请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
5 S) Q, t* E" {1 h+ o5 M) O' Vglobals4 b. m# M6 N. O0 Y" `9 ]- `
[ ^6 G' w% [( e* v
max-grain & i. p [$ B: }! C
* H* c2 t! `( _+ s4 ]+ d]
7 X8 F1 E! m7 O, F0 l7 ?! a% q/ H
& b4 X4 C% k9 V3 d) Lpatches-own% t- V& o9 U5 i' i. q
[: }# Z% d4 J/ w; ^" s1 B# v# r
grain-here
7 }+ m1 \& Q- z# y; S6 {, m max-grain-here
) K7 I5 G. g( L" K# `]. o, A& g7 i( t8 u3 b- m, C
3 P) o! \% m9 D. ]
turtles-own3 B8 H3 P# f9 N) }8 D6 _
[
# A! g8 `5 }6 u" W- E# U age , q2 h7 [) v* C |, Z
wealth ; ]1 f0 ]3 W9 s$ j$ b
life-expectancy
' I5 P& N5 e4 t6 [( y9 A! A1 @ metabolism & u) t& k- I& m, ]: H" h) [% F
vision; D* v$ b; y7 E, y. Q B+ g
inherited 5 E& E t) H. w- J. g$ \! s
] T3 U3 q2 Q d7 `& ]* F
+ B# Q8 S% a- Y5 r
6 L" V) s9 J, qto setup
1 a/ M3 ?, V- f; Y9 { ca+ P5 K0 N8 B1 |, q, [& _. t
set max-grain 502 Q( ]; u# S* k1 i# Y
setup-patches
$ E9 k) d5 `/ U7 ?& J/ M' y setup-turtles5 Z4 w ^, `4 g& N
setup-plots& ~' _; I1 U1 s( v5 c9 M6 v
update-plots2 ^3 |4 _& Q( P' B1 L, O
end
! Y4 _5 J% Y2 d: g9 Sto setup-patches2 l; Q* C/ [' n) [
ask patches1 G3 u# d9 `* z( x
[ set max-grain-here 0
# {" r$ Q. m, i* I! r' M if (random-float 100.0) <= percent-best-land' S' k7 h# a* h( E
[ set max-grain-here max-grain
- Z! {3 M0 u* Y2 B- Z/ b set grain-here max-grain-here ] ]/ O# o6 l8 u6 P
repeat 5
8 |( M- \. m. S9 d! Y [ ask patches with [max-grain-here != 0]
! P, C7 f: T; f. l) d1 p/ { [ set grain-here max-grain-here ]
- @* |, n# J. o' o diffuse grain-here 0.5 ]$ t9 i) L D5 m, I
repeat 10
! o1 R5 @( j2 P [ diffuse grain-here 0.5]
$ p2 o8 H( k- ] ask patches+ W/ N# A, R, E. l U% _( J& y
[ set grain-here floor grain-here
# R7 ]. c: o* @5 l set max-grain-here grain-here
/ _. O8 G% |/ i% ]: W recolor-patch ]
* u" g4 n( O2 s- C8 G7 d* ?end: R/ X8 D9 h2 F2 e$ \/ v V- F) [
to recolor-patch
( p2 s% G7 G4 [, b2 n set pcolor scale-color sky grain-here 0 max-grain' m( T' j, ]: M) T' [ U4 ^7 C" _
end y, S) ^8 N& s# w w. p' P
to setup-turtles
~, b% ]4 A( x( ^( c: W$ ? set-default-shape turtles "person"
* \% j/ g" S+ ^9 C& T8 F: X1 ?+ P1 k; k1 t crt num-people
2 z# \5 x* b6 m6 U1 f4 i [ move-to one-of patches
+ c! U; p1 O6 o: G) N& h3 O set size 1.5 ' g( `* [6 ], J- h& @
set-initial-turtle-vars-age
# L- f Q, f; x1 w' _+ A set-initial-turtle-vars-wealth3 k7 Z0 J4 K2 E. J
set age random life-expectancy ]6 `0 T( x0 r% l, i
recolor-turtles
8 n- S8 b0 ?) [end- {: R: b* R) q; H7 p/ w
" n/ R9 ]) d5 M3 v# B9 Cto set-initial-turtle-vars-age
$ Y @" N; h I( X- H* e! E$ g let max-wealth max [wealth] of turtles4 x: z/ G* E7 b# ?* d7 |
& ]; n6 a Z6 }5 z t/ g ifelse (wealth <= max-wealth / 3)
1 g: @; k) v# X" ]6 c8 g* h2 Y [ set color red ^: G8 M, Q$ `5 E: J2 f/ Y
set age 0
q5 { P5 l0 C; G" W face one-of neighbors4
3 u( L2 M& T1 u" Q: U set life-expectancy life-expectancy-min +
. C) Y& @, Y1 X& k& @4 H random life-expectancy-max , p% M/ t' F8 E- V
set metabolism random 1 + metabolism-low
5 r: q! i1 E8 |- ?; r& @/ ^ T set wealth metabolism + random 30
" p- O# f$ j' N3 G% E4 u set vision 1 + random max-vision
* D6 d w* ~4 ^0 X4 y2 p E set wealth wealth + Wealth-inherited-low ]
+ { Q3 w* V$ K$ `; U2 u- m [ ifelse (wealth <= (max-wealth * 2 / 3))2 ^4 V8 F. Q" }& M* Q
[ set color yellow
}: K9 F! L* Y7 C+ P. S% l set age 0
% [: ?: c ~+ n8 K" w0 F( q) T4 q; p face one-of neighbors4
9 i/ x Z6 O9 T set life-expectancy life-expectancy-min +
7 G( z* h8 z2 _ random life-expectancy-max + 1
6 f; K+ t3 O: j' `% j. S4 J set metabolism 1 + random metabolism-mid+ q3 ~3 ?7 s! e6 e% V! e- o
set wealth metabolism + random 30
3 @+ |+ Q% ]1 f) T$ G set vision 3 + random max-vision
0 u9 \( q+ Y( I3 X# \: b set wealth wealth + Wealth-inherited-mid]
$ I+ _3 e' [) |5 a+ a [ set color green % d5 X2 w R7 o9 M3 D
set age 0
' @4 k) N+ ?2 ~& P- | face one-of neighbors4
8 e& X% ?4 ^/ O4 m/ T set life-expectancy life-expectancy-min +
/ b0 K Q5 }% U, D# A random life-expectancy-max + 2; E6 ?- C& ]! e
set metabolism 2 + random metabolism-up9 X$ s* ~9 x! T {; G% ]
set wealth metabolism + random 305 j. e. u, y: a; B
set vision 3 + random max-vision# A/ q5 q# }- o1 T( G4 Q [3 F
set wealth wealth + Wealth-inherited-up ] ]
7 `7 q7 p+ {+ g* U# M2 z8 b
# P4 K, Y9 d/ r0 oend" k7 ]1 @. s$ O& W4 R! i
to set-initial-turtle-vars-wealth
/ b3 S) q0 F9 `0 U" [' F( _& g9 _ let max-wealth max [wealth] of turtles
1 `) ]0 g5 v8 B0 f/ z set age 0
" F' y3 O* r/ p$ D! R face one-of neighbors4
; k; |* y+ }3 O- {& Q' M1 U3 n5 v set life-expectancy life-expectancy-min +
, i+ Q2 S0 y3 L" L( o, q5 s$ I random life-expectancy-max ' m6 Y4 }4 X7 t0 c( a" _
set metabolism 1 + random metabolism-up
. B" |- K% o. Q D( c7 J2 w set wealth metabolism + random 30, D3 N( S- h [8 l$ H
set vision 1 + random max-vision : B9 j1 ]1 f7 i* S0 e
end$ w2 w* q: n* s- U% `7 g) r
to redistribution1 I/ R4 B8 T+ d6 z8 @
let max-wealth max [wealth] of turtles
; u" ~4 N1 d" K7 W$ l9 Slet min-wealth min [wealth] of turtles- z8 I: j5 e+ G2 q# u& l) B
if (wealth <= max-wealth / 3)
2 F. ~& b, P3 s [set wealth wealth + Low-income-protection ]
2 l. P' o9 }4 j4 n( Jend. U) Y |! L) ?# ?( A: S
( A6 m3 N; `% q' h# C
to recolor-turtles
" I1 U- w6 i8 }9 L( { let max-wealth max [wealth] of turtles
; V2 ]( X, F6 z3 K0 {2 X6 W ask turtles
0 n+ V3 Z" z/ h8 v- V; H [ ifelse (wealth <= max-wealth / 3)
- C: x& ^ u& |, X c [ set color red ]
5 y# I5 c" g" @* {# W [ ifelse (wealth <= (max-wealth * 2 / 3))
& K' O. v7 A m. \/ K [ set color yellow ]
4 N# V/ U- d. }& g [ set color green ] ] ]6 A: j2 u; g# D
ask turtles [ifelse show-wealth?1 \$ c3 ?/ O9 a' @7 h! L+ l! V5 i
[ set label wealth ]: j) ~9 I. h# I
[ set label "" ]]
' {+ y- @( a# r+ t/ [! Y6 N) lend2 J2 B- v' v. t: X+ h4 U$ Q& |
5 R: V+ L& b3 V' ]$ e% nto go
7 w, [1 p9 y8 f ask turtles; k$ o; C! `4 x1 l e- D- X
[ turn-towards-grain ] . M5 Z& h8 W: K' W! g% C1 l
harvest
8 H# H* b5 c/ W, Z3 Q+ E& n ask turtles1 E) r5 ]6 D% A7 x0 m G- |4 i
[ move-eat-age-die ]
( `; y; Y: \# C recolor-turtles8 d: k/ |& h5 h+ p" P0 [" X
if ticks mod grain-growth-interval = 0
4 G$ J5 s2 ? k% t2 A0 Z [ ask patches [ grow-grain ] ]
5 D5 B3 t/ i* @0 ?& b% F " z& w' W! ]3 P& i U' m0 O/ f$ E
if ticks mod 11 = 0( V% Q9 a! N4 P. t, T
[ask turtles
7 V' F+ F4 K6 E; j3 g8 k( r9 k [ redistribution ]]0 j l: t. x7 x
if ticks mod 5 = 0! k# }% G& ~' m- z- M% A
[ask turtles
! {! S4 B; U" g) o3 v% H [ visions ]]4 v* q- I* h% p& T9 o
tick( B4 A9 M+ g7 N0 r ]
update-plots
: B1 P1 c; { k" e: V) u$ T; Q* cend
, c/ c: `3 ]* r$ ^" U0 M! Zto visions
4 I& a4 s7 q1 Q# N3 f: ?% s set vision vision + 1
) R7 |! F( y8 x, x8 x" send1 S( B, p# U+ Z) y! F3 y+ I
& A2 D" o; F: b3 W: s
) W# y" @) U, p N4 H/ k7 {
& r; n. o0 }2 A* _0 zto turn-towards-grain 8 A; e* e! O: \8 H# `3 j
set heading 0
9 K& f9 u: ?6 U- x& I" F let best-direction 04 N) G9 E/ o0 x
let best-amount grain-ahead
1 Q9 H @: \7 S set heading 903 }+ `4 _4 `9 `3 o4 e2 Z4 x" s# U
if (grain-ahead > best-amount)
/ b0 Y8 R4 x3 X [ set best-direction 90
) }% m" l! ~( r. G6 a set best-amount grain-ahead ] S& D2 x n4 v4 {
set heading 180
5 f7 [ j" u4 Z# [! s4 K1 z if (grain-ahead > best-amount)0 ?; h9 f, H' L; ]$ ^) Y) I4 y
[ set best-direction 180
: p5 H0 F, ?" b+ I& h set best-amount grain-ahead ]
; Y/ C/ P2 \+ m( g5 Y) [( V, V set heading 270
$ l1 n$ J0 n, w1 {! n if (grain-ahead > best-amount)! h4 q' z2 T: c! B; E3 J
[ set best-direction 270
, h2 {% y; [) b! d; I) G set best-amount grain-ahead ]
! j* ~9 t0 E3 U set heading best-direction* q- \3 I9 U, |5 O' m! c
end
2 h9 _4 O7 X6 C5 Q
& \5 d) B/ j* C( K- F( x$ O; f! G* t
to-report grain-ahead
: z( t9 m# |" _& R% z let total 0
Y( `; u5 w B let how-far 1' U9 N2 p! w$ O. q1 j$ L+ K; Q
repeat vision
% A; @5 A$ T! a/ l# h& m [ set total total + [grain-here] of patch-ahead how-far
) C! W- a# t5 \ X set how-far how-far + 1 ]+ Q/ _0 @% {9 r
report total
% C7 l5 h& B0 _' y/ |end# x* ~) w* ~) v( k4 I
7 O# I1 Y2 `2 d) d- l# P8 K$ m( Vto grow-grain ( K$ ]% X" ]1 O- h% s
if (grain-here < max-grain-here), |) J* D3 y& J
[ set grain-here grain-here + num-grain-grown% P! @$ _+ t |! j% \! @; _& s6 D$ ^
if (grain-here > max-grain-here)
' b8 z7 k" c+ s, b% x+ ~) h, a- l [ set grain-here max-grain-here ]
% A* i; l2 C6 w+ o: B/ b7 S8 E, \( a recolor-patch ]5 v" l# H6 _+ y4 a, l) m
end
# D2 ^$ S7 p& b1 ~* U5 @to harvest
7 i, j) }" o8 n ask turtles( k) e5 p' N0 n! q8 `' A1 t Z z
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]3 {# \! T7 d8 T, O' w; W& y
ask turtles
6 B$ d! x+ m/ ^$ m [ set grain-here 0" A1 ^; c5 j: W6 n
recolor-patch ]+ y* i: r- P9 [, x+ _
3 C, {* D/ h$ ?/ ~end
& Y" l. \& T+ n& X1 r' n, |" J7 I- P1 e4 R8 x! h- V$ r
to move-eat-age-die # P' N4 c0 p3 V. j
fd 1
1 O( b* p* m' C& i set wealth (wealth - metabolism)
6 o" E. V: o) x- E) H set age (age + 1)
* |- R2 B* `$ y; |( I0 t; r Y if (age >= life-expectancy)
+ c$ S, ?) _2 \. i" Q ?' k0 R [ set-initial-turtle-vars-age ]6 w' M7 u. H8 P# E
if (wealth < 0)
- |; O3 r3 n3 H& A | [ set-initial-turtle-vars-wealth ]
# J9 V$ M7 f; P5 x! U+ b: Q# c S; Y8 h" H& \4 Y9 I$ _) R: v7 ~
end- m/ W# @0 @8 e8 _0 e
# m# v) y1 P- ~! |: T. r0 _
' |* E! q/ o& rto setup-plots& v( l& r% ~" N4 [* @
set-current-plot "Class Plot"
. r/ u+ ?1 v: s' Y4 G. C8 E+ u set-plot-y-range 0 num-people' e; P1 k' W6 c& i
set-current-plot "Class Histogram"
5 D$ t2 M$ q3 C" x( ~6 _ set-plot-y-range 0 num-people2 {. {* a+ }7 ^
end- u4 u5 i2 J: h# [ R- W/ T
9 ~6 u. M l" d: c, Nto update-plots
$ F! e( l v2 L/ J# a* i7 u update-class-plot
; i# ?* U5 j: e! _+ Y& _! D8 a! B update-class-histogram
; t+ g0 D5 _" q% B9 S3 ] update-lorenz-and-gini-plots
$ X7 o; n1 K; p1 o6 |end
, F. w" @4 _1 S7 \
- w; C( E( e$ ]to update-class-plot' g- C' D) v( F. p
set-current-plot "Class Plot"
! H/ C( F$ G. U: U9 y8 K& a1 l set-current-plot-pen "low"1 c4 K- f* a! D
plot count turtles with [color = red]
: j" ]$ w- ~- e ^ set-current-plot-pen "mid"( h8 Q5 f9 X# C& H
plot count turtles with [color = yellow]) h3 z+ X( | R
set-current-plot-pen "up"
; l. S5 D( a& P r# [" T plot count turtles with [color = green]
( X1 r) H7 }7 z) F1 ~7 A/ i, Oend
3 V" N! Y* \7 G' v2 Q+ P
- R5 h& A2 D& Vto update-class-histogram* u. Z( j# y0 C: U% P- g5 l1 ^5 R
set-current-plot "Class Histogram"
8 y3 p: |8 m$ K# A. z: | plot-pen-reset) s2 t3 u1 R* J
set-plot-pen-color red \! o: _1 ?$ ], I& v4 L
plot count turtles with [color = red]
3 _. W* _) d b9 g" ? set-plot-pen-color yellow
) o+ i& c0 m6 `7 |- Q' H plot count turtles with [color = yellow]
0 v: X8 Y: Y$ k3 U. X set-plot-pen-color green
( d3 N) o4 ?. D# ]9 v* M plot count turtles with [color = green]
5 u$ X6 S$ P) i9 } Jend
3 }& Z7 D! n2 v* O% b; Jto update-lorenz-and-gini-plots# S0 p. t: b+ f- `6 F& T" h- U
set-current-plot "Lorenz Curve"
# d6 j) V: S s" A% M8 z7 h1 m clear-plot
' R) S. a% |* f B' W9 W% q8 w6 @' W6 O5 X
set-current-plot-pen "equal"
! ^' v: }# J# h plot 01 u$ F) |8 g, ?* P
plot 1007 |3 |+ P3 v3 N+ G( k
+ G. H5 Y) q1 L' ` q4 @ set-current-plot-pen "lorenz"/ }% d6 y. U. V: l' u
set-plot-pen-interval 100 / num-people8 ^; w, o' e3 O. ]
plot 01 W, r5 P4 d4 f* Q9 p+ E
/ A! y. A/ ], l' q& c& |
let sorted-wealths sort [wealth] of turtles
$ r" f( \/ H& x& T5 d$ Z let total-wealth sum sorted-wealths
- ?6 q; P) T" t3 q6 o2 O let wealth-sum-so-far 0
# g# l$ o) Q, S* x, B4 i2 M let index 0
3 A0 Q, ~" s/ U3 R: ?( Q let gini-index-reserve 0, ~! \6 i `' K# N& a1 `
# H, n* J' x! b% L repeat num-people [ V2 R( [) t6 d. i7 D
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)3 W. \: X) q% k/ K) J; f* j) |
plot (wealth-sum-so-far / total-wealth) * 100, w- U2 F, @3 Y; p
set index (index + 1)
7 s9 y* ?* O1 _, M: Z0 z9 E1 e set gini-index-reserve
" n5 j3 e( Z! J5 F2 q6 w gini-index-reserve +7 [. l. _& y, Z& n& \ i3 Z
(index / num-people) -
) M5 u' X& Y2 q1 v' u (wealth-sum-so-far / total-wealth)' ]- B/ r" V6 ^7 z
]. o. N. b2 ]1 W- G$ H$ j0 P0 J, Y5 V
7 H; S+ G' \& j+ E set-current-plot "Gini-Index v. Time"
$ S* v3 _# E( P3 K. d; D0 G plot (gini-index-reserve / num-people) / area-of-equality-triangle
+ r. X0 a% s- _, o% |) _. gend8 ^% Y3 q6 Y9 W; Y
to-report area-of-equality-triangle
0 y+ k9 ~; F( j: W; ?. H: e report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
6 X( l$ B: Q6 K- |end |