading best-direction
, T9 ^8 B u' t: c) q. ]end
) b! m7 t% |5 T j
; U/ a8 @% T" W& t% Y2 g
) }9 Z# S2 f/ h+ P8 \to-report grain-ahead . @7 T5 S9 `4 a9 J& M
let total 0
+ G8 S. K# N& G& A let how-far 1+ u& w7 q" Q+ A3 n! a- E
repeat vision* F6 |; e4 t1 W" m
[ set total total + [grain-here] of patch-ahead how-far# j. X' b: z% t7 V3 b" a2 f" C
set how-far how-far + 1 ]2 k4 T4 X! x- I( b
report total
3 [" v }0 }1 B) kend9 ~$ P& c1 {+ J( u5 Q
2 t9 {: X$ }, h; {2 ~/ m/ x, vto grow-grain
0 z5 D8 X7 ~- M* R) N if (grain-here < max-grain-here), |! B! n( Q+ C+ e: M/ v
[ set grain-here grain-here + num-grain-grown* H/ M' i/ i6 g8 ~/ c# _
if (grain-here > max-grain-here) ) p* Y+ B; B. K2 z$ ~. M
[ set grain-here max-grain-here ]1 s. T7 r7 L/ Q1 M# q5 X& @& l: S' w
recolor-patch ]' A: P0 z; @) w! X. d
end" Z/ B2 k& M2 S, X
to harvest4 A9 [& U( S7 ^
ask turtles
: m( n3 n( C6 E$ U3 M. _: ]2 E [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
l: o7 x# k: R9 X ask turtles
0 h! n+ m( Q& L) { [ set grain-here 0( f; z3 P' I& ~) k# J2 e7 |
recolor-patch ]
3 {& Z; T) o7 Y! q6 U0 I6 |' i
j& e! _8 L9 tend
! C. M" Y3 T, s2 h Z4 ^ V4 J+ Z, F7 m7 V- O0 H! L% H8 m
to move-eat-age-die
# X& O9 c7 Q! C: K5 _- u" X fd 1+ P# y9 \7 e. E& {( h9 F5 g
set wealth (wealth - metabolism)5 E4 T& w) K7 c! P
set age (age + 1)
- W; t7 o1 G& d7 R if (age >= life-expectancy)
: R# v* g/ p- A' y; B6 o! w, w* H [ set-initial-turtle-vars-age ]
4 |4 |8 A I9 l! x4 m; o) h if (wealth < 0)# E- p! Y9 c& W% G* q/ b& v
[ set-initial-turtle-vars-wealth ]
0 q7 H: |& L: [0 _ " L* @; o& u' R' j. o" f; i
end1 C- v d+ A4 L$ M
; G2 P- w& `& D( L6 }% s
# Q ?+ w- C. ?! x2 g* E; L' yto setup-plots
: Z$ C/ Q7 c9 ]) A set-current-plot "Class Plot": k5 L E! m; U9 q" t$ s! A
set-plot-y-range 0 num-people3 Z: ~: F) t/ Z1 |( B D" _
set-current-plot "Class Histogram"
7 x" r% u$ k/ I6 _) m2 d set-plot-y-range 0 num-people, P4 x- |" T( {: K3 U, c
end2 S7 i' F0 v' x \! ~' v
! f; K$ ?+ [: |& I: e
to update-plots
/ a! A' u; ~0 ^' a s, ^ update-class-plot+ U4 L7 z* G D
update-class-histogram
; T* ~: L! J& Y& M# @1 U6 W7 | update-lorenz-and-gini-plots
X5 A3 I! J e# ^$ l' b: @% Bend O. X# ? E: y/ @
8 g- f- y3 H7 T# e
to update-class-plot) L1 ^* [. G& J) L! W: t
set-current-plot "Class Plot"+ x4 b. q4 H+ f/ ^
set-current-plot-pen "low"0 A5 S7 G. | _* ~" K& D+ D% z
plot count turtles with [color = red]/ I* W. `( R* \8 ?( ~
set-current-plot-pen "mid"
8 K$ ~5 ?4 H2 a3 f+ i% p$ }1 m8 | plot count turtles with [color = yellow]
5 q# S! v* E3 k$ g; @ set-current-plot-pen "up"
- l/ k; z) F' U" ?! _# {8 } f plot count turtles with [color = green]
& G) R1 S" I' t0 z" n$ k& p$ W& jend
7 {( h% N" |3 M0 N. e( P2 z
" `. k7 f9 L; i0 Y6 R0 \to update-class-histogram: [- j7 U8 a J5 ~& {
set-current-plot "Class Histogram"
6 ]5 J0 A: x" T! Z1 y% q& x% N7 P plot-pen-reset2 N9 W& ?/ w8 r3 _: A- ~/ C$ ^
set-plot-pen-color red! k1 [' v' U6 k- M
plot count turtles with [color = red]
; l' V& y4 O3 }1 _& f$ r! w! |9 T set-plot-pen-color yellow) h I' ^7 V+ D
plot count turtles with [color = yellow]
) R- Y4 _6 S9 F) Y set-plot-pen-color green6 k) ^% X2 F. B$ {" P( r4 q
plot count turtles with [color = green]& {# x6 e& K( S* J! Q }2 @: f
end
! N0 }8 M) \/ _7 k" zto update-lorenz-and-gini-plots3 ]( D1 I& F4 N6 I* m
set-current-plot "Lorenz Curve"
% s4 g- a6 W* y, m8 ] clear-plot( g. {' o/ t2 T/ @- e
) d0 i) q, T1 ~* b6 j$ y
set-current-plot-pen "equal". }$ t k6 }8 g; x9 d. R# I7 x
plot 0
4 N% z- f' Y0 d4 w plot 100
6 C. H$ Q( s" S& I
9 A% Q' A! K( t+ _5 [3 i set-current-plot-pen "lorenz"
. B8 G) y' x! t6 T# z set-plot-pen-interval 100 / num-people, F% B, m! _7 f9 ?9 ~& g, @
plot 0: l1 l+ T: T8 N( G, r6 M( I& h) ?
$ u7 w/ B n7 M* j2 B* T* q let sorted-wealths sort [wealth] of turtles
: J7 r( G. K4 r% l' G let total-wealth sum sorted-wealths
) }" a: B% x- G$ E& K4 Q Q let wealth-sum-so-far 0
- V' _% e. K; F1 P* J let index 0
, h: w9 k }8 z$ C3 h let gini-index-reserve 0
1 d4 I5 B# k1 k6 t' H; K i. t* h( `7 m* g
repeat num-people [
, _, ?7 `) m' v/ j: D" A! f) s set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)0 G7 H$ I% C% A1 m$ \
plot (wealth-sum-so-far / total-wealth) * 1006 w' T; h% o8 C9 M( [1 p
set index (index + 1)- m6 h' x3 I$ E2 O. o8 n2 P
set gini-index-reserve& t( v5 u7 W0 T; R- _9 X
gini-index-reserve +# _& W; d, I$ p5 ]1 k1 j3 r
(index / num-people) -; W! w9 H; C. T/ t$ T; h6 f1 I
(wealth-sum-so-far / total-wealth)- p1 k$ R" V! y( l
]
- [. J" T3 B& \! |
+ g; f- k* u; n6 _* ~) H set-current-plot "Gini-Index v. Time"2 W: v6 [% F3 S+ N
plot (gini-index-reserve / num-people) / area-of-equality-triangle s' ^3 d; B. Y5 V. K
end" s! e. T- M8 k' Q. G2 @
to-report area-of-equality-triangle
# j3 t; j$ s' a' x+ ~$ l( p report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
2 K& d0 i' ]9 F+ O6 uend |