请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现& q% b) R$ [8 p- M2 T
globals/ X8 R9 e6 m3 H6 X$ p4 r
[ G7 W+ }* M- d' R- K; S" r9 a
max-grain
% G0 [ X; D5 T( ~/ l
* |* ^* \5 w7 d9 C6 h* l]; g: {( u. A! |) [! o
3 S1 F; W+ [- zpatches-own4 E5 M9 S4 Q0 B7 H) g& S/ |: b
[# s' Y" c' S& E0 ^. F% G
grain-here 5 G g. v' }, K, F3 Z/ { G* X
max-grain-here % J9 F, U; {7 o( R
]
6 O; _8 G( j* [- q" n
- r0 i! F, j( n: y- }6 @turtles-own
) r. L* m8 L2 Z9 I, W[4 l2 T: E& Q' i* [9 M) @
age 9 a/ y, t% z; p) U: y
wealth
6 B5 [ Y) q" @4 _* j1 l( j3 L0 k life-expectancy
4 M1 {" A! Y" w* Y metabolism
4 w) Q- b7 t3 n( H7 z/ ]* K, C vision
5 \4 x7 h$ Q* C2 x( e9 f* I inherited
2 t1 p6 Q' V/ k4 r]
8 w4 F. ], {: C% d; q2 w: }% t4 ?! W
- q( o9 f. A5 e. Hto setup* w% V9 K, w5 ~1 [, Y
ca
e! H& r" E6 M+ t# a) f set max-grain 50
; ]4 B( z- {7 a setup-patches# ]: }$ d9 i% P" P x
setup-turtles8 {6 D, R# }/ V7 a* F, |
setup-plots
+ s3 _% _7 t# H6 t update-plots
! F6 f [% v4 Q$ kend
7 Q1 n2 k& t) X; pto setup-patches
2 A& k' P! |( C/ t2 [2 J0 n0 E ask patches* ?+ d$ T6 F& a$ I* K: a6 A: ^; b
[ set max-grain-here 0. S) Y" }! Y P8 W
if (random-float 100.0) <= percent-best-land% W* a7 e# ~& a$ k1 L
[ set max-grain-here max-grain- e3 I/ @/ w& d* B
set grain-here max-grain-here ] ]% ^! H C9 z) E
repeat 54 L9 d1 \! X+ G0 l9 f$ @" p+ ?
[ ask patches with [max-grain-here != 0] [2 s2 @% [9 S: I
[ set grain-here max-grain-here ]) R! W" p, K2 L/ E
diffuse grain-here 0.5 ]& a: H9 F' O9 w
repeat 108 w4 [& H m, l) x; m6 Q
[ diffuse grain-here 0.5] 0 c* E3 V; X# Y* a2 p+ r6 v( j9 b
ask patches; S: f& ^" H5 T( z+ v0 y
[ set grain-here floor grain-here
8 s) J. n: W9 i) W- M! E* \ set max-grain-here grain-here $ q* I4 D2 y, s4 a7 _5 a3 L
recolor-patch ]
5 z, A. C( A" X* ]end
; v8 b# E" i4 ~) Y% g6 Ito recolor-patch 2 x0 O# `* t- X7 y/ M, R$ k
set pcolor scale-color sky grain-here 0 max-grain
0 g' a/ n; ~) e6 o) z( Mend
; f% T5 ~- `1 y! ?/ Eto setup-turtles6 j2 j6 ?' Q w) s9 m% A9 k: x
set-default-shape turtles "person"9 F4 p; O- _" }; `! t" L3 `4 v
crt num-people
8 |2 g4 P) L( R0 Y [ move-to one-of patches ; |3 b& U9 ]' C0 q! v7 i1 c7 D+ u
set size 1.5 c( g/ |- u ?: q
set-initial-turtle-vars-age# C' q }7 t: m6 C0 X* _4 Q
set-initial-turtle-vars-wealth
' g9 U/ ]1 Q0 I( w set age random life-expectancy ]8 ?2 `9 u8 }% n" c' ]( T
recolor-turtles
; c0 Z# H- ]7 \+ [# L; Iend6 |: l( s! i- [! O$ R* T4 V4 F, u
3 c6 C0 Y. r; k2 ]) z" K8 u
to set-initial-turtle-vars-age
' o" I: v: k+ u! Q; S* W' K let max-wealth max [wealth] of turtles/ a- V% V' F& Q& k0 J- k6 }& G: @( M
3 @4 c# P! | L4 } ifelse (wealth <= max-wealth / 3)- w; L) z: N" q6 o. d
[ set color red _% s- A" v; I
set age 0' q) O& ^4 `. g$ y6 K8 K E/ l
face one-of neighbors4
' b! A5 m; q6 |) N+ t5 I set life-expectancy life-expectancy-min +
8 k9 X0 ]9 N3 Y8 ?! c3 g random life-expectancy-max % ~2 q- d6 z/ M" H
set metabolism random 1 + metabolism-low& C% \- E" I' e Y) o
set wealth metabolism + random 30! J3 z f4 q4 Y! L' v) H
set vision 1 + random max-vision
1 f0 n( C2 w. F! {1 L set wealth wealth + Wealth-inherited-low ]8 o3 b3 V: H0 x5 G* B! A
[ ifelse (wealth <= (max-wealth * 2 / 3))
! a( H! Q! ]% c% b" r [ set color yellow
6 l4 e6 W1 S4 L0 H, R: n set age 07 Y+ l2 v) Y' m Q B5 ~
face one-of neighbors4 ; t+ q. z, {) @4 w( H# i
set life-expectancy life-expectancy-min +: r8 ^; S# z2 J+ z9 h" p; x
random life-expectancy-max + 1/ Y ^3 [0 A6 x) Q
set metabolism 1 + random metabolism-mid! j) ^7 O5 h; U/ e+ }" n
set wealth metabolism + random 30
' r! o1 B8 i. m set vision 3 + random max-vision# D t' F0 @3 K) m) H% q# j
set wealth wealth + Wealth-inherited-mid]0 e* z/ D1 w! X+ g$ d
[ set color green , K3 I' p. m+ f% j8 [1 [
set age 0
7 I1 \9 I( {& V! S# c/ c. n" J face one-of neighbors4
; m* z4 b1 R; n# q1 s0 ~3 k set life-expectancy life-expectancy-min +/ G2 Q& B5 r) B! m2 c: W: T) S
random life-expectancy-max + 2
6 h `) s3 X. d, P set metabolism 2 + random metabolism-up+ X1 A, _2 S, ?* a& h: a, G
set wealth metabolism + random 30" V/ o( c% V3 ?4 _# F8 D
set vision 3 + random max-vision
" V6 }1 e: N( {9 w- T set wealth wealth + Wealth-inherited-up ] ] P9 G2 P$ B+ @
+ I& p7 t9 W! U5 c: Y* j: Bend( `2 O9 q- ~! b* v0 ]& ~% e! D/ K
to set-initial-turtle-vars-wealth
6 v# E6 R: A7 K& l let max-wealth max [wealth] of turtles( j+ p) K! N8 g6 x9 b1 ?
set age 0
$ X& f0 o: @' f6 G4 k8 ?0 T face one-of neighbors4 : c- {2 U7 v3 f9 a2 _
set life-expectancy life-expectancy-min +, l, \2 k1 g) q
random life-expectancy-max
3 k' y/ s" r& v) Q: _8 e set metabolism 1 + random metabolism-up$ x# p+ f2 ^2 D5 \5 e
set wealth metabolism + random 30
8 N; t" J/ g& ` set vision 1 + random max-vision
- [5 y4 K! F7 Q3 C; f/ F: ~end* k) x8 R0 B+ u
to redistribution: D L- M7 N6 I3 ~4 ?* P
let max-wealth max [wealth] of turtles
% C* o, X7 U( Q5 v7 s" slet min-wealth min [wealth] of turtles
, h/ J2 i( ~- e$ Y& Dif (wealth <= max-wealth / 3), _+ [4 E! k q9 c8 V' s
[set wealth wealth + Low-income-protection ]
9 Y& N( s( P# I! Gend
1 U E3 J: V4 f- \ % ~- p8 e5 H2 I }" g
to recolor-turtles1 [+ f9 w& A$ l. W/ I
let max-wealth max [wealth] of turtles2 O: w* Q, _" [# R% S+ E- w1 `
ask turtles
( p' Q6 ^- s w [ ifelse (wealth <= max-wealth / 3)$ @) L/ L: \( m4 z* e5 L
[ set color red ]
9 M1 N! j0 D: M" v$ D i [ ifelse (wealth <= (max-wealth * 2 / 3))
4 B2 J' c3 P E% ^- \5 e: w4 g [ set color yellow ]
1 |; k4 H- I, @4 P/ ` [ set color green ] ] ]0 U( B1 @- `# h* r4 G7 c6 Q
ask turtles [ifelse show-wealth?* G v4 A3 G7 `- k' V5 s0 y- {. q: r7 T
[ set label wealth ]- R& c( S. z+ {! @
[ set label "" ]]# {! [# G) W- D2 F f3 o0 S
end
* t! d1 I% P k, \
7 S& \1 ~$ J* g/ D0 rto go$ r0 d" f) D% P6 ~: c, I
ask turtles
" k% {, E% N, Q* B1 v9 O9 ]) A [ turn-towards-grain ] 8 p: ~5 Y0 D$ R+ M
harvest
4 f; H0 d7 V5 q5 M ask turtles7 w+ {, g( w5 M9 F- u' B
[ move-eat-age-die ]
) d z6 L. K6 U4 z' J" @2 s recolor-turtles! H0 V$ k. v+ H* i3 w6 U; S
if ticks mod grain-growth-interval = 0; C! Z8 d% w" a+ Q: m" K& [! v
[ ask patches [ grow-grain ] ]. I6 `/ r$ F+ \0 _8 C; V
. g w- R, ~* K; y
if ticks mod 11 = 0, R4 U( B7 _ R$ A9 Z2 J0 V
[ask turtles6 {( |5 c w$ c. \0 y! R& [
[ redistribution ]]
4 V+ B; s2 z, m! h" o8 B if ticks mod 5 = 0
0 Y" z9 z7 n; B$ w$ n6 b$ ~0 j0 b3 K [ask turtles5 i4 y8 x1 i( Y6 j
[ visions ]]
# J5 [: S8 g+ [+ T% T0 l tick
" }$ ~! p- \2 Q update-plots
+ Z3 L ~& Y) t% W1 o% d. ^2 nend# A" o G8 r2 \( T8 U) g
to visions/ t; D& D+ C8 U
set vision vision + 1
6 }; W. ~" M5 U. jend @: p/ m& g/ p) L
7 S% @, Z# ?2 s: S& \) `
( n- q/ Y1 y5 j r9 y# N
' `8 ]0 Q7 C1 o# R# q$ o' fto turn-towards-grain e. a0 C3 f& a/ T- s
set heading 0" z- Y) f% G* c. P
let best-direction 0
/ ~1 b) _, n2 y+ e7 I) E let best-amount grain-ahead0 s+ \9 {0 Q4 D h& ?
set heading 90
& V* [6 V1 ^( M( @- \ if (grain-ahead > best-amount)
9 m6 v' i# n M5 `2 V- _ [ set best-direction 90
7 C+ i$ v: g6 Z5 | set best-amount grain-ahead ], I, x4 }" L, D9 Q0 a3 d7 A
set heading 180. J& J5 n0 C9 v& D! c# Q# s
if (grain-ahead > best-amount)" s" \2 u! F! G/ m& X/ S
[ set best-direction 180
' u9 f: f- P& z4 ] set best-amount grain-ahead ]9 B, g6 A6 y4 {
set heading 270
. M8 ^: n% y* D if (grain-ahead > best-amount)
: {9 F4 Z/ E; Y0 g [ set best-direction 270
2 n+ M7 \+ M# X6 M' T0 f9 R set best-amount grain-ahead ]
0 H5 F# x& b+ K" A0 c5 w set heading best-direction2 ~# a4 T5 c2 O `3 A- p
end
J- G+ s9 x7 B( {
: t7 c$ w' i3 r- D4 L6 O
' c/ n* Z! C, uto-report grain-ahead
7 D: U6 |/ E- O let total 0+ ]) K4 X% ^( m' m( g' i1 @
let how-far 1
7 ~3 U: \' i. A: }) k$ G; @ repeat vision" {' P1 e% |9 P# Z8 J/ T& X% i
[ set total total + [grain-here] of patch-ahead how-far
9 T' @! M* s6 o; m; M; t# g set how-far how-far + 1 ]! b1 I+ N, ]/ y6 e( T/ d+ A
report total6 ]7 e0 S j1 }2 S+ K. f
end
2 |) [& r) b2 ^, D4 D' r5 L; d0 i& y
5 f4 T1 Y9 X( k; N0 Cto grow-grain ' T- `" ~% W4 d
if (grain-here < max-grain-here)
2 O$ F% b) I, i; c# o% F7 ]0 m# e [ set grain-here grain-here + num-grain-grown: d9 i/ S$ ^% ?; F0 g7 ?
if (grain-here > max-grain-here)
0 D+ M1 L2 h0 F7 x8 g4 D [ set grain-here max-grain-here ]1 N2 L d# e" K5 f7 o e/ N7 W
recolor-patch ]& F$ m8 K- k/ k4 T
end
: P: M- n/ j7 @, ?to harvest1 _1 `& O! g7 u1 D' F( ` M/ n" l
ask turtles0 M9 l5 b$ `, {5 I/ B1 a* {5 M
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
" K, F% n7 m: ^, g ask turtles$ A+ S/ x7 P: [1 r: C
[ set grain-here 06 z% k& u0 X' ]# _( F
recolor-patch ]
0 D8 ^( _ B( d% y) D1 a 6 K9 c, ~. @+ R+ Z4 N
end
! y3 Q/ _) j* |5 ~: H6 L% t" ~
3 G( T, ^( s% Q+ S: h+ jto move-eat-age-die
! m" c) b6 e) x+ y/ } ]$ u4 t fd 1
% x8 ?, K) {, d5 T3 r0 Z set wealth (wealth - metabolism)
: R" D- q9 A6 m+ ~, [ set age (age + 1)
. a+ X1 @+ y( p8 M5 o if (age >= life-expectancy)
* s7 F9 `% v" x" }; \6 z4 U! p [ set-initial-turtle-vars-age ], X9 H0 z. a7 r6 y
if (wealth < 0)
7 I' s% x8 [/ P. x& x [ set-initial-turtle-vars-wealth ]
# i0 P% [' \' \, L8 f$ p* v
- n' N9 j0 H! e& y- F; _end) {" d8 t/ i2 s+ P
X4 {! c; F7 k3 f! ?% L, C
3 t3 |5 m- |7 M3 T0 c2 b3 Zto setup-plots. ]& L" ~2 J( r' c3 g
set-current-plot "Class Plot"8 W Q2 x0 L" Z0 P' f1 }
set-plot-y-range 0 num-people
( v6 G; x; E& T8 A; w7 {6 L3 K/ q set-current-plot "Class Histogram"- d W! o8 b2 P+ F8 }
set-plot-y-range 0 num-people
5 P0 g5 K( F/ j2 M+ Hend
# R; D% ~4 O f; L6 I5 ^
0 `" e2 h9 q+ _to update-plots
- q W) h2 m4 y: I update-class-plot% W! t6 e) O! J2 W) q0 q: |+ T
update-class-histogram1 `' f8 T- o! Z0 W
update-lorenz-and-gini-plots/ \" I# @' j8 s3 T9 J
end
3 S/ G" S5 a* k; q. j
& }6 o, G/ `6 |to update-class-plot
) u! W3 `6 n& P; f set-current-plot "Class Plot"
; m4 \( J/ a' j0 b% _& |; I3 n set-current-plot-pen "low"6 u8 j/ a* Q$ U* `% ]
plot count turtles with [color = red]
: s$ _6 D5 u% K, x( S set-current-plot-pen "mid"
, u2 s4 F& f6 C plot count turtles with [color = yellow]4 r, H6 e6 m' ]* H/ Q ~+ O
set-current-plot-pen "up"2 k) t8 B2 j2 T6 [7 J% x# ^
plot count turtles with [color = green]. A. j) S5 h: P* _) {, y$ E b
end
1 `& X# s1 M& J( g& U& t- ] J( g; f2 N8 }+ F6 \4 K
to update-class-histogram6 [4 p. i) I+ }7 b: r
set-current-plot "Class Histogram"3 F6 C& i+ h1 l! ~7 m- e5 q
plot-pen-reset
5 h/ q: }) Z! S: h* K, E6 x set-plot-pen-color red
, w# o% ]6 ]6 O3 g% ] plot count turtles with [color = red]. c7 y0 a/ d, d& ]
set-plot-pen-color yellow$ @* `" v( Z% \: F9 |- y
plot count turtles with [color = yellow]' Q$ N( k! e4 L( g) ~
set-plot-pen-color green- C5 B# |8 u ]. f
plot count turtles with [color = green]
9 h9 s9 C! O7 [' n5 ^ cend0 L& f( q u. j8 B9 t8 N3 F/ f& h x
to update-lorenz-and-gini-plots, A( m* a g# ~0 Z9 v
set-current-plot "Lorenz Curve"( X; M6 q+ ^- g6 R6 A, c
clear-plot
, `" U/ \2 e; E. i# G! l: n6 V" x( ^
set-current-plot-pen "equal"
3 C4 A. a2 G+ _# ]7 O$ _ plot 06 s+ X6 E) {1 d7 B3 j
plot 100
4 ~ ]1 ] y' C3 [( Z# R
6 e; q0 Y0 C% v" B. N0 T" S2 `- P. l& ? set-current-plot-pen "lorenz"
6 x* K/ |, S \# E' ^1 a set-plot-pen-interval 100 / num-people% S; J# V) h# Z- f& V. o9 U2 {
plot 0
' |- c+ j+ p7 S7 j* G$ g$ c# i- ~$ f( \# f/ {- [4 o
let sorted-wealths sort [wealth] of turtles( \! {0 r5 q& _
let total-wealth sum sorted-wealths, I0 z6 R9 u) \- A+ o
let wealth-sum-so-far 05 r$ g1 o! Z" c* `& Z. o: I
let index 0
% [( q3 P& d9 W let gini-index-reserve 0
8 h; ~3 ^$ }2 {& I
2 @3 A8 I; }5 P9 j* z4 h repeat num-people [8 S% Y- F0 K, w% K5 h2 z6 \: ]
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
' \% {) [" \% B7 y( [ plot (wealth-sum-so-far / total-wealth) * 100
% i" ` Q$ V8 _ set index (index + 1)
$ d/ J& r0 h; r8 G$ h9 N4 r w3 j set gini-index-reserve
3 _; L1 o6 V! o. P7 N gini-index-reserve ++ a& G) }6 W3 ?( r* n9 _
(index / num-people) -
& T$ U/ j" `! c; H" v. ? (wealth-sum-so-far / total-wealth): d& p9 B) ^$ J6 A. [
]
. D2 g$ L; K7 ?9 n: E" P# S; J u3 ]3 u# L
set-current-plot "Gini-Index v. Time". u1 o, `) z! X# v! x
plot (gini-index-reserve / num-people) / area-of-equality-triangle
: s7 D) z& i- m4 f( F* f1 gend
: n* Y0 y, e5 W, ]to-report area-of-equality-triangle
+ r. U+ P: D* p9 }: w9 l) q report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
& U' ~- T: L4 Q0 Y! P3 b% vend |