设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7604|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现8 @8 r7 R7 m7 g2 r
globals
( ]' a' G% M8 [- d) H6 W8 x' _[
) j- o! S# \0 Q# s  max-grain    ' `8 |( F6 t6 L: U) B7 T

& W) S9 S! K0 L# s- Q, _]
) U% g4 ^: ]$ \: ]# Q3 T4 P) D" {/ d- u& {4 j
patches-own8 u) V9 J4 Q  O' j: b2 o8 U$ t, k+ Z& p
[
  ?) G' d" m  z9 T: j* I8 n  grain-here      . `: C- X+ |7 X0 Q0 @" y
  max-grain-here  
" w7 f* N& ^  h3 W. p1 T9 i$ V" g! ^]) U2 @9 L, \+ O

8 f! P# t: K- k# E9 fturtles-own" |2 n7 X2 {  m! ]+ O* N
[1 m. y" X2 b) n# t4 A( D
  age              1 i6 ^7 D1 q: c8 O0 K
  wealth         # N8 j- F8 h- F
  life-expectancy  
1 e0 ~" z+ l' j/ ^  metabolism       ( u; I( `+ d( Q
  vision
; R4 }  L) a1 f, c; u8 L  inherited         ; {, U# G7 i# \4 c" }: {
]
  O  E. A; r" x  l( Q7 D! D
  {1 g+ X" N! d) l# A/ s
5 n& q# @0 L' P- M: bto setup
+ s/ r+ Y4 c8 Q  ca
# @1 U. s9 B+ x3 ^0 P: G7 \# p* T6 b  set max-grain 50( D& R( k) g! ~( A1 f3 Q
  setup-patches/ F! ?: }  r  V, r1 F" D
  setup-turtles
/ _7 |5 x6 f- c' U& I; p$ g" m  setup-plots
4 C6 c. c' b; g; q/ ~  update-plots- |% v% U7 Q4 n6 D) I8 U
end9 Q7 E. r  e. |8 ~" u) G1 }9 O
to setup-patches6 D/ ?# i  r8 s3 t- Q6 l
  ask patches* b( z) ~. z1 }% y" V
    [ set max-grain-here 0$ H8 ^1 f, e. P$ p. J. W0 T/ I
      if (random-float 100.0) <= percent-best-land0 y$ r( m5 Z' o. N$ u/ b3 R
        [ set max-grain-here max-grain8 j% h1 n' u4 {! E$ t8 |4 W9 Q; H
          set grain-here max-grain-here ] ]
; x# C. f% t3 R0 g' u  repeat 5
9 i( ^# ~1 e* Q/ q6 _1 w6 T    [ ask patches with [max-grain-here != 0]
1 q; ^* G9 H5 @7 V6 k% i: f% r* R$ b        [ set grain-here max-grain-here ]
; |  E  F! m" k- x* |7 P8 e8 u# a" Z' z      diffuse grain-here 0.5 ]& D2 K: l+ y9 u8 \/ Z4 @5 U' v4 j
  repeat 10& X* r. c, E  K" A9 w
    [ diffuse grain-here 0.5]          4 Z: l8 d$ d& Q4 f8 x) E
  ask patches/ b1 z1 B$ O& f: Q% p1 @
    [ set grain-here floor grain-here    2 m! f9 r- E' i
      set max-grain-here grain-here      
% A" |  S- a' ?9 k      recolor-patch ]
' a9 {! U6 P' k& ?, T, M1 Uend) @" _2 E' K3 C7 G3 Z3 w
to recolor-patch  
. p* f/ g6 q6 U: }+ s  set pcolor scale-color sky grain-here 0 max-grain* I* {) Z- b7 n, c3 m
end
6 x$ f  P- E' ^9 M. _5 Oto setup-turtles
- U2 Z6 x5 V6 a3 C+ V  set-default-shape turtles "person"
; d- _/ F5 g' P# {( i  crt num-people
* E: s4 f: X# ]  t1 H5 {$ G    [ move-to one-of patches  ; J. O9 l7 l6 Z) [: _; N1 v1 D
      set size 1.5  6 c- d. x; ~0 A/ e4 Z& g. X. D( y
      set-initial-turtle-vars-age: d3 F" J4 Z& c; ]. P. |9 u. V7 \
      set-initial-turtle-vars-wealth
' N+ f! f  x. K% R% Q      set age random life-expectancy ]
: @1 w1 A* d8 ]8 ~  recolor-turtles
* I8 x+ l1 X$ V- Jend
& l0 i% s3 O( r4 X9 v  u4 I
* t/ @7 f1 d$ c: g# J8 ~; [+ G3 fto set-initial-turtle-vars-age9 x. {& H& E+ l. ^' \  j; Q
let max-wealth max [wealth] of turtles
- k& J* g! a  i: V3 @1 q, S    - g6 D. S, G% Y/ ?* i
     ifelse (wealth <= max-wealth / 3)8 J* O8 ]  m- A
        [ set color red
  S- e1 Z: M" |9 h8 q4 t          set age 0
  u. E9 i9 h8 h' [* Q          face one-of neighbors4 % n6 U6 a5 y5 l
          set life-expectancy life-expectancy-min +! R: ]4 K5 h* e) R/ h
                        random life-expectancy-max
) }. n' Z; h% |" a% i% P0 O          set metabolism random 1 + metabolism-low6 v: d: D3 [, U
          set wealth metabolism + random 30
) y# j# c8 q- R          set vision 1 + random max-vision# E5 M1 [0 S2 C/ X  d- R# e
             set wealth  wealth +  Wealth-inherited-low ]" A5 ~& Y- e# u4 k. |
        [ ifelse (wealth <= (max-wealth * 2 / 3))
: A! B2 I% ?% q& k- v/ U7 m9 \            [ set color yellow
7 b& h" S% F0 |              set age 0: e( S/ ]3 J' [/ ~% ~( Y
              face one-of neighbors4
- V9 p& b% Y) y' a; q+ b. X              set life-expectancy life-expectancy-min +
: e+ m3 W% ~9 w                        random life-expectancy-max + 12 b6 A& }! e. T
              set metabolism  1 + random metabolism-mid' ]7 F6 N* w: y6 H* S3 ]- k' I
              set wealth metabolism + random 309 @. }, p# k: q$ R" u3 D
              set vision 3 + random max-vision
3 u# ~" {) M9 C- X' I; f                set wealth  wealth + Wealth-inherited-mid]  z( f# Q2 F. N. f
            [ set color green 6 T- o% H8 ]: G
              set age 0
! {$ e# d/ M0 e7 S  B, t7 s              face one-of neighbors4
4 `" _/ a0 @: I9 @8 \4 j" o& S              set life-expectancy life-expectancy-min +
* ^9 H: `- f) E' z3 j" M                        random life-expectancy-max  + 2
, O1 ^" k$ P* l( ]              set metabolism 2 + random metabolism-up8 F" Y3 L; W. @# s
              set wealth metabolism + random 30
1 ^% e4 \! U" W4 X              set vision 3 + random max-vision
- u/ a" v4 F1 q              set wealth  wealth + Wealth-inherited-up ] ]
) i" n' J" Z5 x1 J  q2 q8 t% c1 [ % v; w6 b& i; v4 p
end4 l- {) J. A0 Z8 o* q, _* G* m0 U! P
to set-initial-turtle-vars-wealth
8 o, `* C8 j( D" o3 ~- c4 o let max-wealth max [wealth] of turtles0 f" g$ o7 V* P( d  I
          set age 0
/ l2 A: D% `. o) ?3 T: L          face one-of neighbors4
2 q( x7 q7 Y9 @0 S          set life-expectancy life-expectancy-min +' n' w! R" x" f) j5 u
                        random life-expectancy-max
. I! M, y6 S8 S8 p          set metabolism 1 + random metabolism-up& Z- J& G5 @- y9 K! j
          set wealth metabolism + random 30* X) f3 R) s9 g, Z7 T& g" U7 k
          set vision 1 + random max-vision 8 e9 `, c) d% ~! h( b
end
. D  T- M+ C' B* Jto redistribution# n$ m  a2 i6 b  c& @
let max-wealth max [wealth] of turtles* C" r( c& |, R0 {+ u  V3 j- x
let min-wealth min [wealth] of turtles% ~' D) U  R- B2 o" e" k# _7 u0 U
if (wealth <= max-wealth / 3)
8 v0 `6 p* B) F& p* t [set wealth  wealth + Low-income-protection ]
! F% q, D. N7 i. y6 a1 c+ C; }end
6 Z) b* v/ s& l, g* [         
; f: Z. g! W  R, Jto recolor-turtles. [3 r2 k1 f( q% X3 p
  let max-wealth max [wealth] of turtles
2 U) M4 R! u6 q% v- s  ask turtles% X9 Z/ j! I9 G: ?4 U! U. f, [4 e
   [ ifelse (wealth <= max-wealth / 3)
$ ~/ H) c' B" o, y' B# L3 `        [ set color red ]$ Y! o5 ]( y. x: f& r
        [ ifelse (wealth <= (max-wealth * 2 / 3))
9 q- {, D0 O9 z, V6 a            [ set color yellow ]9 ~( j  k0 ~# P% `9 N6 e' q$ \
            [ set color green ] ] ]
5 d/ s" L$ W# ~: X8 r- q* A6 B' X ask turtles [ifelse show-wealth?- ?9 [4 b, i6 |6 T% o7 {1 ?
    [ set label wealth ]
2 w1 T% ~$ B9 Q7 `* Q; J3 g    [ set label "" ]], {. ~9 J. V$ O% ~
end; A% A+ b$ \7 A& }; [" h) Y. R  T* x" Q
/ M& J$ A  \+ H, ?7 a
to go
8 q' Z3 m, J: D5 h- A9 [  ask turtles/ k5 W& e7 e/ b1 s- v% q# E
    [ turn-towards-grain ]  + I% N4 D7 [$ F3 }" `
  harvest
3 i3 _& K* d  g: c  ask turtles* k: C# h1 Z0 W- V- j
    [ move-eat-age-die ]# O; |7 p0 `+ [, n: E, Y4 q
  recolor-turtles
& Z( K; R" ~5 F  if ticks mod grain-growth-interval = 0
. ~( ~2 g, H% l. e- I! `2 T$ O    [ ask patches [ grow-grain ] ]
5 t( T$ q9 H5 e" D/ i$ U  D   5 \% i8 L& D$ u3 A. E2 F
  if ticks mod 11 = 0/ m3 _. ?' N' H8 f. E2 v
  [ask turtles
6 |; }% ^4 z+ H7 _  [ redistribution ]]" T& n: w, M$ d; c1 B5 r
  if ticks mod 5 = 0; ^: H* S; l( I6 D4 U
   [ask turtles
7 V  n1 y8 M( ~- A: v* {# S  [ visions ]]' `/ ]; R7 f2 h2 K) r
  tick
. @$ L4 L0 Z" h1 T! R5 A9 |4 ^  update-plots' S% W0 P/ K' a! R
end5 H1 \7 H2 l7 m* T$ H* y7 a- T
to visions8 d7 K0 c/ X! `" v$ u' ^5 E6 ]% H5 r
set vision vision + 1 * z2 R5 t# [( R+ X
end
8 m% K+ u$ h. @0 _* G" t8 w6 e! M  g; r* Z1 F; g; q, ]
  g0 {8 P) }# [1 p

) M, L: @  k! H# Oto turn-towards-grain  5 @  ~" P4 \) m: r  j& ?1 U
  set heading 0
  ?! W$ _' q8 L/ r' g  let best-direction 0) F' @! c; L5 |
  let best-amount grain-ahead
' n6 O/ U# D* E4 {3 P  set heading 905 B" |4 T  C* |+ U7 N8 o
  if (grain-ahead > best-amount)2 b4 V0 O4 [+ I8 l! w0 z
    [ set best-direction 90- W. c* q# ?* B; A
      set best-amount grain-ahead ]
( z7 ~5 d' I" V% a$ N  set heading 180
% l+ H; `$ J, R5 v, T+ t  A  if (grain-ahead > best-amount)2 s; _1 g( y4 n' N; d7 A
    [ set best-direction 180% S+ o+ U# J; i
      set best-amount grain-ahead ]
2 Y9 o- b' y9 g* @# V  set heading 270" [4 V( d4 l0 T  z. ^# M; M* n
  if (grain-ahead > best-amount)
8 p4 w: A/ h% \" O! N    [ set best-direction 270
. @' r8 p- h) h/ W2 V      set best-amount grain-ahead ]& X/ N5 j& x2 ?' k1 {
  set heading best-direction
$ W0 z0 ]6 d/ }, ^" ^- R4 W0 b3 Pend
" f/ w! p$ b9 N
  |. |/ a0 N9 g. a
! Y- L# H& J- r3 U- pto-report grain-ahead  
6 {+ A+ r. |5 Q2 d0 o  let total 01 x( U0 c  P9 b2 [& A
  let how-far 18 |8 L6 [( H* ], H  i' o+ v
  repeat vision
" d, w) }, U0 Z7 B7 U9 N5 V5 m1 Y. E    [ set total total + [grain-here] of patch-ahead how-far
) K0 e( {0 w% l2 x" C7 [      set how-far how-far + 1 ]
: Q* T7 g3 q( H- G& Y  report total
* i4 N1 `* P! P$ r0 |end- ]3 r1 k' m/ |$ {+ X( g- D% f
4 i+ \& e2 n& S5 Q  J
to grow-grain 8 Y2 s! C+ D( ?% ]
  if (grain-here < max-grain-here)/ r: v, h2 ?/ _  I* j; ?7 Z+ q
    [ set grain-here grain-here + num-grain-grown
% G# U; }) _; G3 i2 G      if (grain-here > max-grain-here)
- i, _: u9 V7 V; l7 k* v        [ set grain-here max-grain-here ]/ {" L) {- B3 y" ~! L/ v/ c
      recolor-patch ]
+ B5 e; [4 v9 j' t! q7 t; P/ }end
( W" g0 h7 g) |7 E$ Z/ \to harvest) p, e! Z/ C5 d9 G; c1 n  K
  ask turtles
2 y& i4 s6 k( I9 P, ]" F    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]: a. e9 R, A1 e( u/ T# ?
  ask turtles
% i! ]3 I, S$ }/ h6 l4 \9 a    [ set grain-here 0
7 \9 f  C1 w' n5 m! U! A" c      recolor-patch ]
8 J  b$ k4 D& O1 E- V  
6 d( ?# ^* m9 |4 Q" e% Yend6 C& h7 \6 Z; @6 i, \% m

1 d1 U. g; l0 ]+ w+ C9 Yto move-eat-age-die  
) z  b9 ~9 O; ^& L) q# R3 T  fd 1
2 j% y8 w4 G1 N( @  set wealth (wealth - metabolism); O& e* v0 Q# B: f! t4 T
    set age (age + 1)
0 W7 [+ K2 \) ~& D  a/ Q5 G, U  if (age >= life-expectancy), u6 d/ t# U" v. q0 H
    [ set-initial-turtle-vars-age ], g7 k9 S; f' b
  if (wealth < 0)
: Z% l( {. n# F" _    [ set-initial-turtle-vars-wealth ]! f4 \/ x: Y0 C' h) s$ I3 d/ ~0 L( Z
    + x( q9 I3 ^. i3 }9 c4 w
end. \" Q* p- i" Q& Y- ^# l+ J' y! c3 `

9 n. h& m! w) w9 ?/ k; Y% _5 x% Y8 r0 t6 P. _! n3 W( v% T
to setup-plots: I5 v" A1 S  M& @, c/ Z) |
  set-current-plot "Class Plot"
& K. o9 \- o# S9 B) K  set-plot-y-range 0 num-people/ m8 c0 |7 c4 a
  set-current-plot "Class Histogram"
, X: v8 R% O2 a8 q' e* ~4 \  set-plot-y-range 0 num-people" C0 |% n& I. S0 P# K
end
7 W& G: }: a: s# y7 f
3 l, X( Z: R# [$ ]0 s+ z$ i( }to update-plots. n9 G; u  m" O. Q5 C  F
  update-class-plot' j: l) d  q$ B; g/ A6 j$ k; s
  update-class-histogram
$ }% A$ Y1 Q, m! c  update-lorenz-and-gini-plots
6 q4 o& j! B6 f- Rend
8 ?* t$ B/ ^: D& L# W& f
$ Z: V2 w6 y& J+ Qto update-class-plot) h6 J$ I: d4 c+ M6 z' `  K
  set-current-plot "Class Plot"
2 ]5 {3 E2 J4 G, t% |( i8 R8 l  set-current-plot-pen "low"* t0 m5 S/ i% k- p' l
  plot count turtles with [color = red]
3 w6 T1 R" I) w1 ^1 ?0 I# Y8 I  set-current-plot-pen "mid"
! G4 s! m' C" p. l( o# h- S: G$ c  plot count turtles with [color = yellow]
; e2 C2 \/ I- M3 v* X- Q  Y8 s  set-current-plot-pen "up"
* G0 ]& \- y9 w. P$ l+ ?  plot count turtles with [color = green]
: o1 p/ E" C, Eend' K% T4 P& S" v. E+ n+ d
8 d6 q* X- _. d5 q# M0 V
to update-class-histogram) {+ ?& F9 R: U2 i) _4 G: F
  set-current-plot "Class Histogram"
  Q# ?: t: Q6 m- S+ G) v5 o  plot-pen-reset
8 j7 }* H! c$ O3 X; D1 d  set-plot-pen-color red$ x  E5 S: A- e- v! X) k9 _
  plot count turtles with [color = red]7 q" t/ a5 P/ }  s6 q0 p
  set-plot-pen-color yellow1 D6 L. G% b, t8 _; ]
  plot count turtles with [color = yellow]
4 g9 [4 A6 j% u% ]9 h7 E  set-plot-pen-color green
, @( r0 Z( ~8 H* a9 W  plot count turtles with [color = green]6 r- ~9 ^: G" q5 s6 ^% N
end
. ]9 Y: x5 g% ~2 ?4 @: Lto update-lorenz-and-gini-plots
9 I8 C- P( A  o9 v# P  set-current-plot "Lorenz Curve"
8 Y4 }# Y" G/ d! f8 H- Y  clear-plot# ?8 o: L7 r% O( C4 `) _

8 [! P0 A6 z2 H# \  set-current-plot-pen "equal"
( E) O, n: z# }. b. o  plot 0* F) Y1 M  ?7 W( I, h2 ?
  plot 100
* R, W- ~* S9 E6 z0 j  w1 M; S/ i$ c5 a' q
  set-current-plot-pen "lorenz"
) j4 m; E  H/ f3 |4 X- b4 N' @  set-plot-pen-interval 100 / num-people# v2 ]1 p8 x5 b/ q7 s0 E
  plot 00 {. {/ G  C9 C1 ~# f9 H" ~

3 S, Z' ]& ^- m# s$ q4 j, k9 [  ~  let sorted-wealths sort [wealth] of turtles
! A* D7 o8 t4 D  let total-wealth sum sorted-wealths* W: `# D& D+ F
  let wealth-sum-so-far 0
% C" A. s% m: `0 |3 H9 V! D/ L  let index 0$ I- M% A2 f/ N6 V4 v& T1 H+ b
  let gini-index-reserve 0
- e& t0 Z2 y4 e- `" D- v# K. J
2 m% `; ?" P. l; D! L$ Z7 M7 A  repeat num-people [5 \' _) l: Y) c% S# ~# ^: c
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
$ ]/ {+ j0 s( o! p    plot (wealth-sum-so-far / total-wealth) * 100# A* c, m( A1 V. @, U5 ^
    set index (index + 1)) `- t; ^% s  T1 F2 ^6 A: g
    set gini-index-reserve
1 O! i5 l7 C4 w( `# M# [' w: J      gini-index-reserve +
0 W4 K1 m4 v, k: B; D. i( O      (index / num-people) -' T2 W* J) Z+ Q, u( M
      (wealth-sum-so-far / total-wealth)% |' m) _7 l+ R! O
  ]: |- @5 k: ], C2 V- K- u2 O( P. U

6 [6 y6 z3 x% Y( O+ t  set-current-plot "Gini-Index v. Time"5 n. I4 y; ]. Y& |) ^
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
9 ?8 ~/ ?, x4 B+ H2 S0 b3 gend
* J) P' Q7 e( b+ Ato-report area-of-equality-triangle3 \6 a4 d0 F0 H, ?5 [( x
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)9 I+ F' L& n: W8 I+ t& R! u3 }$ i/ r
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-2-19 02:28 , Processed in 0.016708 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表