请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
0 h }, w; F. F7 i, H8 Rglobals$ u7 K a9 O$ Q4 i, B
[6 {- d7 W" r# s2 x" E: M7 R
max-grain 7 @/ a/ ~2 M3 h" E C
! n9 u' \7 t0 {% u7 e" e* S- Y$ u8 [) G]9 I8 o3 K! K+ T1 Y4 S7 P
0 ]3 x7 S" A. h
patches-own5 _7 |- b# }0 T8 N
[4 G/ M o( Y, _5 V) }4 z+ n3 o
grain-here ) M1 c# e: M9 q8 K+ K; @8 B. ]
max-grain-here
* l0 j% ]$ Y9 P6 F# C4 n7 F* |]* I; {2 t% O$ G! v$ B5 s% q
" ~4 B9 e7 C3 [
turtles-own1 t" p3 Y/ W& Q1 M
[
$ H i8 h4 I/ u8 I& q2 e age
# r0 z/ R1 @7 r( |; f, u wealth 8 r& d9 \5 a/ J/ J/ S: o2 U
life-expectancy ' ?* {+ \3 V) m/ M- {# o
metabolism % r, m+ q! T' ?( q( v, T
vision
$ ^( t) k$ r" D. ?# Z/ H inherited
( t' U3 s8 w! ]- C]
. f9 [" y1 F4 t, e/ w$ P1 a
2 F+ b& g/ y$ B h% r/ s( T" [
9 V& d8 y3 c- @, ?5 D/ W/ B) n, |to setup
5 {; t% m( p- |8 g2 q ca
/ h) Z) b9 |( ]$ K6 R set max-grain 500 `3 Y4 [& O% f7 x6 h/ g
setup-patches
9 X2 `9 F! H" r setup-turtles' V- g* c' {! d+ k
setup-plots3 }8 B9 H9 N- R8 h4 p* ^ m# v
update-plots
5 _: S# p6 ^; H9 pend: }% D" U" r' e- J
to setup-patches6 I5 Y8 V! U2 U% ?* Z; d2 m7 S
ask patches+ y+ z1 ^; h% Z, V
[ set max-grain-here 0
; Z% Q2 a9 r, D' f" i if (random-float 100.0) <= percent-best-land
2 E: v+ { j" m0 V" G- \ [ set max-grain-here max-grain
1 e/ T3 P% h0 @3 ~0 k set grain-here max-grain-here ] ]8 C9 R" s7 K4 x0 U& k( e: Y
repeat 5* d8 i4 _! d, x
[ ask patches with [max-grain-here != 0]
3 X! z4 F, {( b2 d2 ^' O [ set grain-here max-grain-here ]
3 b7 j9 A& f$ n0 T5 i3 g4 v diffuse grain-here 0.5 ]% e5 A5 |* k$ K; j' B6 D4 m+ K' e
repeat 10
6 m7 m X X1 h$ Y [ diffuse grain-here 0.5]
8 Z0 Y; l7 c/ g1 y4 Y- U/ [3 O ask patches! L) m b; s, ^* F$ j: R' F
[ set grain-here floor grain-here
. A" k% N5 z4 _0 K+ \! ~$ i) b3 s set max-grain-here grain-here
8 D5 v: S6 H3 P' D8 f: l recolor-patch ]
$ Y7 n! x t* `1 U# Q* S7 ]) hend
) K: D" G9 Z" y% m7 Eto recolor-patch ) j" X7 ^; W% i0 _8 v2 E* v6 n) V- F
set pcolor scale-color sky grain-here 0 max-grain! `2 a* q6 z4 c
end
: A& r# F* H( G+ }$ c( @to setup-turtles
# ]9 m3 U3 l, V$ j& `& D set-default-shape turtles "person"
, ^. ~1 z8 I/ G% V; a crt num-people
# T# t9 V4 N! t" j8 g2 [' t [ move-to one-of patches
( X) }: b: I& k! G set size 1.5
4 p5 M' a/ M# U: w set-initial-turtle-vars-age9 |) V+ n$ k9 K' e' ^( }
set-initial-turtle-vars-wealth9 B3 G. C1 F+ @ W- w& `% }" n' _+ b
set age random life-expectancy ]$ O Y# l* h7 K" M- V3 E# g
recolor-turtles
8 N" T5 K7 P) X+ y& F$ o- y0 X1 Nend5 p5 M; ]& T8 _2 j$ @8 G
+ ^$ y* b: P/ x$ Q# \8 Uto set-initial-turtle-vars-age
( p& b8 G% N. V( M/ ?. K let max-wealth max [wealth] of turtles
8 |. v! u0 k; b y( t. u6 m% r5 E! U
& M' F- b4 Z( M! V5 j m6 X$ L ifelse (wealth <= max-wealth / 3)6 y3 H& a* m, g M p
[ set color red
* G$ F2 `0 _5 W6 y2 A2 h5 g set age 03 L' E: g2 @, H* _! A
face one-of neighbors4
& S7 m6 N3 V5 i) S/ Z1 O set life-expectancy life-expectancy-min +' V1 c8 \ B" B& S5 c% u7 ^$ m+ A
random life-expectancy-max 4 O$ ]2 S6 O% s+ h% _- q# c# `
set metabolism random 1 + metabolism-low
x( _/ L6 c/ } [8 c! S set wealth metabolism + random 30
$ k! e6 L) R) V( P- @, } set vision 1 + random max-vision7 o5 a: v1 S( X& q3 R. J
set wealth wealth + Wealth-inherited-low ]7 ~/ q! K+ p" ^, I$ c g
[ ifelse (wealth <= (max-wealth * 2 / 3))' p' ~/ v% ` r1 Z0 p+ W
[ set color yellow
4 `( g6 l/ [/ G set age 0
# @6 j: H1 r7 ~. Y) U3 F face one-of neighbors4
6 }* p* V% V' U6 l set life-expectancy life-expectancy-min +
2 U) E8 g2 m/ J. ?% u- ^ random life-expectancy-max + 1
$ Q4 y+ u& G8 X; t& K5 S5 C& b set metabolism 1 + random metabolism-mid7 ^* R& x$ d+ s; _
set wealth metabolism + random 303 R8 w8 |' [6 X+ Z
set vision 3 + random max-vision
5 I6 J9 x& X8 f+ ~3 | set wealth wealth + Wealth-inherited-mid]* j6 K5 p/ [$ v0 i, _
[ set color green 6 }- u' Q4 f, a1 {$ Q$ v
set age 0
( y u+ d' k6 U M% i) N$ c face one-of neighbors4
Q" P+ i, F- p/ t1 O9 F( n set life-expectancy life-expectancy-min +3 A4 s+ B! p7 ^7 I- ]+ [
random life-expectancy-max + 2) K1 u% I" ^ J2 m6 I
set metabolism 2 + random metabolism-up4 Z/ N; i0 ^( P' a/ O5 E
set wealth metabolism + random 30
+ | j8 f# c8 S" j set vision 3 + random max-vision R5 Y( ^- e3 G' p- g% Q
set wealth wealth + Wealth-inherited-up ] ]
; o) F9 T0 Y7 x [/ [% Y
9 _1 k! M7 ]7 q# Hend" [- a! g7 _$ j- k
to set-initial-turtle-vars-wealth7 |3 \" z. z# a! X
let max-wealth max [wealth] of turtles6 M# a0 [; {5 k# `+ W# q D
set age 0. u% c$ X, M) q3 {* J
face one-of neighbors4 ; L; _8 S4 n8 ?/ r
set life-expectancy life-expectancy-min +8 w3 X' V6 i/ ?" s% |( q: W3 Z$ O! t
random life-expectancy-max / u" Y4 _4 Y+ z
set metabolism 1 + random metabolism-up
" k: P4 H' z1 C# Q6 y% ?. N set wealth metabolism + random 30
% L& n Q& x- J5 B2 P7 T9 m set vision 1 + random max-vision
7 ~. g2 y' B( iend& N% J1 S$ p% S& _
to redistribution. ]! w( a0 f& N1 N# m
let max-wealth max [wealth] of turtles( k& s# T0 z, L. ]7 P9 Q) O0 J8 f
let min-wealth min [wealth] of turtles
# \+ ?5 D+ \$ A c/ d2 Iif (wealth <= max-wealth / 3)8 d' v6 `- u6 [/ h6 |1 j8 M
[set wealth wealth + Low-income-protection ]
4 A% A- D, w7 eend
, k; k0 {1 w+ A! [5 ?. c9 o 9 T: {! K* Z9 y
to recolor-turtles# W- A/ g8 W/ {
let max-wealth max [wealth] of turtles
' ^# ]$ ]+ T: d4 p; T/ X ask turtles9 P" ]1 f1 P. y3 A4 S9 j4 c
[ ifelse (wealth <= max-wealth / 3)5 I% y0 Z# q- f0 A9 U0 L) B: p/ k
[ set color red ]
/ u" ?! J$ e* ~6 _8 H: A. F1 | [ ifelse (wealth <= (max-wealth * 2 / 3))
3 U7 T. V9 p, p [ set color yellow ]
6 K4 a* ~6 K- }3 W" | [ set color green ] ] ]
) C/ b9 @" H- L u- x ask turtles [ifelse show-wealth?
3 A9 A( D! n6 z5 Y. G! `6 x [ set label wealth ]
) I. }; [: ?5 ^% N [ set label "" ]]
3 m2 r0 R# h& O5 z5 c4 c* Hend1 W5 l B: i, s" J& }1 ^8 r
* E& N: |2 B# [: V# Pto go
* @6 B% b" Z- T- Q0 _ ask turtles
" ~) B: l) N. X/ C3 L$ ^ L- R/ @3 K9 B [ turn-towards-grain ]
8 s! j- e5 E6 S. [* U5 E4 E harvest
+ Z; [0 k$ Z; O t8 k* U ask turtles& \6 H% F+ G% i2 a
[ move-eat-age-die ] I) f1 C3 n0 t, T
recolor-turtles
4 x, W( h3 ]2 y if ticks mod grain-growth-interval = 0
# J/ w' D8 L' M( y [ ask patches [ grow-grain ] ]
4 h% Z! N3 K% r: n8 }# J
# K0 {. |* k. `9 F: A) @ if ticks mod 11 = 01 ?4 }; T6 d& |' z. R9 h: f
[ask turtles' l* u0 g* @* v7 M) n6 J/ c
[ redistribution ]]
, l0 }# G8 E3 K' N1 [4 | if ticks mod 5 = 09 G8 W- M+ R3 @, B% w
[ask turtles% G V9 Y3 r4 X' g0 K* r; [; c+ K' O" O
[ visions ]]" ~1 Q, V8 D( v
tick0 U) n% |( @) ~3 e. r: X
update-plots& G4 m8 l: u: x K
end
' y. l2 b8 o; V6 W lto visions7 J9 ^0 U' {# m |: q$ }# x
set vision vision + 1
0 a' |* K8 H5 J# H/ l) Bend
4 a+ ^5 b; o/ j2 b! L5 z+ l% w- \8 ^- Z
( ] n9 A2 Q! f
# q2 j8 c1 ]) Z! l% v$ ^to turn-towards-grain
2 |# j* s- D5 l( c0 L" @ set heading 0$ E( b. |; e: J! O3 D! o/ K; i3 f
let best-direction 0
$ v2 h3 @7 c4 l0 r/ n let best-amount grain-ahead
# _ ^4 s5 n6 a! M" P' ^ set heading 90- c6 y7 _/ ?( _2 z) [4 l
if (grain-ahead > best-amount)1 A0 r, {' t5 f2 Y
[ set best-direction 90
, H0 q; O8 }! t set best-amount grain-ahead ]
: g& n# \. l) y( _6 |4 r set heading 180
- p8 p8 N$ N0 @2 H6 i/ Z! ^+ z if (grain-ahead > best-amount)
2 B: q- x$ F) Q3 m [ set best-direction 180/ f0 |& b" \' ]3 M3 O4 V3 G
set best-amount grain-ahead ]
U/ T" l2 f! E/ R2 ^. F# V% X set heading 2705 Z; u- V# D, d" p! L) ?7 L
if (grain-ahead > best-amount)
% p% ~7 ~ e4 V5 R% x9 {: M [ set best-direction 270
' w1 u8 Z4 ^9 c8 j set best-amount grain-ahead ]
. O; J+ }; U2 ]& d& W6 z: q set heading best-direction
" S: p& t4 J# ^1 B2 qend
/ U7 d% ?9 F9 D2 D- _1 t) i9 {9 T* w- w% \8 w& l, y
; n$ w0 H7 G+ b4 Tto-report grain-ahead
! x' h3 s: a2 P" E& z let total 01 l- k" z% F( w* `
let how-far 1
- S+ g/ N: R# w5 X% E# n) r5 o4 f repeat vision# q- _/ B( Y, D8 g& w$ j1 J6 K2 p
[ set total total + [grain-here] of patch-ahead how-far
/ l& _; c7 q" [. p0 J# S set how-far how-far + 1 ]% I) U" B$ w; i k! A( }
report total
# t* h# I$ |. oend
1 y+ i' p0 D, q- }* A+ d3 Z5 q+ p, o6 v3 Z
to grow-grain
3 X/ |7 Y& u- h) @7 O0 V if (grain-here < max-grain-here)) R8 T; v$ I- o! d: |9 _% j
[ set grain-here grain-here + num-grain-grown) v, D/ W+ } Z0 [/ N) H
if (grain-here > max-grain-here)
6 e" m- S7 A: H" E [ set grain-here max-grain-here ]
& I5 r i/ A% y8 P# t: I7 D/ V m recolor-patch ]
5 L# I Q! D% z- U* G7 Send
% _& u8 g: q" |5 h; F m8 w1 Oto harvest
/ o' Y, e5 l( b/ o+ d ask turtles
0 O8 {3 d- W2 C: ^( u [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
* L$ v$ W8 y6 z% J ask turtles3 F: n$ O; V7 X+ i# |+ d1 M! N, u
[ set grain-here 0/ `4 V, O" G5 j* q
recolor-patch ]
5 D: p5 r |' ?+ h/ p: z
2 X# O, \! q" o/ d3 j Fend1 R0 Z( I/ x4 k. G: \
+ D, k! X7 n$ ~& }. Wto move-eat-age-die
" T- O1 Z; Z) y- A2 m+ K1 ` fd 1
/ `3 I7 y4 q7 g% p: W' _ set wealth (wealth - metabolism); i$ ]- j: T* u6 x) `4 e/ D& l
set age (age + 1)' X* X8 Q, u+ `; Q+ r
if (age >= life-expectancy)
% U' J1 a5 h5 N3 v3 l [ set-initial-turtle-vars-age ]
) t3 e5 J% a [1 c8 P4 c) G7 q4 W if (wealth < 0)
L6 }) F# U, s5 }5 Y [ set-initial-turtle-vars-wealth ]# R! A% A5 K9 l3 Q
( v7 s, J) V& w! N2 S+ Aend
7 R) L+ U+ e! U& Q1 O
9 e7 U# f9 {4 @# b: N
4 ^; c( O' O. d( p! _: \to setup-plots9 E8 T2 Y9 |# v' e5 ?' @# V( _
set-current-plot "Class Plot"
2 }) R4 C* f% t- Y! B1 O set-plot-y-range 0 num-people ~* H) X0 h: d) _6 ]( n [' m
set-current-plot "Class Histogram"! m2 K. K, Z1 r, ^1 E/ N
set-plot-y-range 0 num-people7 e% v0 K" _0 u5 s, x( p
end7 v1 g1 Y1 @! L! u
1 |& W, |: g4 H% a) b( M3 tto update-plots2 j; @$ P- v- {/ y( U: V; u7 c/ i
update-class-plot( O2 s: `# A6 @# H
update-class-histogram
8 k, }* N, M% t1 t; r Z update-lorenz-and-gini-plots
% m: q6 @3 w- X( z9 Bend/ @1 m1 G/ m. F2 v5 m- [
5 S4 W8 V- k% [, R* o
to update-class-plot
1 a$ ~* F* P; W5 E& x set-current-plot "Class Plot"3 d4 u. a4 V! c0 m, S
set-current-plot-pen "low") [' a8 D. |! Q4 g+ k/ L, a' R% l
plot count turtles with [color = red]7 F7 B: t7 w9 r z0 u4 d
set-current-plot-pen "mid"& \; r$ q0 `6 B* d+ ?
plot count turtles with [color = yellow]
. e3 {. Q/ X! B% y6 Q set-current-plot-pen "up"
% D* u* c" C/ h2 W2 x: G# r plot count turtles with [color = green], A: C( W/ o( K: P" m$ v
end
# I1 x5 n& X9 @; Q' _
8 [8 E" K- _+ c3 Lto update-class-histogram8 \: \- w5 U4 l4 q- {* M2 Y
set-current-plot "Class Histogram"
$ h" e" M4 B5 F2 s plot-pen-reset
, L$ S3 B; U- X/ x set-plot-pen-color red
% g$ x0 m3 g& R7 v m plot count turtles with [color = red]
& K5 z, a- _1 Q( R+ f5 p set-plot-pen-color yellow7 a* q/ |, J2 s+ n% g! ~* ~
plot count turtles with [color = yellow]
6 Y/ B/ C/ {( |) O set-plot-pen-color green
: L' L b$ V& c1 n. e1 I' H plot count turtles with [color = green]
6 p8 b2 E# k7 y/ Tend0 P2 [( n, X) ^/ c! V* Q2 R
to update-lorenz-and-gini-plots
& t& d2 M! E3 e( @ set-current-plot "Lorenz Curve"
4 y- p0 C+ I! y% O: u clear-plot: v3 V# a6 y2 ~( r! a. r4 f. K
) O5 a4 x0 S2 b1 [ set-current-plot-pen "equal"
! Q8 A' l6 [ E! [8 A1 k plot 0
3 J' g* v+ c- I2 j" X plot 100
% Y- z/ Y! f/ t$ e8 [
p% o3 Y; ?$ j( V$ G! j9 L set-current-plot-pen "lorenz"
4 p' Z0 T, @! o. s# b' B. Q set-plot-pen-interval 100 / num-people
0 n5 m' E! j% {; W8 d1 x plot 0
9 w& n+ ?, Q# l: s6 F1 J
% K7 J4 J, ~2 k' B let sorted-wealths sort [wealth] of turtles
5 a1 h+ I% [- p i- D1 C let total-wealth sum sorted-wealths# f% T+ Q0 g1 M6 e3 g/ t
let wealth-sum-so-far 0
# T: w* M' _$ l" o let index 0
$ W- M) E' l. f" b let gini-index-reserve 0
, H' q8 M2 h2 E" p1 I6 L f# ]
) W) @% R- m' R" p1 z repeat num-people [1 ]" _, a G) @
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)& {2 a6 O4 h& D. M. i
plot (wealth-sum-so-far / total-wealth) * 100
/ U- d% ?9 v# O4 C set index (index + 1)% [# k1 S( ^' ]2 |
set gini-index-reserve0 t6 u. v; r5 Q% N. V9 i! i- {
gini-index-reserve ++ F8 p: }; `! E6 d0 d
(index / num-people) -& n" C. J1 n' X9 {3 V/ j
(wealth-sum-so-far / total-wealth)
$ R P* K5 x" L5 E4 z3 E ]
- {* b" F% w/ z' {6 u! `4 ?5 X3 U* x% ~" F5 i1 q! ]
set-current-plot "Gini-Index v. Time"( V2 t" [2 w/ c. d2 z
plot (gini-index-reserve / num-people) / area-of-equality-triangle9 s- p( f) H! V9 B! J6 m
end
$ |1 `& W1 T9 Zto-report area-of-equality-triangle
: C$ ^6 `4 X$ ^3 J0 t% U$ k& Z3 } report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
' K) l+ c; D- u3 p ?7 jend |