请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现: Q& b1 I* \$ \" L$ k
globals/ A1 A" u0 ]+ a( ?
[# e7 t% p/ w' w9 P9 |) c7 ]+ |! b; v3 ~
max-grain % L8 w6 N. D: e5 y* m& N
5 ]# b; ?. w& t. m- F3 J
]" }! k" L4 C. o: B, }- l# }4 S# `: `
& I. d9 c R, D* Z, [6 ^2 C3 b7 epatches-own1 F% P0 ], {9 V& l2 U" \
[
' s" H o. C0 s- p: C grain-here
z" q5 G: y. K ~" Q4 Z" V max-grain-here 1 n3 H8 \3 |6 A) t6 |( Q9 Y) \
]% t9 N6 R+ R6 Y
4 Q. V) u2 \3 X/ c- Q5 K
turtles-own
. ]5 \; J2 G M- t/ F[8 y8 C: u0 x$ c5 i/ P, d
age
1 I6 E! D) Q: ?. _ wealth
8 G8 G( f1 V1 T1 T# f9 S9 p, Z life-expectancy
! y4 m/ U$ ?3 W9 C$ I metabolism 2 [ S! K" F* k1 p: @6 `
vision
% y+ P5 p: V6 a, g7 m4 Z6 e inherited
) E, j7 c- s. Z5 l$ _. I]
( E3 q1 J# s" A6 X3 `
7 ^9 {6 Z( }& B
) J+ `( V+ {% Q4 a% P& t( c" Oto setup: z4 ^9 b+ r3 S( G( e
ca
( v+ o6 f+ d" e4 I" u" E set max-grain 500 w5 ~7 U# b" h6 O: t
setup-patches
- d. M1 ]3 @, ]. q setup-turtles4 z l* w6 H9 c+ m7 k& W1 z1 }0 I
setup-plots
' N3 u9 ?' e# l3 l# A# K update-plots
/ R9 F0 I! W$ n; a2 @2 eend
) E( i% i7 {4 ^3 r) B* S2 Sto setup-patches
3 z* W( i& p& W* e: B ask patches. j; I- ?8 n* F. R/ ]) `
[ set max-grain-here 0
$ i. x, [" i1 L$ q if (random-float 100.0) <= percent-best-land3 C) ^2 u6 |& R: x, C3 M
[ set max-grain-here max-grain) f4 ?' }. x$ r# }' c1 S C4 Q- X
set grain-here max-grain-here ] ]
, y1 K8 n3 }3 o) n- ^7 X repeat 5
) g3 u% D2 a9 G2 ?1 @/ T [ ask patches with [max-grain-here != 0]/ J8 }; i) e& _& T0 }6 N$ L" s
[ set grain-here max-grain-here ]
0 X2 j. X o3 Y diffuse grain-here 0.5 ], ?$ Z G" Y5 {2 W% A2 g
repeat 10
! T7 k4 n3 @4 ?. ]0 t8 O [ diffuse grain-here 0.5]
, t1 k) n/ }5 A1 P8 X u$ t9 i- Z ask patches
8 U. D8 p8 K; ^' C [ set grain-here floor grain-here
. l3 c4 o: B# o7 z3 x set max-grain-here grain-here 5 r. H8 d2 x; d M/ `1 L
recolor-patch ]" r5 e' ~$ _% q& ] [, D
end
4 |7 R* B3 a7 F' W5 Mto recolor-patch 6 D1 p( Z# N# _* i
set pcolor scale-color sky grain-here 0 max-grain
% t; [1 q4 _0 M1 Kend9 k0 I, |2 u5 A
to setup-turtles
: ]" V( |! H0 x' |& ]0 {6 W set-default-shape turtles "person"
! p6 |9 i: f/ f' u crt num-people4 T& b5 O2 t! m3 P
[ move-to one-of patches " R' ?* ~" S+ C) C
set size 1.5
9 t J0 \) S' Q% P set-initial-turtle-vars-age
; m4 G- O* M$ T/ N/ K set-initial-turtle-vars-wealth1 Q# k6 q& g1 a4 A8 t
set age random life-expectancy ], X, ]! r6 R: o5 ]
recolor-turtles
: I$ X, M& w9 Pend
$ Z* O" s9 {! l& N6 l7 c8 i7 ]# H2 C# p. W; B$ Q. D
to set-initial-turtle-vars-age
' H: @& `1 v% D( {) ` let max-wealth max [wealth] of turtles
6 \' Z$ x% N& S+ s& i+ X0 _ 4 V4 l! {3 y6 W4 H
ifelse (wealth <= max-wealth / 3)
( y4 z5 f& F: F- h: g( m1 A6 L [ set color red
1 [3 C, K; j) o; ` set age 01 Q, M3 _! Z3 U! N, ~" b' D# v
face one-of neighbors4 8 V { F9 {8 \) Y6 i8 K
set life-expectancy life-expectancy-min +6 C; M4 f1 ]5 n/ |: \: B8 ^# j' w- n
random life-expectancy-max
) f. Y; I7 ], P4 D, o8 j& `' ?; d set metabolism random 1 + metabolism-low
: U! D- O- b1 z/ ^ set wealth metabolism + random 309 ^% Y- A& ?" z l, O R
set vision 1 + random max-vision
1 \# n/ a: `+ S( _) N7 Q- l set wealth wealth + Wealth-inherited-low ]2 j% q, X9 g' C
[ ifelse (wealth <= (max-wealth * 2 / 3))
4 z0 a, m5 E# d3 T. r6 O [ set color yellow
; v& y |1 \6 Z1 A' n% A set age 00 M0 k9 D s5 F( u5 H+ P
face one-of neighbors4 % x% x( p7 f' x% D; y H
set life-expectancy life-expectancy-min +6 h+ U2 p" w4 y' c7 v
random life-expectancy-max + 1
$ q! h; K, [; Y2 w* M set metabolism 1 + random metabolism-mid; E" f1 f: b+ N6 [+ k+ ?
set wealth metabolism + random 30% D/ j/ d+ j5 Z4 U: j) Z
set vision 3 + random max-vision1 ~9 J3 U: S; F$ Q) K
set wealth wealth + Wealth-inherited-mid]
3 ], o: Z! d: V) w! a# ^ [ set color green # e8 _3 ]+ }, F. J" c0 `& T) T
set age 0$ ?- h9 U9 l: X* B/ {! x
face one-of neighbors4
* X& ~: x+ a$ z5 W set life-expectancy life-expectancy-min +4 D2 ~! J- r5 _+ c
random life-expectancy-max + 2
' P! t( z4 [# x/ t set metabolism 2 + random metabolism-up5 ~+ t/ x! c2 ^' E
set wealth metabolism + random 30
4 W( W2 P6 ?7 H8 I3 L3 W set vision 3 + random max-vision
: S0 x& g+ c9 f/ S+ W# ~% I set wealth wealth + Wealth-inherited-up ] ]
|" j: n6 O5 g6 I* H 8 T# Y* s6 U9 W- k
end# ?* C- H+ j1 q: [5 X
to set-initial-turtle-vars-wealth
4 w! p) h! Y. k: I9 n* _) ?, J5 ] let max-wealth max [wealth] of turtles
+ o! ~9 q* P5 f- S7 B- `1 S/ `' `# b set age 0
# ?7 i5 O# a* |* |0 D face one-of neighbors4 $ x2 b3 a$ I& s6 f
set life-expectancy life-expectancy-min +$ z! E1 D; D5 e$ ~
random life-expectancy-max
$ O' p9 `7 E: b+ s: s7 I set metabolism 1 + random metabolism-up
E$ j: `7 i- P% L' L& r0 A% |- ` set wealth metabolism + random 30
" B. n& u. y( J& }- d: v/ K. ] set vision 1 + random max-vision
! O5 t. O& u3 @0 B ]0 I$ ~end7 E- y. A5 ?9 N, S& c: N# ~
to redistribution" b: n( E0 {: `" _2 K
let max-wealth max [wealth] of turtles
( T/ K5 [* t' \9 N9 _let min-wealth min [wealth] of turtles6 ^# ?* {" a% \
if (wealth <= max-wealth / 3)
9 U% T. U# t1 z! e* Z2 u [set wealth wealth + Low-income-protection ]
9 ]/ P; A$ b' H+ c" e- Q) y& Qend: g! r% E0 ~) z: a9 _% H
( w" f4 m+ r6 Z0 P3 u1 R* P
to recolor-turtles( K3 d b9 v& A' K4 v, R
let max-wealth max [wealth] of turtles
" V+ `/ G9 y# D$ M6 W ask turtles
& E( N9 H% \) y$ k5 K [ ifelse (wealth <= max-wealth / 3)
5 }$ I# @! e( r/ s4 C" l9 J) i; M [ set color red ]; u. ?0 h; S8 H, t1 G A
[ ifelse (wealth <= (max-wealth * 2 / 3)): n/ @ g$ e6 ` @5 i9 Z
[ set color yellow ]
0 K' X7 F# l) i6 g% s% ]2 H' | [ set color green ] ] ]! z. R1 w& C/ j
ask turtles [ifelse show-wealth?
7 n2 \" i2 v" A3 W [ set label wealth ]
B. T' j; B, g. ~9 ~* K) L [ set label "" ]]
/ G* J" D x- N/ Zend- t8 \- o( L0 b$ i9 l2 g v
- \; S t) [" m2 I
to go
4 S( K5 K& W8 `$ | ask turtles- C0 w5 C0 n5 _' d( @+ W: x
[ turn-towards-grain ]
y% Z) G9 s" B" @/ e `' G harvest! e" F# ]$ _! S) N
ask turtles% c8 ~2 R* W: K2 M/ m% {/ R: Z
[ move-eat-age-die ]) `' K- ^1 M4 @, X7 b: j; s% i
recolor-turtles
! v' z1 o2 t+ P! V. h* d if ticks mod grain-growth-interval = 02 b; C9 c p0 {$ }9 `$ J
[ ask patches [ grow-grain ] ]
2 M- u# O( |0 v2 ]# } M : ^0 k0 O, y9 m, D; ~- _2 t
if ticks mod 11 = 0$ b6 t3 b- V4 r4 _: v6 s# n
[ask turtles
5 D( s6 ~, B* b) o+ [0 t+ x' Z+ y+ X [ redistribution ]] ~' e1 N. Q- q# M6 m; ^
if ticks mod 5 = 03 X0 A. I7 g2 M/ X0 ]" m( r
[ask turtles4 d% k5 N& o: l) `8 i% v- j, Q) a
[ visions ]]- A D2 z ~3 e
tick" H* |9 A/ U/ [0 L( A: N8 x
update-plots
1 V" s# k" [' z7 c7 L4 Dend
% z' ~* `- F( Hto visions
2 I' ]1 Y8 K) Z6 D set vision vision + 1 , o- B* }- |& D/ d) R6 n( f
end7 q: f3 ~- q5 a# G2 b
" \7 S+ ~/ T9 P% l9 ?/ z) P" V3 b+ c
* {7 P9 e/ n5 J m
4 s) f2 R+ X; k
to turn-towards-grain . w0 D* z4 y; P T
set heading 0
0 E Z) J; |' S let best-direction 0
7 y( i- ?* i# v& S let best-amount grain-ahead/ P! k' r! I) J9 e7 C. f
set heading 90$ D8 N9 I# k2 j" T" S/ s# k
if (grain-ahead > best-amount)# H! V0 d$ I( v
[ set best-direction 90
0 ^6 M, Q+ l4 K, {1 X0 [ set best-amount grain-ahead ]) t. h$ G! c' q: r% ~
set heading 1803 K2 X) K0 L# {6 a' b0 i
if (grain-ahead > best-amount)
5 G+ N3 H6 N; W. n. _& T1 n1 Q6 Z [ set best-direction 180
9 W$ M+ N' _$ `, v; t$ A( J$ D6 f set best-amount grain-ahead ]
; c* r6 D% V) G set heading 270
! W5 f( b' H# [4 Z* C" T3 G+ v$ G: x: S if (grain-ahead > best-amount)
$ |8 f2 h0 W# X, D [ set best-direction 270
% j$ _: b' t/ F( ] set best-amount grain-ahead ]
' j# K* x4 W6 o4 [ set heading best-direction
0 W: w! C& B2 s9 q% Mend
5 g2 v9 ]# B9 H
: q0 Z$ V9 Z5 \$ Z
% Y5 z! }7 T5 M9 v) p1 i j" Fto-report grain-ahead # g$ J5 C$ v( z
let total 0
' H3 K; v5 W5 f0 z! D/ }" i let how-far 1
. f! p, a- D+ Y5 D) Q4 m repeat vision' @) D% e5 \4 c' b* s; e
[ set total total + [grain-here] of patch-ahead how-far" F) X7 \" x( p& X T
set how-far how-far + 1 ]/ a/ s# |6 z% F& n* D
report total% T W. E4 z& i+ J2 s/ } w0 X2 @4 c
end
* b. g4 J; y5 g% I J# J8 H$ _
0 h9 v/ ~! m* V5 \to grow-grain
7 d2 A. A2 K0 \3 y! E2 P5 ] if (grain-here < max-grain-here)
3 C2 ?$ C, G; D7 _* x [ set grain-here grain-here + num-grain-grown- y: Y2 l8 x# |& w7 `2 J
if (grain-here > max-grain-here) ( j4 w: t N9 s8 N/ D* D+ U# R
[ set grain-here max-grain-here ]" {- ]5 O: y4 h
recolor-patch ]
9 E" K+ U( R1 g. ^. jend: i$ S2 u8 X5 Q+ L+ b6 m: n
to harvest+ F9 ]) O$ o3 K
ask turtles
2 f8 O" i' Q$ M [ set wealth floor (wealth + (grain-here / (count turtles-here))) ], A, m8 Z; j3 y8 m3 H' z
ask turtles8 b$ v+ N3 z1 G& i) k1 j
[ set grain-here 0
* H* B; P4 x7 Q. d5 Y @6 h recolor-patch ]; b/ ? b }; T3 Q
X5 C1 W: J. {- D
end3 Y. N4 }7 }8 A! w$ B
' t6 N' F u- |" |
to move-eat-age-die 5 `! M! a2 S. P+ s7 o
fd 1
9 w+ Y" `2 Y: n& r* C6 r set wealth (wealth - metabolism)
2 n1 d* w0 x* f$ f/ { set age (age + 1)
+ s, b7 G( e5 i- x6 Q; F3 N' p7 P if (age >= life-expectancy)
/ I$ l$ y6 ~; P. T( y2 X# U U4 f. I0 W$ Y3 K [ set-initial-turtle-vars-age ]3 w' B" q0 l, ^9 f( [
if (wealth < 0)
J- c( k7 Q4 L" s! e [ set-initial-turtle-vars-wealth ]
1 U4 Y& U3 P3 w( l
/ v" x1 m) O! X0 s4 k uend
! d; w9 l1 L- X: |; `) C0 g# S3 E, _+ I/ |+ `- h2 b
. v( X- d! i* t/ O: j! Z* }, Vto setup-plots+ l7 d5 E, y& i! x7 s7 N
set-current-plot "Class Plot": R. O- z" d- @7 V- [
set-plot-y-range 0 num-people
3 g( A. ^1 Q$ S set-current-plot "Class Histogram"% c v! }) H0 x
set-plot-y-range 0 num-people
: G+ X/ e$ W# ^% i' U! wend/ W* P, M6 H- x4 X* s
! L: {8 r+ p# V3 Ito update-plots. k6 K r3 G3 j+ W5 f" n
update-class-plot
) [2 l+ `; I% I8 y' | update-class-histogram/ y# t0 j z" M4 d6 t7 c) y; W
update-lorenz-and-gini-plots
4 {- X( G) f& t V4 H4 o3 p5 ?end% \2 l9 G- X& ]0 b
! \. T$ |! N& i8 Zto update-class-plot) ^. e/ o. P7 q
set-current-plot "Class Plot"
- U3 n$ Q. N" ?( f: c set-current-plot-pen "low"
9 @1 e- U. I- k- f! V5 ? plot count turtles with [color = red]5 ~9 R% |1 v/ {# B
set-current-plot-pen "mid"8 J- r8 u9 K$ r4 C x
plot count turtles with [color = yellow]! s. ~! |% a. E( F0 O/ n
set-current-plot-pen "up"" x2 m; ~2 {' x* q, Z: d4 o1 C
plot count turtles with [color = green]( L" b( A* |- t4 h( G3 ~' c: B
end
+ i5 L# w3 `* _0 |. f* }
5 o( J: X/ U! uto update-class-histogram" ]& s' S* l1 H# m- Z9 h' t2 y
set-current-plot "Class Histogram"
* X/ K) S( F% z plot-pen-reset7 g. \' j. q, U0 }9 V3 b
set-plot-pen-color red
+ Q# K0 M0 p0 C) b$ u$ @ plot count turtles with [color = red]: a; T" r5 ~/ n2 |) N! W$ s
set-plot-pen-color yellow
- s2 Y/ H% N, S4 P& V) ? plot count turtles with [color = yellow]- L- f n* b$ d1 e$ D" \
set-plot-pen-color green9 P- J6 m: G7 I. s
plot count turtles with [color = green]! U: m. z v$ Q" I
end! _5 O o# X, B4 @' Q
to update-lorenz-and-gini-plots
# \8 u5 S* [0 b e: K set-current-plot "Lorenz Curve"
8 d" r1 Q8 C: {1 e& @* h# x1 U clear-plot
5 }3 o3 [. Z9 t; \
- ?2 G* D) t/ ]' G set-current-plot-pen "equal"
4 [4 g& \1 W' D- ]- \$ O- K plot 0% t$ Y* `& B+ z" n1 r% J6 r8 j! C
plot 100
6 K9 N: r0 P) O8 z$ h* b- |% r) @$ n! o+ j7 h
set-current-plot-pen "lorenz"# Q' L2 R9 c+ `: _0 T6 ^ z
set-plot-pen-interval 100 / num-people5 ]' K% Z. y* G% u, r; R o- ^
plot 06 W" ]- a. @2 `' i4 B, T* y* X
9 c0 ^% C% s1 F let sorted-wealths sort [wealth] of turtles
! h, O5 c% ?8 J( z let total-wealth sum sorted-wealths4 t) _. A7 g/ }5 q" V
let wealth-sum-so-far 09 ]8 j% d. t; R, I; }
let index 0
/ K8 I: ] Z0 k7 ^+ K# i, @' v) h let gini-index-reserve 0
) X3 E+ Y+ x( i! t- |" f' _+ |
# k' ~4 K [" r4 k# P# w9 M2 z3 ` repeat num-people [
+ n+ d* u% b3 _) j |! _ set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
4 x$ i9 [ l5 e5 K; J2 e1 [- K6 Q plot (wealth-sum-so-far / total-wealth) * 100 `( x) \2 l1 ~. k( E8 I3 ~4 W4 N
set index (index + 1)4 x M6 |7 Y% f! o( c0 R
set gini-index-reserve* r+ k; D' N6 {4 ]: Z, t
gini-index-reserve +
- N' n: b/ I" a7 T (index / num-people) -
q& p+ S& \4 K j8 l" x8 m" n (wealth-sum-so-far / total-wealth)% t1 [$ I0 k' h+ b9 S
]/ @7 G* Q% ?9 Q9 ^$ z0 o
: O4 C! l( Q: i: ]! t set-current-plot "Gini-Index v. Time"
, ~8 O: I9 e* d9 K# D plot (gini-index-reserve / num-people) / area-of-equality-triangle
7 o% }7 g3 N! I# H8 B5 T, ^: w$ }7 oend/ Q2 P& X+ b& u
to-report area-of-equality-triangle' z: e6 b- Q) c. Z
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
; X; l) e) ^, |3 }" Fend |