设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6596|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现7 L' E* E9 C$ E1 i
globals
  l& r5 B: b+ [! K! a6 l[0 P( `  U* C- y* o% `
  max-grain      r6 b8 @. N& V7 R
/ f. q3 E; |8 I+ ?
]
* \$ @  H. c: Z& {1 d/ ]. D) U1 i( i; t' X9 \1 G4 C
patches-own+ q7 W) T6 c1 y" a, i% p
[( I2 y8 @( D% c, w! [8 i; _8 Y! p
  grain-here      % v9 H; b6 h6 O, }) S/ l- Z- q
  max-grain-here  
, U+ {& Q8 {* ~]6 W; T3 K2 R6 A

* v9 h. H2 {1 R: ]: Kturtles-own0 G$ D! b% c# B5 F3 Q: v% ]
[
- T1 H9 e, R+ ^- A" u' X  age              
: A8 G; x) I- h3 o2 G8 U3 r6 @; |  wealth         
% q4 I, P. T, k5 R9 j+ h  life-expectancy  3 n* Q/ l% B, `$ }
  metabolism       / B" t, b7 t3 g. a) F: [
  vision
/ N- {4 O: m/ H2 {  inherited         * z6 I. N: d! i
]
: t, v! z0 v+ [) c& P0 M# ~7 \$ p5 H' z2 o9 `2 c: @

) V& x" t" R3 u. }5 r  o" Sto setup
/ P6 `; b1 p/ A+ V5 i; Y5 d! Y  ca! N! S+ `" V$ F4 X6 {% F
  set max-grain 50
# L+ O- m( A# Z' q  setup-patches
" F# b( t, H3 @$ q  setup-turtles8 s3 s- N9 `3 I, f( r2 A& U2 D
  setup-plots% r; _) W# K$ f
  update-plots
/ |. N) h) |0 d5 ]( Hend  ]( o8 ]6 d: Z8 w/ P' q7 b
to setup-patches7 W4 I& C& z: U1 v* p3 g  n
  ask patches  P1 i" n$ \, |2 j' }3 ]  H, s
    [ set max-grain-here 0+ c: `. q: {* q# P
      if (random-float 100.0) <= percent-best-land
8 J; I/ y& d. P& p* o4 ^+ q        [ set max-grain-here max-grain
, Q' J7 t& h7 a* D: \$ s; m          set grain-here max-grain-here ] ]& N7 K* g, r& M$ p4 g- e# W# k
  repeat 5: p" p7 m5 I* U) i- @
    [ ask patches with [max-grain-here != 0]6 _" x5 |) Z  d) K8 W: E) z, z
        [ set grain-here max-grain-here ]2 V+ C4 r9 b) c5 s/ a
      diffuse grain-here 0.5 ]! W; P- c0 L+ q, o
  repeat 10$ S+ w0 {1 B# K0 N' B/ V6 N
    [ diffuse grain-here 0.5]          - e6 }# z5 P' O  u
  ask patches
5 @5 M; X/ y. l# N" v" \% E5 O& z    [ set grain-here floor grain-here    : V" g1 J, J) z! w1 B5 l2 [* }7 }
      set max-grain-here grain-here      . }) v5 o0 [1 l) B- p
      recolor-patch ]6 t. S, e* R. Y; o! I
end1 U- l4 G# j9 z' P* ?( \8 v9 A
to recolor-patch  
+ F; N  u6 K1 h5 f  set pcolor scale-color sky grain-here 0 max-grain8 w% G4 Q' z4 N; L$ |' T% [- m
end! C) x0 Q. R6 y  p8 r
to setup-turtles- h3 q0 O' k! A% }2 T0 m
  set-default-shape turtles "person"* _4 ^# m6 W5 [
  crt num-people
4 U+ u8 H; n' b+ L$ o    [ move-to one-of patches  " _) W3 X& n! d; C. J
      set size 1.5  
# Y8 I* X5 M* `# c- ^. P      set-initial-turtle-vars-age& l/ b8 h$ M5 G$ Y, E
      set-initial-turtle-vars-wealth
! f. q3 y$ j) ?      set age random life-expectancy ]2 T5 `1 f1 d5 u# x" J1 c1 ?( `7 |
  recolor-turtles
; B/ }: o, r% z  p, T9 m' tend
2 B3 E: a- g* r5 x6 o3 d; r) ]  @) D7 X) w9 B; Q
to set-initial-turtle-vars-age
* Z* {6 B% l" o7 }0 R let max-wealth max [wealth] of turtles/ K4 j: \* _$ x, w9 }. @7 w7 F
    ; G: G; s1 {8 u$ i
     ifelse (wealth <= max-wealth / 3)- l0 m' Q% D  @4 q( t9 f" f$ L8 x$ I
        [ set color red 1 e, q5 c5 G6 B% S
          set age 0' W3 t; D$ l- l* t; `% o
          face one-of neighbors4 5 M6 G7 s8 z$ N1 l
          set life-expectancy life-expectancy-min +5 y9 [$ T1 O0 ~9 b3 ]- x( _' |
                        random life-expectancy-max
1 f9 }( k8 i3 b5 @# }, [          set metabolism random 1 + metabolism-low
' e7 \; Z4 o( G8 @          set wealth metabolism + random 30% k6 @9 V! t5 h6 |' T! W
          set vision 1 + random max-vision
, a; q0 W9 a. f' Z2 h6 E" D9 }6 r) d             set wealth  wealth +  Wealth-inherited-low ]
! ]- f3 [, A* Z  ]2 Q6 z        [ ifelse (wealth <= (max-wealth * 2 / 3))2 g, a% n% e7 A5 _0 T0 i' ?# t, o
            [ set color yellow
5 F9 u9 C  e& F% g9 K* ?              set age 0- [; W& y1 }* f# W( }2 i/ o
              face one-of neighbors4
( l4 Q3 x- m9 r: U4 N' w: h* z              set life-expectancy life-expectancy-min +/ M- q. {' n$ M7 ~) w% {. K6 |! N1 O
                        random life-expectancy-max + 1
8 A" Z7 O9 u1 v# d$ U/ M4 p: I              set metabolism  1 + random metabolism-mid( b! p) c. P9 e
              set wealth metabolism + random 30
# y4 m1 ?' `! B+ d) f5 ]1 ^              set vision 3 + random max-vision
+ c! t; M3 @- s6 u9 G; k' p                set wealth  wealth + Wealth-inherited-mid], ?+ H/ l2 j, h( S; X- L
            [ set color green " c; P, T1 a! x/ p7 g/ U
              set age 0! m: Q0 f4 b& G. `( q% C
              face one-of neighbors4
6 Y& l' i  T6 G1 d- n0 u              set life-expectancy life-expectancy-min +
; d" F9 O) O* b: I/ F  D% h                        random life-expectancy-max  + 2
" @# Q8 ^: y) Z( ]: F0 d: r' e              set metabolism 2 + random metabolism-up: D7 R' j5 d) \
              set wealth metabolism + random 30
0 s; V+ o: P9 n6 V) ^1 ~8 I: \              set vision 3 + random max-vision3 Y% b2 X. z: a; ^$ _/ o/ d% o! b* ^
              set wealth  wealth + Wealth-inherited-up ] ]
2 }& ~) _+ Y  H4 f  T
" ]  _  g1 \1 D* o7 C+ z2 R. h. Fend
  ~, ^) o! P( `to set-initial-turtle-vars-wealth
6 G0 n' v# p4 B6 G let max-wealth max [wealth] of turtles
  W5 l) m9 g/ d, a/ z# d          set age 00 A* m+ m6 z- j  {$ ]5 {4 r# E( e- Q
          face one-of neighbors4
$ w- @! |* ^7 D" D          set life-expectancy life-expectancy-min +" s% w: g# J) O1 t. r( c4 w
                        random life-expectancy-max 4 V9 Z' }( y* \
          set metabolism 1 + random metabolism-up
7 Y0 h1 P# C2 v          set wealth metabolism + random 30
4 ?# W, ~9 d4 V4 ^7 X$ b          set vision 1 + random max-vision
, S6 o; N; s6 b1 |8 b7 Z# Hend
) _8 q8 ]# a3 S$ S5 Mto redistribution" G% f  X+ y" ^/ E& }
let max-wealth max [wealth] of turtles+ ^+ `2 j8 U$ D7 u% K! X
let min-wealth min [wealth] of turtles  ^9 `8 d: M1 x( a; g. w5 J/ E
if (wealth <= max-wealth / 3)
5 _( j# r9 v: v; j [set wealth  wealth + Low-income-protection ]
+ ]) D7 Z: l  i# H, R5 ~) Gend
2 ]/ E2 r. X. O# h: }# N7 I4 R         
5 A( I8 t% m/ ~0 uto recolor-turtles7 ^% P$ E" b# A+ i- K0 Y
  let max-wealth max [wealth] of turtles) i/ |& Z/ U" _9 D
  ask turtles& D& D3 I* E" w2 d
   [ ifelse (wealth <= max-wealth / 3)
6 W% g+ }  ^! i5 M0 ]        [ set color red ]
/ E0 x. ^' Y; z! N$ w, |        [ ifelse (wealth <= (max-wealth * 2 / 3))6 V) h9 K9 ]' C, Q. N
            [ set color yellow ]6 ^, e/ h$ x  V/ z( l( Y% s' h
            [ set color green ] ] ]9 V; i* I- K) k$ p- E  _6 U5 b7 Q; p
ask turtles [ifelse show-wealth?
+ k" k/ V6 ?( Y  q6 B! Z    [ set label wealth ]- _0 P7 h/ G0 i9 l: F
    [ set label "" ]]8 n1 A8 H4 \5 {' q
end4 d" o, z5 F( K: k* S9 x

8 m* q! Z) a& E8 r/ W, t: Q2 Fto go
; x% c) b" I! M+ D: K/ {4 N  ask turtles
) T6 S/ B( c' T9 H    [ turn-towards-grain ]  ' o! q  O8 h$ w: p8 S. F/ e9 ~8 ^# B! B
  harvest  I5 v' P8 A% d" O9 u
  ask turtles( e9 {9 h9 k0 C* ^* o) @. h
    [ move-eat-age-die ]0 S& e- G' }0 U: y( \
  recolor-turtles
; y0 n! L7 t2 ]/ W% A  if ticks mod grain-growth-interval = 0
: u5 f7 ?! s" l2 I, w    [ ask patches [ grow-grain ] ]. Q0 Z6 |" t5 L0 u' L- ]
   
! q/ s9 s: w- _7 [1 q  if ticks mod 11 = 0
: l5 O4 w1 `7 a/ a  [ask turtles
0 B) m% p- C5 V( `# j- h6 w9 _! O  [ redistribution ]]
, O1 D$ R+ c/ E  if ticks mod 5 = 0
9 x2 i/ X3 k: K   [ask turtles
' b, ~5 T4 K6 X) X1 E# h5 R: J  [ visions ]]
) q2 j; D' i" W8 z. t3 I; }  tick
% ^% W0 h; h; _4 e; \% T  update-plots
0 @- a3 Q' D  \* |end+ P6 H5 ^; A2 R9 d; w: f
to visions
+ _5 J% l  D" E8 A/ D4 e; V set vision vision + 1
% I8 ^" D2 u7 `" Y0 E/ {end
; f+ H" x5 y& B  g2 U' ?3 c3 N: k2 t: S: l0 r/ @
" ~2 W, a: {/ Y* b9 r

8 i8 ~# `7 T, e8 m, T, xto turn-towards-grain  
/ T  q$ [/ t: S" U, |& h  set heading 0
2 A# O) ^! v6 f+ k, {( }$ Z3 i  let best-direction 0! A1 W5 {, M& s# {" Q1 c3 K
  let best-amount grain-ahead% w" |0 e- R, L1 p7 `$ T% p8 X
  set heading 90
1 q4 u: E/ K, U! ?7 H9 @1 x  if (grain-ahead > best-amount)* O' C! X3 R! n: I6 E
    [ set best-direction 90
' _* V+ @) m4 P# D# I      set best-amount grain-ahead ]% W, j9 {) B) n0 x
  set heading 180
) q( f' t% v8 l  if (grain-ahead > best-amount)
; t0 i  p  w" k! a    [ set best-direction 1805 o9 h( O3 V7 o( A1 d- i% ~
      set best-amount grain-ahead ]
* H0 E$ g; l3 S% ~  set heading 270
( ?; o9 q" }, I9 i6 g( l  if (grain-ahead > best-amount)
# ?' W9 Q6 ~. t* m- M    [ set best-direction 2700 w+ R2 `2 [: Q% E( I3 S
      set best-amount grain-ahead ]
0 e3 B9 k& \( t! |/ d. y- i  set heading best-direction
+ J8 w/ Z2 O1 |/ m5 O) o# iend2 U. E' L' N2 {& w& L
5 f) _/ T* k. ^, y0 j
% P* i* C2 I4 s5 ^% t
to-report grain-ahead  
' T& H% i2 o! I; N- \  let total 0
! H0 \+ V; Y7 p$ C  let how-far 1
4 y' j, Q1 \$ @( m) Y/ c  repeat vision
$ y$ y' q" V6 T5 u' B    [ set total total + [grain-here] of patch-ahead how-far
3 I& ^2 h9 J) V) i% r      set how-far how-far + 1 ]* X7 k  Y9 s2 A6 n; o
  report total
1 D& |& i* Z  L. `end
* F5 D6 l9 P' j+ ]+ ]1 m' R% Y" a1 E  d2 X# N# R
to grow-grain # J6 n4 \5 H7 M' r
  if (grain-here < max-grain-here)
4 g* K% t  r4 H# N    [ set grain-here grain-here + num-grain-grown
0 i6 _3 l' d1 j      if (grain-here > max-grain-here) 0 R% B# @/ ~, P7 ?/ A+ c
        [ set grain-here max-grain-here ]
" D- m! t# R# o& S' q! X      recolor-patch ]' ]; i- J, r( D+ y- r# P- O* u
end( M5 J, |$ Y2 |9 j; b/ S4 R
to harvest- Y  r" h6 U4 v
  ask turtles4 P( U$ M3 j6 O. {& k9 ~4 R
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
4 ^6 l) K0 n0 y; G' O! f  ask turtles
7 x- k- M0 s4 R' _+ p5 q2 q    [ set grain-here 0
; }& D5 [5 g0 ?) `" x      recolor-patch ]
( a/ m# i: }) C# `; _' b  
0 t4 a) C0 ^4 M$ I: eend
. g$ I7 w% P2 R$ Z
# H8 ]% L/ G- p3 `) P1 b- Ato move-eat-age-die  
2 L; W$ S. g! R6 {) O8 b) n# Y  fd 1+ G4 ^' n6 m( k! F8 p2 I# f# `& ]
  set wealth (wealth - metabolism)  q% X9 ~1 P# I( E! c
    set age (age + 1)- Q3 ?9 U) l" ~/ y
  if (age >= life-expectancy)# I) ]4 g9 c7 g
    [ set-initial-turtle-vars-age ]
$ w7 m- [8 l0 q" J" {" o  ]: z  if (wealth < 0)& S3 C- ~$ S, V  i* U2 \) D; R
    [ set-initial-turtle-vars-wealth ]8 U5 n8 _7 S; y( j/ X
   
+ |, {; f# j0 ~6 t& Lend, f4 i& n& b! T$ Y2 P4 S
# [( k; e2 t/ z+ S! e7 i3 A- ^  w

5 N, S2 K% C- sto setup-plots
" d4 h0 O0 V, Z. [  set-current-plot "Class Plot"
& e, K# r3 D8 L. M- A  set-plot-y-range 0 num-people$ Z2 C$ A3 b, b# f/ G
  set-current-plot "Class Histogram"% y" \5 h0 G5 k+ F( R
  set-plot-y-range 0 num-people( t/ ^2 J  x, X% i3 u& h( y( H9 @; w2 Y
end: q, b' Q4 W) f

1 C7 o5 Z0 B" _+ |3 n3 r2 yto update-plots0 X  n- ^4 l0 h* B
  update-class-plot6 e  n" [6 ?0 v: q+ f
  update-class-histogram
% S, T! `8 s: Q* z4 |: K) g! L3 Q5 E  update-lorenz-and-gini-plots
! W; [: {$ z5 J$ {) l  }+ dend
$ Q' s2 @' q6 v+ ]( o: c7 _1 _; d, e( b9 _, {* ?  X
to update-class-plot4 y, @+ @& o; V4 I- _
  set-current-plot "Class Plot"8 N/ r) y4 |3 T3 l! ]& Z& O8 S6 M  W
  set-current-plot-pen "low". ]  j( B* z4 O# Y9 q, I
  plot count turtles with [color = red]
) j/ D$ O2 M" ]) }8 H  set-current-plot-pen "mid"; n: ]% c+ j& y0 `/ _# f( k, B
  plot count turtles with [color = yellow]/ h$ j9 x4 \! V8 M- F2 A
  set-current-plot-pen "up"
& v% f6 a, {# t, `0 i) L. B  plot count turtles with [color = green]* t# W3 Q; J$ N3 v% }8 p
end
+ K6 A$ n" ~3 a! A/ c2 Q) t( I; y+ l) Y, [
to update-class-histogram' j+ i( `% n" X+ V2 A/ A; Q) ^
  set-current-plot "Class Histogram"
! C. v9 T$ h- j0 f( N1 ~. s7 T' J" e) i  plot-pen-reset
1 y: x; R: s7 `7 F  set-plot-pen-color red+ }( J" I, L& ~3 u
  plot count turtles with [color = red]6 {- s7 k3 g9 b) j/ o
  set-plot-pen-color yellow9 k: g1 N. r$ ]5 d& ~/ g. F
  plot count turtles with [color = yellow]
4 p" t6 {& E7 l, |* _" }. [+ t0 z  set-plot-pen-color green
% \) ?4 o! D) Z4 c9 T  plot count turtles with [color = green]( v7 X4 C4 ~- I' W& ^/ K$ m' ?  e
end
9 r8 x2 o  c' m" |& |9 q" Cto update-lorenz-and-gini-plots$ e$ e* R) w* F$ U' o4 a
  set-current-plot "Lorenz Curve"
' h7 f/ \) \% F  clear-plot
& }' Z; y7 j+ J* x7 n
& g9 }. O* l8 B. s  set-current-plot-pen "equal") E4 G* k! O3 `7 f
  plot 0
  O& ^% s- E" C  plot 100
3 n$ [! K4 h# v0 R5 C( z1 B- d' B
7 N* A& e, w1 C! I  set-current-plot-pen "lorenz"$ {% }- E; o+ i0 L! Y: j9 d. ^
  set-plot-pen-interval 100 / num-people/ u' y5 F0 ?7 i* p
  plot 0' X# ]! B+ z- Q1 `8 u8 L" c2 f

$ ~! m& o+ A4 v  }0 v4 J+ z  let sorted-wealths sort [wealth] of turtles
. o! y( A9 @$ F$ G1 F+ ^0 z  let total-wealth sum sorted-wealths
  X9 d3 {1 l6 I' u  let wealth-sum-so-far 0
) H8 g) C: t: I7 ]. u; \- J  let index 0
' P: c: V5 S' x2 P5 n  let gini-index-reserve 0
% F( ?# _% _! \9 q0 z
7 H1 }' r$ g* t/ B( p9 S( a  repeat num-people [
4 I9 x1 c5 Y1 p. S, [9 U  \6 `    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
% h% e2 t' ], R$ B# Q! s6 ^    plot (wealth-sum-so-far / total-wealth) * 100
7 L" j1 L3 s  p) ]  {4 s4 g8 d    set index (index + 1)* c/ q9 e5 _, K1 N
    set gini-index-reserve
$ P5 N" {  i& W      gini-index-reserve +2 T- p0 ], [% z& J
      (index / num-people) -
+ n) L' b& s4 S! h1 j# B      (wealth-sum-so-far / total-wealth)2 ^# \( ~6 s* M+ m9 j
  ]. {0 b- d; G( F0 H- e2 {

2 F* s7 ~5 Y* @+ t- {  set-current-plot "Gini-Index v. Time"# g. c- u; L) {7 ?1 L: ]
  plot (gini-index-reserve / num-people) / area-of-equality-triangle0 x' N: \3 ]. |0 G' U! `
end
( g2 i+ X6 s3 u7 rto-report area-of-equality-triangle
) W! \# L" X7 C5 Q( N- j9 n! J  report (num-people * (num-people - 1) / 2) / (num-people ^ 2). }* s) {# n: J* l- o4 `* q+ c
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-9-18 04:34 , Processed in 0.016066 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表