请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现2 M2 B+ y* @! ?# N G& W; p% j
globals; D: y; {1 O0 d' d. i' X% `; E) ^
[$ P: I6 H+ z8 y1 E9 z; H# z
max-grain
: c% Q; v; C6 g4 c& a! e- T3 n4 Q9 f( t4 c
]
1 b2 N7 r" u3 Z. R# T" w3 B( a
' Z7 \' [1 N5 L1 ]; spatches-own
' `" L0 s& I; j0 J0 y+ J7 D F[
* `& Z9 A0 C7 B grain-here
9 y6 q. a# Q9 j max-grain-here % A* A& { j u
]0 x. ]) K. ^% X; C/ p" ^3 J
0 C$ @( X1 [- Z, {# r2 Z s C1 oturtles-own5 P1 }; n2 |" p6 d
[2 e; D9 t- U) U+ A/ Z7 T, r
age 4 E; T* q1 d! c$ G
wealth
( w) ]! c' Q+ { life-expectancy
# Q' ^9 J: M A- c8 {5 L metabolism
' I: G J# ]5 ]# H- X4 s+ d vision7 t8 \9 t5 W9 B/ ^3 j) T
inherited 9 V/ v O/ `2 v/ Y8 z; A" D8 R
]3 O9 m1 _; R% B3 v& B, o
F2 d0 ^5 V. y8 }8 v5 l% ^8 l! R6 B" G1 F% H
to setup" J5 ~. u1 Y! a# c( b6 [
ca
7 i# |5 m: ^: |6 ]3 i7 R; ] set max-grain 50 i: ~+ H- a: [, b! G( I) n
setup-patches
# J/ i0 ^4 _- y4 ~ setup-turtles" X; I5 G$ ^0 Q3 F) |7 l9 l D
setup-plots
5 l$ O5 f+ N% W7 }7 k update-plots
3 ^; `/ @. N2 Lend
8 I- a) K# V2 `' O3 F; gto setup-patches. j1 t! ^5 z8 M( b
ask patches. D, a" `: A b5 b! T
[ set max-grain-here 00 G" f1 \+ s. s8 V
if (random-float 100.0) <= percent-best-land3 N* c2 y, ?$ B- }" L+ k
[ set max-grain-here max-grain
8 `) H( q6 ?/ b set grain-here max-grain-here ] ]
, M' b& O8 u' c8 j. J5 T repeat 5
3 T2 {7 g) b% R: F5 J, W [ ask patches with [max-grain-here != 0]/ ^+ c$ O3 H7 q5 x
[ set grain-here max-grain-here ]+ w: u7 _- m# A% r N: c
diffuse grain-here 0.5 ]
2 u+ ~& r- Z, m) n* e repeat 10
$ h8 W$ H% r4 x: v7 { [ diffuse grain-here 0.5] 0 T% `# r& E- `; w5 S0 I
ask patches
, {% K$ x* P7 ` [ set grain-here floor grain-here
9 [- D; L/ L# |) X# r5 `( ] ]# V4 R set max-grain-here grain-here , \2 ]! [( g2 m. x7 B S8 ]
recolor-patch ]
# M8 X* k% s, Gend
0 a1 r$ \+ p/ G2 y, f% lto recolor-patch # @ a/ `3 z$ A3 T$ d$ h
set pcolor scale-color sky grain-here 0 max-grain" S4 W- ^* a- ]% ?+ A* x
end
# X; Y0 ]+ |4 d* V% ~0 wto setup-turtles! z' h! q. U2 c. y- h: L
set-default-shape turtles "person"0 g; x+ n& Y A7 O
crt num-people
# f# t x) \$ m9 S) m [ move-to one-of patches " K/ l8 w$ `, G$ F S
set size 1.5 7 ?$ n, n% Z& [! l9 Y& m0 e
set-initial-turtle-vars-age% D$ P6 ]+ R6 A; n, ^) A
set-initial-turtle-vars-wealth
# t; Q" J: @2 _ set age random life-expectancy ]
, B' Z- Z7 C6 A/ c! l' A recolor-turtles' r5 y2 f. t7 o" P* \! P
end
! H" t: x- Q. m: E6 J$ q! m# \# P: _8 C- i+ W
to set-initial-turtle-vars-age. y5 G, c" ^) s* Q9 M/ p+ I+ H4 x( ?
let max-wealth max [wealth] of turtles
F3 |( S9 y6 S8 \$ @$ m3 S
% s7 g, @: L6 @! M& b1 A ifelse (wealth <= max-wealth / 3)
/ s$ z3 V# a. t8 |* w+ ?7 u [ set color red
$ y' w. a! Y1 Y2 i. G* f: i: } set age 0
' j& J/ B; ?- }) ~- O face one-of neighbors4 2 w3 g, M' ]1 u4 e7 A# ~6 q
set life-expectancy life-expectancy-min +
! ?2 Q" c4 z) j& t: u; q$ | random life-expectancy-max
6 F% g9 L; |. V! @* F set metabolism random 1 + metabolism-low
" c& u5 G, @$ G1 l2 \ set wealth metabolism + random 30# K* X/ X3 Q9 q6 T+ T
set vision 1 + random max-vision) c j( l4 Z y+ W; G [
set wealth wealth + Wealth-inherited-low ]
; V7 ^$ d( m, F! ^, S% e) r; X [ ifelse (wealth <= (max-wealth * 2 / 3))
6 ?+ w0 O2 z7 V, o3 @. P [ set color yellow : J0 S. O; Z6 m5 h; P- L
set age 09 g" N: l G2 [+ ~0 |9 p9 K
face one-of neighbors4 / I! t2 |* d; U$ f) ^) ]" S& @
set life-expectancy life-expectancy-min +
- A7 J% W$ @' A1 c random life-expectancy-max + 1/ U- b2 }5 T( A6 j w% a
set metabolism 1 + random metabolism-mid6 [( L( Q- S9 M' d+ w0 y! v
set wealth metabolism + random 30
H N, P& l& g. Q set vision 3 + random max-vision0 j; J9 @! { @' P4 h& M$ n
set wealth wealth + Wealth-inherited-mid]
( V4 R5 V8 k2 w" s D5 U9 g [ set color green
, {. B$ b2 I3 y/ X8 | set age 0) Y2 b$ V$ } e4 y' ?5 \
face one-of neighbors4
0 f+ q. ^* ~: t* g set life-expectancy life-expectancy-min +
: `8 n4 A: E5 R7 }8 J random life-expectancy-max + 2! i5 n# n/ ~: E. N- i/ }
set metabolism 2 + random metabolism-up
* p( v/ ~2 Y$ `( q* Y set wealth metabolism + random 30
; Z0 [, W. @( `# {& T2 E5 @ set vision 3 + random max-vision2 v$ J1 V: A. Y. w' p/ n+ Y
set wealth wealth + Wealth-inherited-up ] ]
$ @# V( y/ D- n # ~& E2 b, l) k" \: i$ U6 D: {$ ?
end
3 T6 [5 ?# ?8 r# W; v, z+ y: O# d7 Kto set-initial-turtle-vars-wealth2 t. w4 r' `' t) z! V1 x
let max-wealth max [wealth] of turtles
/ b" s. r. @/ q3 O* o% k/ V1 c! z set age 08 o. h" K+ w. v* ^% y7 n. a. g' K
face one-of neighbors4
2 g n" {8 z2 K: X9 p: p set life-expectancy life-expectancy-min +
; H3 o$ @' w* V! h; y# B random life-expectancy-max
% g: V/ v8 k7 ]% q' t set metabolism 1 + random metabolism-up4 f- U: i0 u, G- s5 x
set wealth metabolism + random 30/ f3 n7 K1 ~+ v
set vision 1 + random max-vision % M$ B, v0 O4 f. g
end, x9 j$ n$ P8 c& U% Z; g) {
to redistribution
2 ? Z8 R% V/ H9 w plet max-wealth max [wealth] of turtles
7 l u/ ~2 r& A/ j& W5 Ylet min-wealth min [wealth] of turtles
$ V4 U/ ?7 \% Q, R/ v2 Z: _if (wealth <= max-wealth / 3)- C( J+ w: n1 r
[set wealth wealth + Low-income-protection ]% g0 G; j. J8 b+ ?
end
( s. p& z F/ o" L: } , x& `2 j8 \8 W; D f1 U1 [ M
to recolor-turtles0 Q7 S$ c5 ~ p" ^2 ? W" }
let max-wealth max [wealth] of turtles5 L+ f) a& u. C6 C
ask turtles
' _/ ~9 W0 m. m9 h0 x" q$ @ [ ifelse (wealth <= max-wealth / 3)
: B) L1 f, {# ~7 b i4 h& @ [ set color red ]
$ z5 J0 j7 T r0 o @4 l0 c [ ifelse (wealth <= (max-wealth * 2 / 3))2 k6 ]& U& _+ W# J& L$ V+ ?
[ set color yellow ]5 b1 o1 i* P. u* G9 x* A
[ set color green ] ] ]9 N% v% S$ l9 ^% W: e4 U' K
ask turtles [ifelse show-wealth?1 h" M8 O) o1 h6 M: i- I
[ set label wealth ]; X3 p; L: r/ I6 `2 q/ y; b
[ set label "" ]]
8 d5 X3 i+ A5 [0 _" `3 j! Xend a8 Z0 O# F/ ^6 p& g& h
8 Z5 M# [3 u9 `& eto go% n9 e V b$ A8 Q% Q# T
ask turtles0 u( u' j1 p0 q3 G: U
[ turn-towards-grain ] $ h: E( C: x( S: o* @" m# |
harvest# b% ?1 j8 M0 O8 B
ask turtles3 J9 F( v* n9 a
[ move-eat-age-die ]3 e- V- C* O0 n
recolor-turtles
+ ?& g/ F* W- s' G if ticks mod grain-growth-interval = 0
) A1 n9 U: U1 y5 T D [ ask patches [ grow-grain ] ]0 F2 P& k0 r) `! |6 `
' q' F; n' j1 h; c1 Q
if ticks mod 11 = 01 ]9 A0 _5 _- A" n# ^0 [
[ask turtles
, I# E: l. r6 d4 I# o1 o [ redistribution ]]+ W; \% n0 X$ P. L
if ticks mod 5 = 0# d% [" F; n4 ?
[ask turtles
2 B5 Z/ W. O4 G! c [ visions ]]
* R% ~2 f/ g# ?$ Y) A! b: J" W% M tick
' R+ n* A! Y U V1 K! O, X2 }6 f update-plots0 V' o# {, |6 g' E7 y1 q1 r
end) {0 l; M9 r F% Z
to visions
- o( W* N- I/ o, G/ { O! j' o Q0 m$ o6 P set vision vision + 1 . |+ \9 Z6 B) f5 K0 N) O* J
end
' h8 K+ d* V# E8 v# \8 I& e( c$ U
* x: ~4 b$ X! U1 G2 [ R5 M3 Q- e( W8 w
to turn-towards-grain
* a0 ?! H% I: Y |: M. }3 W set heading 0
; E8 L' B& S- \7 D# l" S let best-direction 0
- M! T: y+ v5 O3 A( k) R let best-amount grain-ahead
6 w6 m6 [. ]) v9 A set heading 90
/ X5 r& h2 r; P, @+ I6 P1 x, p R if (grain-ahead > best-amount)
7 l z1 Z0 o3 j' V# ] [ set best-direction 90
! L% C* [, K9 M5 O set best-amount grain-ahead ]
, Z% j. B2 S- q2 n% i, C set heading 180# a U; P7 B+ |5 a
if (grain-ahead > best-amount)
" e r* P% O3 Q4 s8 E [ set best-direction 180; U! a: W+ B" r; d' ]) K
set best-amount grain-ahead ]
1 n, t8 z* j/ A( k3 S1 y set heading 270
3 X: O2 G! r8 ~( f/ Z. O if (grain-ahead > best-amount)& m' N0 F0 b7 j9 t+ |9 G
[ set best-direction 270
5 m6 h, M( @) x( \& H% K" X set best-amount grain-ahead ]
7 ]; r* z* N; p5 r set heading best-direction# f, [7 q( t/ G+ M7 a+ i
end- M0 ~% @ j" h0 I
% D: p, k2 i. L6 B$ X4 W
. o+ g3 m- H2 T5 m3 b+ y0 q! Y! uto-report grain-ahead
# U; v; o0 `) {- [ let total 0
3 _8 ?' n$ }- w) o let how-far 1
9 {% K+ A% U$ K3 [ repeat vision
1 \3 }/ H. n- D% Z& b# s X% O2 l" ? [ set total total + [grain-here] of patch-ahead how-far3 \9 Q' S0 R* A4 b: f# h" `( R' d
set how-far how-far + 1 ]
. H4 x4 C8 T) x) _& _ report total V; A0 q. o' I
end
_- ]9 H$ q! z& A0 u& Z" ]% j3 ^ Z+ |
to grow-grain 9 z; _* m1 d; S4 c$ u
if (grain-here < max-grain-here)5 Y' S) h( ? O
[ set grain-here grain-here + num-grain-grown
" X7 G6 X" N5 M. | u6 m# j$ a3 z1 _ ?3 b if (grain-here > max-grain-here)
0 Q7 l$ F/ F8 \+ E+ l [ set grain-here max-grain-here ]
e$ o5 E2 d1 [ recolor-patch ]3 Y0 e# M1 m. R1 K1 h
end* m; |1 u% X. c
to harvest4 p$ {$ i7 p+ j& Q
ask turtles
# U5 p6 f6 d" t. U7 s% y. | [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
; W0 L/ M) }+ J1 H. W ask turtles
8 d; x4 G7 e0 O$ {( K& |6 U# x [ set grain-here 0) T Q# d/ n" m) [
recolor-patch ]
/ x" N9 r! i8 Q# U ^
! H" ~! x' G! ]8 f' L9 m) I$ Gend( R0 l* v' M( R
1 e" c* Y+ V" w* e; C+ ato move-eat-age-die ! D7 v) b# `2 W- M# B. G9 T2 K
fd 1
( R f9 a9 t) { U set wealth (wealth - metabolism)% S {: i) Q3 |3 q. w
set age (age + 1)
' a9 }; w2 l4 t if (age >= life-expectancy)
% t( Z) ~( X9 F- }9 c W [ set-initial-turtle-vars-age ]
% Y' _. `( C# s if (wealth < 0)
5 ]: c8 r& n3 N7 f/ ] [ set-initial-turtle-vars-wealth ]
, Z% S% A# M% N3 o6 s1 j' z6 M7 l , a! X, G- o2 R' z0 q# s% D
end
+ q: o, X8 H4 n
1 E+ ]; H; X! g& o7 V) u1 B+ S; u
to setup-plots
8 D7 F; Y b9 |: L+ V set-current-plot "Class Plot"* `& A* ?0 o$ g3 q
set-plot-y-range 0 num-people
8 O. {" S; W" ~& `- J set-current-plot "Class Histogram"
' U3 {4 G0 x) L' F- H; s" h set-plot-y-range 0 num-people
' H7 C# u, J% I$ T2 l. h6 Iend3 {# E1 o! ^* O. u3 Y
D" b+ ?" \8 Q/ d9 B1 d9 t
to update-plots
5 D6 A. t' n' D! B% y update-class-plot6 ?( E3 ? u7 M$ e/ Y
update-class-histogram
, y9 n. z0 t9 ]8 R7 u update-lorenz-and-gini-plots
$ {# O! j$ Q" C7 ^end
0 K/ F' z/ t0 B. h
" F! |& J+ v o. u4 ~- ?to update-class-plot
. x: I# S" f6 o set-current-plot "Class Plot"
7 w: _ E. y' @! F set-current-plot-pen "low"% t ^$ i! ?2 E" O0 q0 k5 w
plot count turtles with [color = red]
* W0 P% H4 A+ \" [ set-current-plot-pen "mid"
, _) _- Y% ^1 U( I plot count turtles with [color = yellow]2 s6 N- k; F+ K5 ^! N; W7 v5 Y
set-current-plot-pen "up"
4 h) V! A6 c$ k5 C plot count turtles with [color = green]2 P X# z% [0 Z/ C0 U z
end
+ }! l7 o+ O- o8 |' R
5 r6 e; k6 C) s: M# Zto update-class-histogram
% t5 O* i [# g$ | set-current-plot "Class Histogram"# \* i, a8 n! m
plot-pen-reset
P+ y! W6 h+ z8 F# Y+ Z) l set-plot-pen-color red* f: O: ?, t9 X1 u( f( a: f
plot count turtles with [color = red]
: f: u( P. d3 \# K: ^; E4 a) G. S set-plot-pen-color yellow
" j. ~1 U( n2 x* f3 L0 K& l plot count turtles with [color = yellow]6 l8 k1 T c& [# D M4 Q) C% M
set-plot-pen-color green
$ P. c. ?4 A" `& B/ }/ o plot count turtles with [color = green]
% w0 M# u, ?! K: Fend$ Q& f; k. |1 Y* f4 r
to update-lorenz-and-gini-plots1 k/ i* l l+ u% [3 u
set-current-plot "Lorenz Curve"
* [% t; s2 Z+ Z2 N* b3 C2 X clear-plot4 X/ h) A7 Z( E1 J" Z0 B3 s
1 ~0 K- b2 z$ _, h3 }0 u5 F: I set-current-plot-pen "equal"
4 n+ l. x- [" y8 `: A7 L, o; d$ X plot 05 Y$ T- i5 E% v" A" b: O
plot 100
; k6 |1 @( Y. A
2 _' B [& v2 Z# H! U set-current-plot-pen "lorenz"
8 a+ j7 K5 s0 x! q3 @ set-plot-pen-interval 100 / num-people1 a8 {$ J. ]0 A: k$ ~* w
plot 0
( s6 i! l1 H* C a; r5 H+ |/ t5 }1 f; n) r. [' @; g9 U% o
let sorted-wealths sort [wealth] of turtles0 x( W/ u7 [. j
let total-wealth sum sorted-wealths
6 W5 Q) X8 F& A7 X* E( k let wealth-sum-so-far 0
# n9 L3 W) M" B let index 0- _6 B, F/ h* W; D
let gini-index-reserve 0( V% s+ W" A- Q/ G8 R/ ~! X. C
' p5 [ e1 m) o5 I" o) h
repeat num-people [' r, s! z, Y" t3 g. f) v3 N5 N
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
) t3 ~1 [6 K# ?. ^* m plot (wealth-sum-so-far / total-wealth) * 100
) O! p- l4 A7 T! L set index (index + 1)
) D0 h/ ]* ~. Y0 Q F/ X; Q set gini-index-reserve
, t0 a# [) L) c5 J& D+ u gini-index-reserve +; ^5 H0 O% x3 \" w! ^* \0 X
(index / num-people) -) _ C- H" w+ i. K9 p
(wealth-sum-so-far / total-wealth)
/ i; I0 B" A3 u v ]& W0 Y: G q$ P% N. N0 b, e
# `2 g8 O. _/ } N1 x! }. T
set-current-plot "Gini-Index v. Time"4 H% ~2 c; z4 M% H2 ]# k5 [
plot (gini-index-reserve / num-people) / area-of-equality-triangle
7 S; K! C+ w e; W9 {+ \+ V1 Dend
2 g, p2 k7 @" b* ?/ w% N' yto-report area-of-equality-triangle. q. S) N8 F: T( g8 [
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
! w! W$ n* O" iend |