请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
: j* @# Z U8 p3 Cglobals
$ l8 A! w% j/ |* B( l0 {( v% B[0 A* |2 i& i3 f+ h/ _+ C
max-grain 7 x: a9 c; g. M9 ~1 u$ j
0 Q7 N- _$ R% D3 G]
\! t3 y+ K0 n) F$ q7 O* p, Z7 G0 }8 r1 r$ X. ~& J Z
patches-own
7 A; C! X U- Q% i/ t; X[
s- U+ D2 h4 D& `; ?2 W grain-here 6 A; I X/ g6 f3 X% h" y$ Q
max-grain-here 0 J7 q' o: l+ ]+ U! F! l+ Q# ]7 n
]0 L+ i2 D, u" O" h" s, D
: q/ q; p4 C: ^% Mturtles-own
! q3 s9 ~4 c$ x$ u5 i[
I- q9 G; i8 @8 s: M age
' b. w& T. w$ L% J& s wealth & s E3 R! p9 @4 f9 J
life-expectancy
% o! i- ?, T( A. ]- r$ A metabolism
% d( K h) _& h" T vision
" l8 h0 ^2 M8 B7 ?* }0 |# j5 R inherited 1 X% L* [* M, H U
]8 j9 U5 T e- Q4 ~
6 s) [1 u0 B& @4 Q3 E
. w7 P2 u* E# R
to setup8 ^& q" B. y+ R+ U0 s
ca! }0 K8 x: _% ?9 O- `- s9 r
set max-grain 50. i [0 ^% s/ p, n
setup-patches
; v* N$ K k: q Q4 @8 g0 J setup-turtles
: S- l2 N) e% t7 b" o setup-plots
) h7 r, Z: l5 H G( W- J update-plots
+ k- z: S. ~9 P6 U6 ~end
9 Y& N2 x6 P; J( L1 l/ eto setup-patches9 n; X5 F! m/ h8 \4 v! ^: ]! j* M
ask patches# n5 P6 t+ Q) e7 M# k' [; f' v
[ set max-grain-here 0
( }7 v! E; I4 {: q* H9 x1 U, o if (random-float 100.0) <= percent-best-land
1 h5 Z& v. y8 m! F0 Z0 I& w! j [ set max-grain-here max-grain
& @9 P8 o/ ?4 U& d set grain-here max-grain-here ] ]
" n" N& s- H, w) ]( u$ e0 p repeat 5% i) C/ K ~6 I" p$ p4 H
[ ask patches with [max-grain-here != 0]
8 [, A q; o8 L0 m7 ~1 y1 c [ set grain-here max-grain-here ]
; s! s4 P9 m7 y& L diffuse grain-here 0.5 ]. [. @+ G2 y) v6 G
repeat 10
# K2 N8 S( `2 t4 j/ C [ diffuse grain-here 0.5] . F* Y7 s6 k8 `6 c
ask patches0 W0 q: P6 V# }8 l
[ set grain-here floor grain-here
7 b7 S7 V! E4 O. I$ S: I set max-grain-here grain-here . X7 Z$ V- \* `6 T% r0 ~
recolor-patch ]$ A0 K Q6 m/ S9 T
end: j9 p; L/ ~8 d* u6 H: X6 g
to recolor-patch & D4 p' E% c1 e5 z7 B
set pcolor scale-color sky grain-here 0 max-grain" L; `) F; R: O1 m2 k9 R
end
9 T1 B8 g; L% k# B# D/ R hto setup-turtles
! U4 P2 Y! `: z& z1 k# g set-default-shape turtles "person"
* \$ }2 u9 G. O T. r crt num-people
, |" L' I: E a' J [ move-to one-of patches 9 O {- O: s9 I' J% b7 R! P
set size 1.5 - R- Z- ` }& k+ t3 [* t9 T1 G
set-initial-turtle-vars-age
* [! r. R$ w6 l! } set-initial-turtle-vars-wealth
6 O) C5 o' ^2 ?8 m9 t7 U set age random life-expectancy ]1 \& f3 [2 q$ o
recolor-turtles3 _' @: J% G @0 X& a L
end
$ b) j8 |* c8 g0 v ^9 U8 v3 o. t# j9 R3 @0 U" ^
to set-initial-turtle-vars-age2 q5 I, [. H3 ]$ W
let max-wealth max [wealth] of turtles
1 o- J/ h6 G! {- e7 V2 M% a/ ^, v( R i. X5 h d V) w
ifelse (wealth <= max-wealth / 3)
- e4 s j( Q2 ]! s! L# x! [ [ set color red 5 ^" b7 f6 i2 C5 t5 L2 @3 p3 h
set age 08 m! H) R% j" K# |6 H/ t# i; x& o
face one-of neighbors4
3 y5 `! \ F0 x2 x: F- r set life-expectancy life-expectancy-min +* y3 F' V6 O! m6 o6 H1 v z
random life-expectancy-max 0 o) U1 M$ O% s
set metabolism random 1 + metabolism-low
# H+ ]" E: J$ a, y3 I0 x set wealth metabolism + random 30; E% K$ E0 S! m
set vision 1 + random max-vision
6 Z# ]! r; ], F6 _, [ set wealth wealth + Wealth-inherited-low ]% C* l3 k q2 Z! p: ]7 a
[ ifelse (wealth <= (max-wealth * 2 / 3))
( Y' t \% ^" B1 T$ Q [ set color yellow 1 A: r' L2 S$ K+ d, }9 y
set age 0; l3 d J) p% N! [7 v% c
face one-of neighbors4
& u) ? d' h0 W# J0 ^$ y set life-expectancy life-expectancy-min +, P$ U4 b, L# v* W% {& L
random life-expectancy-max + 1
& V- |8 k9 y& Z set metabolism 1 + random metabolism-mid0 Y; L/ X$ C* h
set wealth metabolism + random 30' }$ N" \8 c% z* ?3 q
set vision 3 + random max-vision7 l8 l& F6 H P8 `+ ^# L1 Y' O
set wealth wealth + Wealth-inherited-mid]( K! P: L$ B G! |0 ?5 N `
[ set color green
0 J; q& L0 y' h set age 0* ?/ m' E0 v) W5 Q# `: Q9 H$ C
face one-of neighbors4
; \4 N1 w3 h1 k set life-expectancy life-expectancy-min +
/ l/ T5 o/ y6 ^/ l6 i* r! X. g random life-expectancy-max + 2; }. W" [; b5 T/ D2 q; ^9 J
set metabolism 2 + random metabolism-up4 O, n& f' w% A+ H6 r6 z
set wealth metabolism + random 30+ s3 Z) I1 X y
set vision 3 + random max-vision
* M( G3 m$ U" W, a p) ] set wealth wealth + Wealth-inherited-up ] ]
& b) v, z: D+ b/ @. D( [: m
$ M* m" T7 b2 e# wend! z% M M' x4 x3 f( Y
to set-initial-turtle-vars-wealth
% s$ t# k+ u8 h- B" G2 \ Q6 j( N; ` let max-wealth max [wealth] of turtles7 H7 r5 j8 l0 C! h( C
set age 0
' h( A8 k! S' v& k" q" l8 T# L6 C+ G! e face one-of neighbors4
: h' ^' r, }& n$ n4 E+ \ set life-expectancy life-expectancy-min +
5 F$ P/ } B i1 u) x. p random life-expectancy-max % M7 C2 u% c( k3 ~; T6 C' Q
set metabolism 1 + random metabolism-up6 k' ~) _, a7 p' X& x
set wealth metabolism + random 30/ _3 i. F" k. o: i; B
set vision 1 + random max-vision ; @# K& L- e, D" ?; d
end
4 C2 y/ L( Q' B. }to redistribution1 Q. z5 v1 |' k3 `! i( ^
let max-wealth max [wealth] of turtles9 Q; A' ]- o* T4 I
let min-wealth min [wealth] of turtles
: R) N3 o, N [3 R+ ?' Nif (wealth <= max-wealth / 3). M: U1 }7 {$ T& }: @
[set wealth wealth + Low-income-protection ]- ~+ C9 l* E4 H2 [& |8 a# i; E4 q
end
* P0 ?9 v3 l( p
/ W$ F5 a7 p" Y& `, qto recolor-turtles
& j% L, Q. I3 i' c7 r G; y; g. O let max-wealth max [wealth] of turtles& R, K3 G) J5 x( Q. B+ O- Z
ask turtles
6 V4 E& {( @/ ?/ Q [ ifelse (wealth <= max-wealth / 3)
; R; }( \* j4 h1 M" T8 N2 b [ set color red ]7 b+ [, u% V: e( \& o
[ ifelse (wealth <= (max-wealth * 2 / 3))- k6 `- u4 V$ S$ t& o/ o
[ set color yellow ]
, Q. a: \% e( h# E0 ?. ^ [ set color green ] ] ]
2 h; T8 `! G% Q9 q% t9 d ask turtles [ifelse show-wealth?4 i. v" b6 ?5 [8 x, N5 n e. e' r
[ set label wealth ]
/ N! s5 H4 w8 p" b9 r1 N [ set label "" ]]
) @# T1 J: J6 c0 Y- T7 `3 M+ p! ?end
: y( F9 ~3 w6 _
! W1 r: D( }) k2 eto go
/ y" ~" W4 {1 v ask turtles# g9 j- @% l) y+ L
[ turn-towards-grain ]
3 i9 Z4 M! G' c harvest
- a! A- Z/ T$ t ask turtles
9 g; O- n: L0 f% c- { [ move-eat-age-die ]
( {6 A5 ?6 V4 A6 l recolor-turtles
$ J; G M6 ^/ L/ S0 F# S( }$ e' w if ticks mod grain-growth-interval = 0
! A3 n/ @' R! x { [ ask patches [ grow-grain ] ] O! e% W: r. Q" i4 T+ o% o
" w+ A! ~7 J% l; |1 Y. q/ I) _ if ticks mod 11 = 0
2 w! S. ^3 N8 m9 p" y [ask turtles7 J l! g3 v0 z$ d/ r
[ redistribution ]]% S' y3 S5 u4 t; ^# e3 R5 [
if ticks mod 5 = 0
* L% r9 \* ^+ F; y& s$ o [ask turtles! S/ l' i* X% u/ t3 ^
[ visions ]]
+ u" U! X" H" j tick" B- _4 e8 a: x0 U* {2 x
update-plots) {2 \7 f ~- @5 I: w
end
' v% O1 i' Y- v/ {' E. ]to visions
% U6 V# `& c. B8 i# i7 a) j4 G set vision vision + 1 0 w4 ]7 z, s- E& Q1 s1 o
end
5 L1 B( n! f& d! {1 L% ~$ J* G+ W
. S% ~9 ~; U6 Y' U- N" C2 a
' [) B! B2 L0 e
% S! p; K4 Q6 v. U7 B' q# vto turn-towards-grain
! @& W0 D: R1 F- }) Z5 f set heading 0
4 H3 K* Z/ B7 n# s let best-direction 0. w7 e9 [% `$ u4 |$ A
let best-amount grain-ahead1 R' G* Q, I6 {( e" m
set heading 90
8 C3 f, |; B8 ] if (grain-ahead > best-amount). N1 k0 ~/ G8 q( p
[ set best-direction 90+ o0 ~4 N$ T0 O$ S
set best-amount grain-ahead ]9 {( W( F# v6 `1 M9 c
set heading 180
& t' J# r( k4 m. r4 ], W0 m( [6 x$ p if (grain-ahead > best-amount)' H) {7 m/ ` V& C9 v
[ set best-direction 180
+ {) ]) ^ t8 ~ set best-amount grain-ahead ]
: b1 q* j/ x( j/ Z: e set heading 270
' ]" d" P4 d. [/ A' a if (grain-ahead > best-amount)* H( o+ Y- @; j
[ set best-direction 270
: `# p$ _" ~& j9 } set best-amount grain-ahead ]6 a1 G% A+ N# ^ F! o
set heading best-direction4 F4 [; w& j1 v2 H
end1 C1 e9 A0 D4 ~/ O
/ q2 k* e4 Q, A5 A
0 Z: t8 j; I) U4 Kto-report grain-ahead ' Q' g0 i7 G% i
let total 0
& x ^! ~. W& K4 |, I- [ let how-far 1; Z3 T$ m6 k/ {# f2 |
repeat vision' y; L7 g; _& Y4 J
[ set total total + [grain-here] of patch-ahead how-far
1 n" r. f# _1 @ c set how-far how-far + 1 ]
" F" K; U3 g. N" V! ]2 W ?5 \ report total
# j+ S( v; m y6 v$ vend. V$ k# a/ a5 W d
- }* u- R0 O5 }4 p3 Z8 g
to grow-grain + h1 i% c+ B0 Q! n" w
if (grain-here < max-grain-here)
( ]! ~. {; D! f d& k6 ] [ set grain-here grain-here + num-grain-grown) X: r7 K, T7 d, {/ L4 N; J1 a, _6 ]
if (grain-here > max-grain-here) 3 f0 X5 ?- I. ?1 a* N' {
[ set grain-here max-grain-here ]
U1 {1 V- i6 u% U/ f, M recolor-patch ]
. {3 H/ a8 u/ Q( jend0 B+ L. o2 L0 [; s
to harvest
- F4 K h4 w8 L0 o9 x) T: f& ? ask turtles" x) t# |: [& {4 l
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
6 j& Y4 n7 r f8 ]1 S' I ask turtles
, b; `, h* y- h f [ set grain-here 07 q& t% b) @* I6 L$ `3 C1 a1 z
recolor-patch ]
) B( N( R% Y# D' `! a 9 B: J9 { r7 M
end% ^+ ^9 M+ V# C9 P
: M( Z9 e9 T! S8 T
to move-eat-age-die
# C0 |' O8 A+ ]6 W5 S fd 1
4 N4 ~/ V; T% r6 x set wealth (wealth - metabolism)0 |4 M6 y, b' K8 N2 Q4 I( [8 S
set age (age + 1)
2 E* l7 D" y8 R# S, i8 I if (age >= life-expectancy)5 b% o; a: u2 @+ `' r, q
[ set-initial-turtle-vars-age ]( x% }5 N% y. h/ k2 p
if (wealth < 0)5 c3 F) A5 c2 j* s: G% E
[ set-initial-turtle-vars-wealth ]( e! m; I; N9 ]9 e( ^! P
7 J9 n% B4 }0 V* _end
3 @: e% l+ U9 S* R" S* _
s8 \+ [# J* u, d+ l; {! H1 `. t& ~+ L& B! D+ w* R) m1 |7 M
to setup-plots- `% }" D# L5 a- z @% D/ }
set-current-plot "Class Plot"
/ K) o3 v& A' X. T* { b0 w/ i# T set-plot-y-range 0 num-people
2 U# u& U) D" J, v set-current-plot "Class Histogram"/ K9 M% b( ^- q; V# ^
set-plot-y-range 0 num-people+ z9 o! R7 Y$ z( r: M
end- u4 N% s9 @- T
1 z7 ~, w0 Y6 B6 K* x. T& w+ l
to update-plots3 c; w& }4 T0 u; l+ ]
update-class-plot
2 i# c9 ?4 f2 y% y! [) m$ a: q: O update-class-histogram# ] j7 ]$ v( f* l; o
update-lorenz-and-gini-plots4 ?) p7 F' K* w4 B. Y4 \& v
end
$ ^* r: o" H* x! H7 _0 u
9 e4 B- X0 n! r% O$ q# P& y! [to update-class-plot
5 q! w. e/ E0 {! e set-current-plot "Class Plot"
/ N8 X* ^' b+ ~7 B$ O set-current-plot-pen "low"# q Y5 W" J* \. M6 n
plot count turtles with [color = red]! w) c1 b5 z4 H
set-current-plot-pen "mid"
H! y3 }( H$ Q# J& l plot count turtles with [color = yellow]
7 x& M) s4 i1 Y6 S: J' Q+ t! y( a1 s set-current-plot-pen "up"1 o# M p; i1 T: X
plot count turtles with [color = green]# w$ `6 {% Y0 F4 X7 z
end2 ~8 Z& M) M5 y+ U& s& f8 S
+ b, M u G5 d x/ J
to update-class-histogram0 C, v( l8 ~6 \7 u
set-current-plot "Class Histogram"
: Y/ @7 W! u D plot-pen-reset/ b2 q% B: V( D* a
set-plot-pen-color red
8 p& y- ^$ K0 M1 y3 I. T0 s plot count turtles with [color = red]
# {' X7 o1 V. W: l set-plot-pen-color yellow. R( c$ E6 [; T, y* ]$ P
plot count turtles with [color = yellow]( I/ d% u6 |$ E, d& u% | g' I8 @
set-plot-pen-color green
# l% U, o2 E0 b: i' E; z2 E plot count turtles with [color = green]
2 |* W6 I4 }/ m+ `7 ?& [3 X/ u8 i oend" ^- [* C; i% A- |$ D, R2 \
to update-lorenz-and-gini-plots
2 T5 l' r; l2 R- i' R+ c4 k set-current-plot "Lorenz Curve"
6 h* I0 s, P8 d. r" b clear-plot) @' t1 \; N, }0 V8 l* f5 Q
& O! X+ w) H! E set-current-plot-pen "equal"7 E2 W8 x; B2 H+ ~( ]
plot 0
, `3 |! Y, U6 J8 ^, j/ q0 t x plot 100# {2 I. u' e) y5 E
% g2 t) C j/ }% B
set-current-plot-pen "lorenz"8 L: M8 I4 O/ Y/ _: y. \" t8 H: b& ?
set-plot-pen-interval 100 / num-people
7 N7 {/ X' \3 X5 m9 m* I plot 0. a) v j K) }$ e5 c5 ~
- `3 ^% R+ c8 q! n% @ let sorted-wealths sort [wealth] of turtles x: U0 u4 b0 A. h/ D
let total-wealth sum sorted-wealths& G# T& e Q: [+ s7 m
let wealth-sum-so-far 0
7 K% c2 Y5 a% M/ w# B4 {) ]% a let index 0
. N# m4 Y, l; V# J F2 G( y let gini-index-reserve 04 K' c2 _, q$ m6 ~) D; ~2 y4 n2 x6 V3 p
( t. U; O3 F( ?4 S. J repeat num-people [; {, H2 F2 Q2 m8 A9 |4 ~& o/ w) s
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
3 D' q5 B4 _; M& ]; D plot (wealth-sum-so-far / total-wealth) * 1009 p) ?- l) `! Z
set index (index + 1)
8 d# M0 e4 y3 a; I3 t. s set gini-index-reserve: @( e8 S" u( v6 g5 d
gini-index-reserve +
$ I1 @3 r0 m) T% ^2 t4 E5 u (index / num-people) -- ?" w8 e- R& K8 d" ]4 j6 G
(wealth-sum-so-far / total-wealth)) ]8 O! t V8 k; W8 b2 A
]) y& R2 ]# \4 H
: a9 P, w1 ?0 Q( \ set-current-plot "Gini-Index v. Time"
$ B8 |2 p9 T C# B8 y plot (gini-index-reserve / num-people) / area-of-equality-triangle" T: b" x* C9 X+ _& O1 ]. j
end
2 E7 }8 M9 G" T0 wto-report area-of-equality-triangle
+ F$ G S" b$ ~5 H* q report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
5 t% F9 U. W6 o& O% dend |