请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
" d5 k% A D' q" X+ aglobals
0 T4 D% A8 U! J5 G& G[
4 i1 w. X& a( p& U, \" X1 \( I max-grain
; k% D+ b# n5 O- R L0 M$ a0 r/ |3 F7 w
4 l% l! n% h3 B' G& ~]4 i8 P. e a% N6 x
/ C1 D0 T* {* R# H2 [+ ~patches-own8 g6 Z+ @+ l6 l' K1 S
[
3 z2 Q+ J8 {3 w* e$ i" A grain-here
' r/ E+ j' I% a" N3 _' e, E max-grain-here ; w `% |/ [, t* r/ U; \6 m
]4 Q2 c1 X" `! T6 T
5 O; i: w' N- L a$ iturtles-own. p1 C1 S! ^' Z& s; i
[5 E# B6 v9 V2 d' W0 L( [* A
age
6 X Y" E4 ` e o( b! U, q' Q' r% V3 i wealth
2 C5 U, N# v3 h3 @9 [5 _ life-expectancy 8 }; T, }: V& s0 [* g3 k4 ]9 ^
metabolism : X& L& I# E6 \. m- t0 K2 [# D
vision# A9 \' P8 w) K/ [2 w
inherited
: g6 n$ N# X7 w" ~" L]6 p8 P0 Q" ~6 I ^: L1 x: z$ Z5 P5 ?
6 e4 o) q, I% `9 h8 }( l, {0 f+ V7 Z- ]
to setup' X m0 L1 P+ t2 c x- y+ R7 }
ca- e" Y# b, o4 r
set max-grain 50; Y# F4 U ?" b0 s6 \" E, V) _
setup-patches
% \8 K* U) @0 P/ G setup-turtles" v) l) A6 o. Z8 b- D6 U
setup-plots! Z9 @0 U, H1 w9 O/ }, |' I
update-plots! G# c' H! P- k1 t' H
end" H+ X( v, H" H7 z' b
to setup-patches
# H" _( E7 k" A |" j! i& f ask patches
8 {. ^. m) ]5 @5 x% h [ set max-grain-here 02 A& _# C9 i- y; ~1 @4 |. y3 X% B! p
if (random-float 100.0) <= percent-best-land
$ x8 P" R& `5 ^ [ set max-grain-here max-grain) p1 v6 B+ d \( F+ k# n
set grain-here max-grain-here ] ]! J; H" z" N Y6 p% ]
repeat 5
5 t# q$ W- s# m- R" U7 ` [ ask patches with [max-grain-here != 0]
q( {3 n8 l3 Q- `, p [ set grain-here max-grain-here ]
; j! t* D; `4 K+ U; K/ b diffuse grain-here 0.5 ]+ A+ g T$ M8 n f3 p( r$ o/ y: ]
repeat 10# n) A! u! Z- y. i
[ diffuse grain-here 0.5] / q* @* `: `1 C
ask patches1 ?8 _7 ~8 H e( U2 u
[ set grain-here floor grain-here
" X8 J) B: J4 _. m set max-grain-here grain-here
3 c1 {3 @& ]: P& Y recolor-patch ]
' J; h- p; h3 L t. @3 e! R% u8 D* Wend! T1 B& b2 R; B2 S0 o+ Z
to recolor-patch
, e* Y+ w4 g; J w! w9 w/ q set pcolor scale-color sky grain-here 0 max-grain. u' g6 \* G0 c# a. X6 ^$ V9 C
end+ R2 l: D0 D+ }
to setup-turtles
& P, J7 P1 P2 ? O set-default-shape turtles "person"
6 X4 B' {& }; E% Z# m' { crt num-people
Y+ o& S* C# h6 Q) Y" v( E% y/ I0 R [ move-to one-of patches $ V# O, t# S1 ~# D' y
set size 1.5 9 N+ R) F0 t. n( R& n
set-initial-turtle-vars-age2 [1 [" q: V- l# K1 m: z# x
set-initial-turtle-vars-wealth, K1 s; t. s3 {6 K8 S
set age random life-expectancy ]
) s5 a3 K2 q! T; A recolor-turtles
) C4 H" i9 _2 x) p4 {end8 I2 @1 J9 G0 S5 ]
+ T+ H. ]6 p9 W- Oto set-initial-turtle-vars-age. n3 k% _- N2 q( n" B
let max-wealth max [wealth] of turtles F( Z" G5 W% q
* a. b. a( }8 O" l/ ~ ifelse (wealth <= max-wealth / 3)/ ?5 F* e6 i* I6 i1 b: ^
[ set color red ; u( N3 [" h; x3 [- G
set age 0
( U, `! X% _0 @' `! q2 t* f face one-of neighbors4
{7 I* y( |* s, j/ }( i set life-expectancy life-expectancy-min +9 `' f; I. D+ V) g5 m6 y' ]
random life-expectancy-max $ u2 Z# U9 l( Y; J! n3 @1 L
set metabolism random 1 + metabolism-low0 @3 j- X1 c9 P) |% x/ m; D5 k
set wealth metabolism + random 30
) A T- f/ T9 B ^$ a; R set vision 1 + random max-vision$ o; ?" |1 l4 m1 t
set wealth wealth + Wealth-inherited-low ]
) i' ^. k- J% p- s5 Y* r. w/ R [ ifelse (wealth <= (max-wealth * 2 / 3))
/ Y' m5 ~' ^5 |3 ]1 v3 m' f [ set color yellow
0 n' w2 u$ R; p: ~8 f set age 0! t4 ]& S5 @% g
face one-of neighbors4 9 b, w' N3 Q' o2 u* u! N
set life-expectancy life-expectancy-min +
) Q; \, [2 ~2 H5 U random life-expectancy-max + 1
$ }2 X. S4 w1 i. G set metabolism 1 + random metabolism-mid
! ?3 L/ C. i5 b/ S% H+ b; x7 e4 ]) V set wealth metabolism + random 30. H! D7 K6 F# p8 k6 H1 R
set vision 3 + random max-vision
* S& ~$ C0 q3 t/ E set wealth wealth + Wealth-inherited-mid]$ T! Y: u+ z" w- c. K7 X; z
[ set color green 1 f' y* \ s; r: p; L: ^9 x- C9 _
set age 0$ e& j: j5 a/ k# o
face one-of neighbors4
3 b; z5 C9 R2 T0 l0 F3 g% o set life-expectancy life-expectancy-min +. ~2 S+ v& Z3 s3 L
random life-expectancy-max + 2' d" q+ a5 \4 E V9 b% m5 ?+ D
set metabolism 2 + random metabolism-up0 G1 `* u- w5 d" i
set wealth metabolism + random 30! E. p9 W0 X [3 k6 p1 y- v
set vision 3 + random max-vision
# ~# h# v8 p# \! }( P: Q set wealth wealth + Wealth-inherited-up ] ]
5 ~% t% W/ x6 M) j+ B
" {" B4 }6 ^8 G- eend5 o7 m$ }+ C! }+ X1 O s
to set-initial-turtle-vars-wealth
! |0 ?; L$ \) h9 _' B let max-wealth max [wealth] of turtles; n6 x. W+ {$ B7 |5 y ^7 r
set age 0
# ~9 o8 X6 g# C. a, N- _% v face one-of neighbors4 ; ~! @8 F |4 B# D$ B
set life-expectancy life-expectancy-min +
9 N7 x! L+ s/ b+ ~ random life-expectancy-max ; _% O+ [& j, @0 W: D! Q
set metabolism 1 + random metabolism-up7 U1 l& e$ q+ F: R3 s6 N
set wealth metabolism + random 306 V8 a8 _" c/ ]! b0 ^* d7 P
set vision 1 + random max-vision
% o8 c. V8 z: A( d# {end
4 c6 g, [ q% N0 a% i. {$ Zto redistribution: Y# r; h4 }+ a$ k! V
let max-wealth max [wealth] of turtles! A- L, J( @; l# @: E& {- `
let min-wealth min [wealth] of turtles7 a! ]: z* N! t* |8 ^2 i
if (wealth <= max-wealth / 3)0 |3 n% p: Y: X( ~6 Q. T
[set wealth wealth + Low-income-protection ]
& p8 @7 q. z) B" B5 R# @0 c% dend# Z+ [7 u& `2 }/ }% D# L
! t# F' V/ R+ H: i ~
to recolor-turtles
S! i `) c# @' Y let max-wealth max [wealth] of turtles
2 T4 {/ ^' C; O4 d* J+ K: O- k" f* p ask turtles q4 m/ V5 ]$ m Q% t2 j, H
[ ifelse (wealth <= max-wealth / 3)' l5 X8 Y q9 ^" y2 |: ]
[ set color red ]
) B- Q$ ?3 ]; X+ _ m [ ifelse (wealth <= (max-wealth * 2 / 3))
5 G7 c1 ~: y! e' _% X" x [ set color yellow ]
' E/ x( O$ r6 B' N5 Q0 Z [ set color green ] ] ]2 [9 C) c3 S" c9 e2 V
ask turtles [ifelse show-wealth?, f2 d( e7 P" t+ o7 K/ p% V
[ set label wealth ]
, L. G, Z6 K o7 |) _$ ` [ set label "" ]]
- B2 x i) ~6 g7 h% Z' qend v3 D9 E' \# f. U/ F$ A' F; |
" t" F) b. t/ Y4 u( ^) ^
to go
9 R; \! C$ N& Y% M4 }& K8 U ask turtles
( p& r" G8 H: e5 [. w% C2 q [ turn-towards-grain ] 8 G3 s( G, H( J" V' _& ~
harvest
" G( k7 H" K! l3 X. R% @7 L2 r ask turtles
3 l* w6 t8 B4 S4 _2 F. p [ move-eat-age-die ]$ T7 l) l3 x% i: y5 m: s4 f
recolor-turtles* [/ j- ~9 |! y/ i9 Y
if ticks mod grain-growth-interval = 0* v7 ^* Y2 Z8 D2 \& ]9 _
[ ask patches [ grow-grain ] ]4 q' j6 p& Y% ]6 n N6 X. [9 n- G
* H- l" p- E' ]% M. ~4 T9 I if ticks mod 11 = 0 P2 {! t5 N3 S" b: {) v+ t* _' E
[ask turtles# K' ]. u$ [0 b2 e4 f/ r
[ redistribution ]]5 o" u. k) N6 \/ }; Y E. P
if ticks mod 5 = 0# b/ }9 Y% e/ {
[ask turtles* _) p! s; ]; l% J, L4 g8 _4 i
[ visions ]]0 @7 G* U( @; e* O& o! W
tick
. J! @6 V& e6 t update-plots% X7 d; b7 U! q+ m* @3 A" y* t/ v
end( \) L$ `2 ]1 r
to visions
7 _0 @- J0 R! |" @* Q( B2 [/ {) r8 u set vision vision + 1
& T. b' E3 i6 `' `' E- Aend' q; ~$ {/ L, \2 K: @3 T
+ T( F& ~8 L0 d/ P8 v; Q$ O/ m; }
9 S. D& x) ]4 Q. t, j0 f' m( L7 Y
. E' d0 L/ M2 N: O. H
to turn-towards-grain
# ^6 T/ d+ e3 [+ Y7 }$ x$ r# X set heading 0
5 F3 ~0 U% q$ ]( L k7 M: A0 D' [ let best-direction 0& q9 F. \% `5 `1 Z$ q
let best-amount grain-ahead0 V' h8 I+ `5 g& D2 p2 @
set heading 90
- b* i A* S0 W) H9 f7 o if (grain-ahead > best-amount)% u; I1 R* |. a6 p8 e q o
[ set best-direction 90
) C$ }# D Z' I5 Y! V2 \# c6 Z8 h set best-amount grain-ahead ]4 ]- ]& A J1 T6 T
set heading 1803 E2 B7 O1 F# h4 [) X9 x
if (grain-ahead > best-amount)! S0 q* d4 G5 \! S6 \
[ set best-direction 180
( E( H( ?( b" g4 K: R1 j; P set best-amount grain-ahead ]
/ e* m, s: _; H x set heading 2709 [" x( i, q, Z$ O! b; ]+ u
if (grain-ahead > best-amount)
5 e5 H, Z1 A% g9 d [ set best-direction 270
0 u7 A' B, D8 I4 h# T set best-amount grain-ahead ]
: p/ U8 ~/ L( q* n& d! U set heading best-direction+ ~8 H8 ~3 g K. p7 x% z
end
6 q; G6 S3 G* l# d+ ~( E4 L$ \4 K, Z
2 m' R0 D. c" ]. [' D# j; }; v. E; F4 S: \! F$ E
to-report grain-ahead
8 N3 R* I9 w! t+ L" ]" o/ d let total 08 P# J$ B! R9 A7 S% t% ]
let how-far 1
# u0 D1 I) U5 [4 o$ B6 t2 \ repeat vision9 W7 B# b. O: C9 ?4 J4 L7 k
[ set total total + [grain-here] of patch-ahead how-far
2 h* a1 V- ?4 z: x) e x. k set how-far how-far + 1 ]0 t5 V v, D! z
report total
; p! N" ?. k/ R) b* Fend
$ x6 O6 m6 h7 Z8 m
^( H H$ s: g. x7 lto grow-grain % k: T& I" x$ e7 @. O9 \ e
if (grain-here < max-grain-here)2 V; ?9 \+ ^0 w, B' i( M
[ set grain-here grain-here + num-grain-grown+ X5 r! c5 P" n7 T5 V
if (grain-here > max-grain-here)
, h" y9 Q6 P* L+ C/ m [ set grain-here max-grain-here ]
0 e b1 S/ Z; ?. X/ I- S) g recolor-patch ]
4 }4 x( V" Z* b: B, rend
8 D% Q, o4 A, vto harvest) I9 O* A! ~* G5 n
ask turtles8 R3 ?: B* ]7 b
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]& k% b9 w! e. s- }+ Q
ask turtles6 u6 i6 s5 I' E% J0 _- Y
[ set grain-here 0: r- T' e6 O1 ~0 M
recolor-patch ]' n: f) B# \& J3 d8 e# H
% i& F& `& P7 b# aend I. |9 G! @, E2 ~ m6 {
/ _( Q) B% N. x7 `7 V" s2 B1 H
to move-eat-age-die 5 q7 d8 V& c, }6 w* Y! Q2 \7 @% I
fd 1( G/ p0 e) x7 u# Y: L/ k
set wealth (wealth - metabolism)$ H- t& g: S7 c* E
set age (age + 1)' q J7 M: @/ w& U( d F
if (age >= life-expectancy)
& A5 b9 E: t$ b, v1 I3 | Z [ set-initial-turtle-vars-age ]5 {0 E; k; M& N" N7 V' m k; A
if (wealth < 0)# ?1 q. h6 n4 m7 h. }/ x" l# S
[ set-initial-turtle-vars-wealth ]
" o7 Y# ]8 C8 A9 V
' q, T0 D$ s; f3 P) C* ^2 P6 [0 `end) n- d2 D+ K9 L! j" T! w4 N
/ v6 E' [0 V- P
. o) O+ a5 E$ j1 d: j3 wto setup-plots
' z! f, v! R* h$ I set-current-plot "Class Plot"
x/ q8 f. ]! u$ r! x set-plot-y-range 0 num-people; D, |; o4 N% Z5 s8 e
set-current-plot "Class Histogram"+ J4 K9 h2 d! |
set-plot-y-range 0 num-people9 T7 h( K, i9 u- g- N
end
& a0 A0 \# m, ^1 y- C( A% D
1 V8 p8 |3 W) f) _to update-plots, Y0 v, ?, @2 K8 w" h& L1 y) i+ ^
update-class-plot% _ e# J3 h" i9 P
update-class-histogram
! r; q$ [; i: A( G E5 u. M& ] update-lorenz-and-gini-plots x) C0 ^+ c7 O1 A- K3 l
end
/ P5 U3 R* g/ R3 U$ J2 h# |& ~* n% m) U& Z" n
to update-class-plot
( L8 F/ [( I) r0 V+ } set-current-plot "Class Plot"
& r7 F v( T- m, `3 o r set-current-plot-pen "low" Z @: J$ c" {: {3 i8 j
plot count turtles with [color = red]
- X: i/ t- K Y6 P set-current-plot-pen "mid"
5 M" e+ \' I% s/ L7 }5 @ plot count turtles with [color = yellow]
3 a9 w, P3 @, k5 b, {% o" C set-current-plot-pen "up"
$ e% E& K- G0 Y6 n6 j plot count turtles with [color = green]
R1 I( A: Y: Q+ S( dend
0 M, S. n y. I9 f1 J8 R4 b( n, U- E$ R5 g5 ?2 Q
to update-class-histogram
1 g: D `8 U, c3 T n( q set-current-plot "Class Histogram"% P2 C% X( X9 e& P* |2 ?7 L$ j) J
plot-pen-reset- K+ l0 N8 M. X+ i6 a9 a
set-plot-pen-color red% V d- U! d2 J- l
plot count turtles with [color = red] ?2 D; O9 _1 z0 r
set-plot-pen-color yellow
, K# ~0 j/ @# {% |$ P plot count turtles with [color = yellow]
2 `, ^# h# W: @0 j: x8 @4 S2 A. v4 a set-plot-pen-color green
# K- A8 Z$ y% q plot count turtles with [color = green]0 i( T' I/ j( C+ }' t: R
end
* I* ]1 R4 ]! fto update-lorenz-and-gini-plots) D+ U- a% S. C g0 j
set-current-plot "Lorenz Curve"4 s5 t' H7 B+ ]3 {, d
clear-plot
, L7 x- h/ x ^! N* u& c/ X3 s9 F( D) u& t
set-current-plot-pen "equal"
+ G" A4 b% u" m6 Q/ _6 q plot 0
: P2 r' b# B4 N. Z( z: U1 G, M plot 100
/ b; i2 L1 \) q( G2 Q& b
+ p& w4 X9 \$ w0 ~& \/ j set-current-plot-pen "lorenz"
# s5 |1 N9 A8 J* k& T& r" d set-plot-pen-interval 100 / num-people
5 Y5 D s7 S. m plot 08 i5 R( k4 b3 Y2 Y
- p5 p+ Z: j! v0 ` let sorted-wealths sort [wealth] of turtles
5 b- d5 H, j2 F _$ l' C! {8 j let total-wealth sum sorted-wealths6 Y# I4 ^* f$ [
let wealth-sum-so-far 04 z$ S8 W9 X' A, `+ U6 E" T; H' y
let index 0
" u* _2 X" b* j; e; t3 g$ f let gini-index-reserve 0
6 u9 V' Y3 Z0 A* t0 b
" i n5 x% ` d! l J- F repeat num-people [5 B8 z) x, `2 {7 P. ?; S
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)5 U1 h" ~3 P( n, |! ^! _) v3 P
plot (wealth-sum-so-far / total-wealth) * 100
2 h: ~( c+ l( b: Z/ }" U; l set index (index + 1) q1 E" B5 b: X* Y
set gini-index-reserve
: h" v) g9 D. _; K& ~ gini-index-reserve +
7 ~- x* M0 b# d' B2 E (index / num-people) -
9 m! I* m. R) I, b, e @ (wealth-sum-so-far / total-wealth)- H& {, _- a( w# q
]
/ f3 F' J9 X, e: P$ Z7 e( U! }
, \2 c+ {# Y$ f% j set-current-plot "Gini-Index v. Time"9 q/ d( n' U f6 s3 [
plot (gini-index-reserve / num-people) / area-of-equality-triangle" V9 J/ ]% I- _ e$ ?
end9 P) s* N6 }) B e3 c% G
to-report area-of-equality-triangle o" r E' U/ X U/ P& I
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
: _+ b% }4 m4 R$ y, R. Nend |