请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现- o; Q Y* P; l
globals$ n& E+ {- X) F6 f) z# j
[# d! W0 G3 U6 T6 p8 }: `
max-grain 1 Y; ?3 @& Y7 f5 D/ B
. l8 l. F" Z1 y: u& x]
- [# x7 }. j. m# O% C+ O
9 C6 `0 s* x3 l u2 Xpatches-own
& }, ^* O7 `/ B6 w) t9 n2 b[( w: ~/ J7 }4 q; z: p6 [. w
grain-here
' r \8 Z3 M! ~/ | max-grain-here 8 W( }- \3 x9 m% k
]: M0 M4 A" k7 u& B9 z" d5 _
/ [! a5 ~9 n/ v. J6 G' o
turtles-own
! b3 S: V5 I# b/ `[
8 ]. x( C! g4 e age 5 a* f: m7 ?, C5 F& _
wealth
3 F& J( u2 i6 |6 z7 P$ h% i4 x life-expectancy 8 g/ A2 M" B, F1 `
metabolism 1 E$ f& c: \* _, }( z+ v
vision% |1 d/ w* g t! d O, }8 _' c
inherited % @( P+ f2 o3 Z u) Q: k; N
]
5 b' [5 G& C1 _& i2 x
: g. P5 O/ @- o; c% U' M% q b1 F* c6 Q# Y h( A3 r% K4 Y
to setup x2 g k& V2 |. g( q; Z
ca# \, I' y- n1 g3 R& q
set max-grain 50
+ L8 U7 j" ~0 @0 v setup-patches7 k; N& X. y6 h2 c Z% c
setup-turtles
; C9 O2 F9 x2 k6 ~6 M+ g" p5 o setup-plots o" W5 i' B/ E! @! O
update-plots6 Y4 j0 D: N5 h& J, ^: d* V+ ^- |8 W
end8 ]7 w# @0 o( [% j8 V
to setup-patches
+ H' J+ a, C! X ask patches6 z$ k4 S2 y# x) H2 E1 [5 T1 h
[ set max-grain-here 0
1 E! y4 o- x) ]: I6 a( v1 x if (random-float 100.0) <= percent-best-land
, U+ O' b8 T$ q [ set max-grain-here max-grain; u1 \: ~0 M$ [3 r0 t* u4 \( B# ]
set grain-here max-grain-here ] ]
8 e% k0 | C+ d7 I' U. F' ] repeat 5
" B" G! M. V; d/ _9 @ [ ask patches with [max-grain-here != 0]: S1 U7 e- a. x; h
[ set grain-here max-grain-here ]; H k3 n3 [8 H' @( u
diffuse grain-here 0.5 ]4 M/ j2 W% a) v
repeat 107 G7 |$ g8 t ?5 b+ y! }1 H+ L5 c4 r
[ diffuse grain-here 0.5]
- M0 E, e8 H: z2 T9 Q ask patches
* p, W1 {$ A5 D& {4 u [ set grain-here floor grain-here : q4 K& m' _' w3 c* K, L
set max-grain-here grain-here
0 e* w/ Y) z: ~, K+ h3 N recolor-patch ]2 @6 v1 }) i) j) M& x
end
J7 @! z; l2 G5 y' f8 Y$ mto recolor-patch
7 w9 d1 [8 h5 |: z Y! a1 w set pcolor scale-color sky grain-here 0 max-grain* r3 @. \, j" @6 Y. F" g6 Z
end6 l( O. t; b2 i# a9 l' h
to setup-turtles
r/ S7 t9 |" n% {. H set-default-shape turtles "person"% G. P; X0 P1 R# j, |
crt num-people
: b& s- C0 V) {; }: [ [ move-to one-of patches
* T. }) j8 b, x \4 l set size 1.5
" o! @9 f+ R$ `* T4 D8 n/ n: J set-initial-turtle-vars-age" _ ?4 e" Q3 h/ l. G
set-initial-turtle-vars-wealth* G. L. Z$ v/ F6 G
set age random life-expectancy ]9 R2 S S7 W6 j8 N' e5 H
recolor-turtles
1 o' a" I4 y4 ~+ A }3 u. y) pend- W/ G" }, p) e6 Y! c
+ S! a5 [' E/ N1 X, U; ^7 bto set-initial-turtle-vars-age
# `. b6 r7 a& J* l let max-wealth max [wealth] of turtles
$ W' _' y5 Z: F$ L( E. q
5 R+ d" z% L' | ifelse (wealth <= max-wealth / 3); i; D/ u* [* ?
[ set color red : k+ }% h3 ~4 ?$ L# o9 D
set age 07 r" n" ?2 N" h0 I( \/ R
face one-of neighbors4
' v( B5 `: i) H7 o& R0 l: J set life-expectancy life-expectancy-min +) ]* O3 Z y0 S) _! C. ]
random life-expectancy-max u- ~5 D9 r. L
set metabolism random 1 + metabolism-low, i6 M; O1 O* F4 k5 t0 {
set wealth metabolism + random 30
# `+ O4 _/ R s) ?: l6 R set vision 1 + random max-vision- X. Q: p, Q( W& B2 E* P: r
set wealth wealth + Wealth-inherited-low ]
) @9 H! b5 |4 L$ W$ ]0 y; p; H7 H [ ifelse (wealth <= (max-wealth * 2 / 3))1 x! v, _/ Y) Q8 m! f5 [3 }) V
[ set color yellow
% C9 e" B' X) `/ ^# L7 }# |7 j set age 01 s% F0 X1 x4 D/ e8 Q, i6 q5 A$ X. }
face one-of neighbors4
. S; j" Z" l5 p& p% ^0 D set life-expectancy life-expectancy-min +
$ |0 j4 a: H4 i; W* u9 S( ` random life-expectancy-max + 12 R; B# P+ x' i: L8 k
set metabolism 1 + random metabolism-mid% v2 [ v- e; v8 n, v n$ B! z
set wealth metabolism + random 30, G& g7 O q' v0 ?
set vision 3 + random max-vision- f; f7 v2 H& a- w: [1 Y
set wealth wealth + Wealth-inherited-mid]. c6 X9 |8 `2 z6 r# n
[ set color green " y. D8 b8 h- W- q* g
set age 0& }2 B5 A; @/ {( L9 j4 O9 a# m
face one-of neighbors4 $ P8 B4 R P% o& M2 h# u3 n
set life-expectancy life-expectancy-min +
6 h9 p7 `( @. h" U8 G8 T random life-expectancy-max + 2. Z) V0 K0 G# B2 u$ e
set metabolism 2 + random metabolism-up. a& M3 P* l$ q8 G4 R" m4 j
set wealth metabolism + random 30
" I* d+ s8 w2 W; i5 y# f set vision 3 + random max-vision; a- R, J0 l6 ]4 R+ {, `! d; v
set wealth wealth + Wealth-inherited-up ] ]
% @+ L% ?5 r$ M j7 |7 [ ! q8 I S& Z; d
end
; O9 j, H1 y" d, H; y4 k6 sto set-initial-turtle-vars-wealth
9 a+ O, I: \/ C( J3 _! a3 d! o let max-wealth max [wealth] of turtles3 T4 _- o ]) V7 r" \5 L' V( d: r0 h
set age 0
: W! U1 s: T7 m6 b- m2 \. L face one-of neighbors4 8 j& s$ u# d5 q
set life-expectancy life-expectancy-min +
. }3 Q7 \+ J- ~1 X: P. @ random life-expectancy-max 5 e# E/ T; d3 t1 a1 T# t
set metabolism 1 + random metabolism-up
& Z# ]' |, M! E" {9 {0 k set wealth metabolism + random 307 b0 h3 @& m; I& Y9 Y; H/ y( f+ A
set vision 1 + random max-vision
- W: _+ d+ p3 e; K$ S5 h0 m iend- C7 I! a; v. E5 k: L
to redistribution
3 N) R1 w/ W& a5 w5 N( p) m* ]; olet max-wealth max [wealth] of turtles4 x. }/ h" d+ G) B0 b" T
let min-wealth min [wealth] of turtles7 w/ {+ |+ P3 Z3 v2 F
if (wealth <= max-wealth / 3)
% e; r+ d( S% ~ [set wealth wealth + Low-income-protection ]# I- B. @# `0 y
end
( V. b, J6 L/ l$ K5 b- F
/ G: U$ M: |. B0 Y2 F ?; j$ i2 @to recolor-turtles' t* r# `! B" v* G. e
let max-wealth max [wealth] of turtles
. n- L( W. j2 o% s# E ask turtles3 n+ }2 V% m, ]" a2 t
[ ifelse (wealth <= max-wealth / 3)" B9 x3 s5 _6 B4 G: H
[ set color red ]+ m9 ]' S. T. N6 N7 B; O
[ ifelse (wealth <= (max-wealth * 2 / 3))
1 T; t8 |- R/ G, t9 `6 D, Y [ set color yellow ]' n$ P T) c7 R* ]( W+ R' u
[ set color green ] ] ], H$ v7 j, R7 y+ S: w
ask turtles [ifelse show-wealth?3 G+ V. Y3 A3 r3 w$ C3 ~" \: y/ D
[ set label wealth ]$ _* G% M" k! x& Y
[ set label "" ]]
7 I5 s. [5 W+ D$ _, Zend# X/ j+ y9 d+ ^! k
+ @9 m& Z8 q& eto go
9 [% n J- W7 E! o ask turtles; w+ S& k! h. D! T' G
[ turn-towards-grain ] 9 r! y* z I+ h( |" I6 w* Y
harvest
* z3 t; k: P7 y ask turtles
0 `6 _1 _! ~6 S; N) Y& C [ move-eat-age-die ]
. W* j# P# @ d# k8 ?4 ]4 { recolor-turtles
: u4 v! t5 v; A if ticks mod grain-growth-interval = 0
! A7 U1 N+ ]+ S x; o [ ask patches [ grow-grain ] ]1 D' q( h: |( X
2 f% R2 R7 d, G$ B; X+ ~
if ticks mod 11 = 0
/ c8 G( A" {7 b$ f/ | [ask turtles
: b+ H6 U I/ J: L+ _/ h [ redistribution ]]
) p) u7 L0 X5 K) V if ticks mod 5 = 0" M9 ~4 v4 t4 v( S4 T% `+ z5 k& Q
[ask turtles( n( y3 A7 F6 v& b$ ?4 G
[ visions ]]
2 P, ]2 k) ? g4 ?0 \ tick5 q/ n& S% p3 o4 J, v! B
update-plots
4 I/ p- w4 V+ u$ u( R9 bend- E) D2 o, I) a# P( N: s; K
to visions
+ t. u: h1 v7 Z6 X/ J set vision vision + 1
6 ]2 a& W: J$ X7 n' P- fend' l0 j. a/ e& H/ B. `* r
6 o9 q% g; b( q/ C( {# C, @
7 [5 ~! Y$ r/ ]+ C1 E- e) `$ R# u r1 W" h' t2 ^3 X
to turn-towards-grain " u. G$ N; A! k9 O! Q2 a1 O
set heading 0
! U$ B! M6 d9 t3 D) l let best-direction 0/ W8 Y! c, O7 y' \
let best-amount grain-ahead9 K: P4 O1 p4 k
set heading 90
- l6 h" D/ ?" ]1 A if (grain-ahead > best-amount)
* `" q5 A8 }# c2 { [ set best-direction 90
/ q5 n6 s/ U& q: v$ K: Y( G set best-amount grain-ahead ]$ x. a! y+ P. V7 l; h: t& D4 f
set heading 180
1 ]6 O5 n$ j$ o' [ if (grain-ahead > best-amount)1 y/ r& W9 }) }6 a" q5 l
[ set best-direction 1805 w# Y& ~4 g4 p/ P
set best-amount grain-ahead ]
1 C" v" b! q9 l) j; Q& v set heading 270
9 U( q7 N2 G. p8 `, F7 U if (grain-ahead > best-amount)/ t# ]/ J. q7 o* X. x
[ set best-direction 270
* m' O5 v$ D/ |! l e3 ? set best-amount grain-ahead ]
1 J" Y m' p7 ?6 H set heading best-direction
# V8 _ v" q. o) Zend+ m' B% g& B! M8 g Z
+ H- q e% {: K& t6 ^) B# P. h8 X
# [0 i1 z( s |( R$ Uto-report grain-ahead $ B; A T* B5 L, h
let total 0
$ x5 c" D4 Y( E/ {" y2 O let how-far 1
- |! g' _1 [" H/ A- C, h0 c% W0 ] repeat vision
; F, c" V- V6 d4 s8 w [ set total total + [grain-here] of patch-ahead how-far
' F: S T$ o; z6 G/ x, z' J set how-far how-far + 1 ]& s) I! R: A$ S$ P9 p4 m
report total9 J4 y7 k% {4 { P
end
$ f% ^5 B1 e/ r1 `; O* i
8 E- W) `9 H, X( j5 n6 L, b' y6 F% Hto grow-grain
! B$ c) [' K1 l! H% ~ if (grain-here < max-grain-here)
0 m+ [. n2 t3 B [ set grain-here grain-here + num-grain-grown
" W" b+ |5 Y1 _. y: E+ |% h! ]/ @- M if (grain-here > max-grain-here)
; Q$ a" _) N i4 V* B% z1 V [ set grain-here max-grain-here ] h6 S/ F' O. [/ A5 x% z, W
recolor-patch ]& U" s l0 x. b. w5 G
end
' m1 V1 Z a% K# d+ n4 uto harvest4 x5 L! F! S6 u0 z* a! }/ q
ask turtles
# ^; v+ W8 x1 I1 e( X [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
$ s1 _( l' F, Q) {2 i* r: P/ j ask turtles
. W; l* B% S9 H! u [ set grain-here 0 Z) _, [: W, g; a3 u* a4 { n }+ m
recolor-patch ]2 _. X w. T! z) }7 G E
M6 l v6 a ]+ _
end
% S: v1 [4 P( k3 ?0 d& q, r! _: k9 F3 g7 x! a: m+ m9 P4 j, q
to move-eat-age-die / i6 l0 D% [$ o
fd 1 p' f5 K) y! g
set wealth (wealth - metabolism)2 r# n% v7 A1 d D6 p. d, I! H2 F
set age (age + 1)6 \* T1 w: s; O9 ?
if (age >= life-expectancy)
I8 X; q! ^- m+ T. U2 q [ set-initial-turtle-vars-age ]9 {" B+ n9 w" L/ s- {
if (wealth < 0)- z3 Z/ L% \# { V+ {2 r
[ set-initial-turtle-vars-wealth ]
* z1 ]4 Y) o6 W0 v+ Y8 Q- B+ W # z2 \( M' v6 P
end
& Y4 W3 Y) Y" d* q- l% s& ^
# d$ h# f% Z4 ]+ \" }) k" c1 [( z F6 I R' a; e
to setup-plots
" B0 e6 Z; z9 @8 S0 G set-current-plot "Class Plot"
+ m" j& k, m/ `6 X set-plot-y-range 0 num-people
8 |2 C3 k, ?* L set-current-plot "Class Histogram"( u. L: m. G3 B9 X! Y2 _- H# L2 h
set-plot-y-range 0 num-people
) b3 `6 O" X: S+ ?7 J/ y" ]; Qend; {6 L2 G% ?. Q
& [$ D) ]0 u% k% c: s
to update-plots3 \5 z1 Q2 J1 C% r
update-class-plot
- O! h$ E. v+ [8 ] update-class-histogram
2 f& Q1 g2 j4 H c' Z y update-lorenz-and-gini-plots8 A4 ~2 t6 A4 p! @0 m6 w
end
; J3 Z) \ G: w: }+ I4 |! `& k. N: m4 @) p
to update-class-plot3 m6 N& [- d, J' y6 x9 I* G
set-current-plot "Class Plot"
' r5 O, f! T+ }) h _6 N set-current-plot-pen "low"- }/ @* H3 R2 a; f6 q
plot count turtles with [color = red]
1 |: s' G0 W, L3 c- ~7 d+ g set-current-plot-pen "mid"
" }% ~3 D, K2 H y. l' { plot count turtles with [color = yellow]
; [4 Q; j1 B; e set-current-plot-pen "up"4 t$ Q. u% h2 v5 W; b9 \
plot count turtles with [color = green]; r: ], H# _, L! p7 l Y9 p
end4 |' {0 d7 }2 s4 K5 L: w2 `% d
, r: w* G+ ~6 N: m' kto update-class-histogram
$ v6 |5 Y( b% y- P; z set-current-plot "Class Histogram": P- t& @! R9 m
plot-pen-reset1 k d$ D" w7 y0 b9 L. m- e
set-plot-pen-color red
0 t; g& U, X9 ?6 Z1 [ plot count turtles with [color = red]: l+ N- u+ v% X: Q: q" {
set-plot-pen-color yellow
8 w* J0 {: b' g9 _" e, R% x* V plot count turtles with [color = yellow]
$ q& d4 c' C; H% J6 X7 C set-plot-pen-color green
, E- v- b1 D& ~5 K/ @) `+ s- o plot count turtles with [color = green]
8 U' N* a6 X. y. n: Lend" M- w; i, x- v9 r! K
to update-lorenz-and-gini-plots$ p/ t+ Y( o4 o& t
set-current-plot "Lorenz Curve" m: z, x, Z0 a
clear-plot O/ M* z6 G% U, \4 y
. q% ]/ V! v/ O+ @, q. {
set-current-plot-pen "equal"
! F$ ]& K% x4 {# z5 u plot 0
2 u+ \* c3 J- @! O) R1 U5 V plot 100
; b* t G0 @* P, o. ]. c8 X! |3 C8 p$ F' k3 `; s
set-current-plot-pen "lorenz"
5 Q1 s L, W! [ set-plot-pen-interval 100 / num-people9 l6 u! s1 m _5 d6 a6 B4 x& ~/ q
plot 0
# M- P+ ^+ W7 _9 ^. B1 A- e) I6 c6 g9 J0 n* ]
let sorted-wealths sort [wealth] of turtles
5 F0 {$ G+ M( L# z let total-wealth sum sorted-wealths: |% X- P2 @, B1 h9 _, t) J0 U* v
let wealth-sum-so-far 0/ _2 i \( l4 W: h8 }/ k8 y8 ~9 t) G
let index 0
7 m2 N3 R" `, x9 ]5 ~& I let gini-index-reserve 0+ x6 `. `5 }; t0 _; i
. f& X) Q" Q5 m' ]( O
repeat num-people [
4 l3 ]: |# H% J' s) {0 t set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
8 v2 W5 S/ k8 ~: Z# R plot (wealth-sum-so-far / total-wealth) * 100, z9 j; C. {7 {! u, R! u( U
set index (index + 1)" X8 s# C* c0 k$ B1 g# a% i4 |
set gini-index-reserve
6 k: l% b, U F# I% {, T gini-index-reserve +
7 W' S5 o" |6 |% d (index / num-people) -2 [8 S, J% w- O' l+ N7 d
(wealth-sum-so-far / total-wealth)3 W5 b6 z0 i) S6 k
]5 z( v/ `/ n+ w
% [$ K; t1 j& `$ S% U" r0 w' m set-current-plot "Gini-Index v. Time"
; H( J0 i, Y) V/ E plot (gini-index-reserve / num-people) / area-of-equality-triangle
, E7 C0 e9 F N% |9 L! g C. yend
' B5 T. ]- C. [' q" H7 n/ Rto-report area-of-equality-triangle
- J# W; G: D/ M" [0 F report (num-people * (num-people - 1) / 2) / (num-people ^ 2)# e O0 {1 q3 u1 |$ V! Y9 |0 {
end |