请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现9 J, u2 k5 p5 |
globals
! E7 c: \% K+ \& m* U- ][
+ n9 t4 f. t" v9 Z0 e- n8 E, a: e max-grain
( v4 J6 d: u5 B& w, c) i) o* S
1 l) W; [3 |) [8 E2 |]( p+ }( C9 t j$ ]3 L" I/ x+ O$ _
/ d* s- I: X9 q4 C2 I& o0 x/ X7 n3 `
patches-own
! H' s8 p0 y+ i& z T$ }) q, i! w, Z[6 w' m2 Z: f; r6 z
grain-here
0 Q9 e0 _4 J* b/ D) H- T g0 l. w/ b, p max-grain-here ]: t y5 ]* \' T- X
]3 n' t1 b2 G) ^1 S. n
- U/ g% D. ^, E' rturtles-own3 S7 W' p) g4 U0 t/ @, Z
[
1 n* b# I0 N+ ?8 `, K7 {- [ age + T/ y0 X, V t3 l) h8 L
wealth ' g, j! E: t% j. o0 z5 O$ e
life-expectancy " ~5 B+ F2 \8 Q* \4 L$ {9 a4 L
metabolism
' G7 h1 g( p( h" _8 ^- G1 } vision5 f f# {1 j$ I0 a; ]) |5 [
inherited
$ H/ k% M" V1 d# E2 j j]1 e" L6 [' j+ c* ^6 N& M7 p$ L( U
$ M7 x. ]! r. o |* K* W4 z1 p: s! f6 u1 c# n! g" N
to setup
$ c1 }! h5 t$ v ca1 ?+ O! a3 V) t
set max-grain 50
2 C5 Y7 Y6 E$ W$ n1 F; W setup-patches
! z) M* f0 p- i( {: C1 |4 ^ setup-turtles
! ~ w" M* d9 `3 S setup-plots
+ Q- Y% F+ d$ z- f8 w update-plots f3 e- N9 y1 q n! R" d9 c9 @
end# X% F- ]+ Z. i5 }9 J# g" D- ~
to setup-patches
( i$ j- h% o( q8 n$ Y ask patches% r$ b7 n9 @/ @) o+ x8 f
[ set max-grain-here 0
- u$ x% p+ F+ N) l if (random-float 100.0) <= percent-best-land5 F% O7 A% H7 l4 p# T
[ set max-grain-here max-grain
: h; n, \) }; { set grain-here max-grain-here ] ] U8 o2 A! O |
repeat 50 l6 E" d$ N0 ]5 N# o' H
[ ask patches with [max-grain-here != 0]
, ]. R& K# p8 E5 e* Q [ set grain-here max-grain-here ]& g. b- t% q' b# i' v9 X- @! q
diffuse grain-here 0.5 ]
8 O- H7 M7 A& }, G1 ^& | repeat 10
/ u5 X2 c( x: ~6 p' c T) m [ diffuse grain-here 0.5]
s6 ` e# S5 l2 A7 P ask patches& m$ B6 _( s4 B; F. ~
[ set grain-here floor grain-here ) h1 E1 d/ q/ X$ V9 L: q7 \0 f. x
set max-grain-here grain-here : t; R: W, ?0 |$ \
recolor-patch ]
. g1 ?4 ^1 f3 B6 tend
# c* N4 G1 x5 D/ wto recolor-patch
' {% K- f# }7 s6 W set pcolor scale-color sky grain-here 0 max-grain
$ Y& h" s6 i, Zend
& D7 I" ?# x" ~# D6 n$ i! V+ X& zto setup-turtles
) }( W# E5 y* P% T# R6 ^/ J* C set-default-shape turtles "person" J/ B6 q9 ]8 ]; u
crt num-people% }8 N+ }( Y( Q# s
[ move-to one-of patches - }2 G* _! d5 S5 O$ Q9 z( w9 e
set size 1.5 - b1 a, _! c. x3 ^" Y O) L
set-initial-turtle-vars-age
6 |7 @; P3 o, G( ?% r5 u* s! i, v set-initial-turtle-vars-wealth
* d0 R4 w. [. ^9 j5 W9 [% l& Q2 {5 m set age random life-expectancy ]- b" R0 V! g7 x' C* M5 J( @1 _
recolor-turtles
2 S4 l, v! p; k9 lend3 x: W9 R3 k, n. x* K/ Y
c+ M$ l! l' d# Xto set-initial-turtle-vars-age
! p; Y8 z h; x0 ^( R9 y- c let max-wealth max [wealth] of turtles; ]% g7 _, P$ u
3 C+ n3 @' V; Z" l8 V5 e4 E" s5 ? ifelse (wealth <= max-wealth / 3)
$ h( }" O L7 g+ Z [ set color red - S1 _8 F. ~) }3 G$ v0 i
set age 0
# T# r$ @) S# d/ N5 b2 M, y+ t face one-of neighbors4
1 C) U- `* K2 O2 \ set life-expectancy life-expectancy-min +4 R c" | ^. G5 R- j/ p( ?% B* T
random life-expectancy-max & a d4 g: D* J: i, @9 A
set metabolism random 1 + metabolism-low
6 L/ b+ Z4 p) H- t set wealth metabolism + random 30$ y- X$ J/ y9 f
set vision 1 + random max-vision
/ k2 d K" B! u/ M) i: t4 x set wealth wealth + Wealth-inherited-low ]
9 Z+ ?$ P$ @; {$ @0 U$ G [ ifelse (wealth <= (max-wealth * 2 / 3))
) {" r: G7 I1 b% [' U [ set color yellow # `/ ]* _, r: C( y
set age 0; Q) t# F1 n1 K( s; j
face one-of neighbors4 1 H% f6 J" n" {5 q4 ^
set life-expectancy life-expectancy-min +$ V: I5 C8 n" e& w) s# Z/ ~( z
random life-expectancy-max + 1
T1 r5 i, u4 x2 F; p set metabolism 1 + random metabolism-mid
/ D, o. E+ e1 S$ |. o7 B6 ~; V2 @$ H* { set wealth metabolism + random 30! E) c3 M$ }1 G, E" J4 Q
set vision 3 + random max-vision
: B( [9 r" u: ?! U/ a, `3 a+ i set wealth wealth + Wealth-inherited-mid]
0 O. A4 n6 I& _$ x8 S( `9 a [ set color green
, W/ c; x5 O2 M set age 0
0 p5 o( T" J: H7 m face one-of neighbors4
) {; K0 N3 G P) V set life-expectancy life-expectancy-min +
2 J4 N9 R3 v3 I7 f( O random life-expectancy-max + 28 n6 {$ O( }, ^/ b9 \0 T
set metabolism 2 + random metabolism-up
9 o5 f1 K5 u1 H( ?7 r set wealth metabolism + random 30
$ E5 W: ^+ Q- @0 H9 U2 G2 V: P3 x) D set vision 3 + random max-vision$ E- ]' f. r( {; J- K9 v
set wealth wealth + Wealth-inherited-up ] ] # h. G! V# }6 J6 C: D
) I6 ?% g/ N2 G8 f Cend
( l( ]' X3 `; w; m8 S8 f8 wto set-initial-turtle-vars-wealth
! q9 f4 z; D7 C& ?; S9 e1 F G let max-wealth max [wealth] of turtles
) t$ K$ p% p6 I! K+ H7 U. F H set age 0
8 {' v. [7 V' t- \! e$ i/ G6 R9 w face one-of neighbors4 ! H9 v K3 T- h. m. M7 H
set life-expectancy life-expectancy-min +1 \- x! P: e. K+ E }# n6 ^% S
random life-expectancy-max 8 j- `. L3 w" k; w- l: u e
set metabolism 1 + random metabolism-up
% r" q2 v& e. S' b' n% b! J, E set wealth metabolism + random 303 {- h6 V( g0 u& ^6 X9 V5 x7 b
set vision 1 + random max-vision
1 f9 \$ G6 t/ m3 \6 C6 L3 M; Oend: a1 G) X/ Z$ y; }+ [+ X
to redistribution
, C' n6 `" x) `" Flet max-wealth max [wealth] of turtles9 m8 `: y$ f7 D- f
let min-wealth min [wealth] of turtles
# u, ]: l7 N/ m# F+ S6 W, Y* vif (wealth <= max-wealth / 3)! T0 M% [0 ]! p" `# O
[set wealth wealth + Low-income-protection ]6 G6 s) b/ M" x2 D( G2 s. m
end& k' u3 x& K' |: _2 ^8 v+ C
1 i3 O! p- m0 Cto recolor-turtles
4 |' _! P: L/ u- P let max-wealth max [wealth] of turtles
; Q9 _* K7 o0 R: F) l& y- J3 P8 q ask turtles
8 F$ U3 Y5 @/ ~$ f [ ifelse (wealth <= max-wealth / 3)$ a+ y, S# z/ t9 n7 c2 |4 q& W8 ]
[ set color red ]$ p# X* C' B! F+ y# Y' ^9 b- D2 }
[ ifelse (wealth <= (max-wealth * 2 / 3))
) t6 u2 Y4 R) g. s( @2 C/ V3 L [ set color yellow ]3 k. J7 M* C' Q3 K# W
[ set color green ] ] ]' \. ~8 u4 N% b( V
ask turtles [ifelse show-wealth?% T7 U5 i4 l9 |! L
[ set label wealth ]
) X/ X6 b3 b8 C) a [ set label "" ]]
( b9 s6 V8 u( V! aend/ ]/ X1 M" [9 [ @% b* V, r5 I
z2 v: J, s% z% a+ y P
to go, t# A* g. g* _. ~" m P w3 I
ask turtles
! d8 |2 k& |% n$ `" I. Z [ turn-towards-grain ]
9 S @+ Y9 O% [( G. E6 \ harvest7 c& c8 m+ R, e' x# Y) V8 X5 q+ Y
ask turtles- Y( e2 D* Q# P9 N' h% \8 m) h
[ move-eat-age-die ]
/ l) d( K* E& v5 V* B5 Q3 A9 d: Y& v recolor-turtles( }. k9 W4 O; @9 J/ j5 q
if ticks mod grain-growth-interval = 0
( a# k5 d! ^6 L6 v [ ask patches [ grow-grain ] ]+ c+ d3 \& V% u" M& d
! k3 N3 D* K0 ]8 S% d
if ticks mod 11 = 0
; b0 ]) W z8 c1 b9 p4 J$ Y8 L# f [ask turtles
* G$ e5 O! D6 f ]8 l( b [ redistribution ]]
w j6 z: Z* u& Q if ticks mod 5 = 0 ?5 y2 i9 Y! s
[ask turtles3 B# H; N8 D, m5 Y! o! W7 R
[ visions ]]9 M; _% T3 C/ P) x6 Q
tick4 K5 {5 w; v K
update-plots( l, }; U+ H5 m4 J3 x+ d
end }. k: w. [' c2 J
to visions& [3 a s9 O4 \/ d& L& G
set vision vision + 1
0 n" `5 y' D7 y F3 |/ Mend, n& A8 C& y, m. B* ]
3 R& l8 e) i, U0 @
' O5 e! G1 v# a& b/ z
0 ~2 _1 @3 u$ r2 t. eto turn-towards-grain - k7 K1 ]) f& v5 `7 n2 T
set heading 0
# w; a6 G& R2 {, d% F- s% U let best-direction 0
9 H+ ?) F$ ]( }2 W G) Q T let best-amount grain-ahead- |- R& j1 `9 \6 x. \2 W
set heading 90
* x) I7 T$ M+ t a7 C if (grain-ahead > best-amount)
- m/ i' a$ Q0 ~8 C( |1 n [ set best-direction 90
" C* S; J; U. {' c4 X, m9 ] set best-amount grain-ahead ]9 x7 m+ Q0 Q5 W$ R0 }2 }
set heading 180' w2 C$ W( |% q: ^7 X+ x5 J
if (grain-ahead > best-amount)
. n9 B7 U% E1 K/ D. B [ set best-direction 180' P; P( {- m( k% h
set best-amount grain-ahead ]4 W5 N5 E/ F8 X' d! y" ~5 p8 Y
set heading 270
/ t: ]$ I8 V3 S+ x4 b0 I if (grain-ahead > best-amount)
2 e, w! g3 l8 G3 U0 B# H, G; c [ set best-direction 2709 u( o! E- [0 e! q! |4 C
set best-amount grain-ahead ]( H5 L8 _, j2 P5 W& A. o3 O$ E# |% q
set heading best-direction' L! z o- f% R
end
8 t2 s" @8 h, t$ ~
) x, ?* P3 H8 m/ | }
- B8 ?6 t+ V& [4 C0 @# P! d# nto-report grain-ahead
) b+ A* _, i/ m5 S! g0 m* ?* W let total 01 M$ K( E8 I, {
let how-far 12 U. g8 b+ Y; v
repeat vision( O# p! c/ f' A0 |% w5 W
[ set total total + [grain-here] of patch-ahead how-far
i3 b+ l$ }- S set how-far how-far + 1 ]- y0 e! a5 \$ F& S
report total! [* S2 C8 E& t0 a% g
end2 x1 o) u7 C% w- i# Y
7 f) B# B. {. K# Z3 E0 P+ dto grow-grain
$ a3 w5 A( {1 H if (grain-here < max-grain-here)1 f5 b6 e7 K/ F7 a8 K0 G
[ set grain-here grain-here + num-grain-grown
r. J" }: j# S6 {2 ~/ ?7 l5 E) o if (grain-here > max-grain-here)
" Z1 e: y6 d: {' S [ set grain-here max-grain-here ]9 K3 \1 ?3 ~3 i( a4 o( y( @
recolor-patch ]
. S0 y. }( O4 pend) y" r, c4 o. |5 r
to harvest U ^1 i! y c7 x1 k+ c
ask turtles
( T! n: ^% Q1 d) @- G [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]3 \, E: |- |: M
ask turtles
# _ a. d( p, E) ?" @ [ set grain-here 0* w2 S' j* j9 B( n6 C- E$ ~% R8 b8 Y
recolor-patch ]5 U- i, T6 ^8 O+ D$ Q8 F% W! J6 T- Z
" Z" R9 e* }( U; N4 M! J
end }1 a, u8 U# ?8 j0 d% p
0 N- Y) ]' u0 x- m
to move-eat-age-die
+ B# N/ {0 O/ A1 x: e fd 1* X6 a" k9 f8 {( N
set wealth (wealth - metabolism)5 |% L# g8 q- @; o3 B, Q
set age (age + 1)
4 T- y* @+ g% N3 e5 |! L1 z if (age >= life-expectancy)
& Q# n1 ]; b/ h w4 O [ set-initial-turtle-vars-age ]
# }8 e% ? h0 i1 e0 P. z if (wealth < 0)% L1 M2 k7 g# ?0 Y: {
[ set-initial-turtle-vars-wealth ]. n. L& G r( w% a7 p: l9 w
9 a6 D9 C6 ~+ e3 O# l; V& r6 P
end
4 T; ^9 O2 C" r, M9 M" _/ m/ i! |! g4 c, |# O
6 e8 G9 q* q, D% N4 u
to setup-plots
* @: _- K4 l- m/ r8 t. E! A& m: a set-current-plot "Class Plot"
1 C' O/ k) o7 H1 H* {8 G( e set-plot-y-range 0 num-people
9 B* _1 c. k, B! v# I" L4 X set-current-plot "Class Histogram"4 g4 K2 Y( C- s( u7 `$ t
set-plot-y-range 0 num-people6 ?! d3 h) r# \, a
end) i+ }! W+ w4 c( v1 Q' a9 C
3 b0 }7 ?: y4 W& H- ?to update-plots
* ], [$ {7 g# V( G" D6 l+ E update-class-plot
0 M* ]( P1 _) I [7 h update-class-histogram
8 `6 t3 n6 m3 j' M0 ?( \/ g update-lorenz-and-gini-plots0 n6 P9 F! b3 P9 |$ f1 \$ U
end. S3 y" M' d& b9 [$ K4 Z
/ ~3 d* A' ?( @+ v* x( N
to update-class-plot" o& F1 Y* A% J& K( N. q
set-current-plot "Class Plot"
9 h" x% V' a7 l set-current-plot-pen "low") c9 H6 x9 s& r+ w9 T
plot count turtles with [color = red]
$ e3 O# `# i/ x, [ set-current-plot-pen "mid"* C3 V$ [' W/ i) a: C1 Y4 _9 {
plot count turtles with [color = yellow]! j# d' A p# F1 `4 _
set-current-plot-pen "up"6 E; _) I9 G& Y; L* \
plot count turtles with [color = green]
; }# ^5 p0 V& y0 D$ Pend5 }7 g; Z* Z$ L: _5 C) P+ [0 [
5 P( g: A, s8 S: \# Q q9 f2 fto update-class-histogram
; _% o. N" C3 I+ m set-current-plot "Class Histogram"" N, z& c. c" v; S4 L) u* R
plot-pen-reset
% d! K5 T: N* K3 M8 g2 [ set-plot-pen-color red
! Q9 O+ \: l8 L$ o! A- Y plot count turtles with [color = red]
8 b2 v$ d @) R, A# c set-plot-pen-color yellow
y+ ]5 [( N' t4 K% N$ [7 l( b1 M; y plot count turtles with [color = yellow]) [$ e. g4 S7 ^5 u. [; p& Q$ l
set-plot-pen-color green6 e, g M# ^" w
plot count turtles with [color = green]* x, ~3 \) P* {. W$ _. H
end* d5 ?! e$ c2 A2 { |
to update-lorenz-and-gini-plots
0 R; Q9 w E7 | set-current-plot "Lorenz Curve"
: C. R3 ?& b! l C; L6 V clear-plot
1 _+ P: |, p2 e
6 s- [8 v8 a/ `1 e) ~ set-current-plot-pen "equal"' Y. y r$ y$ E$ R# @8 F8 ]
plot 0" ]. Q. K M$ M$ I" s8 S
plot 1000 j, B( A4 o6 ^) @! ]! Z# ^+ s
+ m. C2 [# }# O+ ? set-current-plot-pen "lorenz"- D" L( H) n4 y8 X" P; v& b9 Y
set-plot-pen-interval 100 / num-people
0 N+ [6 p% g, S* d2 c plot 0
/ |$ C1 H! }$ f7 G0 w* `+ G# U* D' O" S
let sorted-wealths sort [wealth] of turtles
9 E; ^1 Q7 w/ X' o3 _: m let total-wealth sum sorted-wealths8 \% q n6 e6 h# K% x. _* ^ q
let wealth-sum-so-far 0! G0 G7 {: [( X+ J% P6 ]
let index 0( S5 ^+ }# {+ l7 u0 S! }
let gini-index-reserve 08 R9 S, [: x4 W
" g. e, F r; }' G$ i* K/ p repeat num-people [
8 M% Y+ a7 V- t) V set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" z) i) ~1 `1 F. f- _6 o; Z
plot (wealth-sum-so-far / total-wealth) * 100
6 o2 z) s4 ~# p4 N4 h" L+ X3 ?' @ set index (index + 1)
$ f) q# \5 e" A, c7 A7 x8 z set gini-index-reserve) K8 _! ]% `# [9 \! U
gini-index-reserve +
6 |- p; i% O M2 _ S (index / num-people) -" K/ I+ b* d% j5 C. q
(wealth-sum-so-far / total-wealth)
( C, p" K( `1 @+ u. N7 w ]
5 E+ {1 N$ \7 Y4 M
; Y3 h6 E2 h/ M" _; e2 D9 H set-current-plot "Gini-Index v. Time"4 D' }( r; \3 l: P# q
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! m+ U/ p* s8 f* y6 O a1 nend
4 {& b8 n# N! m( w5 a9 k$ @to-report area-of-equality-triangle
, Z }; k* f6 W% c" P: e( m5 m0 z report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 g, G! L+ Z5 _# n
end |