请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
& \3 @5 F' K0 t+ x2 m+ G! r7 Xglobals
1 I. [# x0 X: M4 f( F[) R% c' r. e# b; W) f. X1 p
max-grain
9 N" G/ q- A+ |1 R
4 M6 }' Y% {' f* ]]
% q) x4 i$ q! T7 ^/ {& M/ y- y l( e* R5 V) i
patches-own
: f2 H9 [. x4 [/ d& |[
5 G% I# G5 D6 r2 R6 m: b! z grain-here
. R9 J* C- W, I0 m& U8 J; A) |, u' t7 o8 e+ R max-grain-here ; M$ \9 { E8 i
]
' B, N4 s- `; S& q( g" _0 E# X9 N+ p2 X. {
turtles-own
" l1 j7 C% a- R% {& X) O: g7 v[6 _! t P0 k0 E' w( K: q
age ( ` I- b# y, C! S( ~: g3 Y
wealth
: v3 [: F1 V3 U; ~9 D$ i* t life-expectancy
+ v( W3 j. R5 L- r: _ metabolism
. z8 u, U2 n# B/ D6 d ^ vision
6 a) W0 o; d: K. C6 W+ ?, I inherited % L# C% c# a) e2 E2 o. Z# U
]
3 |: F3 d+ C$ N$ s$ j+ r- I: k+ n8 D/ i& [
+ I3 ]. Y% C: E3 b! q- Xto setup
R0 S# p/ y; s1 p, c3 D ca
, G5 I6 D$ P0 q& k set max-grain 50" z* f3 J6 }/ `
setup-patches
$ d/ X$ z. c0 V% R3 ^1 d setup-turtles
Y6 s$ q, W! m! e7 r' Y setup-plots
# P% n) M) y, `/ N0 v- O update-plots# O8 b' x& g ^: h, O0 T3 L& D, @
end
8 x& v" L2 L, N Z6 z2 [( \to setup-patches: t4 Y ?4 E; c- t
ask patches
, S7 r/ s5 N- V) J( ~ [ set max-grain-here 0
: b$ {6 U, O; a) l if (random-float 100.0) <= percent-best-land
" u: F8 I$ ~3 i9 {4 B [ set max-grain-here max-grain1 q2 j1 V/ A" e& r' d& ]
set grain-here max-grain-here ] ]
2 B7 J& h+ `( K# B6 A1 p repeat 5
/ R2 b( ^4 [) j$ v* d1 F6 d% E4 J [ ask patches with [max-grain-here != 0]
3 Z- ^# a5 e% R4 A" c [ set grain-here max-grain-here ]4 D0 C; l* V1 U, |+ g+ S0 A
diffuse grain-here 0.5 ]9 H2 t. ~( q) m0 _
repeat 10
$ x" g" G' }( l0 Q6 X5 S [ diffuse grain-here 0.5]
( K7 X# Z' |1 B _# ` ask patches
/ T( \. {0 R0 n% P4 S2 Q [ set grain-here floor grain-here
3 j l. ]7 D' r5 J set max-grain-here grain-here + \. o5 D# ^" n4 c# `0 s
recolor-patch ]
4 \& w$ v9 e& e) A6 s9 d( iend. ?% x( f3 e A2 \& H' r* M9 v0 M
to recolor-patch
3 M. {4 ]0 D7 N set pcolor scale-color sky grain-here 0 max-grain
- F# M! d3 u% l9 t @2 I) p4 C4 Rend
% \6 c6 U8 m+ z0 q. Pto setup-turtles8 f% {" {( a9 @
set-default-shape turtles "person"3 D# R5 V8 x% g4 n3 @# K+ \
crt num-people
5 ^6 R! T s/ ]7 {! u [ move-to one-of patches # q- D- a# \6 P8 U/ f2 }
set size 1.5
8 h- o/ { l3 Y set-initial-turtle-vars-age
$ {% t0 \* w# d3 M* H/ a1 y set-initial-turtle-vars-wealth
5 E% P- H! W$ P- s" w" E set age random life-expectancy ]
+ ?) C! a9 @( P+ E recolor-turtles
4 p) }8 o; Y+ A( Vend$ Y. S# x4 a' A& S+ U2 Z
8 e- r6 R7 H$ [! x' T$ }( ~to set-initial-turtle-vars-age
o) c7 S: O9 [+ G& _ let max-wealth max [wealth] of turtles6 e2 z0 E9 Z/ \+ o# V3 P3 G8 y [' O
0 u9 y: N a3 F0 L, B n
ifelse (wealth <= max-wealth / 3)
+ f. c: }" {/ x% N7 i! N. {9 | [ set color red 0 g+ y& j; @% y9 z* A
set age 0
$ [7 y6 t' h9 G$ G3 _ face one-of neighbors4
2 _ } l( Y" S. j# X9 P0 Q set life-expectancy life-expectancy-min +
2 ]. `# v) [7 L# u4 _1 s random life-expectancy-max
. f$ G5 m5 g! R set metabolism random 1 + metabolism-low
" r+ d* z# l0 j( a: W' e set wealth metabolism + random 30; |2 p4 ?* A3 G( ]% K, k
set vision 1 + random max-vision
) ?1 k* t/ M; _ set wealth wealth + Wealth-inherited-low ] |4 C) H; z" [9 G. g9 x
[ ifelse (wealth <= (max-wealth * 2 / 3))
$ I6 D: x1 \: e- q, R# F8 ` [ set color yellow & Z" i5 [6 o4 z" T. T, ~
set age 0 H( Z$ ^: U: x b5 \: p8 ~ @7 t
face one-of neighbors4
4 B5 h" k% Y) p/ {' Q+ J4 r5 X* l set life-expectancy life-expectancy-min +/ Z% }; M. Y/ I. {
random life-expectancy-max + 1& U, C# q! |4 A1 I& N4 m
set metabolism 1 + random metabolism-mid$ X& X j! {. q" o" }6 f
set wealth metabolism + random 30
1 Z/ P5 n7 t+ M+ I/ F set vision 3 + random max-vision
4 o6 I9 w0 _8 A2 D$ V$ j! \1 E1 c set wealth wealth + Wealth-inherited-mid]
8 R1 p" K) j0 Q9 a. Z [ set color green 9 U. {) x( A' ]% Y( T' [/ e* U
set age 08 d! y- t. W J. t
face one-of neighbors4 9 q9 L% P! ]$ H3 t) M9 s
set life-expectancy life-expectancy-min +
2 B* d4 I& {/ t# a random life-expectancy-max + 2
% }& E) s3 j. d7 z set metabolism 2 + random metabolism-up
" ?3 b; p/ i( e* x: C- i# E6 W* } set wealth metabolism + random 30
7 R5 U: l( J3 Y( Z( z8 h6 ~& J set vision 3 + random max-vision
) r. A( q, X4 Z set wealth wealth + Wealth-inherited-up ] ] * K, h7 {4 o' Q& v, m7 y/ K- d3 o
( R1 A# m4 L# A: c
end
/ B8 R! }6 X# Y: I" t$ `- I2 X& @to set-initial-turtle-vars-wealth
$ S2 F2 ^; w: B9 F5 e/ i8 J let max-wealth max [wealth] of turtles, A3 N J7 i/ B$ j) z
set age 0
! \2 ^) D( l) c- i face one-of neighbors4 ; k+ N0 K6 c1 y; n o% W+ ]
set life-expectancy life-expectancy-min +
) I, P& f" h$ ]0 \% a* w random life-expectancy-max 2 j6 }# C' S5 A/ S3 q% _
set metabolism 1 + random metabolism-up
2 ]; R1 W0 }8 G( }; I set wealth metabolism + random 303 |: w/ |; `% h" ]) X+ [
set vision 1 + random max-vision $ S( w( Z: {7 w. \5 U
end
t0 ~9 L' H; d7 \# L; hto redistribution
p3 m( m+ K1 g) k; J- Klet max-wealth max [wealth] of turtles
) H( I& Y) X7 Wlet min-wealth min [wealth] of turtles6 o3 m) {1 [9 }
if (wealth <= max-wealth / 3)
( x0 J3 ^6 r& P5 k9 C, S5 i [set wealth wealth + Low-income-protection ]$ L j" ?8 ~0 N! s |+ e
end
' U, U2 O, U" `# ^/ Y
# r6 m1 Z2 b6 l2 i. G/ H% K* O+ Vto recolor-turtles6 I* I W, r5 B1 U
let max-wealth max [wealth] of turtles
. \4 W& j( x3 M3 r/ w% {( _ ask turtles4 Z8 T! p$ |: J
[ ifelse (wealth <= max-wealth / 3), h3 m1 U* R/ i6 ` k# f% V' i e
[ set color red ]8 a* `$ A! B# W+ G, g. ~
[ ifelse (wealth <= (max-wealth * 2 / 3))
, }; I7 t7 l" P+ L$ k [ set color yellow ]: k) ]+ y* s3 n- Q
[ set color green ] ] ]
- M* J4 [5 q. ^2 L& V, t ask turtles [ifelse show-wealth?( p, |5 G1 ?/ k( q0 ~% v9 e; Y
[ set label wealth ]7 L( T1 O H1 A: C1 ?
[ set label "" ]]5 [& X6 x3 N) N1 W0 u
end; z( O Q5 p- ?4 m
: r* d8 W+ w! x# W/ z* p* g+ E
to go! t- U) W5 A: ?: `
ask turtles$ w* M- g( F3 e1 _6 r
[ turn-towards-grain ] : X! I3 Y: S5 q
harvest; e- `% U% Z0 G6 c& w
ask turtles
1 g# k6 G [2 d" d [ move-eat-age-die ]
# B; Q4 Z ~2 z/ ?' o! A recolor-turtles
1 o t' w; V2 H6 a N- Z if ticks mod grain-growth-interval = 0$ \6 ^' ?7 M0 i0 b7 }& W9 j
[ ask patches [ grow-grain ] ]
D, I* C. F1 _( [& S# e , h& w6 N9 ^" L; g1 }2 j
if ticks mod 11 = 0) }: I3 y) l; d
[ask turtles
9 Y9 O5 G! `) R. J$ z7 ?! D [ redistribution ]]* [0 t3 H7 O0 g) K! Y( W
if ticks mod 5 = 0& I3 p. o, _# b( `4 ?; z3 c
[ask turtles3 y2 F" P0 H: L7 c+ ~
[ visions ]]
) F( O) Y" ]7 J" y0 @9 v- _( u# O$ F$ ] tick& u6 t! K1 v, g* ^ v
update-plots, i+ ~0 w, Y; X3 @: w3 `
end
/ K7 Q2 T8 e% z( C; jto visions! Z) H8 Q7 \$ [' C/ y' N3 U
set vision vision + 1
4 m) D& j, d4 s5 o5 Mend! K$ ~7 H% [+ k. Y
1 I ?" m+ d8 d$ Y1 w* m9 M
: H X, }# o' ^8 C+ E! S+ A& r `; y1 n$ H
to turn-towards-grain
. e4 m' T8 n: Z' s }% y set heading 0
3 W' d2 H& @! n4 p- K- e let best-direction 0
: P* O$ t, I0 `2 f* P- Q let best-amount grain-ahead- s1 n( y" |! w
set heading 90% B- j& W, N+ o' Y6 F$ G
if (grain-ahead > best-amount)
. Q8 Q, b* q/ t4 }) |2 \( a: U/ F& S [ set best-direction 90
' O5 ?* g( y# P8 m8 `' o* T6 O2 q set best-amount grain-ahead ]9 U9 G) h9 G& _; [
set heading 180
1 ^+ C; }( Y, X* P if (grain-ahead > best-amount)
& A2 _0 @8 Y5 N, u% F [ set best-direction 180
. |8 k. ~2 w" r" R8 x/ [, [1 E set best-amount grain-ahead ], Z- u' o: \' f
set heading 270
% r& l' n) k* v) x( g if (grain-ahead > best-amount)7 H/ W' e; e5 k: v8 V+ l
[ set best-direction 270
! X4 V8 O/ h+ A2 ]# F! u) U$ m; X set best-amount grain-ahead ]
! U' z9 f- ~( A set heading best-direction0 [/ t* d& g+ c4 F- B
end
" ~9 r$ s) P8 t) x; G
+ o; X2 E# U0 y/ n- u& c* @" g: e+ J" n
to-report grain-ahead
0 e9 N" G2 I ^# U3 ~+ j let total 0+ J7 w+ q. A" k5 h* E4 M
let how-far 1
, S5 ~6 m& L8 r! i/ o repeat vision& W, G2 ]6 p# ~$ F- F+ b; y
[ set total total + [grain-here] of patch-ahead how-far
% L1 u# j. P" C% l, E4 W+ y1 d set how-far how-far + 1 ]0 O3 Y$ G- X1 _6 [8 }
report total
P- T" x* t6 ]end
3 A, G" Q8 p3 M3 x4 u
4 k" ~1 ~+ h4 H4 L" }/ X! Eto grow-grain
; B- Q; E, f* [1 f% ^ if (grain-here < max-grain-here)' B" N7 o2 D1 c1 v! i, g
[ set grain-here grain-here + num-grain-grown+ n* k4 v: W/ f) S. @6 L. a. ?5 u6 G
if (grain-here > max-grain-here)
- k; p+ C2 I8 _1 y% A [ set grain-here max-grain-here ]
3 \6 M+ X5 r) ` recolor-patch ]" Q; R3 A u" N3 Z: D X5 V
end& B/ G( t! n9 ]* l( d
to harvest
, t; u- X$ @+ ^; U1 d$ i6 ? ask turtles) G8 T) H* X$ N" x8 h' ^. }8 m
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]4 ^6 B9 q, ~: w
ask turtles# K# t, C8 Y- N' d- D+ R
[ set grain-here 0
3 x8 q# W* {$ i) Y recolor-patch ]) @) C# _4 `6 {4 _ u' }9 `
0 J" G5 q# K7 G' F1 Xend5 {+ N1 s: F2 S' W' H5 ]
0 N0 @1 G0 \+ F( \/ a7 B) Nto move-eat-age-die " j9 }3 {2 |& y
fd 1/ G- R0 N' E/ O7 t% [ o6 Z" z5 k
set wealth (wealth - metabolism)
3 [' U T7 v- H$ v6 g set age (age + 1)* D, i) G) ~: O
if (age >= life-expectancy)
4 r" O9 l y& [- X4 V* x l [ set-initial-turtle-vars-age ]$ o1 n* ]# A/ d9 l- W# X4 r2 l
if (wealth < 0)0 U3 r2 g% X2 ]; s5 s
[ set-initial-turtle-vars-wealth ]
. a4 ^: x- E1 h% S
; f/ t1 I( a/ N0 j3 Uend
* K) J* ?' W5 n! ?3 |( V/ W! D% T D9 ?: L
# U8 ^6 u8 h4 T4 W2 Rto setup-plots
0 c9 N8 X. I) }7 g2 ]7 R7 T# n set-current-plot "Class Plot"
9 c, n( ^1 e' N2 X3 k set-plot-y-range 0 num-people
# E# d- [8 W$ x" s+ |( w. [# T set-current-plot "Class Histogram"
9 a2 \, f+ L, y: L r$ p' v set-plot-y-range 0 num-people/ |! i0 l$ Z! |6 A
end
! q/ w- O8 t/ F% t4 X6 _" t) R2 a# D' A/ o4 d2 |6 G
to update-plots1 x8 }3 R2 m* D( F
update-class-plot- b' U! A1 M- c% F, L0 A4 u
update-class-histogram( I4 H/ G: H' S' `+ `. L) C
update-lorenz-and-gini-plots
- `, o% I2 Q; Bend
/ k& i+ |0 I+ b5 w0 R2 |% @+ x
! h: C* \5 a- lto update-class-plot
1 N7 ?) ?" o* v8 h/ n# s x set-current-plot "Class Plot"
/ r. C3 w/ F- `# T set-current-plot-pen "low"
1 y U/ p7 _* J3 F; Y( T* M plot count turtles with [color = red]
( q2 S* l* c B- I C- S3 l set-current-plot-pen "mid"
% \' d2 M# R( B; O8 \7 ~0 O plot count turtles with [color = yellow]6 X* W) L7 R1 V9 C! `/ ] z
set-current-plot-pen "up"' z) N7 ?0 `- z
plot count turtles with [color = green]
1 @* q, ?! A8 Y9 @4 ~- hend
( d6 F9 W$ d6 [# e; n2 a" I7 Q/ R3 S% _8 i: P7 U5 ^- ~: U
to update-class-histogram1 c& k, ?# w" n/ l+ C: s" c
set-current-plot "Class Histogram"
& t" d! L1 a$ X plot-pen-reset
* e: w, _" C; i- q z set-plot-pen-color red
$ B7 f% b* ^: ? plot count turtles with [color = red]
6 ^. l4 p& j6 Q1 O6 M4 J set-plot-pen-color yellow
* y- p* @) V. T8 q6 h, p. R plot count turtles with [color = yellow]( U# k4 w S3 Y0 E) z
set-plot-pen-color green$ l! f) _" p4 B9 N m1 X$ L' t
plot count turtles with [color = green]. ~. e+ z+ P2 m h f* B
end, R. z6 {7 Q6 `3 i3 l1 R4 A. [
to update-lorenz-and-gini-plots5 u# T9 x! j: D# W5 F
set-current-plot "Lorenz Curve"4 y# X2 R) h5 l7 j6 h
clear-plot
* r% }" d; ]/ k' q
8 i6 t/ j/ n7 F1 r set-current-plot-pen "equal"
1 j- \! A$ t, A* P* Z5 ?7 k plot 0
7 g9 j$ q$ q2 J7 t plot 100# e0 G5 h& X2 t0 n
6 A D5 D: b+ o% ]1 O- k6 _- z set-current-plot-pen "lorenz"
8 S: j7 Z6 D6 d2 |% S9 B9 U set-plot-pen-interval 100 / num-people
. [2 ?2 Z# G9 _- y5 | plot 0
5 v: l) V7 d# T4 z
8 z& Z! m/ B. e/ h- W$ |2 L let sorted-wealths sort [wealth] of turtles
% X" I2 k! c1 ^4 A$ ^7 }2 k let total-wealth sum sorted-wealths
( L& E% @% a. e let wealth-sum-so-far 0# s6 X S- m( U' P |4 O2 G
let index 01 G. @! N3 {3 T5 X# M
let gini-index-reserve 0+ x: W8 y! Z1 O+ w1 y
9 v v) Q8 o2 ?) o- G repeat num-people [
' u6 n( Z+ G9 {1 ~* R8 S# c& Z set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)0 W: Z6 e) ~9 p4 O+ t3 A, u
plot (wealth-sum-so-far / total-wealth) * 100
) F- m$ e; d T% Q9 t1 {2 K! N2 x set index (index + 1): E4 U4 [5 s* W, l4 U h
set gini-index-reserve0 p+ |- t( G& h) Y$ g7 x" b% Z0 p, }
gini-index-reserve +
+ L# @3 q) y/ y (index / num-people) -
; s7 d. G" z! m8 D4 C, d+ |* n (wealth-sum-so-far / total-wealth)% P# G4 M, F" P3 @$ ]
]; _+ h9 Z. J7 f3 i1 e
: R9 w3 e" M, k0 C/ w# w) `
set-current-plot "Gini-Index v. Time"/ V; p* M' D, I% q
plot (gini-index-reserve / num-people) / area-of-equality-triangle" i1 f; g) Q/ ~' B8 R
end: U t, n# C8 ] h H/ k
to-report area-of-equality-triangle
6 |+ T+ V) E3 ~ report (num-people * (num-people - 1) / 2) / (num-people ^ 2): |6 ^) P) X1 S; M N2 n
end |