请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现 T, N4 U, X' `1 T
globals
6 S4 k$ w& a- n( n/ s8 Z[* \: }8 G: c9 C# w7 |
max-grain & z9 H, V& x: p
1 J$ d s/ Y K0 I5 p4 [5 K]
7 R1 @ ?6 h3 ?( i% G v. d5 P
6 Z9 _* H% W" Ipatches-own/ i' Y! W: r2 P$ Q9 N2 x5 A
[2 C2 d9 y- u; i
grain-here 3 n6 u Y, O2 R% d. m8 c
max-grain-here 6 J- M7 }" j1 O7 I
]
' Q( B+ O4 U8 X2 N
5 R# L+ ?! o& D4 W' S; B4 ]& Fturtles-own
1 _* Q9 M' p2 w8 Y[
. h: h8 f. J0 e0 ` age 3 j6 c2 D1 | S, H" Y
wealth
* h4 s7 E5 H, f! t$ v7 z life-expectancy
/ i/ u8 r' i$ h metabolism
" v+ B `) j' K; | vision2 c2 V h4 J% d m3 x5 |! m0 _2 s, x
inherited
R4 \ |. e4 [4 i0 Y$ V" J]. z! N ]) q# {9 e- L* P) p
0 V! Y3 w! T1 @6 P+ \; i0 r; c0 ^, } N- l, L
to setup8 q* e- E2 G$ C1 t* D* X
ca
9 d c8 s" W$ R6 s* i set max-grain 50% ]3 y- k4 \9 E$ t8 d# S. d
setup-patches6 S; M% Q- a3 R- l* ]
setup-turtles
7 q2 v' w2 [9 t# i! @ setup-plots# ?; ~2 s% |0 P8 {: A
update-plots
% B7 ~* o7 h8 P: n vend
2 B4 V: W6 w, T R; R& `5 W$ zto setup-patches# @% ]- N( Q. s. y: @$ ?7 x
ask patches
: x0 Y8 L+ s! n' ]# q ]! n [ set max-grain-here 00 Z+ [. g ~4 p5 V8 C/ o
if (random-float 100.0) <= percent-best-land
+ O% R* W* c: L) d7 `/ \9 r3 Z [ set max-grain-here max-grain1 F9 k, i# z# A& F
set grain-here max-grain-here ] ]2 r B+ D4 v2 u; o/ M3 ^
repeat 5
( X( l* H. K6 s! M [ ask patches with [max-grain-here != 0]" t$ M- X. b) Z. E# [. ~" m
[ set grain-here max-grain-here ]$ d7 L9 f& ^# \1 z% o& |+ j& O. b
diffuse grain-here 0.5 ]
% k. |+ m' y% A: j, b4 c" f8 ? repeat 10
& ~* `8 x5 O' U [ diffuse grain-here 0.5]
" t U$ u: z+ `& k: w' | ask patches
1 U p; V8 l0 v6 b& D [ set grain-here floor grain-here
7 f8 I3 L) x( \9 Y set max-grain-here grain-here * ?8 y a) e! u. N' E
recolor-patch ]2 I6 w* d# B0 i
end
; J7 {( S9 T1 V; Nto recolor-patch
1 B0 e: m4 u3 F# A set pcolor scale-color sky grain-here 0 max-grain
; W" c' T# B, u4 vend
7 Q* e) A _: V! jto setup-turtles
W; S% N+ q) @5 S7 {, g set-default-shape turtles "person"
- p+ F' B- a( M1 Q2 Z7 y4 u* x- L5 V crt num-people7 V8 U8 _) _4 R, F6 U8 G* g; q6 `
[ move-to one-of patches
, o* C+ z* u: ?3 E8 ~ set size 1.5 8 S* i3 t: j) l$ m$ N. A( D6 W9 a2 B
set-initial-turtle-vars-age
|1 R8 F7 X% p4 [* {1 k set-initial-turtle-vars-wealth+ S+ s5 N, ^6 M! Z
set age random life-expectancy ]5 |9 G' q1 U* F* a4 @, i
recolor-turtles# V- W; M+ z, \0 x
end, `4 ?2 s8 w& V) _- {: H
0 F8 h5 m" |4 @0 m" Z3 S( F, X* J4 z2 Mto set-initial-turtle-vars-age) r. a% l% [: W% ~) p# R( O
let max-wealth max [wealth] of turtles
. \1 p) ]. [) S* ] ; F9 t) J1 k1 ^, J6 d% D
ifelse (wealth <= max-wealth / 3)
" Q6 f1 f- }9 Q5 P2 l [ set color red
' V" v m" b! W( L8 v7 u0 ~5 j set age 0; `2 F; v, t) Z1 ]6 [& M
face one-of neighbors4 4 h" n5 L9 c4 P5 K- D: m
set life-expectancy life-expectancy-min +
) J9 J f6 Z5 V0 [! K( x random life-expectancy-max 3 n+ s% d" t$ e+ V/ D9 I; ?( N) M
set metabolism random 1 + metabolism-low
2 u" e2 I0 } Q) n. v( Z; l; L set wealth metabolism + random 30
6 t/ A# R `& B% y! B set vision 1 + random max-vision
6 |; v7 G1 r% g3 ]! Q) [- h' ] set wealth wealth + Wealth-inherited-low ]" q& ~, c K4 v2 d S' O1 ?/ {, m5 @
[ ifelse (wealth <= (max-wealth * 2 / 3))* X5 s2 c4 [( m: [+ }* R3 d
[ set color yellow
% x9 h" C. T2 @3 s- h set age 0
% _1 V' K4 v7 v. |. \* R% |" \ face one-of neighbors4 ' Z5 Q9 p- w7 l7 ?
set life-expectancy life-expectancy-min +* q0 h: m5 {! \
random life-expectancy-max + 13 ]7 p; n1 G9 T# Z
set metabolism 1 + random metabolism-mid: o" K# e, F' `6 l! i( Z5 N
set wealth metabolism + random 30
+ b: Y3 D' v1 {, C set vision 3 + random max-vision( d" G0 d D# d& C% {0 x
set wealth wealth + Wealth-inherited-mid]
/ v% c: A/ N; h/ ^, U [ set color green $ b8 |. r9 B; m5 d& T* |. ^# {
set age 04 |1 J1 }1 L: t& r: I
face one-of neighbors4
6 z0 m8 f" c, n! | set life-expectancy life-expectancy-min +
2 @& b" p; }8 T- ] random life-expectancy-max + 2
: J$ W9 x4 Z; p+ m2 F7 Z6 x set metabolism 2 + random metabolism-up
5 D2 k# ^" c [1 [2 @7 O2 V9 k' b; d* r; _ set wealth metabolism + random 30
" l9 `8 l m5 V7 Y set vision 3 + random max-vision
! J) p5 v$ `$ E# B5 e( |4 D. ~- j set wealth wealth + Wealth-inherited-up ] ]
8 y4 r" B4 s' E8 v8 U7 W# C $ S# `, M+ p* y+ t7 c Z* X% d6 G
end
" B5 ~ C9 @, y4 Q% R$ E0 I/ p Qto set-initial-turtle-vars-wealth6 l' u! [* S; v( ]
let max-wealth max [wealth] of turtles
: M5 L* F, X [: Z) B set age 0( X3 ]$ q* B( e
face one-of neighbors4 % Z9 u4 _* [- P% f6 u% u. g+ y
set life-expectancy life-expectancy-min +. n' T u7 u6 N: u
random life-expectancy-max
; g7 h9 D8 u2 Z* R, ] set metabolism 1 + random metabolism-up! Q8 {+ V# P7 y" K
set wealth metabolism + random 30
, c9 b' Y7 ~7 G6 i2 Z. S set vision 1 + random max-vision * E- Y7 ]# j* ` r
end
- c9 O7 H* l i8 s2 i/ qto redistribution
. y* X+ ^' P5 t8 t: E4 T4 ylet max-wealth max [wealth] of turtles+ c. u! B! g: _& R
let min-wealth min [wealth] of turtles% ?" y7 {' d; I+ ?) A- D6 j
if (wealth <= max-wealth / 3)0 x9 R T9 J, i- Y. B
[set wealth wealth + Low-income-protection ]8 ^4 @. [1 t# _. v' P6 x
end; O \7 Z4 I( `" h# i3 F# w
6 [2 s! U. R2 g7 ]/ Oto recolor-turtles5 o* P+ |+ v- i3 v7 U
let max-wealth max [wealth] of turtles8 Z7 F9 b9 V! |
ask turtles' @0 g. a r& g, @& B/ g! O
[ ifelse (wealth <= max-wealth / 3)4 h& z) }8 i! f D" M
[ set color red ]8 g3 U7 O( N) v9 p. U8 L
[ ifelse (wealth <= (max-wealth * 2 / 3))
( B; S. w0 L, H- F( P' k [ set color yellow ]
! r% b3 S; d+ r/ r [ set color green ] ] ]
" s- n/ s: B4 h ask turtles [ifelse show-wealth?' Y9 p4 d; Y) R/ W7 V6 I
[ set label wealth ]
0 p$ l9 \1 e- s7 I6 p [ set label "" ]]1 V! R7 l" a+ o l+ P W7 O% V4 U
end( E* \9 [4 l/ h
& v8 z" `" g5 ~$ lto go4 ?1 B4 ?7 Q2 n9 Q/ h6 X8 H
ask turtles$ C1 u2 l/ `2 u% K. V$ R
[ turn-towards-grain ] - }$ f2 N6 \. w) i6 j3 n8 a
harvest* E! ~$ y* s _
ask turtles
6 t) o5 m5 B5 @: y [ move-eat-age-die ]
7 l$ t3 G& _& y. `/ S8 D recolor-turtles+ C. {2 m u2 z3 R) K. ]: Q6 Y3 D
if ticks mod grain-growth-interval = 06 b. I# _2 X' C# ?- w* b* C
[ ask patches [ grow-grain ] ]
: Q4 D7 Y- ~* Q # @( u1 a9 |1 r
if ticks mod 11 = 06 k4 U+ y) Q- N4 z' ^* H6 o1 s8 x
[ask turtles
: O' k# R+ p" f8 e( N8 T! w [ redistribution ]]
& i- {% m) p6 D if ticks mod 5 = 0
8 B$ _% {: i; Q+ j& {" i [ask turtles# o, h4 v& a1 M
[ visions ]]+ n1 W: c- t0 O+ \+ a
tick$ a+ U# y: P5 U/ i
update-plots
$ F& y+ e! O% d) P# e, z! f% Cend( W- j. E2 ~1 P2 f
to visions
. N% b" r7 {5 \- e. _! M4 w; w4 ^# ~ set vision vision + 1
' ]' R- V) |# b5 a. hend( o9 ]5 r3 y$ C
1 r! c& L g J
# L7 U q1 N) M6 U" z
, I2 g+ V7 ~3 F6 f. ~1 Hto turn-towards-grain x. I) _7 `% j, {
set heading 0
2 N) F$ \. u* V& E6 E/ ^ let best-direction 0
2 r a8 L, ?6 u4 m7 e7 x+ m let best-amount grain-ahead
. c. ^7 N" P1 w6 v9 H' o set heading 90
. J( E! Q( H* i+ V# p$ |, a- W. U if (grain-ahead > best-amount)9 s3 M9 _, e" L$ B& ~( z
[ set best-direction 90
6 v7 l1 {* p* B) o2 e) U set best-amount grain-ahead ]
3 c0 ]- R" z* x" C4 S; t set heading 180
7 b' }/ z2 s, |, L: U8 N if (grain-ahead > best-amount)5 M8 k7 Z5 _# s# r! K# i
[ set best-direction 180* O6 `( ^ v- t" r# D4 i/ i
set best-amount grain-ahead ]
! |% Z. ? J8 c" b! J set heading 2704 m, ]% p/ C( a P; _! ^
if (grain-ahead > best-amount): d% W3 o( U% J. z3 `
[ set best-direction 2709 {+ L/ e3 B# v7 D
set best-amount grain-ahead ]3 x# r. R. _& z% w" X; i
set heading best-direction
2 Z! T8 V J+ E! o/ t' a3 ?end4 W6 t$ c+ g1 _% }8 |) Y* n
0 i) g9 G: R# G7 Y2 \% P0 K; m, [# l4 D# o% T, ]% E
to-report grain-ahead
6 H5 O6 v I% l6 Q1 C5 @4 Z9 y1 E let total 0
* q+ G2 m l1 u9 o let how-far 1' p' S7 x$ B, T% B0 s
repeat vision7 [4 V! Z Q5 Y& H/ f' L
[ set total total + [grain-here] of patch-ahead how-far
% p( G% `! V8 Y set how-far how-far + 1 ]
$ ^# {* M; |5 D& |" X+ v; C. I/ Q: E report total
0 t5 g+ G) M, f2 nend {) S0 f" ]( W# R) J
0 X4 \7 A( F8 Cto grow-grain
/ Q1 S$ C3 ~6 _7 H if (grain-here < max-grain-here)- T7 T% O( a& u8 a- t; ^' U, k
[ set grain-here grain-here + num-grain-grown
! A! G0 w, C1 P if (grain-here > max-grain-here) . c! {$ F' h- w$ ^) ~
[ set grain-here max-grain-here ]( \/ O& m: P |5 U0 Q' D
recolor-patch ]; p* v& |9 r2 b! s. P& U3 A
end* O3 S# `' z/ _
to harvest
# q8 _% W9 y' N; F ask turtles
& K8 {$ t( N8 O [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
) [' O" ^% Z; R# s2 k. S4 a1 ^ ask turtles. u c% M" c% @, _4 A! \. P7 O1 F& v
[ set grain-here 0
t# D/ I- F" u( ^8 @1 g! u recolor-patch ]
; v3 x) I6 k! |# x ' ^; t4 G- x2 o! V% L- I6 ]
end& q1 t& \' W4 h& L* H. F
* |' E" G* |5 L, V. t1 `- I
to move-eat-age-die 9 z6 ~0 m$ ~/ S$ D# I, ?
fd 1
9 f* t; w+ c8 @8 j" f set wealth (wealth - metabolism)" z- U+ d* a* G$ H) P5 ~" [
set age (age + 1)) e( q7 w& {, H5 ~8 t
if (age >= life-expectancy)) Q# i7 [$ ?1 a3 i9 I) D
[ set-initial-turtle-vars-age ]% ?% x5 \& E+ x: p2 f# T
if (wealth < 0)
3 x1 ?" G8 _% g" @! O [ set-initial-turtle-vars-wealth ]
* h+ p7 r. P' z: Z
- j" R$ E" }* q* ]" k( Mend" w; |" P A0 G
. F( ?5 _) C, Y$ z2 Z
9 k) w, u7 A0 _+ k- vto setup-plots- d1 Y/ c) G I% \% i( Z4 E6 O* p
set-current-plot "Class Plot"/ i2 c6 g" {9 X5 o- C' A/ [8 U
set-plot-y-range 0 num-people
5 h: G) H' Y" j' v1 H) o set-current-plot "Class Histogram"
- K: t1 K" v- [7 e/ R0 P1 D set-plot-y-range 0 num-people4 j p1 k. ]# h% b/ m
end W/ y3 c' y8 S4 {6 A% b- T
2 o9 j3 \1 g" \
to update-plots# q' D% r. `0 M+ r7 ]8 Q( Z) B
update-class-plot
! Y3 Z/ x* B w3 k$ c8 C' N update-class-histogram
( }4 F& m% y S- T update-lorenz-and-gini-plots2 m8 s" f2 S* o- h6 M5 Z& V
end% b0 ?6 [( D2 n3 v3 F7 O
3 C$ C! v6 m6 q
to update-class-plot
3 Z5 X8 {- m- @ G4 b# r set-current-plot "Class Plot"
: _7 I0 ^" q0 D1 H& K: p! R set-current-plot-pen "low"9 }# | Y5 ~* a" R8 R$ u
plot count turtles with [color = red]
3 v4 w, q/ x) G7 {- q0 U" O set-current-plot-pen "mid"# o) ?% X4 Y4 s) `
plot count turtles with [color = yellow]
5 @, l% z: P, N( O set-current-plot-pen "up". ~" Q/ m# V3 O- T
plot count turtles with [color = green]
6 S" j6 J1 v$ J# O% C% Uend0 R$ b% X8 v# l% Q
/ G/ r% X6 y+ ?# M% sto update-class-histogram
6 [. A( o* y* ]# o0 } set-current-plot "Class Histogram"( W0 l7 g* e) L- u, b
plot-pen-reset P1 {) n% J; t4 o* e
set-plot-pen-color red3 }0 a/ [' c$ p+ Q! p
plot count turtles with [color = red]4 K/ U; m: n- b* R5 s
set-plot-pen-color yellow
1 H9 q$ `1 Q1 | plot count turtles with [color = yellow]. t/ N! ]% H6 j; N4 C6 g
set-plot-pen-color green. V0 A( g9 f- D. D
plot count turtles with [color = green]1 g$ v b, N- [" l, |/ A6 d
end
1 }0 ~' G# H& B* mto update-lorenz-and-gini-plots
. X# ~ O" e1 |/ C" r set-current-plot "Lorenz Curve"7 C0 ~0 G& X( Z
clear-plot+ `$ s _1 M) U) ~4 w; W0 [% j' o
* ?2 i+ D6 v- m" f5 U" W7 G
set-current-plot-pen "equal"
+ ~5 S: Q& b e plot 0" C) c3 J4 S' S5 k0 E+ n/ `
plot 100# c: D% c) t/ D# C2 ?8 s
- t: e+ c' v( O% w3 d
set-current-plot-pen "lorenz"
3 R r' |3 f6 w4 ] set-plot-pen-interval 100 / num-people
$ A* ]* z& t, r; E) H. P4 n plot 0% b1 B- k- b( G3 V# r
/ }$ c. |$ y9 y! y+ z let sorted-wealths sort [wealth] of turtles4 x% i/ M# v3 i5 s' W: C7 i
let total-wealth sum sorted-wealths
+ [7 t2 A+ d; f w let wealth-sum-so-far 0
6 l/ x" k8 }) h& L$ { O5 j% \ let index 0
1 c6 \! G2 w( B. P let gini-index-reserve 04 G5 u# r4 `4 R: w# C% T3 ~
+ d! A% A2 G5 W9 G4 p
repeat num-people [
, |) a, h& l) l7 `- V* K set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
9 J3 b& a! o; G plot (wealth-sum-so-far / total-wealth) * 1009 k6 y2 A: p- n. r8 H
set index (index + 1)
9 a, h. W& P3 f' [ set gini-index-reserve
0 J* ` X# e" @8 G% f R gini-index-reserve +4 ? t1 L7 R1 V: X, N. W
(index / num-people) -
1 d- U) a& F. _6 @6 o (wealth-sum-so-far / total-wealth)
/ J5 q; K$ ~) ] ], _2 ?2 w p- A0 Y% i
o6 Z m6 `3 N# n* u: G
set-current-plot "Gini-Index v. Time"
' y9 U9 T% i( h7 c plot (gini-index-reserve / num-people) / area-of-equality-triangle
# c, x8 L! t: [7 \end
0 D6 N, H8 B/ h5 d+ K" X( l' }to-report area-of-equality-triangle
8 ~- b6 A, }/ I report (num-people * (num-people - 1) / 2) / (num-people ^ 2)( S9 p8 g( q H1 ^6 H1 c
end |