请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
/ }0 Z( P1 ^; [: @6 pglobals
, T3 w# ?& J6 J8 O[
- d1 U; [& `, }/ u max-grain
3 w {% j2 E) X6 k" \! u/ _* P( D/ |5 [" r( W$ P l
]3 Z- t% k" J' F* m- S6 o" q2 T
2 l& ~4 a$ W( x( H2 g& \patches-own
6 X o9 a \/ @[4 i# i. \% ~6 t1 e \6 `1 M( r
grain-here
/ O" l. B. k# D- Q max-grain-here , s! {8 X% L4 e9 M* U: T
]
: v/ Z7 s) P% H2 c
7 Q0 T$ _, s% d( Mturtles-own
( I& @5 G9 g( G8 F) K8 _4 c+ r[
3 Y* _. Z l, I2 `4 i9 {1 R% c age
( I3 i: i7 m9 f wealth
6 Y& k9 T8 o4 ]6 ?/ E5 D# M life-expectancy U4 `& X" c2 Q
metabolism ; g4 A3 g0 f. V. P0 m) l" J
vision$ o8 b3 J. F( J; o8 k
inherited 9 E) S0 l @% R/ n: I
]$ p Y8 O& l) a% u3 ^4 x- _
" ?4 S$ q! t O& V
7 P. \ L( s5 b6 P& Ato setup0 }7 }( L/ J' D$ |) b1 p' \+ m$ B
ca4 l3 Z0 k6 z9 M' C2 A. Z- ?6 M
set max-grain 50& B' P9 ^8 R3 i6 D" k) d' G5 Z
setup-patches
9 X, L; r2 H5 E; p% J9 A setup-turtles$ z; z0 F% G+ o, e `3 ^4 k& e
setup-plots$ p. j& J* S9 i9 P& |2 f3 z
update-plots
) e v$ V7 X+ |0 g8 h. q( rend
! H" s/ Y& F6 `3 x& b$ T. G+ wto setup-patches6 {' C u! G2 r6 k; Q
ask patches* V. O- u# z$ }) @0 ~1 Z
[ set max-grain-here 0( F4 ~* Q4 f* t- V
if (random-float 100.0) <= percent-best-land$ V- t' ]/ A( J# D* s4 c& {& X8 M
[ set max-grain-here max-grain
g3 i6 F+ I3 D8 b0 g5 k0 b set grain-here max-grain-here ] ]
4 I# }" P* r% P3 a repeat 5
9 M" ]8 W& K) X0 H9 M8 ^ [ ask patches with [max-grain-here != 0] I6 U$ Z3 `/ f' |5 _& h/ O
[ set grain-here max-grain-here ]5 d$ d. u4 L/ i6 F: }# v
diffuse grain-here 0.5 ]# k: ~. [" I8 Q( c% c# S" M! m
repeat 10
+ m2 W- I3 ~+ L" T [ diffuse grain-here 0.5]
# D* W h) a- t ask patches8 a, T4 j$ Q1 \1 g+ ^
[ set grain-here floor grain-here $ R* T4 z. U% X* @
set max-grain-here grain-here ) e( I4 [* J4 d7 O- o
recolor-patch ]
, M( \3 W1 y/ N- A! m3 U# Hend
, c( X/ z. _5 Q/ F; F% }to recolor-patch . L5 p0 y4 o( k: ^4 D
set pcolor scale-color sky grain-here 0 max-grain
8 N* R* g* ^& C7 p8 \) Q# k0 r& E% Bend
3 s/ I% E' n: O3 b& [! |# r8 k: }to setup-turtles8 J( m& X ~6 @1 y# D8 L! Y) H
set-default-shape turtles "person"
& l/ r5 z F. R! l! k& ^ crt num-people
$ N2 A8 W, V) l' I0 w( ? [ move-to one-of patches " B$ e- q1 L2 Z' {7 F1 [
set size 1.5 / q* N' H9 X/ i: Z
set-initial-turtle-vars-age
- I2 B% r3 p+ t ] set-initial-turtle-vars-wealth
* L9 U G- S- Y1 l4 L set age random life-expectancy ]3 H& u5 H$ m8 e
recolor-turtles4 m2 X! U e. g
end
% b4 c. {/ e# C) p. R. R" P
3 J4 t: j& n$ N" tto set-initial-turtle-vars-age
( O) t/ t1 `; { let max-wealth max [wealth] of turtles
& x( Y. ` \$ g ( u$ V) {5 P- }- B4 \
ifelse (wealth <= max-wealth / 3)# B% p, s) `4 N9 g) j
[ set color red
b' S. M7 y/ e3 y' z5 Y set age 0
( v; G/ `. v Q9 s2 p+ Z2 S face one-of neighbors4
, p0 T9 }% f7 Z5 ?/ E9 j set life-expectancy life-expectancy-min +0 j6 C' I9 {- r+ n) ]
random life-expectancy-max " g" X0 T8 Z4 w5 m6 K
set metabolism random 1 + metabolism-low% T) ^' d' W$ r- X2 K/ f9 L, M
set wealth metabolism + random 30
; v2 f5 {, ^+ O; e2 k) s5 p1 R* B set vision 1 + random max-vision( G' e, T2 c: r( k6 p& D" _! G
set wealth wealth + Wealth-inherited-low ]& H B% {; \+ Z9 _9 O: I+ _8 Y E
[ ifelse (wealth <= (max-wealth * 2 / 3))) ^$ E, [" k% ]" H) Q! y2 m5 j
[ set color yellow ; Z" s( b0 O1 ?( W7 j
set age 0; j4 D' i. O" z
face one-of neighbors4
" W a6 V& f1 s9 |, k7 v" { set life-expectancy life-expectancy-min +/ ]! N1 p/ Y4 n8 o2 g7 K
random life-expectancy-max + 1
) y3 M b8 ?$ [: }( @5 B5 v# i6 b9 d set metabolism 1 + random metabolism-mid
B# F1 Y- ~- F; _3 E! B! r& I* m set wealth metabolism + random 30" ]9 V" @$ |6 w" ?" N& }
set vision 3 + random max-vision
* o5 A y: t; ~3 z, [ set wealth wealth + Wealth-inherited-mid]
- Y6 g$ {6 r( G [ set color green
$ ^6 o: e2 ~) t5 d set age 0
1 J3 A% K' E$ c6 y) Y# _6 \ face one-of neighbors4
( c; i! ~# {! _' j; c ]# R set life-expectancy life-expectancy-min +
1 H4 k* v4 G% G* [1 ] random life-expectancy-max + 2/ {/ T) ^% L$ Q# u0 \
set metabolism 2 + random metabolism-up
- P: S* r! C# y' R3 M set wealth metabolism + random 30
& }& f: U4 r/ P% a- Q set vision 3 + random max-vision
R E G5 q$ x( [8 D8 n set wealth wealth + Wealth-inherited-up ] ]
4 V$ Z6 h) y4 B5 c3 Y* u: F$ R : t1 I" T3 q, t/ G; J. }% y* D
end
& K* V1 e/ F' y8 B+ f4 n1 b* Ato set-initial-turtle-vars-wealth$ j6 \7 ?9 B* \8 w) u5 L5 E
let max-wealth max [wealth] of turtles
+ m. T/ ]; s' Q* Z/ _7 F( W set age 0
+ K) Z( y* ~, o3 z face one-of neighbors4
5 `7 J, S# Q( {- c set life-expectancy life-expectancy-min +
) y5 b2 |! S4 X5 ~3 i random life-expectancy-max
6 O+ T" t: n5 e set metabolism 1 + random metabolism-up
6 W7 `, ?- h/ P( |$ I set wealth metabolism + random 30
; P. o4 V z% D& l8 B. D( B/ A set vision 1 + random max-vision
! g- @# K8 e4 h% t- ]end
, y# h9 t9 U( d0 M/ J4 ?0 q% gto redistribution1 x. k% t" a9 O1 P% j
let max-wealth max [wealth] of turtles _& ^3 P3 @# S! s6 O
let min-wealth min [wealth] of turtles
! h: M3 k6 c' z3 h. W# J# Eif (wealth <= max-wealth / 3)4 i& M3 U% y; W. J# @
[set wealth wealth + Low-income-protection ]: N" v7 [$ ~' N9 a6 v7 Q
end" l! o- V' _8 o: @1 ~: U
4 }% z$ m, _) z
to recolor-turtles' O% _; A8 p- l: ~. @$ d7 ^9 W
let max-wealth max [wealth] of turtles) D6 S5 }2 f, V
ask turtles
3 m' z9 R6 g; {9 L! W [ ifelse (wealth <= max-wealth / 3)
5 T, h* i3 S9 R$ i [ set color red ]
* z J; ~/ j5 S, P% [) P [ ifelse (wealth <= (max-wealth * 2 / 3))/ |. `: j' t: l$ }$ r$ n
[ set color yellow ]# s. N. y) |1 r3 l9 B$ r
[ set color green ] ] ]
/ G6 P0 A( M" o" [( e$ C/ K$ ` _9 d ask turtles [ifelse show-wealth?% d/ W' a' y) k) x. M& H4 f
[ set label wealth ], t$ N3 G& m: c, }; ~# P' E
[ set label "" ]]
" r5 a; a8 f: s, `& Rend: V( [- }3 {) _+ {3 F7 z% K2 D
2 y* J4 M! x, U7 `- O& k7 C! D. mto go l- h$ @' Z: |1 r @& `; j5 r2 }
ask turtles- G, Y; C4 P8 p! k
[ turn-towards-grain ]
& e$ N0 E& I4 F harvest
( a; i' e4 \, t# N! q( B/ x( O ask turtles3 U+ ~* [( R* s; I. ]$ j' }
[ move-eat-age-die ]) N7 i4 T6 L1 T, t- _6 M: J
recolor-turtles
2 q% \# W# |; T if ticks mod grain-growth-interval = 0
) N: `* \* k' V- B: H4 n [ ask patches [ grow-grain ] ]
2 m! m1 Q$ v; Y4 B ' i, G: d/ |$ D
if ticks mod 11 = 0
1 v8 h' A& A3 u [ask turtles
) P$ _6 N/ \" J: L [ redistribution ]]
3 V0 x- p) l; g2 E5 k( { if ticks mod 5 = 0
/ F6 z5 D2 z9 I8 R, U [ask turtles/ X4 S7 B! ^ j& |: M0 M" i, J( Q
[ visions ]]+ Q* n- @$ i8 M/ y3 X; m6 o
tick2 W: a9 i% O. w! o1 U. ~2 \ }
update-plots4 A2 r! o1 }3 x% c: B- g& Y
end
- `+ ?2 O& {+ ?1 Zto visions
# ^5 t' L" H6 E; l: @. D% ?( v set vision vision + 1
- O, E7 m# B; l$ dend2 {; K: [" K) a
' Q' s ]# l& H. ^; x1 o7 c$ I
$ J: J/ y/ T1 S
8 `- H0 B; z3 ito turn-towards-grain
2 r0 t& P9 t! i8 Z& g8 g set heading 0% w% P7 H: g+ A4 ?$ j7 e0 m$ z
let best-direction 07 U/ ]$ ~$ [% }+ y& ~
let best-amount grain-ahead
' j1 s) o' G* ^+ g6 U set heading 90* \% N% Z( U2 }7 Y# }
if (grain-ahead > best-amount)8 J0 b3 G& j1 S
[ set best-direction 90
$ ~) e' v7 a2 q set best-amount grain-ahead ]# _* {8 A* Q1 O. s4 [
set heading 180
% u/ F! c$ ^& a) G9 b if (grain-ahead > best-amount)
* @0 T0 n* v/ c- ~! M) t. P, } [ set best-direction 180
+ Z9 ]4 d2 D& O" ?# |! b ? set best-amount grain-ahead ]+ X+ d/ s7 j, G4 S
set heading 2705 ?1 H( a7 e8 L4 q
if (grain-ahead > best-amount)
/ K' L% W5 F4 x [ set best-direction 270
# U5 K! J. h6 U+ a* Y set best-amount grain-ahead ]" G P9 W, P$ K3 q
set heading best-direction7 F- D, V4 d, ~5 v. `- T2 t! x
end/ h; n# p# U$ o- I
& B# t7 B- u: C3 s6 x; d( Y/ }7 ~
2 h, P Q' Y- ^' y7 zto-report grain-ahead
" w8 k8 y" n) A( y. L( A let total 0
" D3 M, O7 b: a1 F2 L( H let how-far 1& V3 f' y0 N; e/ i8 S$ O
repeat vision: v- x4 Z" r6 f0 q0 f
[ set total total + [grain-here] of patch-ahead how-far
5 R, K. Q- Q( u; j! \ set how-far how-far + 1 ]
) E5 I8 o& D/ S3 q report total& p! Y( W1 ?7 \
end& i9 h9 J# e: l3 [' N5 q. p
- Y* I# {+ U, W* {, `% `2 Cto grow-grain 1 R `, _! o& u9 v' p# G
if (grain-here < max-grain-here)/ @' @; }1 h4 p+ V8 n4 _/ {4 Q
[ set grain-here grain-here + num-grain-grown
. s/ D/ ~$ e1 D' S& L if (grain-here > max-grain-here)
* ?; `: ~& ?5 ^7 C2 D; c. D [ set grain-here max-grain-here ]
; R L' h+ N: d recolor-patch ]
! a% m$ G3 s& a! lend. L7 D0 ?% m. g: w. F; [) w
to harvest7 X3 g- p7 {: E; e
ask turtles. u0 h2 ]- q. c8 i
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]) E* q3 z1 u& N* L" D
ask turtles
" e: X5 Z; }3 h$ @: `8 ] [ set grain-here 0
3 [; T# X% Z6 i0 u8 s3 X recolor-patch ]
) F! }, l4 P( [0 g 8 Y) N; V0 i6 Q% e3 ?
end
- S I) ^- G$ n1 ]
. L( [2 ~# x# Wto move-eat-age-die
( k; q+ q& a' w fd 1: c, P% j/ t7 s G. c$ |5 \
set wealth (wealth - metabolism)4 d2 K" v T R/ y5 A
set age (age + 1)
( T& ~ R) w q7 k8 C/ {, i if (age >= life-expectancy)
D0 }9 B$ b4 v* ?( u% t4 X& A [ set-initial-turtle-vars-age ]
) f6 [9 a$ E! [+ O2 B; A if (wealth < 0)
+ F/ f7 i0 h, B# k% v) d2 w [ set-initial-turtle-vars-wealth ]) {! i6 Z9 j$ W
9 X% s' k! w' H% m4 Q
end
' c! O; e* C. x" t$ b1 H: U) W' K2 g P3 |7 s J# p
2 K( f9 G5 d! Y3 pto setup-plots- F5 E4 i8 g8 m6 ?6 u9 o' E f& q
set-current-plot "Class Plot"9 Q; a: C4 y4 E! p- A
set-plot-y-range 0 num-people
0 n- ^- C& w. ]3 r set-current-plot "Class Histogram"1 O& a* [2 i& g% T/ d+ o* R5 [
set-plot-y-range 0 num-people
! {$ R7 h; `9 |8 m! g; Q Mend
, `8 a( }) e% [$ f7 o
8 {2 V) o2 Y5 d& W# F$ vto update-plots# C+ D# d1 t. n; L0 f7 D, A. J
update-class-plot) D {' L9 i6 C& G/ |
update-class-histogram
& o! w6 E9 n6 M# _" c update-lorenz-and-gini-plots
l4 m5 H1 ]7 W3 s* Yend+ U, v; _/ }& d2 A; o6 u( T
2 G0 _& [/ ?, Z
to update-class-plot5 {; F. u) a6 E# ~7 }0 N
set-current-plot "Class Plot"- N0 A/ Q5 M0 T" Z3 O+ W+ D% ^
set-current-plot-pen "low"6 n- V) D) `" i4 B* R( l
plot count turtles with [color = red]
1 n7 ^+ Q, j* }4 j8 O set-current-plot-pen "mid"
0 y" H2 H, `5 \" X; M8 o plot count turtles with [color = yellow]0 Q: u5 Z) d2 D0 N7 F8 h
set-current-plot-pen "up"1 l" T1 A3 m" L& _2 ^. o! k
plot count turtles with [color = green]$ d1 d5 ~$ I n5 a3 J0 T( Z6 f
end
+ @% [3 {! L% N' @7 ?/ {6 L4 G9 M
to update-class-histogram3 `; [* s1 f: ~4 w6 I
set-current-plot "Class Histogram"
% r* D! [' g7 P8 d; k- V5 {9 q plot-pen-reset0 W7 x6 X- H7 h0 S1 [9 L8 {! O
set-plot-pen-color red
2 s( @2 S1 ~7 m# T' H plot count turtles with [color = red]
2 c3 Y& Y( h% p) @: A; b* j/ P set-plot-pen-color yellow
4 Q+ \- f% s2 ]: m! X2 Y/ L plot count turtles with [color = yellow]
$ O1 l5 _' L6 I8 L" F set-plot-pen-color green3 o$ }, M% q0 Z) `7 d) Z
plot count turtles with [color = green]% T# M5 o* T: e. a7 I* {0 Q' ]
end
2 V u* O* g9 J) I2 Ato update-lorenz-and-gini-plots, C: B9 g; Z" S: ]* K
set-current-plot "Lorenz Curve"
& S, h" Z6 o4 \, Z% G clear-plot
9 K/ d" x1 p ]8 H; [8 _. K; ^) D, R: O6 X2 R
set-current-plot-pen "equal"
5 A) R& s. r, G) Z$ Y plot 03 t: W: X+ v, t9 w% ?
plot 100
2 O& w; i9 U' U B
4 F5 H4 J+ e" _1 i. s set-current-plot-pen "lorenz"
: o% m7 H- K, [& y set-plot-pen-interval 100 / num-people$ d( v; _7 @4 J, a+ _
plot 0
/ R3 C) A9 X% m3 F$ b2 i8 Y% b* Y F4 w" L) C/ c8 I6 v8 ^
let sorted-wealths sort [wealth] of turtles9 p# l/ k9 C9 J6 @4 Q2 H! J; ~
let total-wealth sum sorted-wealths, \. i$ Z! l3 P/ r6 R
let wealth-sum-so-far 0
3 b4 h& i1 F5 f# b4 I8 ~ let index 0
# f6 c8 S) m1 ^9 {+ K: |# u let gini-index-reserve 0: l* Y! Z) P. f% N X& k) R* \
9 D4 c) [+ P$ J& z6 Q3 l1 B repeat num-people [. b5 a* \& V; L. a4 _
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 f! F; c' e$ w7 ]
plot (wealth-sum-so-far / total-wealth) * 100# _. |7 q/ c' ~* ~2 I/ ]$ t& E* z& u
set index (index + 1)
/ Q3 ~ E) M1 H4 O5 e" w; \ set gini-index-reserve& ?6 K. W( q" o( Q, D# ]
gini-index-reserve +) w; b- u |' v* q" y
(index / num-people) -
9 O$ O* h6 c: n4 W0 @7 n2 X (wealth-sum-so-far / total-wealth)
: F- o( O: ]7 p0 _ ]
" X- e5 d( z) N+ C; W
( `/ H) N0 k, L set-current-plot "Gini-Index v. Time"
- O7 l+ o( i: r1 f plot (gini-index-reserve / num-people) / area-of-equality-triangle& v& [. Z2 n( }, E+ D# Z8 N
end
& P# G, y# J3 x4 A7 E) F$ Q! s/ Bto-report area-of-equality-triangle3 \% h F5 J H9 M, Y8 t" M' m' f1 Z
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! ]$ K& F [! T8 B5 E. N
end |