设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7327|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现4 V) P5 @& M- `1 d  S# Q1 z/ `" i
globals$ m% U7 Z! U+ X+ |: a& M( s
[: o' m, ~* l1 J' D, C: p# M
  max-grain    & @9 o) Y( }; T7 g

, C+ x9 p+ q' l6 f  p]
* `. g0 D# z3 i
! t6 y8 m9 M* a9 D5 }1 Hpatches-own
' t0 `; m) a$ Y3 f+ t8 J/ W[- e. q8 B' `+ B
  grain-here      0 I5 X7 P/ ?' V5 K0 z0 y! b, F
  max-grain-here  " N0 ~/ o9 c2 t
]
' F# U; h; ^& Y1 t( s. _+ k% ~0 d) x0 E  b& s% ]8 ?
turtles-own
1 S5 F! R- u" X9 `$ v" u2 z[3 h  g/ ^: K* y; P* S' A
  age              % Q: q& ]1 F3 E1 [( v( X
  wealth         ( A% z" H: b0 K5 ~  W
  life-expectancy  / u6 l  s+ B+ }' ?  f# J
  metabolism      
( F1 l3 O. Z2 I/ m: `$ I5 E2 T  vision
3 N8 X% p; K+ n+ X9 j) q# G  inherited         
! f9 o1 b; Y% D4 A; z]; z1 H9 D  q! r' g+ S- |2 F/ u

' h! o: R" Y  g& |/ ^. J8 `% u3 s" K7 M  r/ |- O
to setup
8 k0 S+ I+ D0 c) ^& ?  ca# C6 A+ k1 g9 }+ f, j8 [
  set max-grain 50
4 B4 m6 n3 g4 X4 j3 D$ e  setup-patches
' _9 g9 I) h/ l; k+ ]1 X) u  setup-turtles
# O! X/ m7 [/ {0 g  |0 ]1 r6 k  setup-plots; Y+ m3 ~% @( a# ^5 t
  update-plots
0 B, m+ U& Y* U! P" I6 y1 a$ `) Aend' H3 W* t1 c4 a, ?+ \
to setup-patches2 z$ }) H8 A8 d5 V  x( B3 n
  ask patches+ ~) S& O) W2 K
    [ set max-grain-here 0! V* _8 u: A- e% f% r& G( h6 x2 ~
      if (random-float 100.0) <= percent-best-land8 k5 z% r) a9 _% A
        [ set max-grain-here max-grain) [5 `) l' b* R
          set grain-here max-grain-here ] ]
# D# v  T" T# S2 f6 d$ }7 R  repeat 5, T' K6 d1 R4 ^( d
    [ ask patches with [max-grain-here != 0]
0 U* @1 Y- a) }0 o& t/ J        [ set grain-here max-grain-here ]& ^9 A' H1 ?* c% y6 m
      diffuse grain-here 0.5 ]' O1 {% f8 [4 Q, }$ j* e' f( P
  repeat 10/ [0 j3 ?* r4 {8 \9 y( h: l5 {6 K
    [ diffuse grain-here 0.5]          6 K3 n6 @8 s# Z; u6 W) C3 r8 B' A
  ask patches/ |! o  u5 }. X& o
    [ set grain-here floor grain-here    0 V+ Z, D' i5 P, X& V7 s$ ^# A: h7 I
      set max-grain-here grain-here      0 I, C, w: C: A: g. K0 |8 f
      recolor-patch ]6 i* A8 \) v( a0 `# j
end- _  |( F" `) ~: r: \' I
to recolor-patch    s: O& k( s2 n$ F9 ]9 U0 J$ A' y
  set pcolor scale-color sky grain-here 0 max-grain6 [5 x$ D6 s! y# @" T3 c
end3 I& ?5 {+ s# x; H5 b' o% o
to setup-turtles9 p+ m, h% b8 `# U4 t) q
  set-default-shape turtles "person"; N7 m5 z8 T8 r- T
  crt num-people) a: A* J) Q  V+ E9 M: f* b
    [ move-to one-of patches  
9 F( e) X& `) p4 j2 y+ q      set size 1.5  
% W+ B* S" m1 H& ], h; y      set-initial-turtle-vars-age# y& S9 u+ v1 |, a6 B7 g7 y
      set-initial-turtle-vars-wealth
2 P' s- u6 Y1 _9 w7 S      set age random life-expectancy ]
; S# n4 X7 C" T. q$ x5 k# K! U  recolor-turtles7 l% T0 Y6 W* f# q
end: m; z8 u$ ?4 V7 T# O8 f

# `& |9 l; R1 E' M" rto set-initial-turtle-vars-age9 b: P3 {* `$ ^
let max-wealth max [wealth] of turtles6 ^; A* Q& a% J) O
    6 l2 @+ v" @* ^* K6 u" M
     ifelse (wealth <= max-wealth / 3)
. M. Y  B5 S# _/ `9 G) H        [ set color red $ B4 Q( _9 `4 I
          set age 0; t+ P! h1 a- \- B  a( q! ?- z2 j
          face one-of neighbors4 ; V. I0 C- T9 q9 \2 @" Y: t
          set life-expectancy life-expectancy-min +" _' A9 R8 Y) k: K4 u5 P
                        random life-expectancy-max ' D! f+ W: g6 R& o" ~4 r$ o( q2 I( o
          set metabolism random 1 + metabolism-low
; p8 J8 _2 v( }2 s" J. h3 [; P          set wealth metabolism + random 30' i, W- E. K* a  u* a5 O0 `0 l
          set vision 1 + random max-vision
  l. T/ {5 Z/ ], n. |             set wealth  wealth +  Wealth-inherited-low ]& Q8 i+ `! e2 T% R) u; k5 Y  g; l
        [ ifelse (wealth <= (max-wealth * 2 / 3))
( e1 ~# z2 A2 |; Y            [ set color yellow
8 w/ [9 L5 q' `              set age 0
) H- H0 o4 M, t9 z% g3 A" k  Q              face one-of neighbors4 / A, @# L4 l' l% u" \
              set life-expectancy life-expectancy-min +
3 ?+ V( L: P% }9 Y                        random life-expectancy-max + 1' I' P& e/ c9 t7 O# v  K
              set metabolism  1 + random metabolism-mid
+ h& M7 U+ W, l7 k& E              set wealth metabolism + random 30! x- l( F  i2 P2 q% Z/ i, n! T
              set vision 3 + random max-vision
& J' j; u* `8 g+ x                set wealth  wealth + Wealth-inherited-mid]
3 u9 h4 S+ b6 R  t$ W            [ set color green
; U# G% m3 w5 N& s& ~. G0 Q              set age 0$ w: H0 f. P% U7 i
              face one-of neighbors4 7 Y' F" Q, E' M3 m. P
              set life-expectancy life-expectancy-min +3 D4 j, ], G7 F! r2 c" L9 |- W  d
                        random life-expectancy-max  + 2$ p5 @" A/ _7 U# s
              set metabolism 2 + random metabolism-up! C4 N% E% o" w9 L
              set wealth metabolism + random 30" ]$ \$ A; X- \/ j9 ?! h
              set vision 3 + random max-vision
7 n. P0 L6 a+ @7 M; [( `              set wealth  wealth + Wealth-inherited-up ] ]
; r% r7 z9 l. u  n# g0 y/ I' _
# A8 U+ r7 L5 wend
) {9 x8 T; I. ^. V" N$ ^to set-initial-turtle-vars-wealth: e) h9 J! E( N3 C; K6 g, J+ @* g
let max-wealth max [wealth] of turtles
: _# z  J2 A! L$ x4 |0 y          set age 01 d2 p; h, F& @+ e0 V  H
          face one-of neighbors4
4 g3 H+ R0 x4 H+ G) U1 e" W          set life-expectancy life-expectancy-min +
# k2 m6 f* E! W: h( q' H                        random life-expectancy-max
- `* K; U7 {) ?: w          set metabolism 1 + random metabolism-up
) X& x0 D" ]& N' u$ z          set wealth metabolism + random 30, v# ]2 ~7 v4 E+ A# W# |
          set vision 1 + random max-vision , p# {* S+ d* V6 N0 X  `# C  Q
end( b5 \- Q2 f# h) X, r2 C+ `
to redistribution
' ?: {  ~" t+ H( r" h. p/ [  I# @let max-wealth max [wealth] of turtles8 V- S- T* e1 ?+ k- T+ R% p
let min-wealth min [wealth] of turtles
4 k! r$ U. F6 Sif (wealth <= max-wealth / 3)0 e0 [2 m/ I6 [- R+ I' G+ W9 t' T2 ~
[set wealth  wealth + Low-income-protection ]
( \' B. T/ B/ q4 [/ rend
0 [+ ^3 E+ l* _  S3 n         
* }3 I8 ?; Y7 a- v2 J& Zto recolor-turtles) p% _' p2 F7 n% `3 y  W# l6 O
  let max-wealth max [wealth] of turtles
  N7 c" A2 u6 H* ?: U* t  ask turtles
2 h" T, h' O) [" F: h   [ ifelse (wealth <= max-wealth / 3), K3 w; C9 l: P2 f
        [ set color red ]
. a3 T+ {; E5 N$ E7 U$ U        [ ifelse (wealth <= (max-wealth * 2 / 3))
+ T% G, V+ R0 h7 ~8 N$ [            [ set color yellow ]; ~$ P" Z1 u, P
            [ set color green ] ] ]
' `: J5 j3 _4 M ask turtles [ifelse show-wealth?
" I# w% ?; C& v( j' o% W7 o    [ set label wealth ]
7 V, _. _7 ]3 h7 S6 |    [ set label "" ]]8 x7 s5 Q. z: o" n4 r9 |$ E  |
end5 ]+ Y/ \; {# u; q2 l7 w

- T# h2 y' m! X/ \to go% J/ q- |- L) V* \1 I- E
  ask turtles* n- o3 V- g3 t" J( s: M
    [ turn-towards-grain ]  . p" h/ j* ?3 x  `" i
  harvest
: Y' W5 x1 N/ n: V  ask turtles7 j( D/ I& ^. [8 s0 P% A- z1 c' ~
    [ move-eat-age-die ]( t+ r& E- a: L* X# a+ K) r- l
  recolor-turtles' f2 ^- ?9 z# v$ X! J; A( \1 E" i
  if ticks mod grain-growth-interval = 0( I) ^8 x# J, ~4 v, ^+ s, q0 R. M
    [ ask patches [ grow-grain ] ]  V  z" ~% [4 A1 u/ w
   $ B! r/ t+ `% l8 R7 O" C" E/ d- U, Y
  if ticks mod 11 = 0
1 }" C* `# D6 I. p  N, s% P( L  [ask turtles/ u2 X5 W  o! E- ~
  [ redistribution ]]
- Z9 p  O& J5 @0 B4 _& `  if ticks mod 5 = 0+ G5 U4 M) K/ r: ?2 y& ^
   [ask turtles: o0 K3 i* i! n5 v
  [ visions ]]
8 U0 {+ z+ F) H  tick
- Q$ s$ d' h# \" g  update-plots0 c* X+ K" m" o# w) [
end
, \6 s# C) r$ y  ^to visions
: @0 k& O- I2 g0 P- {: x set vision vision + 1
# L7 R0 \" ?1 \) k$ r# wend! d0 {" b. J2 {+ a3 p: m

9 Z6 F, E9 j/ ~7 E1 t; @, q4 }, ^; t$ O9 O7 u* I, v1 ^

, s& W8 i# t( _: l; u3 r0 h4 }to turn-towards-grain  - k4 s0 p* `9 G9 c
  set heading 0
1 y* \+ N7 z0 j  let best-direction 06 G( |3 s, z& h8 H1 W  ~
  let best-amount grain-ahead
* v& u3 H3 f5 I8 A  set heading 90% V( ?$ S8 E7 \: j
  if (grain-ahead > best-amount)% c9 {4 }  D" C; {4 |
    [ set best-direction 90  r+ s6 d, c% d8 o
      set best-amount grain-ahead ]
. ~" d0 v# W2 U7 ^  set heading 180/ E3 m- E: C+ J; r
  if (grain-ahead > best-amount)* q8 ~/ [. M! U0 s) k9 }, b6 e
    [ set best-direction 180
% X+ n# S5 h& y3 K9 C      set best-amount grain-ahead ]# N4 K) w4 w! a! P! t) v" B# X# J
  set heading 270; E) a* W% j2 O4 {! [) Z
  if (grain-ahead > best-amount)
9 }, c, g' e" @0 y9 G/ n) X    [ set best-direction 270
# f. G6 W& T2 E2 T+ i7 c4 i, v      set best-amount grain-ahead ]
" e) J6 C: w- j( S& u0 K1 i! {3 h' Z  set heading best-direction
9 d" ~8 r$ m- r9 \6 ^end
7 C! S* B% m8 k4 Y
" R# Y  X1 Q2 ?) F" P% j% x
! l! \0 t8 b- W# v( y0 ~to-report grain-ahead    N# G: U3 ~: X+ x4 y, U5 p$ W
  let total 0% h4 {6 c/ V* r9 t
  let how-far 1
9 p' @: M! J' A' l  repeat vision/ _# f% {1 q' s8 O1 k0 z' B& E
    [ set total total + [grain-here] of patch-ahead how-far
' V* \! [8 w4 J( _      set how-far how-far + 1 ], H! _+ M. M. p8 Y: p
  report total! Q7 X6 Z2 W. \1 u
end
' d2 v& Z4 G. ~1 s- L4 {7 O
# Z2 Z6 F& x6 z- `to grow-grain ) w+ o1 Z/ {+ U- Y; H
  if (grain-here < max-grain-here)
) h4 p# `8 X, c/ o6 p    [ set grain-here grain-here + num-grain-grown
& H! p3 t# |. S9 S/ l& ?      if (grain-here > max-grain-here) & T. e4 n) \* P; ]8 E3 k) a
        [ set grain-here max-grain-here ]
2 q8 e; p4 i" f2 A) \      recolor-patch ]3 K' B: w' H* H$ a8 J) I
end  G' ]  V: T" e, A1 U& u' ~- v  j
to harvest
' p% Q5 p1 Y. Q, h, ~- Z  ask turtles
2 q- ^: ?- P' X9 j2 s( S    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]: \* s4 O9 k' @
  ask turtles
( E  E9 R+ v7 B    [ set grain-here 0! w8 Q9 _! M. i- l+ D3 c( X
      recolor-patch ]
3 B, D( t5 k' d$ L. v+ y* M- n  ( B0 Q4 h5 ?3 i0 b* j5 k
end
8 V7 _6 W' y4 g. B' ^: S3 X0 N4 |, g
to move-eat-age-die  
5 k* p1 R2 r' k# t  fd 1
' E8 ^& N2 t. G/ s- h0 F- P0 p  set wealth (wealth - metabolism)
& V! M% h" o, q$ @1 ?) t8 ]    set age (age + 1)
- ~$ g/ y9 @5 d' U) A  if (age >= life-expectancy)' B6 o: D. G, A: `5 Q% G- F- }
    [ set-initial-turtle-vars-age ]
8 {4 s6 d& m2 _3 j/ t$ Z% \% z& W: @  if (wealth < 0)& ^1 i9 Z- ]7 w
    [ set-initial-turtle-vars-wealth ]
+ X5 M0 E+ C2 \/ r    & F8 r* i: C3 w' y) e/ @
end; t% f+ D9 j  {' r1 R
1 J' t0 Z( u4 V# b+ m. ]5 D

$ ~0 Z( L3 Q+ Ato setup-plots3 q4 |$ c4 I! G
  set-current-plot "Class Plot"4 d0 o# Y  J; T+ ?( @* y
  set-plot-y-range 0 num-people
" Q6 ~/ J: K+ R; i( C" D5 Q, E  set-current-plot "Class Histogram"2 {: O( D5 J: j
  set-plot-y-range 0 num-people
$ W( V* E" H1 P3 t4 D* hend" W9 N, N6 \4 S+ |

7 s# @7 r' r6 w& m. pto update-plots
, p7 E+ ?) _( p3 @) j. c  update-class-plot
& K' I0 M8 W* V; @: C/ _; F  update-class-histogram0 ^$ x( |# l" j' j4 ~4 X6 p: R5 L6 |
  update-lorenz-and-gini-plots% g: e2 U: Y! g3 D; N" A/ l
end* _( u2 Y' j: ]' c$ y

' C4 E- |8 J  \2 Rto update-class-plot
6 ]) M9 f6 C% P2 Y& Y2 m  set-current-plot "Class Plot"
4 a( \" y6 d( K8 C. H( ?/ \  set-current-plot-pen "low"5 w1 G' z/ Y. m8 x2 U% B
  plot count turtles with [color = red]+ g; f2 t) }# Q( I- M$ d
  set-current-plot-pen "mid"
- S* F# V5 r$ A# t$ H  plot count turtles with [color = yellow]
0 r, W2 j3 s2 e  set-current-plot-pen "up"& o# S+ J7 ~1 ]8 `( e1 S
  plot count turtles with [color = green]8 V: G# @; h4 r( R, I
end
/ }* [( ?7 k" V  n! ?6 Y
2 b5 q: h' G4 {& M+ gto update-class-histogram+ G8 z, f0 F: k8 T9 g1 ?
  set-current-plot "Class Histogram"1 {# K. k. @9 Q5 }
  plot-pen-reset1 v( x: F/ f" s- o+ M& J+ G# l
  set-plot-pen-color red
' a' ?# M7 N; l  plot count turtles with [color = red]: K9 `* g* @' D( d
  set-plot-pen-color yellow4 a& {' @' W' _0 j) q
  plot count turtles with [color = yellow]
( x) a* k3 p3 a  ^: H2 ]* j  set-plot-pen-color green
7 A. F0 |  y( T: |0 u  plot count turtles with [color = green]' V5 l+ l) @+ b/ x  K$ ^. ~
end: w- g$ y, G2 ^; C9 |, Z* e4 U
to update-lorenz-and-gini-plots
1 S7 W- n3 O6 z6 i  set-current-plot "Lorenz Curve"' W  x. r2 P9 ]3 b- J
  clear-plot
% g( r0 a' D9 \9 `. p: l7 Q- U3 F, ~2 x7 {/ o
  set-current-plot-pen "equal") j. @. R! c$ g% m. d
  plot 04 I. ~9 @! n; B3 X
  plot 1009 t; U7 u; E' U0 v+ x( u9 Z
5 G: C- e  E3 m, v+ ?. h+ `
  set-current-plot-pen "lorenz"
( l) {: u- E) e- u# w$ n  a5 L  set-plot-pen-interval 100 / num-people
' b2 U: j; O5 R  ]  plot 0
8 i$ R, O: M5 J7 }
7 u  [9 u, Z) `. ^( h4 Z3 a) h$ {  let sorted-wealths sort [wealth] of turtles
3 c  }' Y. R: ]$ ]9 R& }/ Z# y  let total-wealth sum sorted-wealths: T1 e. Z' D3 J( [7 A5 Q7 ~* o
  let wealth-sum-so-far 0' g4 T3 b& p( b' {' c
  let index 0/ }0 B0 f" e8 W- y
  let gini-index-reserve 0
$ |' h2 }# l5 n" V1 @4 ]
/ r. e3 K9 E! D! l" A- t  repeat num-people [
% Q: \& z0 f- \- K' T8 B0 R    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)7 p  t" ]% |' e2 {
    plot (wealth-sum-so-far / total-wealth) * 100
2 D. c2 G4 J- k5 c5 Z    set index (index + 1)
% r$ p5 M( o0 j- q    set gini-index-reserve4 C$ a" z# v& J- l4 G# A
      gini-index-reserve +$ h+ i! p& G# }: p7 d7 J3 \
      (index / num-people) -
5 W; V2 h0 a2 Q2 y      (wealth-sum-so-far / total-wealth)' s% Y  j( c" v$ u; Z4 V
  ]
: I; K0 n$ E( Y( X. B$ M# y5 }( ~+ v3 |5 A( Y7 S, U
  set-current-plot "Gini-Index v. Time"+ _; y, t4 }  U7 G
  plot (gini-index-reserve / num-people) / area-of-equality-triangle+ _9 O$ X& I) x1 F" z$ m, d
end
$ x! w2 T7 S, L/ O7 B: b6 V/ O4 Mto-report area-of-equality-triangle
) X& r5 S, E( ?2 _6 K) {( B8 d- A  report (num-people * (num-people - 1) / 2) / (num-people ^ 2). p, `% [3 @3 [& y# V
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-1-9 03:51 , Processed in 0.019920 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表