请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现% t3 {0 ?# O/ c- f/ v! n
globals
" p- \. r) u; g3 l+ z9 F8 ^[
3 n0 ?& i& a2 i8 J( K$ |% m& g* s6 g max-grain
. E: o$ j) l# y" r. ^: y4 n( Z! }; u: T
]6 l1 D# u6 q7 I
2 [% c" F! p* ~, {# C% Jpatches-own) ]! t9 D: P* q o" ]# L6 y2 f
[
, S4 F+ u6 O$ e4 X4 L- b Z grain-here
6 t7 b% \9 c, J+ O3 I max-grain-here $ o0 d2 \/ ?; k5 p9 `! q
]
3 x4 Q. W: n! D, W
' ?9 p2 B/ D# Y1 p( H9 fturtles-own* a& n0 s9 L4 h" L
[0 v" K, l+ I z
age
~5 b- S. A* g5 T& u( d wealth ! q# H' F) P6 m9 r, b
life-expectancy 7 x4 D$ ] M4 a
metabolism - _; w2 @8 R1 U
vision
. L8 J) |0 S) j f inherited
, K- h, C/ D) D. N& T3 c9 D]. @# w0 k( A1 `" ]0 e T2 a
u* ]: \% K$ W. E
. [ U$ ]* s! C ]9 s w
to setup
& W+ S" K- E% P$ v4 E ca" b# U) [4 i+ p1 v; p0 J$ a
set max-grain 50
+ L7 v3 `4 ~# v; r1 q- J setup-patches3 {3 M% Y% ^% {4 Z
setup-turtles
5 C4 {0 u' F' J' c setup-plots
' H6 M$ S" y* i& n, S1 v9 |7 R' s update-plots
* D& u7 U7 o7 ~+ G3 f" Xend. O" \' z3 @0 I* g/ D8 q2 Y: ^) y1 N
to setup-patches
4 k: j- D" l9 d$ M; p5 _5 {5 U2 U" V ask patches6 R3 h n0 Y& e9 Z
[ set max-grain-here 0
1 A' V4 l) y6 N4 O* \' w8 ?3 F if (random-float 100.0) <= percent-best-land0 s- j3 I3 @& t1 J
[ set max-grain-here max-grain$ r7 x4 n# O$ g& a6 Z$ W
set grain-here max-grain-here ] ]
0 @: l5 B ^% {8 `) X, F repeat 5
6 c. p; n! @# N4 R9 c8 ^3 P$ W [ ask patches with [max-grain-here != 0]
' [0 ^4 S: B1 q9 y3 r [ set grain-here max-grain-here ]- I- X/ c. G b0 n) U
diffuse grain-here 0.5 ]; ]. ]( \" W. j: k" H, `! Y, N3 Y7 P
repeat 10
1 F0 d% X3 E) X5 b' R$ O% w" f [ diffuse grain-here 0.5] ( N0 {7 i( A; m0 J+ T' ~: q
ask patches
- \# S. r7 W$ {* H. N [ set grain-here floor grain-here
: g# C) W4 B- ^( @ set max-grain-here grain-here
, R: z$ y3 Z4 y1 Z, s recolor-patch ]
8 F( g- X Q, {! Z- F @end
: `) D0 d0 _! pto recolor-patch 7 ?5 ?9 F2 Z) ~
set pcolor scale-color sky grain-here 0 max-grain
: g" U* x9 s! f! wend
! }8 I M* @1 g: Bto setup-turtles! R& ]# p/ F. T$ G) G" y
set-default-shape turtles "person". H' H1 _- U% ^" y; Q
crt num-people" J5 j" B- O5 L7 J) {' r
[ move-to one-of patches
% U# K$ j# I* B1 f set size 1.5
' A: C* Q! A% q% c& A {+ y& R8 w set-initial-turtle-vars-age, y' s( a! h( ]' e& N& `
set-initial-turtle-vars-wealth
: e: U* W7 d4 W2 S: e set age random life-expectancy ]6 j* n3 K6 J% q' L: ^
recolor-turtles% w) c" q6 M# [7 V
end, J' f, C2 G% w# E) r
- x+ q1 J, X; X8 u+ ]& ?' o- Z
to set-initial-turtle-vars-age
- p3 g6 U7 G" }" X$ P6 K- z+ D let max-wealth max [wealth] of turtles
# z; W9 t+ B* B7 h d- r4 n& @" A9 _
2 D4 U2 r$ |: [) }" b o ifelse (wealth <= max-wealth / 3)
& U' ?. {9 n7 J/ n [ set color red
0 [3 p. v `5 q- Y2 J- p set age 0 i* w% T j3 ^& M- v
face one-of neighbors4 8 `2 G1 N, u' Y
set life-expectancy life-expectancy-min +% {9 ~# G* ]$ h$ c$ d3 P1 ~4 p
random life-expectancy-max
* o. n% f" s1 Z3 f# U% @6 ^0 b* y5 U set metabolism random 1 + metabolism-low
7 D$ {% K" v1 y3 g* T set wealth metabolism + random 308 {/ U" w( A4 K, {$ U5 `, D
set vision 1 + random max-vision4 g# C3 d% `( R$ Y
set wealth wealth + Wealth-inherited-low ]1 S7 X; {# S) O
[ ifelse (wealth <= (max-wealth * 2 / 3))
5 W3 y( ^0 J" H$ v5 W1 c, X [ set color yellow 0 ]6 m$ [& Y2 Z0 j8 e* {5 W0 J/ b
set age 0
, m- F8 E2 N0 t% N$ \7 g# p6 r F; k% T face one-of neighbors4
8 j$ F/ y4 H! `, g- K* N6 j set life-expectancy life-expectancy-min +
- O" Y; ?3 y f& n+ G$ N6 K5 T random life-expectancy-max + 1
' l2 W+ U) }; E+ t% U set metabolism 1 + random metabolism-mid
; l0 b8 d* @. I. \# j8 ~ set wealth metabolism + random 30
* S- E7 W9 n0 R7 O set vision 3 + random max-vision z) h1 L4 `- j! e/ w
set wealth wealth + Wealth-inherited-mid]
4 l/ ?) x; [# z3 n& | [ set color green
e6 @, g" ~7 Q( }' L set age 0# k& f" s2 b3 h) S1 i) D9 Z& U& j
face one-of neighbors4 2 g, w3 x/ |; f! `/ C+ ?6 ]
set life-expectancy life-expectancy-min +
7 I# }. T/ H8 O$ G2 u E8 Y6 z random life-expectancy-max + 26 v. @2 h3 V: \+ u) u% ]. S% X
set metabolism 2 + random metabolism-up
& c5 T$ C9 y, A. |3 A set wealth metabolism + random 30( B6 s4 ]; h. r7 {( `' D# D6 z8 r
set vision 3 + random max-vision V* g1 Q3 d- Y
set wealth wealth + Wealth-inherited-up ] ] * K4 _- ^- n6 B7 D; z% e
, l$ k& E, o. W- u* V Gend
9 Q8 |" J. L2 a B% Z8 Yto set-initial-turtle-vars-wealth
' @- L8 j1 r8 p) R/ v let max-wealth max [wealth] of turtles
# \4 W V# o% f: @6 S0 G' `# N set age 0( P2 K- W5 v. _$ u6 {
face one-of neighbors4
) c. }* J- @) o2 y set life-expectancy life-expectancy-min +
1 K* V, T- w3 }* j" O random life-expectancy-max
% F% ^1 k) c$ ?* x set metabolism 1 + random metabolism-up0 s) C9 W9 b" N+ O: @2 B% G' I# o" z7 a
set wealth metabolism + random 30: f/ F; L( G; D: a. M: w, I
set vision 1 + random max-vision ( D" F4 u% `% }+ |! f) P
end
0 ]$ W) C$ _+ @0 X& g7 {' Cto redistribution
1 Q! Q N+ C" _let max-wealth max [wealth] of turtles2 @- P' c1 \ J: C6 H
let min-wealth min [wealth] of turtles
[* E, L5 L8 g( A. tif (wealth <= max-wealth / 3)
1 F# W: v4 {% \ [set wealth wealth + Low-income-protection ]! g! p/ D U1 H6 }. x7 Y
end& w) Q) O! Q2 E
/ \3 {' @( k- |
to recolor-turtles
, L. ~# K; I, S5 p let max-wealth max [wealth] of turtles
3 r7 `9 p0 r0 | F& @# H ask turtles
1 ^- p7 H8 ?' J5 H. x [ ifelse (wealth <= max-wealth / 3). q) e" B, |' y. }; T, I: p. U
[ set color red ]
! m% A) w& t; w% M" T! z' D) P4 m# i [ ifelse (wealth <= (max-wealth * 2 / 3))- ?" [- G# P* Y; n* @
[ set color yellow ]# q2 ^* g- I2 P' b( J4 V' R0 a- P }% s
[ set color green ] ] ]4 `1 ~+ W& O w( Y* b
ask turtles [ifelse show-wealth?
6 N' x5 q/ b8 i1 H2 a [ set label wealth ]( w. u+ [0 x1 d' |3 U
[ set label "" ]]7 _0 ^5 N2 Y: @. |; \6 {
end e% T: d8 V3 @9 [! M. e
4 W, G9 g& Y* R; v. H4 ato go
7 u3 ?/ n6 I& @; N; r ask turtles/ d7 V2 x% V3 c V U% g
[ turn-towards-grain ] ! T2 n% O$ A+ B( n+ T
harvest
# \1 B0 M0 V% C# I0 T ask turtles
, _( r- s3 F. a [ move-eat-age-die ]7 G' ]; p! d6 Z" {
recolor-turtles( l! W/ C3 ^1 i7 N$ A
if ticks mod grain-growth-interval = 0; E& e; N) p" y9 l, w
[ ask patches [ grow-grain ] ]6 L1 k) `9 W1 p; c
" K; g+ K# |$ B! G9 I' d: T0 N, W if ticks mod 11 = 0/ V1 n9 ]8 v- _4 u% j
[ask turtles* W( l( j8 A3 P# {, ~4 J% l& l
[ redistribution ]]
0 T" Y L. Z( B8 Y' X2 m2 N if ticks mod 5 = 0- u" m$ e6 u3 ~! R: O; \ L
[ask turtles: D0 I& g! j3 ?/ j9 f4 v! l& O
[ visions ]]* N& _* g1 p8 b( g. u6 S
tick( h' J4 W; t( }8 M ^. A* C8 Q: P \# ~
update-plots
* ?7 P0 ?; v$ I. lend
" ]* W& `, \- T( \to visions1 L! ^( n& d* W6 `7 R
set vision vision + 1 7 t% E. p+ s8 g, E. q$ j
end
+ ?, s! f T4 }$ a7 ]
( Q1 s. B8 ~. |$ ^4 f$ M
3 N k/ d& l& y* p7 t1 ~4 M, ^# _
- U+ k8 @( [/ u: Z3 G2 M- Sto turn-towards-grain 3 X( t3 c9 T0 j6 S6 j# @- E/ B
set heading 0
8 r# n8 U3 Q# A! l. j let best-direction 0- }* k* `9 j% a+ V
let best-amount grain-ahead
) ?: \( R9 N4 k set heading 90
( H5 O+ `' z3 }2 z if (grain-ahead > best-amount)
4 `6 I+ |/ A U# z5 p- Y U [ set best-direction 90
1 w( O0 Q! k! s" D; R set best-amount grain-ahead ]* z) p' F! Y- _2 u5 H
set heading 180
6 i1 N1 \' V" Z* J' | if (grain-ahead > best-amount)
8 Q5 j: O' N. r. y _ [ set best-direction 180- Z' y1 c' O9 J
set best-amount grain-ahead ]
6 [1 L+ B# x, k8 T$ h) D set heading 270. s8 n7 \' S& M6 E& x2 y. G7 }! m
if (grain-ahead > best-amount) v4 P# I0 E% `
[ set best-direction 270
) u1 W' i! ~: w9 s' |* _ set best-amount grain-ahead ]
- X: S1 C4 ?$ h9 E' v; F, j+ _- @ set heading best-direction
9 p: w( W2 D& I' V9 U/ h% @end. v0 v; k3 @2 C
' o/ T" H- U8 j0 {1 N
" a' p, H& ]! i% Wto-report grain-ahead
* g9 N8 t" t* r0 ?1 Y0 S% p let total 0) c2 R0 ~) `7 X
let how-far 1+ g* a P& E- d! E2 m2 m
repeat vision
6 h$ X" ~, a4 N [ set total total + [grain-here] of patch-ahead how-far
; p( W9 ?' s/ Y$ B5 z set how-far how-far + 1 ]
% I) T5 n+ q2 H5 A }; X report total
# e1 p( S. f* f) E8 o- ?( Qend8 i# c1 _% @$ k7 w
" A* ?7 }4 k" @5 Y) x- U; Jto grow-grain
) ?) r. X" c1 N$ P if (grain-here < max-grain-here)( C* D( _) [8 D- {; f% H
[ set grain-here grain-here + num-grain-grown& A* j: A D" E1 N% }
if (grain-here > max-grain-here)
6 c& F# k9 C2 \5 c2 l [ set grain-here max-grain-here ]
! ~$ j2 U% {' a4 g1 k4 ` recolor-patch ]; j4 y, g3 n9 c g; O
end
6 v/ q. m$ S/ @" t+ P5 rto harvest
6 T$ a1 R+ `; t ask turtles& p; q! a) m; c1 ]
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
, s8 Y- O( J& V, G7 x ask turtles
$ V3 @; q1 q1 t; B, ^6 z+ @ [ set grain-here 0) x1 D% o( U0 Z( n
recolor-patch ]: _6 p" f: y$ L1 k
( Y4 m7 F6 Q% \
end
3 j H3 H+ z5 H3 _. A8 G! `& v; ~. ?% o+ ^
to move-eat-age-die
5 F$ e0 I' t1 c. w- J/ l fd 12 i$ Z4 A2 t+ O6 _& k
set wealth (wealth - metabolism)
8 p, e; x9 Y% i& ]) T5 `, e set age (age + 1): U4 i2 y4 K. j3 W
if (age >= life-expectancy): J* L. B' {5 ^9 U
[ set-initial-turtle-vars-age ]
. K; t3 @. A' S/ O+ `" N if (wealth < 0)
+ `, q& B# |9 D( |3 A; L4 @2 z3 Z8 e* J, L [ set-initial-turtle-vars-wealth ]% K. W5 b9 z% a; i1 T; d
$ l: ]: N+ o6 \: M- w
end
0 D9 H8 q" ]1 d; n4 _* S7 H; C; m6 m! h
3 D" a* D7 R3 _6 k0 K! yto setup-plots5 f: P' n% \5 _& r
set-current-plot "Class Plot"
5 t' o5 V4 ?2 ^+ ]% }; y+ i. B" v set-plot-y-range 0 num-people* z1 O! A0 _, H- o- @3 c
set-current-plot "Class Histogram"
* ^0 ?9 U) N. J+ V set-plot-y-range 0 num-people
9 y7 Y: f* L. i* K* lend
9 Q! f) U% A s8 \8 w: N0 N2 R: Y. }1 G5 H1 q4 ?
to update-plots2 v. G& J; @1 w' `
update-class-plot
+ a# P* w+ h8 R$ l2 g2 |. n update-class-histogram
' N# ]* A4 T8 z, Q update-lorenz-and-gini-plots/ C# q# B u- _9 _% i0 R+ g
end
: H/ w) a# h" {) r6 h) E8 c4 H% V& {# C7 G
to update-class-plot
6 p. x( n. Z0 J# B set-current-plot "Class Plot"
% q8 r# \! z: v4 |; d set-current-plot-pen "low"
9 ^4 z/ ?8 m/ ]8 m: U# T plot count turtles with [color = red]% N* D) v3 O% T9 F0 ?' q
set-current-plot-pen "mid"" l; Q; n$ p" f6 ~
plot count turtles with [color = yellow]
2 n5 Y7 u3 ]* O. {/ A5 b0 N set-current-plot-pen "up"
5 @$ X) q) C4 \- V" o Y9 m& ?3 W plot count turtles with [color = green] g" M: w$ H# D1 s" A1 m
end" u# ~- V6 _; Y2 d0 L' T; d# r& K
) E( G( L$ G) t% h6 t- i
to update-class-histogram% A2 b. m$ \ d" X, T
set-current-plot "Class Histogram"
+ m0 Z9 r0 b: o1 @' ?% y plot-pen-reset
5 l: P% n' @6 p7 ]* p0 r set-plot-pen-color red+ v* U8 t& S, \% h. E
plot count turtles with [color = red]+ v% s- }6 Q) _( f' y! X/ e3 T0 j
set-plot-pen-color yellow5 V( k/ ~% M" M
plot count turtles with [color = yellow]# r( }1 @% z4 s
set-plot-pen-color green
+ b* {* R" E5 K9 j plot count turtles with [color = green]2 n+ ?% n# x/ r" H- o0 D! o6 r
end
1 L; D4 }5 ?6 g/ _+ K: c, a5 B# hto update-lorenz-and-gini-plots+ L2 E" O1 B( z$ W1 z/ X: m
set-current-plot "Lorenz Curve"' X; O- w: s4 p9 E8 ^/ j7 n
clear-plot
; V1 Y# q2 k- \2 T$ Q: [# R2 D( f9 q4 H
set-current-plot-pen "equal"% h9 |. i- O. W% O: O
plot 0
6 q; b& {5 Q. r9 H% i plot 100
8 R& C$ U7 a$ j. b5 W5 w- b6 [ h2 @9 i' R! f
set-current-plot-pen "lorenz"5 ]' p2 ]1 Z6 B7 p9 a
set-plot-pen-interval 100 / num-people
! C7 \& u+ L3 w4 R7 D5 ?0 Z plot 0$ k( \- A# V& M d, ?) @+ j
$ W$ N: }) b% n# X( R0 Q
let sorted-wealths sort [wealth] of turtles
' c% g* y( Z9 l3 V. g1 F; T let total-wealth sum sorted-wealths5 \4 q3 _- d9 d6 H% E4 W+ N5 `/ s
let wealth-sum-so-far 0
5 R$ X5 Y0 D% y" @4 d+ r let index 04 o9 x9 q' _6 n9 s$ U! s% f
let gini-index-reserve 0
- i3 X4 |5 l4 U/ d" f, ^
+ B+ }8 y7 l4 O: L- r5 i repeat num-people [$ V* K6 M& G& y7 G _8 A
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
( M: L" N; R# H* z plot (wealth-sum-so-far / total-wealth) * 100+ Z n6 [( D, A3 ^' C! E
set index (index + 1)
) e5 s9 z/ y8 J7 E) F& j: J- K set gini-index-reserve
2 p* W7 ?0 s" s( v' F# {& P/ U) N gini-index-reserve +) \/ i/ O [+ N! p1 B* g, }
(index / num-people) -
4 d& ?! ^4 F, H* ?$ E3 Z/ G (wealth-sum-so-far / total-wealth)" W0 L8 S) J4 Y& M. V; `+ Y6 r" z
]
( H; i4 u, f8 y Z0 C9 H W9 ^9 \. O/ o$ h% i" ~4 [- w/ y9 U
set-current-plot "Gini-Index v. Time": |' ~, A. z# J/ @
plot (gini-index-reserve / num-people) / area-of-equality-triangle' O( C# j$ O0 r! m, o y% z6 N( k
end
: c1 \" _/ D: s2 R7 z' d' Ato-report area-of-equality-triangle: E' l1 d" o. l% ?) q- L. M
report (num-people * (num-people - 1) / 2) / (num-people ^ 2); h$ B0 H+ X( C8 o4 x) W4 c8 @
end |