请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
$ k# d3 y8 Y! G$ Yglobals
6 e8 P- e3 Z* H[" J% | T" D/ \4 j
max-grain ' A" K4 L, o' `4 N; T9 ^9 a% x
6 q9 g8 F4 ?) l2 M* ]0 `# O] t8 i) r& G% z, {
6 Z+ c' p6 ]$ C3 t' I6 z- V; ^2 p
patches-own3 W1 A& n" e: s1 r) w9 p
[$ M! \7 ?& M( b8 b. m5 V7 r1 g
grain-here
- R1 y/ d! \: r" h max-grain-here , x' i$ x" E/ h7 ^1 ~9 f- d
]
9 H1 c3 \0 z7 L* T
+ @$ C e: @5 q, Vturtles-own
/ x) {3 J$ _% d5 O. c; h2 Y[- l# @0 M% g8 \- P6 a
age 0 ~0 c2 F$ m9 J. j) p! W" R
wealth : k- X# y. `7 D9 @
life-expectancy
. P9 V( t/ d" u/ \4 n metabolism 8 ~1 S! S% Z. g
vision* S( }& w% m7 H) S1 G
inherited ' ^3 u* u _, k
]
' p% T/ z. k& P) ^
5 c- ~8 o) q7 m5 W$ R/ S7 c; E; }4 z& ^$ ?5 ?; a- j8 ~/ u w
to setup& A: N/ v7 w8 g1 v' H+ \4 G& w: R+ A
ca5 j" }, f) Y( V- P# V) _
set max-grain 509 l. u8 [) ?. P) y7 ~+ S2 Y! }
setup-patches
# k s. o9 M3 b8 W& @. m2 m setup-turtles
) [( I8 |+ o& A7 T7 h* m. K setup-plots
1 d7 C! {4 s8 l( Z update-plots4 {/ i3 e# `- U: X8 r
end' X% n& H) |3 P# J
to setup-patches; T' A! `7 g' O' e" c( }0 K- w1 d( I
ask patches& X: l8 g2 S( E
[ set max-grain-here 0
9 j4 O* M7 L% e! o! t" a9 K& }8 n if (random-float 100.0) <= percent-best-land
7 ~% J, R1 u* [8 L [ set max-grain-here max-grain
' h( J8 l% _5 R( t" ]) | set grain-here max-grain-here ] ]
& P8 k' ~ |& F0 o repeat 5
* e# A% A( W# Q1 o" c- g [ ask patches with [max-grain-here != 0]4 V7 J+ A! R8 N; k
[ set grain-here max-grain-here ]+ L8 W0 u9 y3 n9 j3 S7 @
diffuse grain-here 0.5 ]$ j' L' @7 S0 I
repeat 10
, i3 j+ Z3 }8 A [ diffuse grain-here 0.5] 7 a% h1 ]% }' s( \% C
ask patches1 H% t& U: k0 {% H+ j
[ set grain-here floor grain-here # \ \ x$ D1 O, {! l
set max-grain-here grain-here 4 `0 g" E5 ~3 o) Y0 {$ K. E f9 z1 [
recolor-patch ]
; S5 E, u; z0 d$ M7 {& B' T: vend
' J% I; A; g3 _0 C: Sto recolor-patch
' M6 @6 H9 y" Y* l3 j8 x# ]8 y set pcolor scale-color sky grain-here 0 max-grain
( w. g$ Z r$ H6 A8 [end
7 Y' I9 O- T y1 y9 ^to setup-turtles
( D. A1 J2 p$ j4 |8 v6 @0 a set-default-shape turtles "person"
7 U6 Y7 }6 z8 H- u/ ^" l# ?" a crt num-people) S2 o; Q! s' B: b" M! p$ i
[ move-to one-of patches 4 ]9 z* C' D" T
set size 1.5
A) h7 o7 k2 b% q) z1 U set-initial-turtle-vars-age
( c7 e: Z: \( w5 n$ D9 \ set-initial-turtle-vars-wealth
' g0 M: i* t7 [! ^ set age random life-expectancy ]
4 v& x4 R% e3 s recolor-turtles
, C2 g; v) y/ D2 f2 zend; A6 C0 p0 {+ D7 m, _/ F
4 l$ h1 K! h, d. c
to set-initial-turtle-vars-age8 v( h: Q! C) E( P8 _
let max-wealth max [wealth] of turtles
, [/ }4 a+ h, L$ k7 H4 f
, R$ u3 H* `4 Q0 t3 X ifelse (wealth <= max-wealth / 3)4 ~/ `* _, Q: c7 a0 X
[ set color red
# g: x" \& y0 M; } set age 0
- [4 F* ^' O, M0 ^, `* O7 m# z face one-of neighbors4 , V# M1 q* O/ E6 @; T( Z! D T
set life-expectancy life-expectancy-min +
) G7 z; J, _1 X9 t random life-expectancy-max
' C" K; W) {; t9 V/ R& y set metabolism random 1 + metabolism-low1 @- z- h# e( V2 F
set wealth metabolism + random 30
2 L) @( b: `# A7 Y& z! w set vision 1 + random max-vision
% E( l; o: V: l/ k) ? set wealth wealth + Wealth-inherited-low ]
9 I( y! Q; U- S5 a! l [ ifelse (wealth <= (max-wealth * 2 / 3))
4 i# X0 R# H! e" Z `# c1 G1 c [ set color yellow 5 y }7 L P: d5 g' ?* l' F# B5 _
set age 0' V6 s# e1 u: R2 Q
face one-of neighbors4
1 W; @7 F0 v0 r2 P set life-expectancy life-expectancy-min +
h u: V: @1 P- X random life-expectancy-max + 1& f& ]# x: }0 ?9 K8 M: v1 x2 O
set metabolism 1 + random metabolism-mid
; b6 N% w: a/ i' K& o" W% t w4 y set wealth metabolism + random 30+ I# G$ N j: w, T3 f
set vision 3 + random max-vision0 S+ k" i% d7 G& F Y
set wealth wealth + Wealth-inherited-mid]
$ q( s; z& H8 Q [ set color green / d/ m' a3 \' ?+ E" n+ T/ x
set age 0 O9 [: T! o. l% m# m/ ~
face one-of neighbors4 " r) G) J9 X" b8 Z% c5 Z! J
set life-expectancy life-expectancy-min +
\& ^- h, g$ {3 @% c4 Y, n random life-expectancy-max + 2
8 c2 V) \5 r5 g! A" N set metabolism 2 + random metabolism-up
+ c- C1 T( J" _( q4 ^5 L- r4 L, J set wealth metabolism + random 30
: }+ W4 ~3 t% C4 |; M% e set vision 3 + random max-vision+ v. }! K5 ]: e O6 ?! w
set wealth wealth + Wealth-inherited-up ] ]
; M. @, m; U6 G( o& u! w; v
) O+ y U( T# ^, a* Oend. T" H0 v3 ]0 }- i! C
to set-initial-turtle-vars-wealth* G" c' ]8 D' ^4 F5 b1 Z6 m: _3 R
let max-wealth max [wealth] of turtles. o, Y/ S) g+ k2 h9 e3 v( l
set age 0
- W+ K' I) o1 t! R# D face one-of neighbors4
! f; r, h9 y/ V, S set life-expectancy life-expectancy-min +
. m7 P$ v) ?! }$ q* M) z random life-expectancy-max
8 O, o/ J% Q* a+ B9 j5 q/ v set metabolism 1 + random metabolism-up
. t$ ?3 B ?! }' J* ]3 R set wealth metabolism + random 30- ~9 {* Q( J) A8 J0 f6 o
set vision 1 + random max-vision 9 S R3 Y- o. ^* t2 H
end
! o2 q2 s# ~, ]1 }' b0 ito redistribution8 I; n) p# I+ W5 `3 i
let max-wealth max [wealth] of turtles
( @" t3 Y6 ~$ Slet min-wealth min [wealth] of turtles Y8 M* [. }7 p9 }
if (wealth <= max-wealth / 3)6 l8 Z( A2 o2 ~- a( x7 j4 d; l
[set wealth wealth + Low-income-protection ]9 I. m- X6 Y+ u. c B8 ~6 S
end! G; _4 B. @9 X+ g( [" e
( L% f: ^4 G2 {! `( | J, eto recolor-turtles
- T' K: M: A( C let max-wealth max [wealth] of turtles
8 X9 ]5 o! a& S _3 c ask turtles9 p/ A5 o m# W- c
[ ifelse (wealth <= max-wealth / 3)$ ^* @& }' }0 o+ z/ M+ E j
[ set color red ]$ [! l8 A. G* m9 q' z, L" U
[ ifelse (wealth <= (max-wealth * 2 / 3))
C# J" g8 `- g* S5 \# e7 V [ set color yellow ]
8 k5 Z7 H! {; m0 ~6 y+ T [ set color green ] ] ]! E! f0 p6 Z! d1 `+ i0 z- Y5 p
ask turtles [ifelse show-wealth?1 g- C7 V/ R7 |- ~: {* u
[ set label wealth ]1 S- n5 z- C1 m% a4 V
[ set label "" ]]1 i% X3 S4 M/ c1 E1 L. g
end
B% S! f) p1 g3 f6 ~) i* o: |/ S5 ]0 r
to go
1 g* y! k3 e# ?. h$ l# ` ask turtles
( f- Q0 _% g1 W- e, M [ turn-towards-grain ]
- H3 M* j7 X& a k/ q8 ^4 ] harvest0 Q. I* `7 _1 C2 Y
ask turtles
# y6 ]6 f$ G7 g" |" @4 i [ move-eat-age-die ]/ y7 H6 a6 f: a/ B: Q! F
recolor-turtles, ^; \3 v, r. l3 P4 U. ~
if ticks mod grain-growth-interval = 0
, N. i: D& L( {9 w' \4 K( L [ ask patches [ grow-grain ] ]
6 |* G) t7 Z( {* ]1 U, @, ~ ! F" }( R& e+ o/ i
if ticks mod 11 = 0, ^5 `9 p0 Q: a( ^- C
[ask turtles' s2 a1 W( Y0 F( N
[ redistribution ]], m9 ^ a" A% Y1 W% T
if ticks mod 5 = 0
* [" B0 [% v6 y) P# o% f4 m( J [ask turtles
& a/ K' R5 B; _2 B3 ?/ S% L, C [ visions ]]9 K" A& n0 _3 ^/ z$ ]( E
tick
1 e9 S8 z8 X8 B* r" H" b. M: j4 { update-plots
" ^) }8 Z9 y, n: \7 iend
% Y5 |; N+ H0 j1 U' gto visions
9 y8 _1 q) m/ `# I set vision vision + 1 v" k g" s( G% q. E8 \
end
! p$ m. ~& Y5 w" C8 y4 {7 B; f3 ?1 J" I+ q9 A
+ R b+ u4 w: G" S5 S: H4 R+ h
, q1 G, ^* b# @3 B8 Ito turn-towards-grain
1 u! Q7 i/ {/ T& J: T% t1 p set heading 0! j& l$ a' o8 f. g
let best-direction 0) N% D0 W+ }- J0 d6 \7 u/ D9 K+ Z
let best-amount grain-ahead- d6 o1 {% y( u/ L9 s
set heading 90
, ~; z0 [. I% B( q) z! @2 } if (grain-ahead > best-amount)
, a* V: m( o0 Q [ set best-direction 90
a8 e; c6 ?# g$ c set best-amount grain-ahead ]8 ?( }5 {& O7 S' h/ u; {. U
set heading 180
( N: A" y7 a5 b$ Y8 c if (grain-ahead > best-amount)
4 y/ C! s3 _' k* d* k, s [ set best-direction 180
4 M( {6 B0 m! ]! T* h. q5 q/ h6 J set best-amount grain-ahead ]
; w* r9 P% O$ @) N0 x4 F set heading 270
( c7 _- i( p8 P/ } if (grain-ahead > best-amount)
+ a8 ^$ T' r# W2 z. b [ set best-direction 270
3 z Z7 r+ c" I! M$ Y set best-amount grain-ahead ]( j& n9 Z+ Q: r
set heading best-direction
6 |- z3 V3 @0 i/ ^! j7 g0 ^6 H0 mend
1 v) y7 x4 ]4 G. l8 m/ E8 h9 N
% d' o& W" f0 s4 F" @8 L" n% O# D
to-report grain-ahead / c2 y9 [7 x* C0 `
let total 0; S9 t' }8 {; c% P! f+ [) Y4 v
let how-far 1- J @: V( ^$ s/ b2 d5 K% Y: u
repeat vision
% V K/ i( X- `; I2 y6 H [ set total total + [grain-here] of patch-ahead how-far
9 N) a7 t* l" z/ B set how-far how-far + 1 ]
3 ^* |. Q4 l+ P! w7 `7 w F1 B0 t report total
% D* }7 [4 I8 |( y4 d# }: ~end
" G6 q1 b* Z X7 \* D* t# ^' l5 H
# O5 `- x, Q( ato grow-grain
: [) \, i% G# D if (grain-here < max-grain-here)( i- D/ E+ k; Z" o z4 H' m
[ set grain-here grain-here + num-grain-grown( E: P, `( o% m5 T3 f
if (grain-here > max-grain-here) ! }: U" \& m5 K: T1 }, o+ e% U
[ set grain-here max-grain-here ]3 k# B" h# A4 J+ P+ F) u) o" O' U
recolor-patch ]
5 t9 \# a9 l# H: e9 {end
( a( a }3 l( W* Tto harvest( K$ J, o. C8 B5 c- Z
ask turtles- B/ _7 ]; v4 q' P
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]$ _, H% l R3 x, k0 |& E
ask turtles0 E: H* T" Q! r7 }- }$ Y' m
[ set grain-here 0
6 h) {, p% i' G, f. u- V recolor-patch ]
/ z7 ^) [6 w5 B$ e0 ]/ }. w7 e # ?8 V N5 q- \0 s
end, |% c, P& W0 u- {+ h! G, e
6 O3 V& v+ }/ y# P! |8 A
to move-eat-age-die
( T y0 {, ^/ J$ i fd 1" R+ \5 F2 V; H( A
set wealth (wealth - metabolism)
7 G( f$ f' @# }3 G | set age (age + 1)& h, Q7 `/ [ d0 w2 ^) K
if (age >= life-expectancy)& Z6 K2 N3 x8 r3 J- x" c
[ set-initial-turtle-vars-age ]
! c- F; z0 z7 t e; j if (wealth < 0)
( m1 {' w& {; W1 P+ p# B$ D5 u [ set-initial-turtle-vars-wealth ]
: t) @6 }* g _, S! V
+ P& M" u0 @- Kend
4 Y& b" I% n+ S% ?: E7 z5 [& A: G w$ r: w/ l
1 p3 j- L- J8 |$ h1 P% S
to setup-plots) i2 r' Y/ e Y a' C% b
set-current-plot "Class Plot"
8 s, U6 | K) I: w' y$ m set-plot-y-range 0 num-people
8 O8 z+ j5 f1 E# {2 t1 t1 C3 m( k set-current-plot "Class Histogram"
% K* ^7 M0 l, ~7 q" K set-plot-y-range 0 num-people0 M6 l8 n$ k- O! z
end& r: H/ z# O. H( E& |
) N+ Z C/ {+ n! e, R
to update-plots
. @( s( R9 B' B0 M( f# B: X update-class-plot
$ g# Y( T0 Z( d" o a1 j- s8 E update-class-histogram
% U* n+ I4 g5 d. _ update-lorenz-and-gini-plots" F1 Z# J% T; z; m, v. [: c9 B9 Y
end0 ?3 w" ?; t: u3 b" t% s
# p, Z8 b' T% y% ^2 _
to update-class-plot
3 F5 m# P/ P$ m- E+ W set-current-plot "Class Plot"
% a! d; M0 s# a: K- ~2 ~ set-current-plot-pen "low"
, y0 M. G9 u2 B8 g plot count turtles with [color = red]) w. E. I1 I7 X. C
set-current-plot-pen "mid"; r& z/ u9 B) J" b8 a
plot count turtles with [color = yellow]5 q' M$ \' H, a& p- q% ^/ y
set-current-plot-pen "up"
o0 d+ i7 Q; [ l# ~ plot count turtles with [color = green]4 l9 z0 E" d* M( X
end- J* ?" H/ |+ o" C
3 C+ ~) h, d) `1 X( ~5 C/ Lto update-class-histogram3 X2 p- s' A3 [7 C& s4 g3 s# r2 X
set-current-plot "Class Histogram"
- M' p5 h! v8 x plot-pen-reset
7 J3 I' n4 u; A6 e8 X+ `8 i1 T set-plot-pen-color red$ F; G7 ~% B' [: b7 q1 T2 V: Z5 o
plot count turtles with [color = red]
# l2 u; R$ w- s) [ set-plot-pen-color yellow
6 b8 B% c6 C$ v4 P4 ^7 G$ t plot count turtles with [color = yellow]9 z/ M$ I% T1 G
set-plot-pen-color green
3 s3 H4 O% z9 u }# f plot count turtles with [color = green] [: |8 d" a, ], ~7 s8 S5 Z
end) H$ M6 {8 U" U% ~6 g+ _
to update-lorenz-and-gini-plots
! r. p9 H8 ?$ L2 j1 G1 @ set-current-plot "Lorenz Curve"
' E4 N$ e- b4 {( R: ~, g) R clear-plot( _( |5 r7 u: c: A6 D
+ K- v+ o0 [2 B& }0 ^
set-current-plot-pen "equal"
' }5 J6 |/ p1 x+ ^$ I" L+ M! C( S plot 0: j" K% T" s& \6 a
plot 1007 b! o8 F! Q; n! h5 G+ I' K! Q
8 C3 y" s2 w7 Q& q3 }' X set-current-plot-pen "lorenz"
& r# u7 l/ x8 g4 B5 b set-plot-pen-interval 100 / num-people0 O! t$ |' v! W; E0 }4 {
plot 0$ `! g8 m3 @6 D5 K# A( Y
- V* ^' k! _4 B+ q9 _! r9 S let sorted-wealths sort [wealth] of turtles
T; ^ s" n* r$ P+ }# j4 B6 j! l let total-wealth sum sorted-wealths
4 }* X) k7 @( M6 C. U let wealth-sum-so-far 0$ k/ t4 V7 ^. Z, O' ^
let index 0' ]2 ]$ Z: L+ ?( m# O$ b' _( X
let gini-index-reserve 0
8 H0 {2 N/ {! j+ n+ [0 i8 m# P9 [% C
repeat num-people [
; J1 F Q& f6 P set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)9 ^3 q' P$ t- _$ D- I
plot (wealth-sum-so-far / total-wealth) * 100
7 j# _7 Z9 c$ G8 z+ a set index (index + 1)
9 T; f% q: }% p X1 M2 Z u set gini-index-reserve
E' b- o1 q" J6 m, b; k gini-index-reserve +: E& `- R3 r# _. Z
(index / num-people) -2 }, h* I9 r; I* ]) J' ]
(wealth-sum-so-far / total-wealth)
; Z( g" y, V* _: O: U ]' a8 G2 i# K$ \' ^! x
8 A9 t; a2 H6 x! [/ i8 x/ z4 X' i set-current-plot "Gini-Index v. Time"
* x- R5 {4 k/ [7 c5 l plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 o# L k2 x. d1 X8 G# ^end
$ G. {6 ^1 v0 ~) z7 ^to-report area-of-equality-triangle
3 x9 |% F1 P& q# ^8 @ report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
7 A! ~9 z' t4 C7 Vend |