请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
1 g; O; Q& Q% w* wglobals
5 J% n; K# T+ A9 e[5 {! {0 f9 U, w
max-grain 1 |; m$ w% f4 h
0 C: Y+ Q3 y8 Y0 z! Z4 w
]8 S5 N- f2 u: j3 S1 z/ o
; [- G' j$ v! ?
patches-own' |# c6 Z+ ]) _2 T0 c$ H
[5 X8 A: |+ w" X# o9 }; m4 k. n5 i
grain-here M$ b' t% C I0 _; Y5 @
max-grain-here
- ~, q- ~2 N+ x; `+ @6 F! V]- i }. M5 X( q0 ~8 C# J C3 Z
+ z& [% J) z: E5 L, T( b9 ]turtles-own( |" R8 F) m ?( X, W/ U4 d
[6 w% N4 B% F, i4 T) t% C' f* p& ?
age
6 d7 v- {2 a8 I( r; h wealth
8 U& I" E: h6 R. q( q @, D life-expectancy
0 t& F! v) v! f) V metabolism - g: q! @0 @2 s- J* B2 u J! N
vision
7 [0 ^& m3 Y4 y4 U inherited
0 c( Z2 U# }6 T% a]
N5 W% [! t) G- \
, r+ E$ x! B7 N/ p* h% T& _
6 @$ s1 R# V7 r- _& hto setup
3 r8 W. k5 W. K. q1 p9 o3 H5 s ca3 C1 T4 F G6 L$ f
set max-grain 50
8 m4 P; V1 p0 }& `6 Q setup-patches
1 O R, S! ~0 o& e$ W' a5 X% z setup-turtles7 ~* k+ G4 c5 T, }. |
setup-plots* y! G* \/ u6 F5 j+ S
update-plots2 P) l; @' }) G/ t' i6 {
end
0 i' \- m! U) v1 ?1 Lto setup-patches
+ j/ }! f$ R1 s% a: `0 Q ask patches
$ S1 K8 R @( ]' c+ {' n" R [ set max-grain-here 07 c- b. Y" w1 L: y s1 S
if (random-float 100.0) <= percent-best-land, A. W, d( X* j# ^3 g G
[ set max-grain-here max-grain4 j- G4 G- ` B, w( e) q. v' d
set grain-here max-grain-here ] ]/ f, r4 [7 ], \- F" V8 m. |$ [
repeat 57 X5 }* \/ l: L4 }) Z
[ ask patches with [max-grain-here != 0]
) t4 Z# n/ T2 R6 I6 M3 C0 G5 i [ set grain-here max-grain-here ]* R) Z; H2 {2 H* ?; z7 F
diffuse grain-here 0.5 ]
h" ^7 E; Z, V. Q" j( k+ p( q repeat 10
' T- k7 o- C! Y; K [ diffuse grain-here 0.5]
. Z; |6 l0 f# j; P5 }) `& q ask patches
7 a. e N# _5 O; f6 R! Q [ set grain-here floor grain-here w3 ]) K- c3 o! k' v
set max-grain-here grain-here
/ a+ {) n& a2 @ recolor-patch ]
0 J O' q8 r( ~' B4 m: g( ^end
4 ~- J' y$ E' D4 _, ?9 @2 yto recolor-patch 9 T6 p9 X/ {+ x0 p% C. k/ z9 ~
set pcolor scale-color sky grain-here 0 max-grain
- f/ B8 p) Y" y* {2 L2 vend: T6 G, i' o- D
to setup-turtles& B- [* H7 N/ Y+ T
set-default-shape turtles "person"0 X9 s! i" w8 g
crt num-people: E0 n# d5 A6 i
[ move-to one-of patches ( m W& h" N' M# e4 J" H0 j
set size 1.5
6 J: N% p r5 ]. O) W set-initial-turtle-vars-age/ m9 W* v+ P% i6 M9 r v8 n
set-initial-turtle-vars-wealth+ A& g5 s) ]8 z* S; s+ s8 s
set age random life-expectancy ]
$ z- d3 y8 D" t1 [3 x5 `3 k1 z recolor-turtles! h9 _ e+ N4 Y
end
9 `" I; P$ ]7 T7 p# E4 y* k/ k
4 F5 p5 B" z6 N+ {) f6 m: Mto set-initial-turtle-vars-age
% M+ d j9 P* j/ f. O$ ` let max-wealth max [wealth] of turtles
. A8 L7 w+ J- ? / U: d. Y; ^& G9 L( E
ifelse (wealth <= max-wealth / 3)
5 k% U) h. ^) P [ set color red
5 S# D: X: Q/ P/ _( \2 t' g* ` set age 0 Q, T- H# ?- q, B& h
face one-of neighbors4
. z4 S! E1 F& c; E5 S set life-expectancy life-expectancy-min +
4 |* F: C& L' M1 k random life-expectancy-max & h. v; d) v$ p' n4 w) W
set metabolism random 1 + metabolism-low9 O: c; a8 v0 U
set wealth metabolism + random 30( W, E0 R- o5 K1 d0 l$ N" m
set vision 1 + random max-vision. l; ]! G6 z1 ]
set wealth wealth + Wealth-inherited-low ]+ p. \8 L: P; k/ z$ ?1 |& L
[ ifelse (wealth <= (max-wealth * 2 / 3))& v0 o* V/ l. H" x$ F7 s+ e
[ set color yellow % a, Z A& ~! ?% \& F( E
set age 0
/ O0 z3 B* |% j face one-of neighbors4
; N8 c' o( B6 u( H/ H9 r5 ?0 Y set life-expectancy life-expectancy-min +
1 [% c7 o' j& g random life-expectancy-max + 1
* s! c3 w4 `" ^8 P9 Y1 W$ W set metabolism 1 + random metabolism-mid
5 t7 t9 u- ]: R5 y3 n8 R/ v8 S, k0 I set wealth metabolism + random 30
1 k) A7 c+ ], [9 Z+ F set vision 3 + random max-vision
$ \; X4 K* H! D# c( u set wealth wealth + Wealth-inherited-mid]1 _2 [1 m! \1 ~: v9 i* r; j/ d) d0 I
[ set color green / }5 E9 s2 \' Z0 `0 u6 h
set age 0# N* [( c5 c5 p1 G s
face one-of neighbors4 ! w* B2 N' n- T
set life-expectancy life-expectancy-min +
6 U' M/ q5 q1 X: N4 j* b, }9 t random life-expectancy-max + 2
* u5 m! T6 S2 k5 b& g set metabolism 2 + random metabolism-up- l5 Q. P8 H9 Q" E' z
set wealth metabolism + random 30
/ }+ k/ S9 z: ^, \3 I4 B; m set vision 3 + random max-vision
9 h% M8 v N% f2 M set wealth wealth + Wealth-inherited-up ] ] % ~+ x6 t4 k* b1 D# J; Y' C8 @
?$ Z1 d. L$ \
end# w, D) d* d3 j& q, c( M
to set-initial-turtle-vars-wealth" R. r3 O8 l. J% K0 j& A
let max-wealth max [wealth] of turtles
8 ]" V9 o; M; P5 p set age 05 N# T, j* p7 w, w- e! O
face one-of neighbors4 4 N& l4 V4 i0 W) w& f+ B
set life-expectancy life-expectancy-min +
4 V' v/ J+ r0 _0 N/ q1 G% C9 ] random life-expectancy-max 1 F" j) k+ [' A- a
set metabolism 1 + random metabolism-up
5 q' D3 X* z+ A- _. ~ set wealth metabolism + random 30( u# g+ P3 h4 G }
set vision 1 + random max-vision
! ]# W! @ O: x# send
% t4 H. I; u; A" v$ Wto redistribution! F1 I: h0 w& H" }- x
let max-wealth max [wealth] of turtles
2 ^; a% ~/ v; b- I$ clet min-wealth min [wealth] of turtles3 `; G1 H1 z* K: Q. H
if (wealth <= max-wealth / 3)
- P1 d1 h D3 @& b2 n* L; I [set wealth wealth + Low-income-protection ]" _$ k7 m1 e& h3 O
end9 |5 t0 M- b5 F! ]3 O6 h. ?
* `/ `- f& j4 Q% |! y! G
to recolor-turtles
. P$ \+ e1 G6 D/ a) n let max-wealth max [wealth] of turtles% V- n- n8 d7 I& b- r4 `
ask turtles
% c% D1 Y" n$ \ [ ifelse (wealth <= max-wealth / 3)
( ~0 M5 [ H( e0 Q( a [ set color red ]( |6 w$ ^; ~5 M$ I6 o7 H) _
[ ifelse (wealth <= (max-wealth * 2 / 3))" A' a* ^5 K: Z
[ set color yellow ]& ^( w: I [# G
[ set color green ] ] ]% p" E* t& l! p7 `! K7 F
ask turtles [ifelse show-wealth?
2 p# B8 d" k# T, u$ y- S, P [ set label wealth ]
# |0 j+ ` D& w1 }1 s: H1 K- ?3 K [ set label "" ]]& C9 [& q- c% J6 x
end7 w" @, Y- D' `- s) D5 p. G3 j' m
4 V( d" D/ c2 d( Eto go
/ S# ]" _* c7 i; W& e* H ask turtles# z# o* n# ?$ ?* L* o1 F
[ turn-towards-grain ] % K( Z: K; U& D% n0 ?" M: Q2 n
harvest
/ h; \7 t' O4 a( u$ D$ z8 t0 D, { ask turtles3 [: s2 V+ I2 O& `' }8 S
[ move-eat-age-die ]7 W4 ]; k5 l, j+ I0 H% c" G- y( ?
recolor-turtles
' |; h9 F; h$ ^/ y i( b+ | if ticks mod grain-growth-interval = 09 j j$ z+ x, r$ E2 A+ ?
[ ask patches [ grow-grain ] ]
$ ^) M0 [ k, Q* H# e( G / s$ r5 K8 H: A* J0 a, ?+ N) o2 Z
if ticks mod 11 = 0
% V+ x7 @/ }+ k: X6 Q( K [ask turtles5 Z: P- _! N( Z* |- ^ {. b4 \
[ redistribution ]]
) c, u# {" ] q& K, H @( X5 f if ticks mod 5 = 0/ g, g6 f8 r$ j3 P; D
[ask turtles0 {/ t3 l+ @; i N3 B: k7 D- Z
[ visions ]]% S& z- w9 q6 @% b. _* s
tick u4 H1 ]- {" u) ^. m9 [0 d1 F
update-plots( t9 K5 k b, I* @- q$ [) A, |& Y
end- ~4 t0 g5 @& x7 x
to visions$ Y' d" B) W% |( F! k. K
set vision vision + 1 ) f; ~9 A4 u+ v% N+ W( M4 f
end; K* b. [! f8 r; g: W) d6 N
* X( I) F) a* W. M* v% ]
, q+ u8 h2 _8 K1 Q* q
w3 e- B! j4 @9 g4 ]to turn-towards-grain ! K/ m/ ]/ S7 P c8 J$ i/ `& g
set heading 0
3 ^7 ?" {) s4 @5 I let best-direction 0
& M# C S, G' l$ W1 n( ~5 k/ b let best-amount grain-ahead
- K+ S$ G& }& ]) B& | set heading 903 E% q X1 p/ m: s4 j% |
if (grain-ahead > best-amount)8 p' T; E9 E# I: Y5 R9 e
[ set best-direction 901 K/ u2 ]% A7 y' v; d
set best-amount grain-ahead ]" Q9 j2 b0 h, p
set heading 1803 l; c; `* D& P3 z1 _3 d
if (grain-ahead > best-amount)- f$ h7 {; e* u+ r. ~: U
[ set best-direction 180
* {! J K4 \2 _0 J% N7 F2 Q set best-amount grain-ahead ]* S7 q. S( s1 S+ T2 a: N V3 [
set heading 270
) _/ e$ N$ `: z+ \. I: ]2 @) H if (grain-ahead > best-amount)
0 S6 c1 ]1 D$ A! X v1 U [ set best-direction 270# ^) R2 h% l5 r0 E) X4 b8 A" d' m
set best-amount grain-ahead ]$ {) C' _1 `4 K, |5 Q
set heading best-direction
6 j" Y k, b# j' j7 kend
9 |$ A W9 j0 `( V; w E% h- [9 _& d* t* d1 J! ?" H
' T0 ~) _1 k+ J( k
to-report grain-ahead 2 Q* d6 N2 b1 o' J, I2 x- i1 h
let total 0/ x: f) n% u% t2 l
let how-far 1% B2 L8 u3 T3 ^9 @
repeat vision1 f- X' {, v% q
[ set total total + [grain-here] of patch-ahead how-far! p- D% ]4 R9 I) V
set how-far how-far + 1 ]
& t2 I6 A) |9 `( Q' S: R report total0 B0 q6 L" l: I9 U* X
end
' m3 L6 x1 D9 e# j0 I: S v4 x+ F9 V7 b/ b7 w( f! D' |9 m$ d
to grow-grain + f; ~1 f+ N8 Y" \/ d) O
if (grain-here < max-grain-here)
2 |6 s; C+ F$ }$ y [ set grain-here grain-here + num-grain-grown* b# ~" P0 ?4 `- K- U
if (grain-here > max-grain-here) & G1 n f4 ~ A7 I3 Y( Y
[ set grain-here max-grain-here ]4 x9 C7 t; ~6 r2 ^4 B3 U
recolor-patch ]! E p9 Y$ A' e/ W
end8 k; y$ w- g; o8 j0 o
to harvest
. C; H( P" y4 E2 o4 Z ask turtles
5 }. l- \/ n' W3 Y! [ G" x [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]* a1 W X' f# ^2 ^
ask turtles0 k j; q6 N/ B3 X! c2 M* t
[ set grain-here 0
! ]/ q6 J- E7 T$ g/ I6 Q recolor-patch ]+ d: Z$ D; C1 u: K
/ c" B. U S# U; u! `8 m8 Kend
2 M& n c& r+ v* e8 \& E4 {! O8 ^; T1 ]& z% q& E, U. x
to move-eat-age-die
# e4 n ]; e$ N5 O' K3 ~! D( f* @* z fd 1
5 h% v6 b" f% u- Y3 i. g( ` set wealth (wealth - metabolism); q! J" \( \7 D4 H4 O8 q: k9 }
set age (age + 1)
, N6 t2 l4 i1 P9 k if (age >= life-expectancy)
) J6 q% f" H3 y+ ^' O3 Z* U [ set-initial-turtle-vars-age ]; t- O/ ^) x; ]
if (wealth < 0)
9 m9 h, c! w% g* E [ set-initial-turtle-vars-wealth ]
' I/ ^" }1 `- \5 @+ c* q1 Y% T ' A4 C2 O. _ H5 G! y
end
8 E+ O# S# D0 {; k2 H( q' E% g/ ]5 q
8 h* ^4 ^3 o/ Y2 s/ V" i( L* |# A% Q5 Gto setup-plots ?9 z, ^% F6 S1 W( A% S! u# @
set-current-plot "Class Plot"
; x( H* k) o% P2 A set-plot-y-range 0 num-people
4 R1 B1 E5 O, h set-current-plot "Class Histogram"' \4 n9 y; d- v7 W' |
set-plot-y-range 0 num-people! e1 Y; h- g/ Z3 H
end
2 c. B* c$ N7 ]+ e* W$ h
) W0 @+ ~, m/ r, J# J1 oto update-plots9 w# y/ ~/ g( v) z3 w
update-class-plot' M- d2 A1 ?8 t: Z* K% r% }
update-class-histogram
% b: d2 ]5 ~) U* O# q update-lorenz-and-gini-plots
% S3 Q; @+ [7 D/ I. U/ send7 i9 ?9 N: W5 z- m
" g1 K0 w; l$ }/ W
to update-class-plot
# C. n. v' D y set-current-plot "Class Plot"/ R' N, }$ `, i' J
set-current-plot-pen "low"
. z& r( Z, `( i3 S/ i plot count turtles with [color = red]% K% g+ N F! C- d
set-current-plot-pen "mid"
, @+ J! e7 W2 \) i plot count turtles with [color = yellow]( T# L- @% a! d! [ L$ y7 T
set-current-plot-pen "up"8 m" Q5 m1 @; O' R
plot count turtles with [color = green]+ K/ c, m& H+ n i, e
end
- ]& {1 P7 F: O0 p* }2 w9 y M) g" z) K, S5 c3 \
to update-class-histogram
7 `' S( O" L$ h _. W5 f; O set-current-plot "Class Histogram", g m; b* g+ K* g$ w6 ]
plot-pen-reset1 v, Q p. {" z5 ^& _! u- l
set-plot-pen-color red& N& u6 {# J( K6 K# `
plot count turtles with [color = red]
" G( h4 j) l& }& j! | set-plot-pen-color yellow; J9 r0 `( G: U) o
plot count turtles with [color = yellow]& a3 t9 \; J# D5 U2 D2 m: e$ ~
set-plot-pen-color green9 e2 T4 }: y u
plot count turtles with [color = green]
t3 S, k' `$ l6 [* u+ z3 {0 aend" U: `6 M& `+ L- o* o2 D
to update-lorenz-and-gini-plots- y0 F# i& ^/ F) d# n4 l% |
set-current-plot "Lorenz Curve"% A& O1 @% u, u. y" i
clear-plot
, H- m2 e) l, D' A6 Q+ p) H4 Q
" r. b1 s7 r3 u: t( N0 p set-current-plot-pen "equal"
8 I- m1 h, z8 X8 l# P plot 0
9 e! q3 C8 W! l plot 100: N% U. }. c+ j' |
! J0 f7 _- Q3 v3 D
set-current-plot-pen "lorenz": h: j; ?* o/ z2 ~+ T
set-plot-pen-interval 100 / num-people
8 |& v/ L9 x0 _ plot 0/ y: @' o5 q' k, v8 ?$ r, ^
/ K. O" T5 m4 G( s6 }- m$ O+ H9 q5 l
let sorted-wealths sort [wealth] of turtles
0 `7 z. E, c5 H/ D let total-wealth sum sorted-wealths" c! i1 f* d3 v$ d
let wealth-sum-so-far 0
7 @8 F% ~* r: ]4 V0 h/ ~8 j let index 0
; n# _1 c' e& W1 h6 q let gini-index-reserve 0; t6 B( w3 t# G9 J3 p8 U
6 E% g0 H! ?8 G% I# |; y
repeat num-people [3 Y' ^ `' n# y- [
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
7 X# ^8 e% C9 I plot (wealth-sum-so-far / total-wealth) * 100
! k3 u( u a) T% t/ i2 H! w& @ set index (index + 1)
3 l, X( m! m. N& s set gini-index-reserve
6 J0 s# Z# {" p: S8 m# Q* O gini-index-reserve +7 }. r& [: [* s# H3 v: f
(index / num-people) -
- p& b5 c% [( g7 G' A (wealth-sum-so-far / total-wealth)" x; o m; C' W2 \3 K/ p
]
, q* h- [2 `6 L
! T, u/ H4 ?( i7 _ set-current-plot "Gini-Index v. Time"
7 g# ?+ v, X) ?- m. Y. r plot (gini-index-reserve / num-people) / area-of-equality-triangle9 Q4 X: @1 q5 I& S6 p8 r/ K# ~
end
" h4 v; A8 L/ P: ]0 }* c, T7 Nto-report area-of-equality-triangle2 V7 P3 K1 {; c b3 Z% }) k; E6 j
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
# _* U4 P4 \# ?, Q6 p) u3 hend |