请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现% T0 H0 }+ i0 y9 C+ d5 s
globals G9 M3 L. f. [1 U% U
[
, Q+ c! u0 B, n/ \9 r max-grain 7 [/ l. s U$ Q1 y, K
$ p$ L" H. c# L) i( `]
2 X. A- D# d' a+ O, a: a# i
: D& x) u( J) @. ypatches-own9 T9 z0 A& _* F d7 j) d* B
[
1 d# R. K) }" G" p3 o grain-here & t4 J8 ?5 u) O' P+ {6 L. ]
max-grain-here 8 i6 d8 i4 w4 f6 d' c, v" Z3 i
]
& }" X4 a$ X1 ^" _
1 l. y& V2 u0 \% Y' _turtles-own7 ^+ n0 B- F/ v/ S3 `9 G
[
6 r; I/ w/ F3 R4 m$ L- W age
$ y# i0 R; E' F a wealth
5 W4 X n) u d F% A& d# E life-expectancy + j0 t |9 a+ ~. ]
metabolism : i: `, h4 Y, e1 H
vision6 _. r" Y, Y1 h" P' r' f, E
inherited % P* d9 H% f( `" W; r, ?1 t9 i1 H/ F
]
7 O4 `: ?4 Y9 W& h6 e% V/ T+ u* P8 j# v' a
: X" _7 C" t# C/ |3 p$ h+ r
to setup% ]1 L* ~* W; P! r" n. ^" Z7 F; E
ca
6 D1 G- X& \. W% }# | set max-grain 50
# a* [' E" i2 N, D setup-patches
2 B' O' f0 e. z1 K/ s$ l, K setup-turtles! j( T1 }: a/ H! L3 m4 m+ o
setup-plots
( r" ]0 h5 t- p( G% v; ~ update-plots8 n- T% j$ ~( f8 _/ n
end$ N. Q2 u% C& e( X3 I
to setup-patches
2 ?9 D1 O d! e ask patches
# W$ K1 Q3 W7 t, v' U- |9 ~ [ set max-grain-here 0, \5 ]! Q* y/ X; C# p2 `5 F
if (random-float 100.0) <= percent-best-land! T n; R) `7 k& a8 U' D5 b9 a
[ set max-grain-here max-grain
6 \- [. w: C9 J' @# x d set grain-here max-grain-here ] ]
4 M, a2 f3 E( @ repeat 5
8 |4 p) V& W3 H3 |4 C5 j [ ask patches with [max-grain-here != 0]0 K( b- F* ]7 c3 i* z
[ set grain-here max-grain-here ]
! m/ l$ Z8 R+ [ y8 ]' e diffuse grain-here 0.5 ]
/ S" Y6 Q+ I- z, M$ C9 A repeat 10
9 Q! v" d/ P! `5 o- K9 B [ diffuse grain-here 0.5]
1 r. {0 ^! [& {* J( Z ask patches) [: o2 h- C8 F( i2 U
[ set grain-here floor grain-here 6 A- [9 }4 V( y6 l- h
set max-grain-here grain-here ( _. Q0 r5 F5 M0 F4 a+ j
recolor-patch ]: x# }2 R& V0 V# G2 {8 e. l
end- V# D9 _; b$ d. D/ x" g1 f
to recolor-patch 5 z6 ?: N% P6 J. x$ p/ g
set pcolor scale-color sky grain-here 0 max-grain/ c0 z1 ^' K/ w$ R
end
1 _" ?8 ?1 Y$ z5 y m7 qto setup-turtles
9 O9 _0 r7 X: l2 y* @& J% v, R$ K set-default-shape turtles "person"3 f7 f. @" W" t7 g3 X+ ?
crt num-people7 W( {) F/ Z8 _; u" q
[ move-to one-of patches ' M% k8 ?) {4 J: Z) M
set size 1.5 # `9 y) Q D0 c& h" K
set-initial-turtle-vars-age; I, y( v8 n" X) ^, v4 k7 M6 p
set-initial-turtle-vars-wealth! @# p* H3 K9 H7 ?( n8 v% Q
set age random life-expectancy ]1 ^1 _* U/ a+ c) W' D
recolor-turtles* X; y4 _7 a$ g9 D9 Q! M/ J
end
, q2 Y! m9 t _8 ?& {2 y+ N- |7 _. E' C9 G; F W4 z
to set-initial-turtle-vars-age' i$ C( h$ J3 P. r. H3 g2 W" R
let max-wealth max [wealth] of turtles$ y$ a8 Z- d( u* M
% c5 _, j Y* ]" w
ifelse (wealth <= max-wealth / 3)- E$ F5 z; Y2 b9 g: }, v1 b# D
[ set color red 2 ?4 i5 ?$ \' L% W) ?
set age 0
6 ^; X1 H' ~( `5 D: i3 ` face one-of neighbors4
# | ~5 i* T6 c+ A6 m1 K set life-expectancy life-expectancy-min +. r) a' ?/ X1 o# Y; ]7 u) E
random life-expectancy-max 6 h" q$ R6 b" V* a' m0 c8 z% E
set metabolism random 1 + metabolism-low$ Y6 B+ n3 [% W$ W# Y! V
set wealth metabolism + random 30
1 z4 o& Z& M# y% k set vision 1 + random max-vision
2 j9 E3 `* m2 a set wealth wealth + Wealth-inherited-low ]! Y& t' L; u" C2 O) \
[ ifelse (wealth <= (max-wealth * 2 / 3))) [: j0 E+ D) x, T% P4 X( ?) m6 y
[ set color yellow
& h- a% j& f2 [- I. h% ^2 l/ [ set age 0
2 N. w7 H* q5 y0 k, u7 K: T: ~ face one-of neighbors4 : E) \3 x& g3 a! u. I" i5 ]8 X
set life-expectancy life-expectancy-min +- j5 f5 I9 n) P8 L1 P% ^
random life-expectancy-max + 1* | f" K9 `2 e" ]
set metabolism 1 + random metabolism-mid
8 O1 O/ R& u" g% o8 y set wealth metabolism + random 30! M$ U' P0 g5 _6 d
set vision 3 + random max-vision
# A- b1 Z$ _( o, y4 z2 W( U set wealth wealth + Wealth-inherited-mid]
# |2 a d2 d: t$ Y2 _$ X0 ]. B8 M [ set color green
4 @( W5 i# C# C# b; a set age 0
+ J: s! Y+ y: _* } face one-of neighbors4 $ {1 A, r( N2 D! `; a7 N, F8 l
set life-expectancy life-expectancy-min +# D$ h9 W' H* s
random life-expectancy-max + 21 h4 |2 H5 X& |2 k1 Y7 {
set metabolism 2 + random metabolism-up0 o$ }( N4 J$ {# w) W1 D
set wealth metabolism + random 30/ V/ K# P- P! c m% Q+ N
set vision 3 + random max-vision
X7 L5 n: b% t# Y' `- f, e5 z set wealth wealth + Wealth-inherited-up ] ]
! L" y6 w3 o% l
2 Z6 e! q) j/ j; x5 B4 w5 Rend2 o% b. p, I# Q% m
to set-initial-turtle-vars-wealth
6 q% i2 M& R) Z" @/ w S let max-wealth max [wealth] of turtles
# T- |' k& ^6 W5 D set age 0
7 F. I3 H. j( k8 }0 s face one-of neighbors4
5 r; E7 c# ]5 ~8 b* M% K set life-expectancy life-expectancy-min +
! ~ v$ y& I5 t random life-expectancy-max
" v8 _/ n! b% H1 ]% ~( z set metabolism 1 + random metabolism-up% C, t0 X+ I$ ^# |4 w
set wealth metabolism + random 30
2 P K+ l- r0 g U! v set vision 1 + random max-vision ' F5 j# }- D, z( j
end' e& p# c) t4 V
to redistribution
5 B0 x$ D' r- J0 I7 A6 l# ~; _5 ^2 slet max-wealth max [wealth] of turtles
7 V) u+ [2 Y! l* g2 }1 V$ `let min-wealth min [wealth] of turtles" Q0 v, O$ m% y5 x; \: v& U* k
if (wealth <= max-wealth / 3)2 y% U3 X. \# M4 @) Q
[set wealth wealth + Low-income-protection ]
" q7 i1 D! \# G3 ^end' G/ V0 }# a) c1 ~
. @1 Y( R3 c( v8 ^ L9 ^to recolor-turtles3 ?$ X( Z$ v: \- Q+ u; ]1 d6 M
let max-wealth max [wealth] of turtles
) u" S" W2 D Y, k ask turtles T2 `) d8 ]1 D8 M& }; k, J
[ ifelse (wealth <= max-wealth / 3)) j+ p2 c- b$ t, ~8 Y; |/ e! {
[ set color red ]/ L; ]% ?2 B; y) D' w0 P1 y3 u
[ ifelse (wealth <= (max-wealth * 2 / 3))! l' `- e! ~$ E9 P: G; J
[ set color yellow ]
$ a- [# [/ J1 z% y8 H [ set color green ] ] ]/ o$ w4 I' K9 d* i2 @
ask turtles [ifelse show-wealth?
1 k2 d0 `6 c6 h8 b: e6 N$ c [ set label wealth ]
5 C* s3 S' n$ l. F2 z# @ [ set label "" ]]) E4 V4 R. L& U
end
4 [) B ^# X% @8 l# W4 ]1 D% K% Y3 R$ K2 Q, L' D( a
to go- ^9 X# ^. V5 j* _1 C1 a
ask turtles. P8 C( ^2 \: Q0 p/ M1 \& X7 H, J/ |
[ turn-towards-grain ]
% F* M& d: H1 r harvest$ u, s+ s7 a K: E* K: d. a
ask turtles
( x4 r0 }1 Q1 d3 ^5 c# i7 ? [ move-eat-age-die ]1 n) H: H5 J) ?0 f! m
recolor-turtles7 ^1 K+ y ~' V" O
if ticks mod grain-growth-interval = 0! ?+ r4 P- K% k; }: b* H* M
[ ask patches [ grow-grain ] ]
, m m$ R# ?2 G" q 3 x0 C* \) L( ?1 }- n; A' Z$ r8 @
if ticks mod 11 = 0; y* ^1 ~9 ?& {5 ?
[ask turtles) p0 _, _$ O- ?+ m' `1 X
[ redistribution ]]7 V) l- {1 j2 H0 F
if ticks mod 5 = 0
/ w' u7 m5 h& h2 I [ask turtles
4 N c5 w U+ G; ^! U5 p, ~' U [ visions ]]% \( S; X Y' e- k0 g
tick/ g& [( G5 w# H; m' y
update-plots- d" |& W- K/ L" @" K3 E+ M- C
end E/ {2 m% P( r/ _+ S
to visions
( v& `3 X% ~: N0 c( q) ?3 {8 T4 G" h set vision vision + 1
' p7 W8 u' h4 ]: ?3 t, b" jend
; w6 c' c! T6 p0 d3 G( r; F$ I* [ e2 x- {' R
; U, t6 y. M. p1 g, _
: F. m' y- }) ]) O7 b' X
to turn-towards-grain " v7 w/ m Q1 b
set heading 0
8 [( }7 n2 z+ p1 z+ H! P let best-direction 0
* |5 \! t6 b9 ]+ e; i6 I let best-amount grain-ahead
% W. U* }+ S. X9 w set heading 90
5 ^6 Z F8 d; v, c" L if (grain-ahead > best-amount): x& W1 _8 p+ y3 b+ ]( r, c2 l
[ set best-direction 90
7 Q8 ~5 r, Y) p5 K set best-amount grain-ahead ]/ @+ x- K% }) D8 O$ Z7 m, O6 E- {
set heading 180
9 ]( [, C* {) } if (grain-ahead > best-amount)
5 P" N3 g$ ?0 C7 i [ set best-direction 180$ H. M3 c3 Y% T; C
set best-amount grain-ahead ]
$ Y9 b* `$ B& A# a; w set heading 270
/ ] H2 D) T E if (grain-ahead > best-amount); ]" o8 a, }% j( V. M8 z- g9 M' _; J
[ set best-direction 2701 [* l7 B- O5 K4 f; y/ H4 R
set best-amount grain-ahead ]2 D1 j4 X0 ^. j1 s+ i' U' x+ E) W
set heading best-direction
( M4 n& W b7 B8 qend* ?+ Y v+ s8 f$ e. U1 y- z
- X R; n) ?9 A
; O. _& I! y, T' ~4 bto-report grain-ahead ) b% B7 g4 }8 ]6 U3 `
let total 0
5 s- _- I; R$ q2 G/ f6 I3 a let how-far 1* s& R2 q6 i3 f% Y
repeat vision! t, k% i7 @7 G
[ set total total + [grain-here] of patch-ahead how-far I4 w+ `6 v8 b
set how-far how-far + 1 ]
# p. f8 W5 I( `1 Q1 J4 s report total9 Q; A* y; T d( _9 v, a" E) F
end* N- L; ~6 R. G
4 _- U4 _+ j. `3 W/ J
to grow-grain
3 Y6 v1 d- i6 R( Q; I7 C5 C if (grain-here < max-grain-here)6 z' {3 N6 R+ I$ k( f* ]
[ set grain-here grain-here + num-grain-grown% W1 ~3 i% m/ D0 `& x
if (grain-here > max-grain-here)
: q% }1 T% c. r [ set grain-here max-grain-here ]. M! |7 N) h, s& O6 Q" s/ r' B
recolor-patch ]; D3 `0 Y6 \! {" i; K
end4 j* j% X$ A. \" c. A- P8 w) m
to harvest
9 ]+ B! e. \+ n1 ?9 s4 y ask turtles( q7 p q& ]* d1 T
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
( {7 s( \6 y( c! a1 l; p ask turtles
, ^6 [$ r4 j$ b6 G4 m7 @ [ set grain-here 0: u$ _4 w" h) C/ C+ L
recolor-patch ]
3 q" j! a4 p! v5 W$ Z# j $ k2 A: D- x m& x3 ? u
end
. ?5 U' G% X) y0 G
; B7 K* b' d0 J" {. g# {( v Ito move-eat-age-die & ^% M$ p- D2 V; b3 }
fd 1# I' F: z9 z+ G3 }6 \4 k' I& c
set wealth (wealth - metabolism)
+ `7 H i+ C4 T set age (age + 1)
- Y; l% E' M/ \ if (age >= life-expectancy)
) U' ^ i! o8 p9 b; N+ } [ set-initial-turtle-vars-age ]
0 r& d _& N. ]% ~ if (wealth < 0)4 E$ ~0 L" I t5 p/ a3 S) a
[ set-initial-turtle-vars-wealth ]
, n+ K- x1 \1 f( N9 x ! c$ `* H) V6 s( {2 V2 K
end# L8 V" C3 s: w1 N* p& n. y! [4 E& u
# c# Y# T: X$ O( D* ]
! ]+ ^4 d( {( T0 h% s
to setup-plots( ?# X: l2 \7 ~6 N
set-current-plot "Class Plot"
) U9 ~# O+ z( g. ? set-plot-y-range 0 num-people+ K" B* R( P# r
set-current-plot "Class Histogram"# W, ~1 F) B' H1 x
set-plot-y-range 0 num-people
" N6 S' F/ A+ V* |- gend& a% V; y) d" ?$ M. f% s
' c" |, T. E- s; \+ v1 p
to update-plots J0 \( E3 x% {) B
update-class-plot2 C# m" |/ W3 d. z# D# ~! l
update-class-histogram- |* {& V* K& s% U' b, w: N
update-lorenz-and-gini-plots
, y% d0 O: @, S8 Pend
5 W" l* q' i- @5 b- X4 p8 w$ A" W& a& C7 w- x
to update-class-plot
2 D. z; I" i% Q; D+ P( r( h set-current-plot "Class Plot"
, h; j9 d" \( N: r, W* W$ E set-current-plot-pen "low"1 p' n) r( F! [1 e
plot count turtles with [color = red]
7 K- W6 g: l" B8 C( |5 e set-current-plot-pen "mid"
8 ^: Q# W$ @: ]/ p* m v plot count turtles with [color = yellow]
1 a3 i+ |) p% P set-current-plot-pen "up") d) Y1 z$ r1 e/ Z' r( ?* d
plot count turtles with [color = green]7 P9 w" C h( h* \' q; |+ E
end, e. s' ^5 ?/ w& h P/ W
( w3 E, W/ m4 @; p9 S$ b- x. Y5 ^
to update-class-histogram
7 Q1 u5 v+ A% g4 b. z set-current-plot "Class Histogram"8 d1 }& m1 K" M7 g, \3 _! P
plot-pen-reset- \6 C% m) [8 i6 A
set-plot-pen-color red& h4 @) ]& n9 k' s7 s
plot count turtles with [color = red]/ T$ r8 X; r1 c* y
set-plot-pen-color yellow
) q& b v1 g! w6 k+ h plot count turtles with [color = yellow]4 l5 Y1 ~3 m, f: Z' R8 ]
set-plot-pen-color green6 f. U5 q1 ?4 j& G
plot count turtles with [color = green]
% o9 u# k# o' |end' m+ _& [5 a j. P8 {
to update-lorenz-and-gini-plots- a4 r4 s$ e5 m2 M k+ d- I
set-current-plot "Lorenz Curve"
; j- [; [) [) V. O clear-plot' S6 A" b8 `, N& a) K# d6 b
3 ]' H) m8 G: u7 E0 c l7 }1 o" \
set-current-plot-pen "equal"8 x/ J9 Q- F0 _" S2 k
plot 0 u; F$ `( q, }0 Q' i2 B& C
plot 100
- s) X6 n# V5 C( K/ t" L' }' _/ V9 r3 [+ S% s
set-current-plot-pen "lorenz"( N% j( p7 |4 J
set-plot-pen-interval 100 / num-people# E9 d1 z- [4 w0 W' P! C+ a
plot 0
e+ Y6 R/ I! W0 R4 `9 Y- m' z1 K) j* C8 x4 R+ Q- T. I
let sorted-wealths sort [wealth] of turtles1 E: r6 n7 d' s6 V
let total-wealth sum sorted-wealths* W& c3 k ]9 C8 a; M. S
let wealth-sum-so-far 0
# d R& s$ R' t. |; i let index 01 S- V# Z: n) B P. [
let gini-index-reserve 0
% ^. p- w% l/ J1 n. _. R! P
& c4 e/ b2 \# h9 E8 z repeat num-people [
2 m8 k, t/ R+ a) {+ ?1 s p2 j set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
9 W- Z3 n( V6 \* n% }7 P& G+ ~ plot (wealth-sum-so-far / total-wealth) * 1007 F9 ]5 w$ T7 V
set index (index + 1)
7 B3 ~' z7 P- U: ^6 I# T1 K- g. w, J/ B set gini-index-reserve
2 o: @4 c. Q9 d! I, [% J gini-index-reserve +
6 B. A8 `# H+ I (index / num-people) -+ S A7 }6 {0 E( u' r# {, o% e
(wealth-sum-so-far / total-wealth)
5 |" Q" a" u) G" O7 W+ l* J4 r7 \ ]4 ^: t+ m& [. D, ]4 I2 k
9 V8 Z5 f- A, M5 l/ l# d* |
set-current-plot "Gini-Index v. Time", X1 M) V- i4 Z
plot (gini-index-reserve / num-people) / area-of-equality-triangle( }0 }' ^6 `, ~* D- N
end: T* `* t* |: O7 x
to-report area-of-equality-triangle7 k$ w0 `; Z1 _# I" R0 {$ s
report (num-people * (num-people - 1) / 2) / (num-people ^ 2); Z' b, d$ f2 x8 ~
end |