设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7203|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
, ^2 s* M5 {4 `% x" z5 T6 Fglobals/ v6 ?0 q: ]3 W4 R3 o6 N* j" O
[2 A9 V: u! R9 o  \- P2 C
  max-grain   
; N- q% H/ I/ W2 Y2 U( S
: n0 X+ }" l' b& J]
8 a7 U2 P) T# S$ m
2 g) \. f% t* Bpatches-own- V* ]! ~5 ^; X( I+ G, v
[- v, d  l7 o+ D
  grain-here      . X/ y6 g/ T" l: C) ~9 v% ~
  max-grain-here  
$ s$ }$ \% a" x' i! y$ \) f# _/ U& d7 T]
/ Q9 L$ ~$ a4 ?, B) N  D' o! D9 _, \
turtles-own& z2 k* V) l5 o
[6 d( j& h6 d$ c/ f/ X% T6 ~) o$ i1 `- u
  age              2 j. ^& r) t/ }" E7 h5 l/ }" T8 [
  wealth         
8 Y$ L( Q4 k8 b" I; x! K. x  life-expectancy  $ \9 H6 b. v) W
  metabolism      
8 G, T! L& T8 T# {, \  vision
7 ^5 I, O3 a6 g0 G  inherited         9 P0 t' M  R. i: o5 @
]- Y3 `7 M# V* O) X; _, O

# L  V# Y  Q) S: b( ]
7 y" T! f  y* i' p9 r+ Kto setup
0 o$ P% C- X* ^1 F& E0 y' W  ca0 _" [) C  s0 G( J
  set max-grain 50
1 h2 M$ r! W: d1 Z% h7 f2 }  setup-patches
$ J* ?$ [' D& A" |7 ~, R& X  setup-turtles
+ r9 k, k! V1 @2 X2 ]* y  setup-plots
& Z- m& x! ?. C. ^, H# ^  update-plots
% W  s3 D3 |1 R/ |/ `1 Xend5 l# u7 I2 o% z! v: r
to setup-patches
8 X8 H9 O  Y1 y" [% W" T  ask patches
) o, m5 u7 J; c, m4 \    [ set max-grain-here 0
+ |- \7 H/ I+ ^$ f7 U" t  G      if (random-float 100.0) <= percent-best-land6 q. k$ C3 m! W( G: I* q" N
        [ set max-grain-here max-grain' M* v, [( Y0 X, c6 I# M, y! l3 d
          set grain-here max-grain-here ] ]
. D% z# w) z. D  K! P1 q5 K  repeat 5
7 b: u3 L$ n" b9 W+ ~8 f' u    [ ask patches with [max-grain-here != 0]
1 b+ v3 F7 {8 S( P5 `% t, A+ i. H& c* t        [ set grain-here max-grain-here ]
8 o4 r  q4 d% F) P      diffuse grain-here 0.5 ]
2 H' W1 ]% C; x$ D: o' B  repeat 10) N1 q  q) r' O. }. @: ?- E
    [ diffuse grain-here 0.5]            N' O% O( \( |0 |" V
  ask patches
9 i# t; v+ O; T7 C* f8 v+ y    [ set grain-here floor grain-here    $ C* \$ K' J6 X( ~) a5 I
      set max-grain-here grain-here      
& `% @/ P3 A2 W      recolor-patch ]/ S9 K) @% R. M" F
end' i& b, T( x5 W1 B8 w6 ?8 }
to recolor-patch  # [- V' @) i$ B& k
  set pcolor scale-color sky grain-here 0 max-grain$ x: s; b. Z6 @5 l+ o
end
' b0 _) ]3 \4 y. w+ O$ y, Hto setup-turtles+ V! M8 P2 V) h' Z* l
  set-default-shape turtles "person"1 F9 T  V6 Q& p9 D
  crt num-people3 q2 |8 _" z( z- K  H- G
    [ move-to one-of patches  
2 a; Q1 i/ |% [& l+ J2 l! W/ R      set size 1.5  
( b% R- E' c4 Y      set-initial-turtle-vars-age
* Z" W+ t4 e/ o- |% c  }+ i, F      set-initial-turtle-vars-wealth. v# Q. L) Z* J7 t
      set age random life-expectancy ]! D, U: Y  @  I) j7 S
  recolor-turtles  L; D$ n& r' M' V; n7 b
end, R: w5 ^, P4 N3 h6 Z, P
4 I# X- w9 W5 Q' U# d; ]
to set-initial-turtle-vars-age5 {$ m* A6 w5 Z, U4 p. O
let max-wealth max [wealth] of turtles; B8 Q& a( Z' D, S' Q% i
   
; G+ k/ ]4 Z& R     ifelse (wealth <= max-wealth / 3)
8 N/ K9 B. M4 f& q        [ set color red 8 L2 i/ j7 O, j, i( [% @
          set age 0
9 d1 B6 B; B7 ]% j9 I9 @( V          face one-of neighbors4
5 _+ H3 B; V4 k2 b" Z          set life-expectancy life-expectancy-min +& _4 k9 l, Q/ H
                        random life-expectancy-max
. [/ O) A3 I2 O- q% e$ a2 W          set metabolism random 1 + metabolism-low- {* F; |$ X0 q- s, A3 U; g: B
          set wealth metabolism + random 30  i1 I* Z8 i+ e3 {) T( J( H
          set vision 1 + random max-vision! X6 t; e) C0 L. Z. N9 |) v1 w7 |
             set wealth  wealth +  Wealth-inherited-low ]+ @$ u9 v4 b/ h2 o7 U6 |: ?  a
        [ ifelse (wealth <= (max-wealth * 2 / 3))
" {. P- m1 P- n+ x. K3 `  d% O0 m& p            [ set color yellow 3 ]  E6 G8 b$ o* g2 D0 H
              set age 0! T- v: T* O( [! ~; c* p# {# J
              face one-of neighbors4 9 P: S% g6 u; u3 N* s% |1 K' _& i
              set life-expectancy life-expectancy-min +
8 d! e8 x5 [0 Y3 C* q' C6 \2 E                        random life-expectancy-max + 1+ T# c+ U/ n$ W# S& [  o
              set metabolism  1 + random metabolism-mid$ h+ m- x/ ]# K2 R: q
              set wealth metabolism + random 30
. ?8 A& k! \6 W& c+ |              set vision 3 + random max-vision1 J. f6 s9 O1 B: L
                set wealth  wealth + Wealth-inherited-mid]
! [+ H7 Z0 G1 H+ V: C5 I: O" C( S            [ set color green
: O: S6 J  K- A1 D0 ^- s+ A              set age 0
4 E% @' e, v7 V# {, w/ E              face one-of neighbors4 : m+ K7 E+ a! p5 W& A: O
              set life-expectancy life-expectancy-min +
4 f' a: @/ X% i1 A1 Y                        random life-expectancy-max  + 2
2 E0 w  P: N/ m. u8 Z              set metabolism 2 + random metabolism-up
& w5 b# Q1 b+ t, X, {              set wealth metabolism + random 30
* A$ s' o+ v6 {. u              set vision 3 + random max-vision
- a+ \: l; w" j' p              set wealth  wealth + Wealth-inherited-up ] ] 9 ]+ v; n" _$ h( r% H* A

4 }: |& Q/ S! }3 q  F6 `end
( l+ v. z3 Q4 C2 N( Sto set-initial-turtle-vars-wealth
2 k' x" l7 s2 Z( F let max-wealth max [wealth] of turtles
8 H4 w6 W+ J6 U9 e: V' c, q9 H          set age 07 T/ y' h* p2 b  j6 Z$ ~7 G# |
          face one-of neighbors4
& P" q* e6 [$ V/ ^) M" g+ h2 W          set life-expectancy life-expectancy-min +
! P5 T! `2 Z4 M7 [+ \                        random life-expectancy-max & C2 C% N0 \4 \/ B: O
          set metabolism 1 + random metabolism-up- c, u' g3 V9 k4 r/ a2 W, G6 v% p
          set wealth metabolism + random 30
9 b  k! @7 y5 e3 ^- g) @          set vision 1 + random max-vision
2 Z8 U$ }1 f! Z+ v: ?  ^end
, |' }$ J& q0 I( \9 _5 Hto redistribution6 s$ o! r3 F  H3 b) q* h2 t
let max-wealth max [wealth] of turtles
0 r1 K; M7 b, c/ Zlet min-wealth min [wealth] of turtles
+ o7 X0 f$ U6 D( L/ a! }if (wealth <= max-wealth / 3)
* W) O7 ~! C" ~. `5 u2 Y, r, i/ T [set wealth  wealth + Low-income-protection ]
; f& v' a8 H& Aend, B- n1 \/ N/ m* {6 U1 L
          & a( U- Y: q; W7 r. ]& O- H
to recolor-turtles
0 v( ?4 t0 ^) F  U! u. c: K  let max-wealth max [wealth] of turtles8 U0 E# L  _4 A3 @1 ^& l
  ask turtles8 A3 c$ B! ~9 u1 B0 n4 |7 q$ e! _. R5 g1 ^
   [ ifelse (wealth <= max-wealth / 3)
. |  `, f( g9 s( e; p( t        [ set color red ], N; o- C* y, e8 Q" @9 g1 G
        [ ifelse (wealth <= (max-wealth * 2 / 3))' W6 `4 P/ V; Y* Z  o
            [ set color yellow ]
/ T/ O; e: ?0 V" |            [ set color green ] ] ]1 P) N- [" e9 r) |" w- g. T
ask turtles [ifelse show-wealth?
% u7 U7 C5 J0 p, A* D    [ set label wealth ]
( Y+ f, E  }" Y- V; ~    [ set label "" ]]
7 S/ p' \7 c5 ?( W# tend
' J2 ~% `9 N! p2 X0 A/ g# Q! j
* u' w0 b+ e. x, F3 u' Bto go* `2 H+ J+ p2 \6 k
  ask turtles( w$ z# F2 E5 Z) p1 m) F
    [ turn-towards-grain ]  
% y/ B- I: ?  A) U% C0 T  harvest
" A$ Y3 ~% |4 i3 B) F+ {  ask turtles* Y8 Z% F' R6 {+ Z+ y# G9 ?3 z. K
    [ move-eat-age-die ]9 q! K6 [+ F! B. W$ n2 C, n
  recolor-turtles1 P5 j: h! J- D2 o
  if ticks mod grain-growth-interval = 0% C: [  [0 |3 e* G4 w7 @
    [ ask patches [ grow-grain ] ], _. d. ]8 M; n
   ( _: l2 h4 C/ X1 \: Z8 \
  if ticks mod 11 = 0
+ K9 g- \! n8 W, z7 P0 C6 C  [ask turtles
9 v7 a# i+ l3 X, N/ n8 S5 P  [ redistribution ]]
% D5 j( ]+ p! I: @  if ticks mod 5 = 0: Q' x0 Z% \+ C; @
   [ask turtles, A) s. X4 a' k+ W9 X
  [ visions ]]
' _$ P7 ~5 ?; N" ~% X3 c  tick
& {2 }: ^8 M: k$ z0 Q2 v1 Y. k  update-plots
: E) r; k+ T8 h. Oend
; y2 Y7 O# v! Y; C' o! qto visions
# e  [: p4 ^: G set vision vision + 1 0 ?5 w8 u' y' J  {3 }
end3 w$ p0 \5 P  K$ F6 H+ W0 Q8 z
& ], Z$ M$ W; o2 a: W4 s9 t
. s/ ]+ c- N+ W8 j
8 b5 _' Y& Y6 s& E9 t8 L" i
to turn-towards-grain  
* `; f0 o. }3 [  T5 X  set heading 0
) A! S6 ~' ]' R) S! S1 X  let best-direction 0$ U3 |& g8 [( V9 ~- O5 v8 O
  let best-amount grain-ahead
' X  q- r2 b# R2 b$ @' {' i; S5 {  set heading 908 H1 ~2 K! m4 q/ W( e6 O1 d
  if (grain-ahead > best-amount)
; p+ P, J# F$ ?    [ set best-direction 906 [- g& ?/ i( b' `  k
      set best-amount grain-ahead ]! f7 ^! P; }  ]0 z) I
  set heading 1801 Z7 I+ Z& G- o/ O
  if (grain-ahead > best-amount)
' g9 O+ L9 k+ ]5 I! ]) t    [ set best-direction 180
1 p' x  j/ r5 k+ q/ D3 a) P      set best-amount grain-ahead ]( V7 X5 ?1 `7 H! }; }7 ]: Z
  set heading 270$ f; \! w2 w, ]" D; h0 @4 ~
  if (grain-ahead > best-amount). f' m; z' ^. w) G0 G& E
    [ set best-direction 2700 `6 }+ j$ g& q5 P( I2 W: ^
      set best-amount grain-ahead ]. }6 ]7 W6 g5 G9 Y
  set heading best-direction4 x( f+ b6 ?. F
end% d: D5 U( T) r; ^
# D& I, a/ A0 Q) P
8 `8 a2 ]8 d+ v' z' E5 u
to-report grain-ahead  * c' Y' t& ^4 B* \- f; e
  let total 0- F8 Y2 U6 A- o- ^+ h$ @
  let how-far 1- _6 J" Y1 ?( Y; F& v
  repeat vision
. R1 D3 P2 R  T    [ set total total + [grain-here] of patch-ahead how-far( ^8 I4 c/ h, |
      set how-far how-far + 1 ]
- c* c( t' c% O/ l  report total& d* L& ]  m) {0 Y
end8 G' M: C, t5 ?) ^/ M2 b) D+ u

) L0 L+ l* X- v, Y, Y: d5 vto grow-grain
0 E. \( A( n, W  if (grain-here < max-grain-here)
2 F3 x! A- U" X( C    [ set grain-here grain-here + num-grain-grown
8 N" T/ d9 _5 Q* }9 L      if (grain-here > max-grain-here) ; d& Z: w! x& @- k- {
        [ set grain-here max-grain-here ]' }3 y9 T2 U* r( t$ k  H
      recolor-patch ]
' a6 _5 y9 a; |' lend1 [# |9 o; k4 I2 j7 j
to harvest, u) n+ O; k* B# W
  ask turtles
, F% i2 ?/ Z! H( t. ^' q, |    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. B" c  M' r. k" T0 S
  ask turtles
1 r2 T" `) @1 `% L8 ^    [ set grain-here 0. d7 S# }  o& T) p- Q0 e! m) ^
      recolor-patch ]
! a* f: @  A! t$ M; E  
* ~3 h. x( a- z" n2 _5 S  tend
9 d& P* A' L5 j: J, J- T. G% H5 r  Z8 S; u4 @
to move-eat-age-die  
1 @3 p& r& T! m. }: w  fd 1
# d' V1 z/ o3 ~' L" R0 Z! r  set wealth (wealth - metabolism)
' `  e5 P6 a1 M# o) a0 m    set age (age + 1)
9 L# ]/ W* G0 Y" p, K  if (age >= life-expectancy)
3 h: U$ G2 B, B" D    [ set-initial-turtle-vars-age ]5 E; v# q" T* W8 u
  if (wealth < 0)
7 X# f& b1 [/ l2 K2 _    [ set-initial-turtle-vars-wealth ]5 K: r; g% x4 F3 K! e+ R, O) q- K
   
; {8 K# H5 E/ f$ @$ \  e0 dend
, d8 S% E/ P# I- W; i3 ~. ]1 n8 f, w' C7 Y8 M8 k

% y) n6 S" E8 p+ S/ o6 Ato setup-plots
; I& K: |) i3 p! ?8 I2 }  set-current-plot "Class Plot"
1 @6 U2 q, I: t  set-plot-y-range 0 num-people4 l6 ^; O9 L( _1 r
  set-current-plot "Class Histogram"* F( e$ A7 e/ U% s9 {2 V% l4 U- S
  set-plot-y-range 0 num-people# E1 Q$ B$ s' {8 i$ R- ?- C0 L; E
end
3 I% {+ t8 m' ]2 `/ {- X& D% h6 o2 _# i& }% P. N- }# t% b) c3 g6 Z
to update-plots
9 ?+ @# [/ [* b  update-class-plot
6 |$ \: a+ C+ n  \- ]  update-class-histogram
: A$ @8 R+ D, b2 G+ H. W5 G% A  update-lorenz-and-gini-plots$ b6 {* f1 n, y3 m' L; e
end
  f+ a( U6 o& X% b  z# w- B' l6 u5 \
7 T8 e( j# X8 }to update-class-plot
( y6 N  C0 w3 \$ g5 s/ e  set-current-plot "Class Plot"" c, @, P, E! u& S
  set-current-plot-pen "low"+ U5 i9 W" n6 ~3 j- H! f) C2 Z
  plot count turtles with [color = red]
# |: r; J, X" r1 O! P8 N! N' ?' Q0 [  set-current-plot-pen "mid"
( |8 t) v. Q% u  plot count turtles with [color = yellow]
( ^2 y" e# p0 f2 G! h  set-current-plot-pen "up"
* u0 `8 P' Z8 z7 V5 u  plot count turtles with [color = green]
. M  j7 [8 ~& j1 r3 c% U6 t0 send
8 W/ |5 b- V+ t: ~, L& s8 k. f; n. V1 n; a3 K- j9 m& W
to update-class-histogram. @2 L  S' h* \$ P  y
  set-current-plot "Class Histogram"
! i% Z: }. A0 W  plot-pen-reset' ^" B8 U) W# E. u) V
  set-plot-pen-color red- ]. v9 c/ z" ^& P; i0 h6 U
  plot count turtles with [color = red]
! e" Q8 ?: W9 J( O  H  set-plot-pen-color yellow
8 D( t; |( r2 O, ~9 x4 K5 _  plot count turtles with [color = yellow]
  s7 T8 `/ ]% i& s+ z  set-plot-pen-color green4 X. T6 ^+ w7 A9 L7 a
  plot count turtles with [color = green]/ t9 Q$ K1 L' x
end
: f( j  I: q/ Z2 p2 f6 eto update-lorenz-and-gini-plots  A! C( g# Z. s1 p' F, @7 E
  set-current-plot "Lorenz Curve"
, R6 }( E5 b5 t8 F4 G  clear-plot- X/ j  Q3 U2 T' c1 C/ C8 v

9 @5 ?5 @2 I5 L3 o, Y7 Y  set-current-plot-pen "equal"
* r- F6 B( c8 ~/ b& v  plot 0
% B9 C0 X4 c  V$ g: v- s" r% T  plot 100
1 t5 M( o2 R; \& i8 b. C& Z/ r" G. R4 w3 d% ]) q7 [. v
  set-current-plot-pen "lorenz"
$ Q1 w+ C5 C& B9 R) {3 G; d  set-plot-pen-interval 100 / num-people
; l. A1 V3 Z4 i& Y  plot 08 a3 j" `  [2 L8 u( n( Q

$ F9 P+ I) ]* g. H  let sorted-wealths sort [wealth] of turtles8 s5 ]$ w$ g& M, f. K4 P! V
  let total-wealth sum sorted-wealths
% I4 `( p/ f4 |$ V/ B& o  let wealth-sum-so-far 0
# N0 U1 L+ }- r  let index 0
4 r0 u; x/ V& H$ x* b  let gini-index-reserve 0
' L9 l- V0 \. u: X+ l# o
" e8 Q6 P+ |( s7 g* c, V  g* f8 `) s  repeat num-people [
1 \0 L  s0 ~* l1 A1 ]7 a    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
8 w9 n- O# w+ P1 i( L' b/ N9 c    plot (wealth-sum-so-far / total-wealth) * 100
# R! z9 C9 F" W0 d7 F5 V/ J    set index (index + 1), N5 I5 u% r1 \, G% T, }: q
    set gini-index-reserve
5 @, f0 k, {2 u! l* ]0 R# C      gini-index-reserve +
- v/ t: E+ a* y0 A5 I3 {) r: ~      (index / num-people) -
; q" Y# c  D7 P$ y+ d      (wealth-sum-so-far / total-wealth)9 w+ n9 {5 D0 `
  ]
* R9 ~; I; P0 j% R) Q
; x4 I7 F" d+ B  set-current-plot "Gini-Index v. Time"
/ e2 e. h- E1 v5 B1 ?) p3 _  plot (gini-index-reserve / num-people) / area-of-equality-triangle: x! z3 Q  }6 I
end
8 E+ B0 n' J! Jto-report area-of-equality-triangle4 }5 A/ C- j/ q8 d
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
1 {9 u$ c1 Z2 j9 k3 W$ lend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-16 14:56 , Processed in 0.030626 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表