请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现( C* X% g" J% Y7 |5 A
globals
9 y5 v" V5 R& g |[
# T* Q3 ~" v3 Y \& g' R7 J, F max-grain
6 |, E1 J. \" i4 h+ H! H' U) C
- X6 `. A% S8 V& K1 N]/ _0 K( e3 o0 \! l6 N. p
( N5 n, [5 K4 l5 ]& J, M& u
patches-own
0 c! `0 V/ U3 v# _: b9 g[5 t0 Y1 t- \ `4 x R
grain-here 8 |5 r! H; M. A% {0 L4 y8 \' o
max-grain-here % d/ L: N/ z/ n3 b
]
/ X4 K1 r/ B0 @1 g1 Q* h4 j; m! P- \+ M
turtles-own
* D: Z! h- t- q( Q" Y8 T' E[
8 N$ @9 [* y8 }( U, z age 7 Q, X3 {1 e/ ^/ s( q
wealth $ ?1 t& \) J4 ]% W/ ^6 t Z$ |* B
life-expectancy $ R' n$ J* l' ]* k4 l
metabolism
7 G* Y9 x/ T9 P, N$ s; y vision
1 |: U Y* K, J9 _/ Z- k inherited
h" {9 c( ~, p, o+ j]9 g1 G2 X) \, ]# |9 l3 t" i% ?5 o
# }& J4 x$ ?# G% v! x8 u- m$ k5 F
! i' G' |: T% c+ h$ ]
to setup
4 m" f" u' ^* ^3 [: F5 f ca/ A/ a6 k( N4 i: n: G
set max-grain 50
% R$ M0 @! v) C setup-patches
/ f4 b% \2 j5 q; ~$ k setup-turtles
: s# M; O" v8 i* p* _ setup-plots
) y2 H, j8 W3 e* j update-plots
/ s, N8 [$ D2 U0 [; Iend! u; w2 Q; `5 @! s
to setup-patches
w% m# j1 R( p2 L; q' u ask patches* N7 x( g( _- y& b; `; _/ R- d
[ set max-grain-here 0
( @8 p' B* J. r$ L% f if (random-float 100.0) <= percent-best-land
) I4 j6 f$ }' `! E2 _ [ set max-grain-here max-grain
5 N; b7 \+ e. _0 `- @$ S* D set grain-here max-grain-here ] ]
; j7 F: u" a% g# }/ E' g repeat 5
9 C7 M' M6 O5 s0 c- D [ ask patches with [max-grain-here != 0]
0 B' h. u' y" {2 q" Z X5 B& { [ set grain-here max-grain-here ]* w6 ~3 w0 f( ?4 b
diffuse grain-here 0.5 ]
" p' s& O9 M4 K) x' f repeat 10
+ D7 e- v6 V0 K9 v7 l3 a! ? [ diffuse grain-here 0.5] . A6 p4 S* V4 c0 n3 v5 z2 ^2 L$ v
ask patches' @* ?& U& ]0 S8 T X
[ set grain-here floor grain-here - x+ L) a/ C& N% J x/ z5 D7 ? Q
set max-grain-here grain-here
r2 z, F, R2 |& @% l: v recolor-patch ]
) f/ O% j6 ]- r; Oend. [. L0 } l! n/ y3 h0 M/ p
to recolor-patch 1 w S* u# |' V, k7 F$ g$ j
set pcolor scale-color sky grain-here 0 max-grain
: L/ Q3 }% a+ L# B8 z1 Qend( g4 d% j- K* E
to setup-turtles$ X0 S8 x& P6 [5 @
set-default-shape turtles "person"
; W; L5 Z9 @& J$ h4 d' k crt num-people
) r( f! Z" M' D9 A8 ]3 H# A% d3 W [ move-to one-of patches ' u; G9 f; a' d
set size 1.5 1 P3 L" {. |: F/ `3 G; w
set-initial-turtle-vars-age, Y' ]& {, e/ Y2 J) P+ G
set-initial-turtle-vars-wealth
% ?5 {. s5 }- u [ set age random life-expectancy ]* G. {8 \( U3 Z, k7 ^
recolor-turtles) ^. M7 D! l R4 J: L) h' H
end
! C# J$ N4 ~- N# J7 W
. k# l% j# w8 Jto set-initial-turtle-vars-age
6 L- S9 P3 z7 H& | let max-wealth max [wealth] of turtles, ]; x2 G5 G1 H
# V3 G8 F/ {5 r- N. z
ifelse (wealth <= max-wealth / 3)0 Y2 e% S: ]. s) F- e9 Q
[ set color red
; M- s% `' W7 B% J# R, ~ set age 0
5 I5 F$ z/ e9 y1 O3 g5 q face one-of neighbors4 3 R% _, \& M+ I4 h; P% f! M
set life-expectancy life-expectancy-min +7 F' y, q0 b0 o6 Y: X: p& ~
random life-expectancy-max
2 w( c/ y( d+ z/ D0 j set metabolism random 1 + metabolism-low* V X" z5 s" k; Y! ?) ~
set wealth metabolism + random 30$ o" i! }3 U" B( \. R
set vision 1 + random max-vision
- I" I2 e& y7 S8 g set wealth wealth + Wealth-inherited-low ]
3 ]8 O; M- f# u* {8 l' E. j [ ifelse (wealth <= (max-wealth * 2 / 3))
- \* }# n6 L! b* C [ set color yellow
0 y" j4 D/ f) G7 N* m/ L; o9 s# L( D set age 0! \$ Q5 o* \# z3 l |
face one-of neighbors4 * l) ?7 _; \4 o
set life-expectancy life-expectancy-min +
_. `' x. W$ K% G' y6 s2 I8 y random life-expectancy-max + 1# f! c, [. ~9 L) ^; F
set metabolism 1 + random metabolism-mid" W9 L' t) f! ~2 Q
set wealth metabolism + random 303 T3 T( I8 p3 Y8 S/ c5 f
set vision 3 + random max-vision$ K& } s+ v l1 d" X
set wealth wealth + Wealth-inherited-mid]
) ]$ O: X$ O) g [ set color green : B% d8 V% w( y H
set age 0, y0 @/ W# v: v; t+ O; Q, T0 n
face one-of neighbors4
/ ^( e; q7 e4 j4 [( ` set life-expectancy life-expectancy-min +
- Z" l* V7 U- k; [$ y2 U. }; Y random life-expectancy-max + 2
' ~8 ~: \5 k& s; a* e6 I, Y set metabolism 2 + random metabolism-up) J, {3 ]' n: D
set wealth metabolism + random 30* o% @; ^3 \# g: Q$ w8 t! W" `& T2 e
set vision 3 + random max-vision
2 h( ?( J, G3 W/ x3 m: p6 i set wealth wealth + Wealth-inherited-up ] ]
' ]- E3 ^3 p9 |5 A- N 6 V* q9 O/ b, _, M! Y0 L$ N" M
end9 E6 ^& R* C) z9 ^4 d
to set-initial-turtle-vars-wealth- O* f9 _ I% j& V2 y
let max-wealth max [wealth] of turtles
6 A7 m* b* T2 l! I2 c, b. M- T set age 0& N4 }6 o# z' }4 b* A: {! }( i
face one-of neighbors4
Q, r0 O2 L" r: }! ~ set life-expectancy life-expectancy-min +
7 h0 T C: n# m4 q0 `4 I random life-expectancy-max
2 P. l2 d: k9 b# c set metabolism 1 + random metabolism-up* z% z2 { N; ?8 M7 }0 X
set wealth metabolism + random 30
" h! l8 r. L# o3 t! } set vision 1 + random max-vision
1 n- \" U) f: |end* P- E3 e! w: I
to redistribution, z* n1 H2 j2 W2 S6 P
let max-wealth max [wealth] of turtles
' t( F: Y. s+ D5 _let min-wealth min [wealth] of turtles
7 V7 d& A( [3 O9 _if (wealth <= max-wealth / 3)
, u! K5 p/ `& l* v" \/ r [set wealth wealth + Low-income-protection ]
+ u& _% Z+ a g' c2 eend; R8 i8 F' M9 A+ ^3 \; N f
( F# l, U1 s8 y. O& A) ^: N
to recolor-turtles
3 A0 r M n9 h let max-wealth max [wealth] of turtles2 X; n0 U( I7 u4 g* K$ F
ask turtles
; u9 w$ W* Z( t) k/ U+ ^+ V. S2 \ [ ifelse (wealth <= max-wealth / 3)
! U% d, E1 {5 L& S6 p" P3 Q [ set color red ]
/ R' n* D. E' g' p& s$ J% ~# M [ ifelse (wealth <= (max-wealth * 2 / 3))
s! }# b& H1 ~. ^6 _; F9 g [ set color yellow ], ^2 {0 d. z! x* ]7 L3 t, \+ t, |
[ set color green ] ] ]0 y9 o4 I* F+ a
ask turtles [ifelse show-wealth?9 \4 t- E' w( V# w( A' D @
[ set label wealth ]* B3 M" h8 q3 p3 V; c1 p, J
[ set label "" ]]3 z, W5 n. X8 u% J4 x# o% }4 R
end
9 z7 ^" {" \8 H5 U
( z9 g6 Q: N. B" L. Zto go
) Z1 ^, ~$ Z: h8 M) _ ask turtles
1 }$ ^) P5 A, q& X) A/ B9 `7 _ [ turn-towards-grain ]
5 ` h4 j/ Z- @8 f harvest
: N+ b, Q* K8 T6 Y& }1 F ask turtles
3 K& g) X, c& [$ ?0 @ [ move-eat-age-die ]
9 Q& u1 o T3 Z7 b recolor-turtles3 B4 B- Y9 @% @: X5 c
if ticks mod grain-growth-interval = 0
/ ^1 B D5 N" } D, z [ ask patches [ grow-grain ] ]9 C* `4 G& n" G2 e
v1 M5 J/ ^0 E3 |0 H2 m
if ticks mod 11 = 0
9 j) L( U# f1 W, C- F1 B' w9 ~ [ask turtles
* a) Y+ |, ^8 j% C8 {' Q, w/ e+ `2 e [ redistribution ]]
3 e$ p# g& K# | E) ? if ticks mod 5 = 00 n8 e1 s c% a: O4 d( v' o7 }
[ask turtles4 o# D% Y$ i3 |! ^5 G% z
[ visions ]]% Y- P. U9 i# P a3 ?5 N
tick7 u' J+ k% g- N
update-plots$ ~. [+ s+ L. N, Y& m5 ^; Z
end- P& n# a; o' O* [* `
to visions0 F) v9 Q) Y8 L% p
set vision vision + 1 1 E. v9 z6 W8 d" z: c
end
+ z) }7 m- O8 ^( r: B9 G4 |* K
9 y# j! _$ F' c$ L
u) Y; s$ d: J8 q; B$ @$ u o# N, E+ \( \: s. s. D
to turn-towards-grain 8 ~; P+ N) t1 A g9 }- O7 ?
set heading 0
- a2 y1 k5 \8 P" r Q7 W let best-direction 0
; `: t: T1 J; p0 \# x; s3 I let best-amount grain-ahead$ o. a* h2 a8 ^5 ]. v3 A# @
set heading 90
1 @+ X; L% q: z9 u5 G. } if (grain-ahead > best-amount)9 p% h* x$ K1 k- E( p& _
[ set best-direction 90
) K3 Y0 J b1 _9 _ set best-amount grain-ahead ]
7 ? J7 C2 F0 Y/ q D set heading 180
, w6 q1 E+ v8 }) Y8 l7 Y$ n2 ~ if (grain-ahead > best-amount)
( l3 ]( J* ~2 y' x ]3 q [ set best-direction 180" }& y; K* N& m4 L
set best-amount grain-ahead ]
3 }; |4 d+ c- o, k7 P. J5 A' i$ O set heading 270
+ h4 U, D" ~! G; Q7 B, q+ F4 j if (grain-ahead > best-amount)
/ S# ]% {& m0 `! F# z [ set best-direction 270& A6 M" i. z+ M3 U4 ?4 T
set best-amount grain-ahead ]
4 @8 }6 u; u {- K8 i0 |8 v0 ^ set heading best-direction
- ~$ h, \8 }# a; T5 Kend+ e6 w" d9 k- q+ S. ]/ e
& N/ Z# x, d% i5 z5 C7 Q/ g" `+ Y
* F) ~, ]' ^7 m) m$ m! X3 w& b
to-report grain-ahead
7 a, v% F: r# J; A2 v& { o let total 0
+ S" k+ ~0 g( T) e let how-far 1
2 C/ f6 Y. O I5 Z" [* h' @' @ repeat vision* A& R% P" H2 L+ D6 C3 _3 c! D
[ set total total + [grain-here] of patch-ahead how-far
( c& {1 w+ i8 S! i5 R0 g; n set how-far how-far + 1 ]5 I d" q0 y0 l/ t4 o
report total
' b. k" i6 R" t9 R- fend2 }6 I9 W. a# B! T
+ V4 v. |' v- g7 Y6 Y
to grow-grain # z4 ?5 v9 T1 D% F
if (grain-here < max-grain-here)8 i2 L4 ]' ~, k3 `; j
[ set grain-here grain-here + num-grain-grown
0 `6 ~) f9 X0 m+ e: L; r6 p if (grain-here > max-grain-here)
: B! s5 f \5 F1 [3 U6 k0 g: a [ set grain-here max-grain-here ]4 G! y+ A" d! v; J9 l R
recolor-patch ]% [- x. H) j5 `3 z* |+ P
end
h- Q7 Z/ P9 x0 I: E" G- g4 `- _to harvest
: }% l' M$ v. y: h9 G) k ask turtles) o4 a. m6 V! Y% W# i& k2 G8 |
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]7 i# P0 w3 N6 Z* z
ask turtles
( v# x4 S1 ~5 [: Q8 _ [ set grain-here 00 |: N1 }6 X) V* U
recolor-patch ]
' U s" d( o$ Z3 M' C1 A + A, q4 z2 \8 ]; y
end) ?9 R& T0 S* a: b9 w% Y$ S
8 a& q4 u- k" G& m
to move-eat-age-die
# v4 v0 l+ R: X0 A5 f fd 1$ ]) g0 p7 f& F! k& h
set wealth (wealth - metabolism)
: w% n) s( N& j set age (age + 1): o& p; T4 l0 f) ]
if (age >= life-expectancy)% X7 E8 v9 {% z+ z3 F2 ]5 V6 [
[ set-initial-turtle-vars-age ]
2 N# e& v' y+ M8 X1 z& M if (wealth < 0)3 g$ Z# S+ X& M7 c) E
[ set-initial-turtle-vars-wealth ]3 B1 H- S h3 T
7 P! A5 i" P/ e6 j+ X6 U' o% Hend
5 K' N" t- i3 y* ], R
# b( |1 x) k+ u9 @: b8 {; F6 O0 @1 M* k/ g' ?2 P+ [
to setup-plots. m6 {8 o( g8 v% v. n [0 H
set-current-plot "Class Plot"
- u8 s& S' k& ^! j4 g+ s set-plot-y-range 0 num-people
# Y* K& w% p2 [0 C9 G& u set-current-plot "Class Histogram"
: k% k1 g0 S& l' Q$ P* ] set-plot-y-range 0 num-people v. A, |5 _# R* |' P1 F
end: M- _' Q7 I. R% y5 k- C
* Y) v" x; ~% ^, y( B! {& Dto update-plots9 Y- b5 o6 v; d' a: r4 P2 o5 G) j
update-class-plot0 b3 W7 b, t1 h+ e) Z
update-class-histogram; J7 \ X/ E6 J9 o
update-lorenz-and-gini-plots
& w; m# c+ i6 V m- O# K1 gend
% o) V7 s0 w$ S7 @0 b" e- }2 j* a% q2 _
to update-class-plot
' G3 g) U7 M! L3 H6 M set-current-plot "Class Plot". J! H- j' y3 T( ]
set-current-plot-pen "low"7 A8 D% N1 a) P; z H6 [0 q
plot count turtles with [color = red]
. V9 a6 m* f6 |1 g# I* l& N: Y' W) l3 o set-current-plot-pen "mid"
x3 `% z, H1 i' T plot count turtles with [color = yellow]. `4 P' S. S" L7 u
set-current-plot-pen "up"% l* ~- `! N( l' J0 x7 @
plot count turtles with [color = green]
: K; h4 [: V4 i8 |9 h$ v$ ~# kend
8 V$ I0 y. ?, k& R/ X1 P
. T) P* E; I. N' sto update-class-histogram# B# b7 M; c( I y9 ?; k
set-current-plot "Class Histogram"
& s- H, O# \2 F6 E! x6 V6 v plot-pen-reset k0 |6 g& f& C3 q' ~
set-plot-pen-color red2 T6 K+ p2 f5 J; o e* D
plot count turtles with [color = red]) ~3 n, S1 `+ i( ]
set-plot-pen-color yellow
0 t$ t! O# D. @1 f% B9 t plot count turtles with [color = yellow]
. @! Z ^, D/ _ o set-plot-pen-color green
% K; b( b7 i; m8 g' W! P8 L plot count turtles with [color = green]
: N7 w) Q9 }. X- S3 Nend/ _. @6 g+ o( V! \4 ?- i
to update-lorenz-and-gini-plots! w4 q$ v2 ]2 V3 {: Y. z3 }! R
set-current-plot "Lorenz Curve"
) t- ~4 U8 g- R3 U9 N; t clear-plot) f0 l- V5 f. Q# `8 {$ j
- v: d5 i1 @3 }1 g/ g/ M
set-current-plot-pen "equal"
7 l: ?/ v3 z" b/ e1 i6 [8 u" C% z plot 0' x1 x6 Y6 x# c& O7 f
plot 1005 `( @4 W; V4 S4 Y$ V" g
R- ]& m3 n" o. p
set-current-plot-pen "lorenz" k. R) q/ r5 C
set-plot-pen-interval 100 / num-people
3 S, g8 K) u; t! A) m- |, D plot 0
+ z. u) H0 b2 f) F0 s( I$ R6 }: z5 @% \) ~6 l
let sorted-wealths sort [wealth] of turtles
# t( V7 r2 e" `3 M% o; Y$ H/ O: ^ let total-wealth sum sorted-wealths- E1 y3 G% T) A! n( L7 Z: f5 e
let wealth-sum-so-far 0
y# a7 w7 |: e! x! N1 ?* U9 t let index 0' @5 u- z& z& _ E
let gini-index-reserve 0
D! b. o5 C0 s- v9 u! m2 o% v' c C i4 o
repeat num-people [( y u- M8 ? u( k; r q
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
4 u6 B4 w0 @+ P: m" e1 Y% P9 E7 U plot (wealth-sum-so-far / total-wealth) * 100
+ r3 H" W" G5 ]5 Z2 m set index (index + 1)9 g! w! d6 ?; \+ [7 }- q' n
set gini-index-reserve, O. F. Y& Q. G- }) M6 M
gini-index-reserve +
6 p+ x, |# Y8 W! M! \1 s (index / num-people) -
. F F2 b! {1 s- i; A8 q (wealth-sum-so-far / total-wealth)" A4 F) E5 c$ ]1 z
]
. b* Z! U. q! |* a2 g' E( P$ g/ p) v" ^; t' B
set-current-plot "Gini-Index v. Time"$ [) u2 p8 f- \+ A( b
plot (gini-index-reserve / num-people) / area-of-equality-triangle0 R) F4 P7 S) L0 w8 {% r' _
end
4 V# P7 N, ?/ }- P* O0 `to-report area-of-equality-triangle9 L$ ^# f6 Q: v
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 j( s' b2 P+ y/ Z! e
end |