请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
0 i, X9 @* i+ I. G7 Y- wglobals2 v( ~( G1 j. _% {' {* `
[8 y6 `% D; e+ c7 \- N7 q8 ? B
max-grain ! V3 i( u+ d; H8 A- v( G9 j( a
+ J, X5 I; B: X$ ]
]
* U0 }2 J; o% `' }5 B7 Y( v" Y C
# F" s2 c+ ?% k9 h2 c: Opatches-own- `) x% v* K. H3 Z
[
/ K' h7 V) @; r4 ^* v+ g grain-here 8 G( x) d; y% ]5 X% |
max-grain-here
7 x- R6 W! w( W& \]
( x1 k/ b, G! _6 ?5 G0 Z S- }" X% `0 A1 D2 L) m* D
turtles-own
& C$ s2 \% l$ z# ^7 v; V) c M& M+ s[& `( E7 y* h! m+ V2 G# @- _
age
5 h7 y( s% K n% E. H' A wealth 5 i" F" H1 \9 `# g
life-expectancy
3 L. U; T; ]! C+ c metabolism 0 C7 N, [4 z3 h3 ^' h5 C8 E
vision; d/ h4 X2 R! w( I2 C2 T
inherited
* ?% S2 v: S5 W% E]
+ V% U: e8 G+ L3 z: k& ]1 G* {+ V p; j. S% q( N- k
+ E! T# W7 j# t% [. }- nto setup
' Z4 T F( k( `6 S9 P. C0 ` ca
5 o0 K0 q, O N set max-grain 502 P- T$ N& s: x" q4 H/ H
setup-patches
{/ w, P# L( \2 ` setup-turtles% i( u0 d% F3 y% R
setup-plots
$ J4 |( t1 j4 ` update-plots0 ]" R# o/ Q2 e& J* J) A; H" Q
end
3 W4 E; y+ B" |$ |to setup-patches3 k# ]8 M% ?6 L5 Z; G! M
ask patches9 w) @) }9 k( h9 J/ g
[ set max-grain-here 0! {) q8 G" g& K' v4 z
if (random-float 100.0) <= percent-best-land
8 A0 p9 A- ?& ^5 K( C. P [ set max-grain-here max-grain
4 b( Z5 g* R9 q set grain-here max-grain-here ] ]
2 a% ^. D2 G5 O- Q+ u repeat 5
& ?- H. G& I7 l# @; t: G [ ask patches with [max-grain-here != 0]
4 X: U9 a" I/ Z6 f! q; H/ N [ set grain-here max-grain-here ]
& {- ]7 O. r( f% z diffuse grain-here 0.5 ]
- `3 B, o& R/ m5 Z/ K1 D; f% o repeat 10
4 d `& p* D9 V1 |; H! w [ diffuse grain-here 0.5]
. C% d0 B" X* j- |# {- G0 t/ S9 ~6 U ask patches
& A) o9 X4 V/ u4 Q2 s [ set grain-here floor grain-here
, u' t7 y, l/ M2 b1 f$ m set max-grain-here grain-here
$ h& ^5 w4 s3 D0 q& C) R recolor-patch ]2 \2 m+ M9 J- j( z: |' }- }
end
% q9 i* q5 H# ^8 J' r; Pto recolor-patch
' h) t& k! V N set pcolor scale-color sky grain-here 0 max-grain
% t4 O. _' U2 ]9 {+ Q7 g: Q+ oend" Q4 e6 @: j0 I
to setup-turtles I. \( F) i Z* M- [
set-default-shape turtles "person"# u1 D* b5 a1 d, z8 G9 `* r
crt num-people
* }6 k; j, K* Q# s& A! A7 s2 J$ j [ move-to one-of patches 3 N \: J9 N9 k& V3 g5 ^
set size 1.5 ) s ~! ^/ v$ u! | i6 M
set-initial-turtle-vars-age- v ~; Q5 u8 _( n* Z3 \
set-initial-turtle-vars-wealth& `+ o" \" R8 o1 ?$ H; p! {
set age random life-expectancy ]% n z) D3 w& V
recolor-turtles# H) K* H- @ H, l' Y
end
0 X: p6 T. j4 A' c( ^, _- R
7 u& _- W4 ~1 ato set-initial-turtle-vars-age1 P% D% R n, J# o2 v) d* b7 A
let max-wealth max [wealth] of turtles! y3 W+ Q: o" ]% k
- e" R6 N& E4 d+ P ifelse (wealth <= max-wealth / 3)
" i, x$ D; f- @4 U [ set color red
9 Y+ \( `. [0 G7 I1 ]3 ]" t! B set age 0- R5 q- u+ l3 w) a, g1 F
face one-of neighbors4 # O$ \$ r3 X- f5 s. T
set life-expectancy life-expectancy-min +8 C" w' W5 X1 T$ p
random life-expectancy-max
9 N8 b$ A* o" P4 O set metabolism random 1 + metabolism-low! `: `$ H4 l7 W. ?0 p4 A
set wealth metabolism + random 304 Q9 Y Y/ }, ~
set vision 1 + random max-vision
i; x4 ?6 W8 b+ z9 p set wealth wealth + Wealth-inherited-low ]
$ y9 l9 s4 N7 }* U [ ifelse (wealth <= (max-wealth * 2 / 3))' o) D. k* A# c3 X+ J4 Q
[ set color yellow
+ P. V4 r! h+ v* U3 F0 U set age 0# E2 w" o7 ?. I1 ^' _. p2 d
face one-of neighbors4
% l6 k: D4 k* h2 V' K' K set life-expectancy life-expectancy-min +& F: Z8 d& e* H( Q$ V2 C h9 q/ {
random life-expectancy-max + 1
; J0 |# d( n) o0 F" i3 @3 }4 [9 c set metabolism 1 + random metabolism-mid) p* z6 C+ J! x/ s# m8 b5 \
set wealth metabolism + random 30: p3 I2 G2 z" ?2 A9 ?' b
set vision 3 + random max-vision! i9 d9 Q/ p/ M9 ]& K0 z/ s+ Y6 E
set wealth wealth + Wealth-inherited-mid]
1 g# X. X" s. D, A0 h" E8 `( o3 I [ set color green 1 o3 u- X- G8 U+ N( G& W
set age 0
! Q% E; G- w6 a% @0 b7 _; O5 A face one-of neighbors4
8 n, a5 Z+ Z9 i" [3 r set life-expectancy life-expectancy-min +5 _6 S6 O; p+ x" N8 ]
random life-expectancy-max + 28 V1 O$ z" d" @* _
set metabolism 2 + random metabolism-up$ O: }/ L p- q! g* C: v
set wealth metabolism + random 305 b: g& M* d h e. J
set vision 3 + random max-vision
, @6 n- T" |1 u9 I) p set wealth wealth + Wealth-inherited-up ] ]
4 n! M0 \( [) V4 N5 c* T3 J
% `8 ]3 a& l1 H; S; x5 {end
1 Y& D* ?$ g1 n+ Xto set-initial-turtle-vars-wealth: n% ?8 G& G1 W6 T1 ~# _
let max-wealth max [wealth] of turtles1 q8 C; p5 D! ^+ v u
set age 09 {3 |( P+ {' P6 Q
face one-of neighbors4
/ c8 L: X3 X2 l1 n( b) j8 T, w set life-expectancy life-expectancy-min +
X! \( W3 \9 U; x random life-expectancy-max ( E. p3 N9 `! h
set metabolism 1 + random metabolism-up, N7 E5 F0 W- y4 ~' v
set wealth metabolism + random 30
4 V! c0 x2 o0 ?/ {8 I set vision 1 + random max-vision
' K2 M9 @( n; G# uend
7 ]. Y6 _9 }: T* X( G5 @to redistribution
% s/ {% ]; @ S0 Y: t: dlet max-wealth max [wealth] of turtles
: s o3 j1 D' ilet min-wealth min [wealth] of turtles8 R' X& y) R( N* j: e9 t
if (wealth <= max-wealth / 3): f/ k' J7 G: h E; r6 R
[set wealth wealth + Low-income-protection ]
* I: @& b5 b9 ~2 C( F4 lend5 B% ~# S$ }# M/ L) B7 k/ E" q: I9 D
6 Z0 Z0 j1 \ [+ i1 R; C
to recolor-turtles
" A4 t7 [. _3 u0 P+ V let max-wealth max [wealth] of turtles
( p! R, V. a. {& s& `& k7 x ask turtles
; A% K8 X ]2 r( _ [ ifelse (wealth <= max-wealth / 3), M2 Y5 ]7 m. g8 |
[ set color red ]
1 _, J N# c8 |; J" J5 m [ ifelse (wealth <= (max-wealth * 2 / 3))+ c3 ^4 l, }, d; Y1 M' u
[ set color yellow ]
/ _( B' t* P" ]5 p7 F) Q% t [ set color green ] ] ]
9 y! ^& z+ T9 n3 M" X ask turtles [ifelse show-wealth?9 x; J5 }$ a% q. b4 i
[ set label wealth ]) ?) V, L3 R. i0 C* V! z% N P+ d
[ set label "" ]]4 ?: v% N9 u* r2 L
end+ S7 |0 F. {; S/ H: I
3 a) N2 |$ M1 c4 {' r# ato go* x% I/ J1 F J0 F
ask turtles* y+ o, N. T0 U) j7 S8 A9 ]
[ turn-towards-grain ]
9 g$ X, k. e; j# ]8 V harvest7 \% C7 z1 ~. P" _7 O$ @2 s; u
ask turtles8 h( W+ G" c6 I! `0 {' S
[ move-eat-age-die ]& t& ~ m# ^: L0 L' w
recolor-turtles
; l- ~4 g2 y5 J' L# c if ticks mod grain-growth-interval = 0
: Q6 m% @! n( k9 K! k' [, \+ d [ ask patches [ grow-grain ] ]
! i+ _; ^) n1 p! e3 P& J7 q
0 a& x/ a. S0 x% V( N' S5 V F if ticks mod 11 = 0" e. E/ n$ y- Z( Q
[ask turtles
& p/ s& p5 K% P [ redistribution ]]
+ y9 v! E8 r; D1 ? if ticks mod 5 = 0, d* ^6 l8 ?# w1 a
[ask turtles
) n: C& U1 U. d. i! ` [ visions ]]2 v; D& n5 i) `, Z
tick
! G/ b2 x D+ M( B( W- R- D update-plots
0 _) D A5 p# p$ q* W) w6 x3 z; ]end
, Q, v3 R/ W; ?. b8 kto visions
3 Q( }) c3 r: S set vision vision + 1 : m7 F& E! ~2 e; a2 `' U
end3 s6 f4 _' u4 C; {- g) _2 k
' R' r# l' S# Q2 _% S, r' I' K
" D) a, h" O' H2 n$ I* I) {% m3 ]( R! R& ]5 Y; c) z, a8 B. i& D2 j
to turn-towards-grain ( F( ~, G7 ~, ~6 H$ ~
set heading 0
& _# [& Q9 i ^3 j let best-direction 07 a& q2 ]" g0 y! n& l
let best-amount grain-ahead0 ^. P$ L1 |5 K* O
set heading 900 N# M8 T ]& y& L2 l. \
if (grain-ahead > best-amount)" W+ a- `. v7 _. i6 q- k& R
[ set best-direction 902 t/ h: J9 F3 M1 H1 m: B
set best-amount grain-ahead ]
$ O* u* Y3 Z0 f/ y/ ?' T7 A& n set heading 180
$ E+ ]! w5 V% L* w if (grain-ahead > best-amount)9 ~6 G. A% T4 M5 L& J2 [2 g& D
[ set best-direction 180+ i/ ]# u9 \: }. Y% V |1 J
set best-amount grain-ahead ]( R3 a% Z1 r+ C* a
set heading 2702 H1 g) D, u: {4 g a: i
if (grain-ahead > best-amount)7 \& i1 L9 e/ b& o; x. y7 c
[ set best-direction 270& I# K; t$ ? ^9 g( D* `( x! D
set best-amount grain-ahead ]
3 E* S, Q9 D) R/ n& R+ @7 U set heading best-direction# Q+ z4 h( G$ |! {' f
end9 {6 C6 z3 ~6 Z; C( w" [
+ C3 @, G$ i' X F+ t4 m( {+ I" R8 S( X4 D- }8 y# t) u
to-report grain-ahead
; y: l6 ~5 t- r& j let total 0' _- c& p5 L& F" Y) H( W: [5 l
let how-far 1
2 h" l1 S. Z6 @3 `# E repeat vision
# T- _, ]6 ^ N# m$ `! W [ set total total + [grain-here] of patch-ahead how-far
7 d& \4 y; o/ m* `' [9 l set how-far how-far + 1 ]( K+ M( u) [) i, m8 v: t! U
report total; }7 v6 l: ^* U0 T/ H
end
& i! x1 M/ K4 u! i3 n
& l' ^# Z4 s1 `' C- R7 V2 A ` B, jto grow-grain
0 j- r' J& D3 R, l' q if (grain-here < max-grain-here)
" }# M# `: V! t1 C' U5 i, |, P0 S [ set grain-here grain-here + num-grain-grown, U2 k/ D* ?, I' A5 ~/ O; Y) X
if (grain-here > max-grain-here)
' T2 L# l5 v/ n2 W8 F. A [ set grain-here max-grain-here ]* }. e* Q% @' A6 {: ~7 \- b
recolor-patch ] \6 D5 M0 |$ Q& p6 d
end
6 T, E& {, r" N5 N, Pto harvest
- M# i( _7 l K6 J, _0 S: j( O$ z3 \ ask turtles
( I$ U; D& b* u [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. n9 t5 J" `/ i( T
ask turtles
, E9 x9 r* x# L5 o [ set grain-here 0
% w( d$ I7 e$ N: b recolor-patch ]
2 [8 j* b W7 J X' c x, _) R+ _
0 b& {$ h) H6 e: H! N+ nend6 L! {; p/ L B1 k
( G9 O1 s1 i$ Y7 U
to move-eat-age-die
, B2 {0 Z2 U/ s c( @ fd 1
4 G; y! d, D u( c: g/ u set wealth (wealth - metabolism)
* M$ u0 {, M# O- z set age (age + 1)5 R( }& x" o: N* O% {+ W
if (age >= life-expectancy)
4 Q/ M9 R) B4 ?3 ?3 k1 S* A8 p [ set-initial-turtle-vars-age ]
2 w7 v/ K. f: [; M1 q6 N if (wealth < 0)1 t6 E: m* n5 i3 P% m3 ^
[ set-initial-turtle-vars-wealth ]0 r w2 V1 e \) n4 y! a
: a+ a3 M1 y: H7 l' g
end. y5 d4 R; A, y9 d0 r$ y
A X1 S7 C: o4 M$ a, ?7 ?9 a. ?1 r$ W2 b8 o1 D6 M6 i+ w. g+ U
to setup-plots
- x: @2 J |4 z+ v set-current-plot "Class Plot"
0 k7 p5 R5 m/ g8 f H' l set-plot-y-range 0 num-people
' _# E) T8 Y$ X0 E, L0 J set-current-plot "Class Histogram"8 }% }* V, f5 b' N
set-plot-y-range 0 num-people: R* G/ ~ p+ V* F* d% A
end2 L( y& v1 w4 l- ^6 f- Q; C+ ]
# |2 P# n$ c% {/ cto update-plots6 {* S) H9 }, {# f
update-class-plot- z6 N" l( X( C D7 w
update-class-histogram% _" v, s0 a% q
update-lorenz-and-gini-plots
1 f3 E6 R" y n5 Pend
: d8 n; Y& y: h3 Y6 z4 j; o% ?
. [% t+ T* ?+ L- ]( h6 u! l {1 @to update-class-plot8 D: S/ s6 |% g6 h0 J
set-current-plot "Class Plot"1 o# M8 B% A/ A: X5 m
set-current-plot-pen "low"- a" l1 W" t7 h$ d; }0 @
plot count turtles with [color = red]; D; k: C7 C6 O' m0 f
set-current-plot-pen "mid"' Y) a$ [ ~1 I2 \
plot count turtles with [color = yellow]
( _; R$ ?, ~1 \4 T- }0 Q, ~5 E set-current-plot-pen "up"7 d/ ~9 t# X+ l; [9 u, d- m& l
plot count turtles with [color = green]
1 T9 z+ ? F* gend: ]# }) ~# ]! p! }) y! U4 d: x/ w
# T, l& t, p0 Y% g i, eto update-class-histogram# j) j- ?9 v" O8 i# X: u
set-current-plot "Class Histogram"
5 {. ^: L# J8 H/ r plot-pen-reset6 z1 q- ^% b3 M- U( O
set-plot-pen-color red% J: v0 k! b- J
plot count turtles with [color = red]2 _ q) o5 k! |* Z) d. w! Y9 M
set-plot-pen-color yellow; |8 {- |4 E: V, ^) I
plot count turtles with [color = yellow]& `5 Y' o7 g8 H7 m- b1 |( ^. D
set-plot-pen-color green% i, F7 F; z, {7 W1 O3 W* p
plot count turtles with [color = green]' U" y, [6 o" U! Z' e$ b
end; a8 Z b: |+ T+ s
to update-lorenz-and-gini-plots0 \) _$ A: H( G+ e/ J
set-current-plot "Lorenz Curve"
! a/ [, `- ^2 g6 {* K5 M clear-plot# c; [4 x/ b k" ?4 Q% o
8 M# l! d9 x. d c9 |3 F% `3 T
set-current-plot-pen "equal"
a' {( Q$ m, Y9 q plot 0
# Y. H3 a4 f! N. u% u) g' K plot 100/ |2 _2 I7 X# a6 u( B. v/ H2 k
# p" _+ n* f4 ~+ Q- `2 I
set-current-plot-pen "lorenz"
+ X6 E, L, @2 Y* g2 }6 { set-plot-pen-interval 100 / num-people6 k. G( O% v. t! v) T1 M& M4 w% z/ _/ ^
plot 00 R' h4 P( l: H& W: N" ^! {. {
! A) [8 ^; }# X* Y' M# A6 }1 W( Y
let sorted-wealths sort [wealth] of turtles
" L5 Q# }' q! T& p& d3 ~ let total-wealth sum sorted-wealths
* t6 Y- @3 y' _ let wealth-sum-so-far 0
: i3 }. ^5 F! i3 A let index 0% v6 [/ u+ W) J/ q! a
let gini-index-reserve 0
3 G2 I/ {8 y* \" |4 k
0 `7 |9 L L: l; X& b" g2 P repeat num-people [ I" H, y* s$ \6 D$ B0 p: q
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
5 ~4 @4 m1 K5 w( ^ plot (wealth-sum-so-far / total-wealth) * 100
+ \7 N) G. n, u9 \. s set index (index + 1)0 I+ m3 w0 q) F( _
set gini-index-reserve: r5 |- j, o6 B3 }9 I$ Y7 v# }! ?
gini-index-reserve +* T! C# n6 m h/ @8 ^) H( ?; ?
(index / num-people) -
* P9 T f ^0 E' [+ c (wealth-sum-so-far / total-wealth)
" `) l; ]% [. e* i* F p ]
% s/ Y; h1 t0 F8 x7 H* u( z# v" p: `1 I
set-current-plot "Gini-Index v. Time"' l/ m: J5 X, Z8 H2 [6 y: m+ L
plot (gini-index-reserve / num-people) / area-of-equality-triangle
# C% A5 ?( ]7 F7 T. l5 H& `* Send: a6 B& u- ]7 ~9 U0 Z; v9 Y5 @8 `
to-report area-of-equality-triangle
9 F# j4 L+ Z- V2 N1 f6 X report (num-people * (num-people - 1) / 2) / (num-people ^ 2)3 G5 N9 |2 P6 a' Y' u- R) G
end |