请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现8 C( K8 y9 r0 G3 m
globals
0 V1 k* D- j9 T[; T- `1 S$ K8 M3 s z- R
max-grain 3 e( Z$ x3 N: h0 x+ J9 |1 z
0 `7 X* ` l8 \ R1 e]' z+ o3 I* `& Q/ s
. R, R& ]4 [+ E L M4 \patches-own. n4 l0 g/ X, \2 z J" K
[1 ]2 ]& h: T' d# V3 w. l( F* B3 x5 G
grain-here 1 u( k. j! y w
max-grain-here $ }. a6 S* P! g5 B! l
]- D* ^. j- K$ h- V; I! S
$ r3 Z3 t7 o4 U6 v
turtles-own
# R2 N7 g: T7 o. ]5 P[
" y, Z# ?1 H0 b$ U, {: U age 0 F! I/ v! D3 ?1 z3 m
wealth % A8 X; W7 _4 N! t: }4 n' h
life-expectancy
6 ] ?* p2 K* Y4 y+ q2 m metabolism : V3 y: A3 ?3 a; B- v6 ]/ D
vision
4 n' S4 n& r1 ]5 b inherited 2 U# A/ U+ L. t" J7 D9 O( {
]
M" g q0 ]/ M5 ~+ T+ |
, l* [; Q0 S* T" B' g; b( T$ c1 ?; g: I6 o
to setup
8 v( o" i3 v- { r ca
# F, L+ v# z/ L C4 c1 _3 }( k0 x set max-grain 50' [8 l$ y* r' O, W' ]
setup-patches M$ C' J& w( v) q, X. b7 c
setup-turtles3 ]1 R% T5 r9 B+ O
setup-plots
- r$ A. D8 [3 V# K2 F update-plots
6 j- l4 S% }" u* s* aend
6 @. E" A6 y4 @" e- Bto setup-patches, @3 o& v: B3 Q& Q8 p2 ~- i
ask patches
+ K: b- h& }7 g" d0 b' N+ C/ f [ set max-grain-here 08 x+ G4 T0 M# `; V& x
if (random-float 100.0) <= percent-best-land. K! P7 K" `3 w( j/ l8 h6 ^/ E/ b
[ set max-grain-here max-grain$ e5 A$ H7 z( e
set grain-here max-grain-here ] ]
. N# r- T, s& d, L repeat 5) b3 e7 N, }% F& h/ I$ K7 [
[ ask patches with [max-grain-here != 0]+ s6 {+ \, i0 j% S; e& [
[ set grain-here max-grain-here ]0 ~0 C. S* G! A2 h* |& i+ K
diffuse grain-here 0.5 ]
" }; ~' }3 H1 Y9 ?- H& j repeat 101 [/ Z- L# D. w# y$ i& S* S" I
[ diffuse grain-here 0.5]
0 E$ ?. O0 V4 H1 z ask patches9 f3 V2 {+ l- t4 G0 O
[ set grain-here floor grain-here
3 S' B5 v0 W4 n+ E" N set max-grain-here grain-here
. x! n5 Y: U) A! h* v! k. _" D. K& A7 V recolor-patch ]8 N: w7 E* E2 V
end
) ?+ S; p* w0 S1 I9 e7 Eto recolor-patch
3 J1 L; z8 r/ z' b$ t set pcolor scale-color sky grain-here 0 max-grain
3 Y0 z. o4 y. Mend+ X4 L7 z1 x7 I, k! Y+ Q# T
to setup-turtles
$ ~( x5 P& k7 F$ f r# V1 ?+ `2 o- w3 i set-default-shape turtles "person"6 c. g2 M2 X7 p0 g! }& G
crt num-people |" U P' z& q* r. F' G) I
[ move-to one-of patches - R6 u) R4 e1 }+ y o5 ~) U
set size 1.5 0 m. ]9 z: D' E* z2 I% h
set-initial-turtle-vars-age4 a- x! {/ M9 E$ {2 k% q
set-initial-turtle-vars-wealth
- h6 W. C0 y( B4 T. V1 Q) l7 r! O set age random life-expectancy ]3 s3 q* k( c- G7 y$ \
recolor-turtles
0 G% ?6 K$ w ]5 t3 eend; G+ N+ _& V( b. x' F! o
3 s" z2 D$ P* s! ~5 [# c
to set-initial-turtle-vars-age" k$ T& e7 y z% a+ e1 I
let max-wealth max [wealth] of turtles
) v/ \8 C+ D- X; [5 l
* m' M& F4 y; U2 u( E) f ifelse (wealth <= max-wealth / 3)' F$ D) o( _" K7 O
[ set color red
1 w9 K4 X3 J! H set age 0; N( c$ h' \8 Z1 i
face one-of neighbors4 ) e* j8 q5 f& Q( f
set life-expectancy life-expectancy-min +
" T' f; A/ R9 k8 b random life-expectancy-max
6 X, V( s* I/ F7 H' J set metabolism random 1 + metabolism-low
/ Z3 V0 e C# f0 c# [ set wealth metabolism + random 30
4 ?/ {, Z6 M$ _4 s set vision 1 + random max-vision) g+ d4 A8 ~% [ h" A" H( _2 h
set wealth wealth + Wealth-inherited-low ]& R5 c; ~; f% K* \
[ ifelse (wealth <= (max-wealth * 2 / 3)). f1 f. i: z4 ]( j8 n) N% D; u
[ set color yellow
5 r) Y' G- g# ~1 E- Y set age 0
5 Y# j* V5 ]' o; Z face one-of neighbors4 ' Q6 K6 H7 R2 M' {) m4 Z9 H
set life-expectancy life-expectancy-min +
# @1 L! ~+ R# v9 \, i S random life-expectancy-max + 1' I7 G& @1 ^6 F" b- S% \! |
set metabolism 1 + random metabolism-mid9 i. ?: U2 ]1 x+ `" t
set wealth metabolism + random 30
0 z; g6 }& X: \# O" W7 [ set vision 3 + random max-vision/ o( ?1 \: ~. `
set wealth wealth + Wealth-inherited-mid]$ H4 l0 ?: o" I; ]5 m
[ set color green
; E e' F$ ~' \8 T set age 0: o3 b8 M8 M5 l; F
face one-of neighbors4
. H. x+ w1 h+ l/ I( l' r set life-expectancy life-expectancy-min +( g ^- ]" ]2 ]& U: ?/ _( Z
random life-expectancy-max + 2
+ V E2 b7 Q& j% @3 _6 m2 O& L set metabolism 2 + random metabolism-up5 b7 @' e" M- O/ b
set wealth metabolism + random 30
% Y0 n9 A7 a7 L. R2 v' I2 m set vision 3 + random max-vision
* @ l0 t- I" o! T0 q set wealth wealth + Wealth-inherited-up ] ] : h* i" J9 O3 I, t* l
" {- z9 \* v3 y. l1 x$ J. M. ~end
5 C1 _% u9 E/ M1 d* D! qto set-initial-turtle-vars-wealth( b4 Z2 E% C T$ G. B* h7 _
let max-wealth max [wealth] of turtles
1 g; x3 \3 K& N( _* a set age 0
( v4 q3 C4 L. J" @& d1 [9 } face one-of neighbors4
4 s% n4 ^0 t/ u3 {! Z6 Z' i% B set life-expectancy life-expectancy-min +5 ?, ^) M" O7 [: k
random life-expectancy-max , F6 p8 T9 l2 d: k3 F% J
set metabolism 1 + random metabolism-up& d1 `8 n$ w) _' X) Q, N1 L' Z7 d
set wealth metabolism + random 30' H) v3 m' L6 w( E( q7 I% o* A' r5 _
set vision 1 + random max-vision
3 A/ o% H& q1 Q7 R9 l/ d" h( `end$ f4 Y. Z+ u: n, k% J$ X- p8 w( D
to redistribution
/ g0 U+ Z! W' `& e0 Elet max-wealth max [wealth] of turtles5 [* O9 z( e- c/ H9 I
let min-wealth min [wealth] of turtles
! o1 V4 J% }( V. c, I8 xif (wealth <= max-wealth / 3)" h$ P8 M7 P$ i& W9 A/ J
[set wealth wealth + Low-income-protection ]# J+ j0 C1 j/ h3 H9 D2 ^
end9 K" H! B( b# @0 G8 @3 Q7 M$ L/ M& j
0 G# }" j$ W& s# \' T
to recolor-turtles
. q: \/ I2 U; w7 |/ P8 V let max-wealth max [wealth] of turtles0 B4 @6 c& f* d, M, ^/ R. u! Y
ask turtles ~, S% \ l8 l. {
[ ifelse (wealth <= max-wealth / 3)0 j* m4 h- n, n( @/ e( F) z- ^2 b1 u
[ set color red ]
' r8 f: g/ ^% l8 z z! V9 } [ ifelse (wealth <= (max-wealth * 2 / 3))$ ?! I. v" o1 Q* g
[ set color yellow ]+ h% M9 w9 Q. R" h
[ set color green ] ] ]5 v4 p5 q/ z2 n' {% t$ k( [, b4 j4 {
ask turtles [ifelse show-wealth?4 @# t5 B# B' [: R; a8 D# V
[ set label wealth ], Z$ e9 S* G6 \: {% W0 Y
[ set label "" ]]3 P& }8 u) b2 [: d" l) _6 i7 |
end" Z4 i _$ L4 z8 C
6 p1 X# m# o' w; ?: w
to go
/ e5 k1 Y; v. m& t, D4 e' C ask turtles# ~0 s- h8 U3 |% `7 m! [
[ turn-towards-grain ] ) H7 H+ Z- R/ R, h! n: h$ L
harvest$ }3 z, W( K6 h' s2 k
ask turtles
( ?- n+ ~% b' S e% i [ move-eat-age-die ]
% J4 e7 k( Q/ o recolor-turtles: ]' x$ L" n( X% F @$ i5 d
if ticks mod grain-growth-interval = 0
; V* D% O) w. r% H/ U [ ask patches [ grow-grain ] ]
f1 \- i: S$ k1 [' g9 [2 j# V 3 h8 c" D% S! |' H7 G
if ticks mod 11 = 0
& x2 L3 g( g j' s [ask turtles# P6 x7 B* k0 [$ h1 S# I. P+ x
[ redistribution ]]
! x' C7 |8 t& N* B if ticks mod 5 = 0% `4 v- E" Z4 ]# O+ R
[ask turtles: ^* K' p$ u5 p
[ visions ]]
, c. Z6 l8 u& I! [: C+ Q; i. _ tick/ V# T7 u1 d4 M9 ?+ W" |/ d
update-plots5 m+ R J8 Q( G& M3 c9 |1 ?! r
end
* }2 m. I& U; Y9 u( H8 X" O* _to visions
! S `0 N6 h6 ~) v% { set vision vision + 1
' J; `" K6 X4 M" c; j5 rend5 n1 _* a4 W+ m2 ]/ R$ ]/ o- G
/ J4 C, U( V3 i
9 t* l/ F9 S y- I; v, |4 ~% n! N% G% A+ n$ A$ F
to turn-towards-grain 4 b' k' P- d/ F4 L' z! F
set heading 0' n* p# h9 @" ~9 d5 B+ |: e; H
let best-direction 01 X$ E `/ L! I4 q
let best-amount grain-ahead
. F6 ~8 T/ J* |$ ?/ R- n set heading 905 ~, e$ l( z' U7 u, v0 M1 }
if (grain-ahead > best-amount)( Q& x1 y& T8 K# |
[ set best-direction 90$ o' C. Y% i. `& H
set best-amount grain-ahead ]( n W. [. Z7 A/ V7 S
set heading 1805 B/ Z: U5 r% ?# W* `& [$ c$ S
if (grain-ahead > best-amount)2 I$ R5 s- ^$ l2 ^1 a; I
[ set best-direction 180! a% v# Z3 b+ [. d/ D6 Z/ i5 y
set best-amount grain-ahead ]
$ u. _8 O" y! s; \: y% d) W set heading 270
+ I+ \. Q; k5 |8 b( a3 {- m5 ` if (grain-ahead > best-amount)) q b# E$ U+ E5 F5 _) E* E0 n
[ set best-direction 270- @+ v7 p: l- W% C" e
set best-amount grain-ahead ]
3 O% ?1 r/ A/ @% ] set heading best-direction
/ P5 l+ `% U. i2 Q ^' dend9 t8 g3 V8 s9 o1 l
; W3 H/ e H* d) U6 b! D% f
) N% a3 u) Z0 a& Jto-report grain-ahead : B6 n2 y) S) m+ }: B/ W
let total 0
6 Y' R! r% B3 v4 I9 f7 n4 {; M let how-far 1) E0 q6 }* V% X S) Z
repeat vision1 }' W/ U C( m" K @
[ set total total + [grain-here] of patch-ahead how-far
, U: ]8 L. n! A7 i$ u set how-far how-far + 1 ]& w) x+ \2 ]8 F# W% B
report total
6 a6 f2 g& n1 Eend% T3 Z$ P+ d) G Y
& V) G$ K5 |8 v: g0 h" W
to grow-grain
8 N& p# ?* F, X" J2 L0 j if (grain-here < max-grain-here)( ^. W, {# c1 q
[ set grain-here grain-here + num-grain-grown' V2 D9 |. t4 k# T& A3 l
if (grain-here > max-grain-here) & t; M+ C; S' M! c9 l
[ set grain-here max-grain-here ]& p# y2 L% U) I) R" m
recolor-patch ]
/ r, ^8 L. I ~2 zend
, I" i d' H3 R/ f1 e8 F% }to harvest
, M: m( R/ T2 i A$ G" Y% p3 w+ W ask turtles
: d4 B* G- G2 }* B9 ]9 t. D* N [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
e3 v; x0 ` r; t, e ask turtles Y: Z3 A4 T$ n& N( s3 Q
[ set grain-here 0' D) b, m, Q; R- o0 f
recolor-patch ]$ O" }4 c' m/ I. E; ^0 p
% p9 N' y6 u" A1 `$ }4 X) @end7 J- H4 f6 |" t. N3 p* F
6 X" a' f$ [8 r' x* w1 B
to move-eat-age-die
* o# Q2 S/ H) a k, \9 \5 \" H$ \ fd 1
( `# r8 ~% v! P0 E- N. z set wealth (wealth - metabolism)" r; L" V5 j9 ^; y
set age (age + 1)
9 P8 f3 g) N$ A1 Y2 o if (age >= life-expectancy)
6 A8 l7 u" b! N4 `& N4 \* n0 m [ set-initial-turtle-vars-age ]6 a5 D- K( _" L+ ?: ~# u
if (wealth < 0)6 y8 t6 G- x4 V2 `
[ set-initial-turtle-vars-wealth ] ]' W3 y/ C4 m/ }3 W
, m. h n; _) P: r0 `% Hend C8 b P, G; l: v* ]
+ M5 d& F V! ^- A
2 G4 z% P: J' ~: gto setup-plots$ v6 [$ B) Z `; R! l; M! T. L- Z3 H
set-current-plot "Class Plot"! I4 C. V- L3 L% B
set-plot-y-range 0 num-people( s0 ~$ K% N# [# M
set-current-plot "Class Histogram", ]3 i* e Q( B! b" Z. l
set-plot-y-range 0 num-people
: Q) l }" w* K$ T8 t. w# wend! G! L# Y9 i" b. @. @8 S! ~3 D
. T3 S. l% k& z% b* `7 `
to update-plots& V6 ?+ F9 r, L& g* Z# D1 {. J
update-class-plot/ r2 Y' V% B" m5 F4 C
update-class-histogram( a5 O1 _2 T1 B; k" G! a0 E
update-lorenz-and-gini-plots) ] \& P) k# D# D' B! j
end2 g$ H; O" _! _( l: _3 b) ~- |
$ w5 ]2 b( @1 t% ?" Pto update-class-plot2 @% u$ p& d7 [% C- ]
set-current-plot "Class Plot"' f; y0 `, E; |
set-current-plot-pen "low"
( |0 S* H) ^' R' O plot count turtles with [color = red]
. H$ b0 v, P% D1 l& F9 \1 Y set-current-plot-pen "mid"
$ }( e; h& J" P8 r r3 {" M plot count turtles with [color = yellow]) k- E- j7 b4 u: P! ?
set-current-plot-pen "up"
" q! f& r( g; c; V plot count turtles with [color = green]/ v& I. c, A" j: n8 ^6 m$ G) L8 ^! S
end
; c6 [2 i x: g/ p, E* n- B: n; [: d4 y# z: c- [0 Z
to update-class-histogram, n* G: [" q$ B1 n
set-current-plot "Class Histogram"
1 u7 s& E! j3 i) T, V plot-pen-reset
. A5 T, O# U9 Q: f6 [) h set-plot-pen-color red- g1 b, \! g4 {7 `# [
plot count turtles with [color = red]8 k- ~! }# v/ d! g% N
set-plot-pen-color yellow- J2 p4 R4 F; Z9 A
plot count turtles with [color = yellow]0 I, T$ k: J! v" _# c5 O' k
set-plot-pen-color green
- a+ L1 g/ R9 F3 q ? plot count turtles with [color = green]
* ]( Q, W2 l6 _* b1 I1 a: W# H/ `; [% yend
* S- D3 ]* l# V. x- M( Mto update-lorenz-and-gini-plots
! e( u6 g$ U- D5 ~9 s/ V* e set-current-plot "Lorenz Curve"" D4 S8 g2 m5 n. V4 N
clear-plot
' {8 V' v* k3 B( b4 }% \
. i& a1 Z6 G) f1 q. ^! P9 \* z) L set-current-plot-pen "equal") y w% Y2 Q1 g' N6 K
plot 00 W3 N& G7 y) |3 S& L+ y# P
plot 1008 h4 T, X3 v0 P: d! x" \
. ~- q, G( h: `+ R B' p set-current-plot-pen "lorenz") p* i% \8 O! w2 p" k' D
set-plot-pen-interval 100 / num-people% P' K5 {0 C7 Q- d% e, L" G% o% a6 {
plot 0, G7 r. C9 `1 c( {8 m
) p: y1 \) R6 r' V. V
let sorted-wealths sort [wealth] of turtles
' `# |$ F5 b/ A# E2 O let total-wealth sum sorted-wealths& U+ u4 z! _9 T7 \7 j/ Y
let wealth-sum-so-far 0
1 q& g5 m( D: \# G" d8 ` let index 0# M: }% E8 l1 M* n; ]# M+ N
let gini-index-reserve 0
9 o# f( |+ z1 m ~1 \5 a
6 F- G8 ~" m2 [- f& d' E repeat num-people [
8 n; L2 M2 U) j" Q c set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% ]% e9 D2 o9 r6 `+ Z# y6 r. O
plot (wealth-sum-so-far / total-wealth) * 100
1 a% \! ?: m, j1 x2 X set index (index + 1)2 y: \1 P, Q+ j$ e! L
set gini-index-reserve% N: g0 t- C, N% t, m2 R9 C
gini-index-reserve +
( B- _0 i2 [8 Z. _$ H (index / num-people) -) D! J5 P9 O5 x% u
(wealth-sum-so-far / total-wealth)+ N; s3 Z- v, F% l
]
; L# d' [& ^2 A' L( I7 G$ d8 P* l9 s7 |6 X
set-current-plot "Gini-Index v. Time"7 i* y6 S" I& p, X0 p- v% B
plot (gini-index-reserve / num-people) / area-of-equality-triangle
" D6 i$ ~: K& [( l! W+ c8 qend0 T9 A0 q( H/ H9 P7 C$ t
to-report area-of-equality-triangle
' F+ W" ~; ~3 N7 l7 { report (num-people * (num-people - 1) / 2) / (num-people ^ 2)8 [9 d* i' I( Q* X2 c1 m# O
end |