设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7098|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现6 N; c0 m6 [0 y4 a0 n
globals  s' s% ?4 f9 }
[
- w6 L8 E! Z, L8 L# }  max-grain    / X$ H/ @6 `4 f# }# Z

6 d, A9 r. @+ {1 v9 G]
% `* ?, f8 f, d/ C! V2 M) e  `
+ u- |4 b. o3 b2 c- }* Z" ?patches-own$ ~0 {; ?0 f6 Z  O% }+ M
[, _$ a$ R4 a8 E8 o/ N% p
  grain-here      % A0 M" I3 ]5 `6 l0 s
  max-grain-here  
+ S, Y8 z$ [, U7 V& q]
' N5 e; @  I% S1 v) j4 T9 M+ ~& P  M! {# C
turtles-own
  l9 a5 d1 F/ |5 F[- l) f8 ^0 z& H) o9 d5 u! t# X
  age              
7 i6 e, t& f( c7 N# R3 N7 y  wealth         
' {) N4 C  ]8 i$ q  life-expectancy  ' s" w5 u" h" r1 s
  metabolism      
* y, w" L! q7 b7 l2 }  vision
- {+ Y$ F) I/ j1 R( E2 _/ p  inherited         
( u9 x9 u! x$ [1 A2 D+ q: L; X]# o! ^. [/ C$ k8 X3 F

3 p6 i, Z% O, d2 l$ ?$ q/ w- o
5 E# [& m0 g, n4 k0 n! nto setup! j4 ?; x. u* K. J' e7 F- m
  ca1 }/ Z3 ~, f% P4 ?" P
  set max-grain 509 G0 g, i- @2 d# x' ~: q
  setup-patches: p9 M0 o% @( o8 u# V3 O
  setup-turtles
& R# q- _0 l4 E- r- ^  setup-plots4 [3 P' U# v5 A7 }
  update-plots( c$ n# m% d5 x; s2 D
end
" t+ x  [3 j: z$ R+ }) \to setup-patches
- h# |# D) p. X$ P/ _  ask patches
  n4 l2 b+ T1 t2 r' E    [ set max-grain-here 0$ I. U2 s. x$ q- {
      if (random-float 100.0) <= percent-best-land
+ C# r; B8 Z' U. \6 d* F        [ set max-grain-here max-grain% ~/ ?% T4 X8 v( o6 a$ U6 O) X; H
          set grain-here max-grain-here ] ]
6 f6 s( q9 h! z& U0 L- K  repeat 5
/ k9 ~0 v2 U$ F! H' D    [ ask patches with [max-grain-here != 0]" U! h$ w: N3 _& C6 L. E
        [ set grain-here max-grain-here ]
# {" p! D4 O0 f; Q* Q. y7 u4 ~      diffuse grain-here 0.5 ]* z! g" C, A: i& ?4 u
  repeat 10
9 A0 U2 V5 d/ b2 `    [ diffuse grain-here 0.5]         
1 a( ~* ~: M- @; [, v  t  ask patches
% C2 l* S1 I1 C% ^5 S% W    [ set grain-here floor grain-here   
' K- Y. M4 e) A% M, c: c2 ~      set max-grain-here grain-here      
' v6 ?# z' J# J5 \. k# z5 m0 H      recolor-patch ]
9 Q) }4 l# [) f' o0 [$ V0 x# f7 aend% L$ l8 |2 ~% w6 Y
to recolor-patch  
$ ^! I. m, `% `! Y5 m. _  set pcolor scale-color sky grain-here 0 max-grain/ z: r* M" w2 o
end/ {1 V6 g% M6 m0 ]
to setup-turtles
  }2 o6 A+ m" ^. y8 V# R( K" S: i  set-default-shape turtles "person"
7 o3 g2 L3 K* Q* g: A( G1 L  crt num-people% \! C0 k6 }0 A# k
    [ move-to one-of patches  $ B. l( M" J( q8 ?
      set size 1.5  , Y  a; D, z$ {+ ~5 L2 t  v
      set-initial-turtle-vars-age1 K' N0 J2 l% Q6 \1 M
      set-initial-turtle-vars-wealth, ]9 Z. N( p) G, P
      set age random life-expectancy ]( v: Q& a* N3 ~# m
  recolor-turtles- r: p8 @- j% Q
end9 ^4 L7 ]8 i* Z; H$ c

1 [. B, w) I% J8 kto set-initial-turtle-vars-age
2 ~) U1 Y) a2 l2 F let max-wealth max [wealth] of turtles/ u; k+ J! z; D0 j0 \# K' h  ^
   
8 V; ?% G3 }1 g4 e. n     ifelse (wealth <= max-wealth / 3)
& c; _. K/ `4 u1 y* u0 \/ b8 L        [ set color red 8 `  ^4 ]( g' n  C9 _
          set age 0+ M5 j- l% b* y) W1 i
          face one-of neighbors4
4 k' q8 `, q0 O% A          set life-expectancy life-expectancy-min +
) a9 k' p6 E7 N                        random life-expectancy-max 9 W# y4 s  @+ N* I, I) P0 ]  q
          set metabolism random 1 + metabolism-low
" d- O. {/ b: r" i4 M$ g8 x$ @/ v          set wealth metabolism + random 307 ]0 T' [) E8 a) |( @+ l) T
          set vision 1 + random max-vision2 e) {: j2 _" j
             set wealth  wealth +  Wealth-inherited-low ]/ o' J( Q5 `7 J$ v
        [ ifelse (wealth <= (max-wealth * 2 / 3))0 d0 K4 u7 H8 l- F3 T
            [ set color yellow " w+ ]& \1 f4 m* t9 r- y; N1 u( V
              set age 0
( ?! T6 s8 Z! r" v  L1 B7 h              face one-of neighbors4
5 q- i0 l) Q/ b5 Q% |              set life-expectancy life-expectancy-min +
/ p6 I8 \% g0 v5 G                        random life-expectancy-max + 1
0 B6 x0 F0 s/ J% G2 ]; ^7 X+ ^! Z. _              set metabolism  1 + random metabolism-mid
  E9 M" F; O3 c0 d              set wealth metabolism + random 30  G! W0 z6 C$ S2 x" \- I+ f
              set vision 3 + random max-vision
# B, I: O# @: t                set wealth  wealth + Wealth-inherited-mid]
9 n3 p0 S8 r3 u/ w; S$ o8 Z            [ set color green 8 }0 }8 @( U2 V3 S
              set age 0
; d4 U- V- [2 v' K3 v& ~8 ]; g. o              face one-of neighbors4
6 q) W/ M$ W% }5 A; y              set life-expectancy life-expectancy-min +
0 ]* y1 ?. y) w) Y                        random life-expectancy-max  + 2
+ b$ B2 F" x% ~/ X4 E              set metabolism 2 + random metabolism-up
7 m+ e& e6 ?1 c+ }, L4 z8 ^" r              set wealth metabolism + random 306 q, U9 Q  s1 E5 n1 W( V% U. C
              set vision 3 + random max-vision6 B3 e9 |+ x# P- k6 j3 u: d
              set wealth  wealth + Wealth-inherited-up ] ] 9 i( f. h5 h! W+ _' m1 F  @, k/ I
3 e  P" q, l# [5 \6 @9 n/ [
end' g9 |/ |6 F" `8 A* S/ l
to set-initial-turtle-vars-wealth
4 y9 ~6 F  p3 e# W: n  y0 X let max-wealth max [wealth] of turtles3 a9 d( r/ Z8 S3 u" @4 ]# M9 c
          set age 0
0 O9 G( I) B* |  M          face one-of neighbors4
' E0 j: o9 I5 s2 r2 k$ p8 F0 J4 f5 p          set life-expectancy life-expectancy-min +( u5 n" x! m7 ~" ^+ d$ s
                        random life-expectancy-max
! Q4 _' H1 R( O- ~9 b1 S" y3 B/ m          set metabolism 1 + random metabolism-up
8 i* ~4 X0 Y2 ]) z4 M          set wealth metabolism + random 300 y7 G  H1 v0 I( b% G5 C' O) Z& i. @
          set vision 1 + random max-vision
2 l- `/ T  m4 W: K7 Xend
( [) m' W6 ]& C- G/ u# E, B( ^5 hto redistribution
/ x& O8 ?+ {. O3 \( S& Olet max-wealth max [wealth] of turtles
( g! Y$ B# D3 S5 w" J8 ]3 j4 ylet min-wealth min [wealth] of turtles# ~7 [/ O" l3 u5 |8 l9 \6 n% n  h
if (wealth <= max-wealth / 3)
/ o+ y3 {- h: T' Z: I3 I) S [set wealth  wealth + Low-income-protection ]2 T+ s6 n( H+ X& n- m+ Q1 Q
end
; P- J5 J. {6 q6 o         
: l/ q5 R* [7 Sto recolor-turtles
5 j3 f/ S+ }3 ^* Q8 l9 A, L; G  let max-wealth max [wealth] of turtles0 k- b& E  Q3 n: k2 T+ F
  ask turtles
. U! J1 Z) h* x4 |/ l9 O   [ ifelse (wealth <= max-wealth / 3)& e1 l3 a' D. P9 [' e# e
        [ set color red ]
4 K8 ~$ A4 |, U% R; I+ X2 d        [ ifelse (wealth <= (max-wealth * 2 / 3))
6 M9 r8 [# n  q. u/ @, B            [ set color yellow ]
: w8 v! ?' e" j# N, d; u            [ set color green ] ] ]
9 h) u6 q, X) p3 K% ~ ask turtles [ifelse show-wealth?
, c, t( T* G% u/ R    [ set label wealth ]
3 \* F% N0 s! Y  G- [    [ set label "" ]]! b9 E9 |- J+ m& S* e
end  L. w) ~4 J) E# L+ _( P! s: g

. P  J% K% N' a' ?! {to go6 x: C; W3 N! w! B( m; V& b$ T
  ask turtles
, r# z) S; N8 M    [ turn-towards-grain ]  
' N  j6 L* w! \- j/ C+ w% b8 y  harvest% x0 V6 N9 C$ g* j
  ask turtles6 ]0 ?2 ?: h1 e' P: R2 x
    [ move-eat-age-die ]3 k! C: [& j! a- P3 j- x; v5 |
  recolor-turtles: b' o% T; F- C. B! Y
  if ticks mod grain-growth-interval = 0
0 Y& M" @3 s4 p9 O    [ ask patches [ grow-grain ] ]
1 S5 Y6 c( D$ N; Y) Y! r# V   
0 E3 Y# U" W! H$ G* C9 ]& E  if ticks mod 11 = 0
* A; f5 ^# P' \; T; t  [ask turtles
0 ]5 ~+ E4 g, J% J9 }0 L  [ redistribution ]]6 s) p1 G2 H" P; l7 d0 _; _- u( O: R
  if ticks mod 5 = 0
! t& r8 D  m% T8 G+ [0 d/ {' U% |   [ask turtles
; L7 K, X6 O3 z4 {7 ~' i# U0 Q  [ visions ]]+ _% U7 g% @' ?' Z
  tick
& N* o: _" H" ]# u! ?  update-plots
  Y7 s7 ]. r; _4 [- t& Jend7 ?- w" F# p# H7 E4 C
to visions5 Z! e% B, G, z# a6 C9 U! _+ n
set vision vision + 1
! {6 M; E. {' \8 oend
4 K$ P1 K$ H. c4 \& b& w3 i
) {: y6 @% m- G& K% o: j/ z# c+ ^0 ~9 |5 L3 G' j! `9 C8 {1 V7 M) b
$ f6 v) r  P5 n  G% I* I
to turn-towards-grain  
% k& @6 R  I( l3 O& Z: A9 Z# Z  set heading 06 e  `# W- [3 N" \& U
  let best-direction 0( L$ d( E" o8 T, c& T
  let best-amount grain-ahead
) T5 c2 E. r* f, n2 C$ b  set heading 90
" f0 m5 D6 o; j$ E0 a4 {/ u  if (grain-ahead > best-amount)
+ k8 D4 k4 f+ q4 F8 j; M3 _7 \    [ set best-direction 90( O; L; |% f2 C8 @% T' ~$ H2 s
      set best-amount grain-ahead ]
2 c/ I0 y$ l' E$ S" M+ p: K7 B  set heading 180
" z- @9 u2 T# _6 h6 Y8 v  if (grain-ahead > best-amount)* ^9 S/ e- j+ f0 W, \3 e
    [ set best-direction 180( m: t! u9 I$ M9 h# d9 ?% r
      set best-amount grain-ahead ]8 v" D$ I# S4 _/ O
  set heading 270
: u8 o2 A4 {4 f/ E3 m  ]  S$ S  if (grain-ahead > best-amount)
3 g$ E- Q) L7 N    [ set best-direction 270% E4 i2 d5 Y4 {2 B
      set best-amount grain-ahead ]
8 Q4 |+ K1 J% `: Q  set heading best-direction# v/ ^: c! g' X6 \8 p" Q
end
0 G/ f; W0 v; X* C. r9 z9 s* {; f& J" ~' b7 l- G

) w' w7 H% ~# U/ Mto-report grain-ahead  3 Y2 j) E5 o5 f0 f6 B
  let total 03 K$ o) D3 c! ~) \
  let how-far 12 r8 }# x( H/ Q) e$ v7 e" {
  repeat vision
. x- y. O# t0 [6 Q4 H7 N    [ set total total + [grain-here] of patch-ahead how-far
: A+ [7 n9 Q- r* J: n9 i- Y      set how-far how-far + 1 ]6 T1 n6 \; ]% ]/ A' A5 g! p' s; p/ z$ y
  report total
7 l5 T! y. o, k" Gend
0 e9 c6 Y0 Q& G: D3 H& i. K+ l; Z5 C% `, r
to grow-grain 8 L0 D2 O3 i1 E* a
  if (grain-here < max-grain-here)
, p5 D& S- t  [' c& K8 [+ v3 T    [ set grain-here grain-here + num-grain-grown
2 e* A& x# F* m      if (grain-here > max-grain-here) ) }6 r5 L; ?7 D/ j+ i' h( X
        [ set grain-here max-grain-here ]+ b5 a. J* I9 p6 S0 ^" X, {' `
      recolor-patch ]4 g* k. F# l: b& a1 P
end
" \# T' N2 x2 Q$ J$ H) Rto harvest
* A1 g  U, D6 Y* u5 h9 L5 R  ask turtles
% z1 W, ^4 |3 y  g2 n7 k! S    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
0 T  k# B6 {3 W  ask turtles9 w3 K2 L/ d8 K0 g. P: Q
    [ set grain-here 0
0 p) L" E" m# r; R5 U# k2 A      recolor-patch ]
5 y. J4 C% V3 u' s" g  F% h  4 r  v/ O' h, n- u2 o/ p
end: q" m" N3 D$ G6 H/ ~& s
7 u8 x: b- ~# p/ c& X
to move-eat-age-die  ( K6 @, Z; n2 i% x
  fd 1
; y; }1 |4 ?8 N" B' D  m2 B1 l  set wealth (wealth - metabolism)
8 x& p" A* v. m  \/ G! p8 h    set age (age + 1)4 x# l$ S1 z) q: n% S
  if (age >= life-expectancy)9 D1 t6 C2 y& }, Q, A2 h. Q
    [ set-initial-turtle-vars-age ]
( S1 G) H# M/ ]  if (wealth < 0)3 p# H4 t3 p! m8 {1 K) p
    [ set-initial-turtle-vars-wealth ]
# d: r- r9 {2 w" L* m8 A, k3 Q    & |$ G: {( j8 f) H3 V
end* V* P4 L7 U+ |' ]

# _/ x: a# ^* L) ~
. J4 m3 R3 N  \to setup-plots- t. k2 W, W: M# j
  set-current-plot "Class Plot"3 s% K+ l' @, P! U, }) E. H
  set-plot-y-range 0 num-people
* `/ u* O$ ?$ z6 r$ r4 o  set-current-plot "Class Histogram"  p! ~3 Z% I+ A  h! _4 w+ h
  set-plot-y-range 0 num-people
" Z# o% Z6 A/ _- F( mend
& N7 E5 h$ K% M! o- V# S% L0 C  F0 B
to update-plots% R1 N# A1 P3 {7 U
  update-class-plot$ S2 p4 u% u; A+ t
  update-class-histogram
/ u( u6 U4 M, j, a) U8 L1 N/ I  update-lorenz-and-gini-plots$ b  L0 X" B( A7 E( k" p! j
end
1 D: m( B- n- {7 h7 q
% l, S3 f, \" X1 H! A! e, cto update-class-plot: U  n! J5 q0 v9 Q
  set-current-plot "Class Plot"
' \% P. z% E' b9 Y, H  set-current-plot-pen "low"
, R; g4 R& \8 `& o* T4 u  plot count turtles with [color = red]0 S) l" O7 A1 _' B  z" f9 ?
  set-current-plot-pen "mid"
$ b+ G6 k3 y' a& _- n' S1 L" h, b  plot count turtles with [color = yellow]7 T9 v; W; K+ @, T' E
  set-current-plot-pen "up"; @% V: ]' Z+ y& i& |. Y
  plot count turtles with [color = green]
) h4 O9 r$ c; l5 @) W. K: n/ F! Fend" p3 i) s# c, v; \

; Q2 w, N1 i5 j: \to update-class-histogram% {$ `9 d( M' s3 h# ^
  set-current-plot "Class Histogram"
& o$ q, s; R9 Z7 G  plot-pen-reset' r" n% Q8 H* N' [- F. S
  set-plot-pen-color red
" ]5 f5 G' ~) w% \1 H8 A* \( l: l  plot count turtles with [color = red]2 I" n' a! i! A$ h7 w' [
  set-plot-pen-color yellow
+ H4 G/ @5 v2 v  plot count turtles with [color = yellow]
2 ^4 z4 Z' v9 l1 v. v  set-plot-pen-color green% g0 f  B( y  L; x! H
  plot count turtles with [color = green]
/ j7 a3 @* ^3 Q+ C! |" Lend  L7 }! g9 B8 E3 G2 O
to update-lorenz-and-gini-plots) }. {" Y& |+ z( t* Z, O
  set-current-plot "Lorenz Curve"  i& [+ s( m. W$ ]) ^
  clear-plot8 s% W: Z- p5 e2 s% T$ u8 O. O

. M3 T- b9 s8 N" \; k  set-current-plot-pen "equal"
/ K9 H" S: `" Q! s# o8 N9 [5 L+ h) q  plot 0
& j& k1 B; t( H9 d- ?' J  plot 100
6 _4 N( B: u! }$ N+ ?
+ A7 E  @4 H, s6 d9 X- ?9 B- w! ~# I  set-current-plot-pen "lorenz"
0 U. {; L& K  X6 l0 a$ P3 s  set-plot-pen-interval 100 / num-people
2 v6 Q- t. a& r' N5 Q, H, O  plot 0
4 r- n* C/ |4 }# I5 O; z8 R( e: ~1 J- B* u3 i
  let sorted-wealths sort [wealth] of turtles
' G# e" r8 t& F  let total-wealth sum sorted-wealths
7 ~9 u: ]' l; G8 j0 z/ S  let wealth-sum-so-far 0
* z% u) P) B/ ?% u1 x+ _$ s  let index 0
: [) c0 P- R' H3 k  let gini-index-reserve 0# n3 U* {! |. V0 `% |
0 M5 C' B( G! k' O
  repeat num-people [- H; B4 j6 s# j9 {$ E) Z
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths): Z" V7 l% U4 }' J
    plot (wealth-sum-so-far / total-wealth) * 100
( W5 @0 t' i1 Q- l/ z* n    set index (index + 1), @! H8 i2 A8 d& A8 l! r
    set gini-index-reserve
8 E/ ]: g- [! ~6 t) S      gini-index-reserve +2 F- I/ ^) j: J1 a. [" k0 f8 u
      (index / num-people) -
1 X! o3 B- Z/ V      (wealth-sum-so-far / total-wealth)* Z! F6 P  v& h4 c
  ]( X% Y5 U2 o, [* D
; ~  f" X  o9 X" i! d% T
  set-current-plot "Gini-Index v. Time"8 n( l3 ?; f; Z# L- {* C5 r
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
" x1 e4 }+ Z* I- Zend2 b. k$ b% }% b: }4 F
to-report area-of-equality-triangle
. y. I1 B% h0 g6 R  report (num-people * (num-people - 1) / 2) / (num-people ^ 2), o1 k' P5 E' u; ?5 R' a$ X6 a
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-6 22:29 , Processed in 0.019941 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表