设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7616|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现9 J, u2 k5 p5 |
globals
! E7 c: \% K+ \& m* U- ][
+ n9 t4 f. t" v9 Z0 e- n8 E, a: e  max-grain   
( v4 J6 d: u5 B& w, c) i) o* S
1 l) W; [3 |) [8 E2 |]( p+ }( C9 t  j$ ]3 L" I/ x+ O$ _
/ d* s- I: X9 q4 C2 I& o0 x/ X7 n3 `
patches-own
! H' s8 p0 y+ i& z  T$ }) q, i! w, Z[6 w' m2 Z: f; r6 z
  grain-here      
0 Q9 e0 _4 J* b/ D) H- T  g0 l. w/ b, p  max-grain-here    ]: t  y5 ]* \' T- X
]3 n' t1 b2 G) ^1 S. n

- U/ g% D. ^, E' rturtles-own3 S7 W' p) g4 U0 t/ @, Z
[
1 n* b# I0 N+ ?8 `, K7 {- [  age              + T/ y0 X, V  t3 l) h8 L
  wealth         ' g, j! E: t% j. o0 z5 O$ e
  life-expectancy  " ~5 B+ F2 \8 Q* \4 L$ {9 a4 L
  metabolism      
' G7 h1 g( p( h" _8 ^- G1 }  vision5 f  f# {1 j$ I0 a; ]) |5 [
  inherited         
$ H/ k% M" V1 d# E2 j  j]1 e" L6 [' j+ c* ^6 N& M7 p$ L( U

$ M7 x. ]! r. o  |* K* W4 z1 p: s! f6 u1 c# n! g" N
to setup
$ c1 }! h5 t$ v  ca1 ?+ O! a3 V) t
  set max-grain 50
2 C5 Y7 Y6 E$ W$ n1 F; W  setup-patches
! z) M* f0 p- i( {: C1 |4 ^  setup-turtles
! ~  w" M* d9 `3 S  setup-plots
+ Q- Y% F+ d$ z- f8 w  update-plots  f3 e- N9 y1 q  n! R" d9 c9 @
end# X% F- ]+ Z. i5 }9 J# g" D- ~
to setup-patches
( i$ j- h% o( q8 n$ Y  ask patches% r$ b7 n9 @/ @) o+ x8 f
    [ set max-grain-here 0
- u$ x% p+ F+ N) l      if (random-float 100.0) <= percent-best-land5 F% O7 A% H7 l4 p# T
        [ set max-grain-here max-grain
: h; n, \) }; {          set grain-here max-grain-here ] ]  U8 o2 A! O  |
  repeat 50 l6 E" d$ N0 ]5 N# o' H
    [ ask patches with [max-grain-here != 0]
, ]. R& K# p8 E5 e* Q        [ set grain-here max-grain-here ]& g. b- t% q' b# i' v9 X- @! q
      diffuse grain-here 0.5 ]
8 O- H7 M7 A& }, G1 ^& |  repeat 10
/ u5 X2 c( x: ~6 p' c  T) m    [ diffuse grain-here 0.5]         
  s6 `  e# S5 l2 A7 P  ask patches& m$ B6 _( s4 B; F. ~
    [ set grain-here floor grain-here    ) h1 E1 d/ q/ X$ V9 L: q7 \0 f. x
      set max-grain-here grain-here      : t; R: W, ?0 |$ \
      recolor-patch ]
. g1 ?4 ^1 f3 B6 tend
# c* N4 G1 x5 D/ wto recolor-patch  
' {% K- f# }7 s6 W  set pcolor scale-color sky grain-here 0 max-grain
$ Y& h" s6 i, Zend
& D7 I" ?# x" ~# D6 n$ i! V+ X& zto setup-turtles
) }( W# E5 y* P% T# R6 ^/ J* C  set-default-shape turtles "person"  J/ B6 q9 ]8 ]; u
  crt num-people% }8 N+ }( Y( Q# s
    [ move-to one-of patches  - }2 G* _! d5 S5 O$ Q9 z( w9 e
      set size 1.5  - b1 a, _! c. x3 ^" Y  O) L
      set-initial-turtle-vars-age
6 |7 @; P3 o, G( ?% r5 u* s! i, v      set-initial-turtle-vars-wealth
* d0 R4 w. [. ^9 j5 W9 [% l& Q2 {5 m      set age random life-expectancy ]- b" R0 V! g7 x' C* M5 J( @1 _
  recolor-turtles
2 S4 l, v! p; k9 lend3 x: W9 R3 k, n. x* K/ Y

  c+ M$ l! l' d# Xto set-initial-turtle-vars-age
! p; Y8 z  h; x0 ^( R9 y- c let max-wealth max [wealth] of turtles; ]% g7 _, P$ u
   
3 C+ n3 @' V; Z" l8 V5 e4 E" s5 ?     ifelse (wealth <= max-wealth / 3)
$ h( }" O  L7 g+ Z        [ set color red - S1 _8 F. ~) }3 G$ v0 i
          set age 0
# T# r$ @) S# d/ N5 b2 M, y+ t          face one-of neighbors4
1 C) U- `* K2 O2 \          set life-expectancy life-expectancy-min +4 R  c" |  ^. G5 R- j/ p( ?% B* T
                        random life-expectancy-max & a  d4 g: D* J: i, @9 A
          set metabolism random 1 + metabolism-low
6 L/ b+ Z4 p) H- t          set wealth metabolism + random 30$ y- X$ J/ y9 f
          set vision 1 + random max-vision
/ k2 d  K" B! u/ M) i: t4 x             set wealth  wealth +  Wealth-inherited-low ]
9 Z+ ?$ P$ @; {$ @0 U$ G        [ ifelse (wealth <= (max-wealth * 2 / 3))
) {" r: G7 I1 b% [' U            [ set color yellow # `/ ]* _, r: C( y
              set age 0; Q) t# F1 n1 K( s; j
              face one-of neighbors4 1 H% f6 J" n" {5 q4 ^
              set life-expectancy life-expectancy-min +$ V: I5 C8 n" e& w) s# Z/ ~( z
                        random life-expectancy-max + 1
  T1 r5 i, u4 x2 F; p              set metabolism  1 + random metabolism-mid
/ D, o. E+ e1 S$ |. o7 B6 ~; V2 @$ H* {              set wealth metabolism + random 30! E) c3 M$ }1 G, E" J4 Q
              set vision 3 + random max-vision
: B( [9 r" u: ?! U/ a, `3 a+ i                set wealth  wealth + Wealth-inherited-mid]
0 O. A4 n6 I& _$ x8 S( `9 a            [ set color green
, W/ c; x5 O2 M              set age 0
0 p5 o( T" J: H7 m              face one-of neighbors4
) {; K0 N3 G  P) V              set life-expectancy life-expectancy-min +
2 J4 N9 R3 v3 I7 f( O                        random life-expectancy-max  + 28 n6 {$ O( }, ^/ b9 \0 T
              set metabolism 2 + random metabolism-up
9 o5 f1 K5 u1 H( ?7 r              set wealth metabolism + random 30
$ E5 W: ^+ Q- @0 H9 U2 G2 V: P3 x) D              set vision 3 + random max-vision$ E- ]' f. r( {; J- K9 v
              set wealth  wealth + Wealth-inherited-up ] ] # h. G! V# }6 J6 C: D

) I6 ?% g/ N2 G8 f  Cend
( l( ]' X3 `; w; m8 S8 f8 wto set-initial-turtle-vars-wealth
! q9 f4 z; D7 C& ?; S9 e1 F  G let max-wealth max [wealth] of turtles
) t$ K$ p% p6 I! K+ H7 U. F  H          set age 0
8 {' v. [7 V' t- \! e$ i/ G6 R9 w          face one-of neighbors4 ! H9 v  K3 T- h. m. M7 H
          set life-expectancy life-expectancy-min +1 \- x! P: e. K+ E  }# n6 ^% S
                        random life-expectancy-max 8 j- `. L3 w" k; w- l: u  e
          set metabolism 1 + random metabolism-up
% r" q2 v& e. S' b' n% b! J, E          set wealth metabolism + random 303 {- h6 V( g0 u& ^6 X9 V5 x7 b
          set vision 1 + random max-vision
1 f9 \$ G6 t/ m3 \6 C6 L3 M; Oend: a1 G) X/ Z$ y; }+ [+ X
to redistribution
, C' n6 `" x) `" Flet max-wealth max [wealth] of turtles9 m8 `: y$ f7 D- f
let min-wealth min [wealth] of turtles
# u, ]: l7 N/ m# F+ S6 W, Y* vif (wealth <= max-wealth / 3)! T0 M% [0 ]! p" `# O
[set wealth  wealth + Low-income-protection ]6 G6 s) b/ M" x2 D( G2 s. m
end& k' u3 x& K' |: _2 ^8 v+ C
         
1 i3 O! p- m0 Cto recolor-turtles
4 |' _! P: L/ u- P  let max-wealth max [wealth] of turtles
; Q9 _* K7 o0 R: F) l& y- J3 P8 q  ask turtles
8 F$ U3 Y5 @/ ~$ f   [ ifelse (wealth <= max-wealth / 3)$ a+ y, S# z/ t9 n7 c2 |4 q& W8 ]
        [ set color red ]$ p# X* C' B! F+ y# Y' ^9 b- D2 }
        [ ifelse (wealth <= (max-wealth * 2 / 3))
) t6 u2 Y4 R) g. s( @2 C/ V3 L            [ set color yellow ]3 k. J7 M* C' Q3 K# W
            [ set color green ] ] ]' \. ~8 u4 N% b( V
ask turtles [ifelse show-wealth?% T7 U5 i4 l9 |! L
    [ set label wealth ]
) X/ X6 b3 b8 C) a    [ set label "" ]]
( b9 s6 V8 u( V! aend/ ]/ X1 M" [9 [  @% b* V, r5 I
  z2 v: J, s% z% a+ y  P
to go, t# A* g. g* _. ~" m  P  w3 I
  ask turtles
! d8 |2 k& |% n$ `" I. Z    [ turn-towards-grain ]  
9 S  @+ Y9 O% [( G. E6 \  harvest7 c& c8 m+ R, e' x# Y) V8 X5 q+ Y
  ask turtles- Y( e2 D* Q# P9 N' h% \8 m) h
    [ move-eat-age-die ]
/ l) d( K* E& v5 V* B5 Q3 A9 d: Y& v  recolor-turtles( }. k9 W4 O; @9 J/ j5 q
  if ticks mod grain-growth-interval = 0
( a# k5 d! ^6 L6 v    [ ask patches [ grow-grain ] ]+ c+ d3 \& V% u" M& d
   ! k3 N3 D* K0 ]8 S% d
  if ticks mod 11 = 0
; b0 ]) W  z8 c1 b9 p4 J$ Y8 L# f  [ask turtles
* G$ e5 O! D6 f  ]8 l( b  [ redistribution ]]
  w  j6 z: Z* u& Q  if ticks mod 5 = 0  ?5 y2 i9 Y! s
   [ask turtles3 B# H; N8 D, m5 Y! o! W7 R
  [ visions ]]9 M; _% T3 C/ P) x6 Q
  tick4 K5 {5 w; v  K
  update-plots( l, }; U+ H5 m4 J3 x+ d
end  }. k: w. [' c2 J
to visions& [3 a  s9 O4 \/ d& L& G
set vision vision + 1
0 n" `5 y' D7 y  F3 |/ Mend, n& A8 C& y, m. B* ]
3 R& l8 e) i, U0 @
' O5 e! G1 v# a& b/ z

0 ~2 _1 @3 u$ r2 t. eto turn-towards-grain  - k7 K1 ]) f& v5 `7 n2 T
  set heading 0
# w; a6 G& R2 {, d% F- s% U  let best-direction 0
9 H+ ?) F$ ]( }2 W  G) Q  T  let best-amount grain-ahead- |- R& j1 `9 \6 x. \2 W
  set heading 90
* x) I7 T$ M+ t  a7 C  if (grain-ahead > best-amount)
- m/ i' a$ Q0 ~8 C( |1 n    [ set best-direction 90
" C* S; J; U. {' c4 X, m9 ]      set best-amount grain-ahead ]9 x7 m+ Q0 Q5 W$ R0 }2 }
  set heading 180' w2 C$ W( |% q: ^7 X+ x5 J
  if (grain-ahead > best-amount)
. n9 B7 U% E1 K/ D. B    [ set best-direction 180' P; P( {- m( k% h
      set best-amount grain-ahead ]4 W5 N5 E/ F8 X' d! y" ~5 p8 Y
  set heading 270
/ t: ]$ I8 V3 S+ x4 b0 I  if (grain-ahead > best-amount)
2 e, w! g3 l8 G3 U0 B# H, G; c    [ set best-direction 2709 u( o! E- [0 e! q! |4 C
      set best-amount grain-ahead ]( H5 L8 _, j2 P5 W& A. o3 O$ E# |% q
  set heading best-direction' L! z  o- f% R
end
8 t2 s" @8 h, t$ ~
) x, ?* P3 H8 m/ |  }
- B8 ?6 t+ V& [4 C0 @# P! d# nto-report grain-ahead  
) b+ A* _, i/ m5 S! g0 m* ?* W  let total 01 M$ K( E8 I, {
  let how-far 12 U. g8 b+ Y; v
  repeat vision( O# p! c/ f' A0 |% w5 W
    [ set total total + [grain-here] of patch-ahead how-far
  i3 b+ l$ }- S      set how-far how-far + 1 ]- y0 e! a5 \$ F& S
  report total! [* S2 C8 E& t0 a% g
end2 x1 o) u7 C% w- i# Y

7 f) B# B. {. K# Z3 E0 P+ dto grow-grain
$ a3 w5 A( {1 H  if (grain-here < max-grain-here)1 f5 b6 e7 K/ F7 a8 K0 G
    [ set grain-here grain-here + num-grain-grown
  r. J" }: j# S6 {2 ~/ ?7 l5 E) o      if (grain-here > max-grain-here)
" Z1 e: y6 d: {' S        [ set grain-here max-grain-here ]9 K3 \1 ?3 ~3 i( a4 o( y( @
      recolor-patch ]
. S0 y. }( O4 pend) y" r, c4 o. |5 r
to harvest  U  ^1 i! y  c7 x1 k+ c
  ask turtles
( T! n: ^% Q1 d) @- G    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]3 \, E: |- |: M
  ask turtles
# _  a. d( p, E) ?" @    [ set grain-here 0* w2 S' j* j9 B( n6 C- E$ ~% R8 b8 Y
      recolor-patch ]5 U- i, T6 ^8 O+ D$ Q8 F% W! J6 T- Z
  " Z" R9 e* }( U; N4 M! J
end  }1 a, u8 U# ?8 j0 d% p
0 N- Y) ]' u0 x- m
to move-eat-age-die  
+ B# N/ {0 O/ A1 x: e  fd 1* X6 a" k9 f8 {( N
  set wealth (wealth - metabolism)5 |% L# g8 q- @; o3 B, Q
    set age (age + 1)
4 T- y* @+ g% N3 e5 |! L1 z  if (age >= life-expectancy)
& Q# n1 ]; b/ h  w4 O    [ set-initial-turtle-vars-age ]
# }8 e% ?  h0 i1 e0 P. z  if (wealth < 0)% L1 M2 k7 g# ?0 Y: {
    [ set-initial-turtle-vars-wealth ]. n. L& G  r( w% a7 p: l9 w
    9 a6 D9 C6 ~+ e3 O# l; V& r6 P
end
4 T; ^9 O2 C" r, M9 M" _/ m/ i! |! g4 c, |# O
6 e8 G9 q* q, D% N4 u
to setup-plots
* @: _- K4 l- m/ r8 t. E! A& m: a  set-current-plot "Class Plot"
1 C' O/ k) o7 H1 H* {8 G( e  set-plot-y-range 0 num-people
9 B* _1 c. k, B! v# I" L4 X  set-current-plot "Class Histogram"4 g4 K2 Y( C- s( u7 `$ t
  set-plot-y-range 0 num-people6 ?! d3 h) r# \, a
end) i+ }! W+ w4 c( v1 Q' a9 C

3 b0 }7 ?: y4 W& H- ?to update-plots
* ], [$ {7 g# V( G" D6 l+ E  update-class-plot
0 M* ]( P1 _) I  [7 h  update-class-histogram
8 `6 t3 n6 m3 j' M0 ?( \/ g  update-lorenz-and-gini-plots0 n6 P9 F! b3 P9 |$ f1 \$ U
end. S3 y" M' d& b9 [$ K4 Z
/ ~3 d* A' ?( @+ v* x( N
to update-class-plot" o& F1 Y* A% J& K( N. q
  set-current-plot "Class Plot"
9 h" x% V' a7 l  set-current-plot-pen "low") c9 H6 x9 s& r+ w9 T
  plot count turtles with [color = red]
$ e3 O# `# i/ x, [  set-current-plot-pen "mid"* C3 V$ [' W/ i) a: C1 Y4 _9 {
  plot count turtles with [color = yellow]! j# d' A  p# F1 `4 _
  set-current-plot-pen "up"6 E; _) I9 G& Y; L* \
  plot count turtles with [color = green]
; }# ^5 p0 V& y0 D$ Pend5 }7 g; Z* Z$ L: _5 C) P+ [0 [

5 P( g: A, s8 S: \# Q  q9 f2 fto update-class-histogram
; _% o. N" C3 I+ m  set-current-plot "Class Histogram"" N, z& c. c" v; S4 L) u* R
  plot-pen-reset
% d! K5 T: N* K3 M8 g2 [  set-plot-pen-color red
! Q9 O+ \: l8 L$ o! A- Y  plot count turtles with [color = red]
8 b2 v$ d  @) R, A# c  set-plot-pen-color yellow
  y+ ]5 [( N' t4 K% N$ [7 l( b1 M; y  plot count turtles with [color = yellow]) [$ e. g4 S7 ^5 u. [; p& Q$ l
  set-plot-pen-color green6 e, g  M# ^" w
  plot count turtles with [color = green]* x, ~3 \) P* {. W$ _. H
end* d5 ?! e$ c2 A2 {  |
to update-lorenz-and-gini-plots
0 R; Q9 w  E7 |  set-current-plot "Lorenz Curve"
: C. R3 ?& b! l  C; L6 V  clear-plot
1 _+ P: |, p2 e
6 s- [8 v8 a/ `1 e) ~  set-current-plot-pen "equal"' Y. y  r$ y$ E$ R# @8 F8 ]
  plot 0" ]. Q. K  M$ M$ I" s8 S
  plot 1000 j, B( A4 o6 ^) @! ]! Z# ^+ s

+ m. C2 [# }# O+ ?  set-current-plot-pen "lorenz"- D" L( H) n4 y8 X" P; v& b9 Y
  set-plot-pen-interval 100 / num-people
0 N+ [6 p% g, S* d2 c  plot 0
/ |$ C1 H! }$ f7 G0 w* `+ G# U* D' O" S
  let sorted-wealths sort [wealth] of turtles
9 E; ^1 Q7 w/ X' o3 _: m  let total-wealth sum sorted-wealths8 \% q  n6 e6 h# K% x. _* ^  q
  let wealth-sum-so-far 0! G0 G7 {: [( X+ J% P6 ]
  let index 0( S5 ^+ }# {+ l7 u0 S! }
  let gini-index-reserve 08 R9 S, [: x4 W

" g. e, F  r; }' G$ i* K/ p  repeat num-people [
8 M% Y+ a7 V- t) V    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" z) i) ~1 `1 F. f- _6 o; Z
    plot (wealth-sum-so-far / total-wealth) * 100
6 o2 z) s4 ~# p4 N4 h" L+ X3 ?' @    set index (index + 1)
$ f) q# \5 e" A, c7 A7 x8 z    set gini-index-reserve) K8 _! ]% `# [9 \! U
      gini-index-reserve +
6 |- p; i% O  M2 _  S      (index / num-people) -" K/ I+ b* d% j5 C. q
      (wealth-sum-so-far / total-wealth)
( C, p" K( `1 @+ u. N7 w  ]
5 E+ {1 N$ \7 Y4 M
; Y3 h6 E2 h/ M" _; e2 D9 H  set-current-plot "Gini-Index v. Time"4 D' }( r; \3 l: P# q
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
! m+ U/ p* s8 f* y6 O  a1 nend
4 {& b8 n# N! m( w5 a9 k$ @to-report area-of-equality-triangle
, Z  }; k* f6 W% c" P: e( m5 m0 z  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 g, G! L+ Z5 _# n
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-2-21 07:07 , Processed in 0.019018 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表