请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
# z2 |% i5 \- X# D0 T* rglobals
G$ t4 Y# o4 U |6 @# H; ~& S( r$ t$ \[+ Q4 n+ T' A! i' z# z5 k
max-grain
7 i& l1 H y3 r# e/ Y) P: N; h) e) a. c. o6 Q5 o% y7 J% ?
]
: H e- J* }. u9 H- S2 P" S* N4 [; x# p: _
patches-own
! w$ _% W* Q g) M# e[ {7 q% o' [2 S8 X9 c
grain-here & H- ]5 w0 k, k4 B7 a
max-grain-here % x% w: C' q# p) y& l8 g5 C
]
' n e' ^4 c/ s1 w; Y" c, {5 A; V3 F% g, e
turtles-own0 w6 V5 V6 N# [" O1 _4 w6 C
[
9 H: b# p# n0 Z- z: a age 2 P' `# P' R5 S$ \ \8 M _2 L& Y
wealth
' k* n7 X$ D7 ] life-expectancy
; `/ C! J% [0 H0 R metabolism
7 e, |& [ _+ b; Q vision
; C1 C2 [7 l6 w# h* B) R inherited
& b) }. f& L" b3 j( k4 U X4 t6 q; C]# e3 r' e! a, H: G0 {
y2 J/ {6 V! P7 W- V( \
6 n9 H7 t2 Y( ~, F% P8 Wto setup
, @" I' T% L+ O ca
. A' ^1 c& h0 g, N( R$ E* p& n: \ set max-grain 50- l* X9 l+ u- T% \3 N+ J0 \4 a. Z
setup-patches
* s Q5 W9 t/ N setup-turtles- u+ U v7 h8 E7 R* S
setup-plots
9 a$ u* d6 z' J- c update-plots) ^7 d) `% B3 ^4 y* u% ?
end& `( `8 p: X/ c' k' l2 t
to setup-patches
9 p/ d- @! o- e* B6 |$ ^ ask patches
; Z7 { S7 v7 T [ set max-grain-here 0& Q, U; {8 `; s
if (random-float 100.0) <= percent-best-land
7 [; v" l0 i- N1 i! b% N, l4 l [ set max-grain-here max-grain! V5 L( e* z, F9 _
set grain-here max-grain-here ] ]$ c5 N, s1 W# v# R4 G& a/ ?
repeat 5
- D, {8 f/ T* p8 } [ ask patches with [max-grain-here != 0]* D& i9 o! W% q" i
[ set grain-here max-grain-here ]
6 D, f* F/ K: R4 d( {5 q1 P diffuse grain-here 0.5 ]# _6 b w1 |# ^2 }7 j) w0 E
repeat 10
- \% F. E1 r# l [ diffuse grain-here 0.5] " Z; r$ U" P$ D2 L( o, ]! G
ask patches) {) |5 U3 Z, p* M: L; _
[ set grain-here floor grain-here . Y0 Z, R: h& O w
set max-grain-here grain-here
: y. {. Q; U* U# i recolor-patch ]
8 a1 i% c2 n) H t0 zend
$ R, B0 W T/ ?6 x" P eto recolor-patch
/ O1 ^6 |$ T, ~9 F, @5 q; [ set pcolor scale-color sky grain-here 0 max-grain
$ [" A: x& @ x1 ]" Xend
# O9 m$ \9 w1 f l0 c$ }4 [to setup-turtles4 d' o9 X# o' R4 N! ~
set-default-shape turtles "person"
Z9 O4 y; w( A$ K crt num-people; y6 F ~9 b6 N1 E. T$ B2 I% p8 m
[ move-to one-of patches
# h( F5 O5 b7 u2 V8 F9 q/ f set size 1.5 5 B0 D7 u& I) a) u' N S
set-initial-turtle-vars-age. W8 e8 \, {; ]) E h$ H! \
set-initial-turtle-vars-wealth& z4 h$ D. h( U: w4 D9 w
set age random life-expectancy ]; P) ~5 ~. l7 l, Y1 P7 E
recolor-turtles
+ K3 p. |8 U r. gend8 G6 K- A2 f N V9 I9 {
5 l9 ^! J0 j% L9 K+ g) ]1 Mto set-initial-turtle-vars-age
6 n9 n8 m" G/ p: z4 G; u let max-wealth max [wealth] of turtles
. W3 x) [4 M: H& ] ! D' _' x( d, @ }+ ^
ifelse (wealth <= max-wealth / 3)& }( @8 @) U( Y/ v }
[ set color red
) e9 J2 S2 A/ X+ @ z- }6 l set age 0' I N8 `4 |9 ]
face one-of neighbors4
( L& [( N! }2 G$ \( B set life-expectancy life-expectancy-min +2 F" a8 `$ B6 m8 G; [
random life-expectancy-max * h0 A0 M3 w, D2 n" Z1 E
set metabolism random 1 + metabolism-low! r- T! T# E! w1 O# h
set wealth metabolism + random 30$ a' C; l) b1 E5 _
set vision 1 + random max-vision
! ]$ Z7 e+ W6 {2 f- e set wealth wealth + Wealth-inherited-low ]
1 F; D: T) _4 l, R/ v9 ]* g; ?- K [ ifelse (wealth <= (max-wealth * 2 / 3))
' _' J: `8 M; v3 R. q a) x [ set color yellow
! y7 K) R* ]" X! s* n0 Q3 ] set age 0
' T/ l3 v! L% Z; G4 r8 i- i7 ]- H face one-of neighbors4
4 O. H7 O4 D; G6 E# ?1 i; N set life-expectancy life-expectancy-min +
3 l1 C) v; \) t" g1 |# a6 R, p random life-expectancy-max + 1
7 j" r( m5 g! S+ Q* V5 X7 m* x set metabolism 1 + random metabolism-mid2 n' R7 P- `" S5 j# _3 q% ^1 o; X
set wealth metabolism + random 30
2 X9 v' l3 j O: W set vision 3 + random max-vision, ]! ]. X, [+ y W
set wealth wealth + Wealth-inherited-mid]; z4 b' r# p, R' Z+ m
[ set color green
. T7 B0 o& r4 J( l. a9 _ set age 0. g/ d: M9 T j
face one-of neighbors4 0 h! J2 P- b3 _0 T `9 y" M9 C Y
set life-expectancy life-expectancy-min +4 u8 r% F2 z1 x% h: _& ~) F
random life-expectancy-max + 2; r$ p+ v2 C( Y+ K* a: P
set metabolism 2 + random metabolism-up
' _/ N' M2 c: c2 K set wealth metabolism + random 304 f+ G' q7 f: [$ S: `- T! {
set vision 3 + random max-vision
3 R8 L* T! _. |1 U- }0 i set wealth wealth + Wealth-inherited-up ] ] % \/ K9 S, v. k; H* Y
1 N1 O( L8 T" N: bend
* A( I% [9 B* Y6 `4 ?to set-initial-turtle-vars-wealth
1 G0 U; i, J+ n* O let max-wealth max [wealth] of turtles% ^) t- {2 s7 E; ^1 a
set age 0
2 d2 I1 O* k$ V' X2 v7 X) z face one-of neighbors4
7 {' Z" `( a3 f( A) `3 A set life-expectancy life-expectancy-min +
. Y, p6 D, g9 c* i$ b& p0 { random life-expectancy-max / K, S( D. {* \" W; K5 e
set metabolism 1 + random metabolism-up, W7 J: ~: T, ~: e) A; ~
set wealth metabolism + random 305 H6 X1 u% _6 l# y& o- ?
set vision 1 + random max-vision
; `3 f' f {: l; \end
& j( t1 t& y4 R( i! m) sto redistribution
+ V, S2 I7 H8 f: v) M) g0 Mlet max-wealth max [wealth] of turtles
4 [, [* s( Z6 t: Q% l1 Hlet min-wealth min [wealth] of turtles3 E9 E1 s1 y" i9 {2 y
if (wealth <= max-wealth / 3)
: ?$ t F9 B8 z5 I$ V ^4 |/ k [set wealth wealth + Low-income-protection ]
, @* Q' I8 Q% V' V' a' fend, k; _0 n9 T% k
# ^7 b. A# ?. q" ~ gto recolor-turtles- l. F- e0 j! k, K. N
let max-wealth max [wealth] of turtles/ M7 A6 |. ~' F# r* f. H
ask turtles
" o: v% u! M1 A/ L- F) v6 g [ ifelse (wealth <= max-wealth / 3). v7 Q# y5 A7 p: Q
[ set color red ]. I0 F% e& A R8 v- u! T
[ ifelse (wealth <= (max-wealth * 2 / 3))% s( p7 T; Y+ j8 d- W
[ set color yellow ]
9 H8 ~0 h( f! F( E! F) p [ set color green ] ] ]% p: U4 h# C& \/ J- U7 _
ask turtles [ifelse show-wealth?# g7 s( |$ ~% L; D: ?
[ set label wealth ]
1 }* B y$ J1 i( W" y7 p: X [ set label "" ]] [) G1 k) j* s* e
end% U! o: V( d1 c! n' _
6 S; x/ |, ]( r) V7 u5 x
to go
/ G- i, w/ e4 r8 e2 f ask turtles! B3 z% \/ ^; K8 |3 M
[ turn-towards-grain ] 3 c% |! M( X( d t
harvest$ i( W) `5 P; a" r$ C; ~6 _+ X4 T
ask turtles4 O0 d) G# _7 l4 P, O7 f
[ move-eat-age-die ]
, j9 ^8 a6 s% R; Z recolor-turtles
$ T) c: ~7 h# ^. D# _ if ticks mod grain-growth-interval = 04 o& I% R" h& @/ t9 A6 |& D
[ ask patches [ grow-grain ] ]
3 O4 A% V1 P# \8 m& b+ T
4 C- S' ~% H) a7 s1 b( Z! n- ^3 v if ticks mod 11 = 0/ N) ?% F: \' X
[ask turtles
( ^; @8 l( M6 D P, c; V [ redistribution ]], p- N% W# ^5 ^2 \3 E$ u' V, S
if ticks mod 5 = 0
6 c, Z" t) u1 R8 @ [ask turtles3 v6 A x3 h, v% S. a' [( M! ~
[ visions ]]
- ]6 H, T0 [7 p" G2 F l tick% Y x3 U' d; N4 ?5 Z
update-plots6 f" O( z4 Z" s& p
end8 E* E* a; k9 k. ?* S c0 B
to visions
( v& T2 D! D; \0 \ set vision vision + 1 8 v. Y3 g0 s! ~1 T0 A# C2 w v
end
8 }: t) g( T( f( ]( V w+ [3 c$ f3 {8 K1 l
9 o3 S* y1 J8 V. S
# g. i) c$ ?4 Y% `# Qto turn-towards-grain
, Z5 R% ~" O" ?. t set heading 0) z1 c$ _( ?8 p. ?2 n
let best-direction 0
! q! z" V- G0 u [ let best-amount grain-ahead, H5 ~5 \* V: m) j" b' [
set heading 90
5 ?: r0 U* Q0 _1 Z8 x/ z5 S if (grain-ahead > best-amount), I% c# O* w/ W4 V, }3 P
[ set best-direction 90
. [! e F+ k5 I, N. r8 q set best-amount grain-ahead ]
+ `# h0 c/ p/ u! m; E) `" } set heading 180 n, S* T5 F6 v0 n
if (grain-ahead > best-amount)
6 l+ n* V! Y0 M3 J1 v: y9 Y' W [ set best-direction 180
( Q2 \0 K6 f) t o$ n set best-amount grain-ahead ]
8 h( f+ `* K$ N% U2 m) i: s6 j4 Q set heading 270
% R5 K. I% I0 Y% q) R4 } if (grain-ahead > best-amount)1 H6 V8 e$ V6 D% A4 \ L' K
[ set best-direction 2701 O! V- {) x' ]0 q0 X; }/ @: S# |9 d
set best-amount grain-ahead ]3 k3 A: q4 e. {# s7 `) r7 O- l
set heading best-direction
7 M, _5 p0 }. u% A3 `' S2 m hend
7 D2 X/ k# v& s( {2 D$ \% d
+ f! B9 C$ j* B$ ?$ z
; n1 c2 G) U) Q3 k6 Y+ |to-report grain-ahead
* ^2 e5 H1 `8 b: v let total 0) Q! u5 O% Z. P, ]8 Q! N
let how-far 1: y! @2 M. ^$ Z$ ]( y) J1 x7 E
repeat vision- `& R# Z# @4 h x" ^. |
[ set total total + [grain-here] of patch-ahead how-far
: J& M% ^2 N# P1 D' ^+ t7 i* F set how-far how-far + 1 ]3 p& b6 t# d- {, b0 q( d* v
report total8 @2 D& e9 k' J: D/ b* Q$ Q5 N
end
4 y7 N- ] K; k4 M+ r4 X
/ e% u( T) [6 Z& B5 t& \2 j2 Dto grow-grain # ^$ k! ~/ V6 J1 `; Q
if (grain-here < max-grain-here)
6 i5 D) Y' m' B+ H3 z [ set grain-here grain-here + num-grain-grown, N4 o* u7 F2 \$ w3 h
if (grain-here > max-grain-here)
8 u, f8 h6 F6 V/ W6 _ [ set grain-here max-grain-here ]9 p: W M" X H5 F1 m7 e
recolor-patch ]: Z G+ }7 v$ h. s9 z
end
: c: y. \. B8 k8 ]+ M+ w. Cto harvest6 p0 |" q& m w
ask turtles2 V' d1 j" W9 e* M8 ?) ?6 ^( j
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
! w* P, Y, U* Q' N ask turtles! d- |0 P3 z# f) T. n
[ set grain-here 01 n6 T* c; N" r: Z9 s) I3 Q7 |% i
recolor-patch ]
1 u7 K9 Q0 R6 x$ z8 V7 q& O
" M4 P) A$ H* E. P2 G5 \+ }: _0 _end
8 w5 b9 k# k2 K5 H+ s1 R3 X. p
1 s2 Q+ W" \2 t$ Q; ] ^. j2 Ito move-eat-age-die 8 R( r ~4 l6 r3 U; P1 z k# O
fd 1
" e) y8 w# y9 M7 a2 a set wealth (wealth - metabolism)* |; \" ?, P% ~3 a
set age (age + 1)
& w- z( T% R, T1 m# W; f4 ] if (age >= life-expectancy)
: Y" G) c) F# Q+ L [ set-initial-turtle-vars-age ]$ J9 b' t+ N0 a7 v5 H
if (wealth < 0)' \5 N% e, w7 d9 i) g8 k: b: x
[ set-initial-turtle-vars-wealth ]
+ M/ q/ ?' K$ e* _0 q6 t
0 h' n+ b6 X& W' l1 }end
% c+ b2 {+ P5 k1 O S
" C( v, X/ q% c; Z& I" Q1 v; m j! Q6 T: }6 J, d' {
to setup-plots
_! _' y. V) H l& C% S2 C3 G0 z set-current-plot "Class Plot"2 x: c1 s; \% i, T
set-plot-y-range 0 num-people8 f \% p' e: b& C w
set-current-plot "Class Histogram"5 A3 r% Z [& u
set-plot-y-range 0 num-people
: s& z, a" ?) k [. Bend+ c3 f- `% Q3 O. v7 R% R
. n' h1 b5 @# ^' s
to update-plots
+ a3 a9 J% P2 B- T3 J8 l update-class-plot
5 C* H# C: E6 n' @- I& R update-class-histogram Z& u0 u* Y$ u9 @" e" u
update-lorenz-and-gini-plots
/ Q b/ a( ~3 m; @: v* gend9 k* x3 f! S, ?+ |5 [' _
H) X" I6 n* i% S: J, N& U* qto update-class-plot. t1 ? |$ \- j& a0 z9 F0 l9 _
set-current-plot "Class Plot"
. _/ i- W1 @$ C8 w set-current-plot-pen "low"9 i% H/ s, V7 V/ V5 l0 b/ M9 @; c
plot count turtles with [color = red]' @; H @( D+ T. Y; ]( X j
set-current-plot-pen "mid"; J7 P! d4 a& I% i; w$ V- ^
plot count turtles with [color = yellow]# I# ~. R# J9 `6 _ S
set-current-plot-pen "up"4 w( Z% M8 K; t( j8 B; |" n& {
plot count turtles with [color = green]
. @/ j" H) @0 x0 ` q- C9 \( ? S8 qend
/ y1 a) t7 t) S( R5 \- e( ^( H8 J. n* N1 v! B9 y
to update-class-histogram0 W: f& ?0 C1 q
set-current-plot "Class Histogram"% S1 |) ?" h/ X) r7 R
plot-pen-reset2 h8 o( t% v; Z5 B1 _4 i
set-plot-pen-color red. ?+ ^: o/ Q8 I+ E
plot count turtles with [color = red]( S4 ?8 z6 k U
set-plot-pen-color yellow
0 ~1 x, ~1 l+ u) K4 C2 z% x/ J" h3 X plot count turtles with [color = yellow]1 o" f: h! N$ s1 l* T3 s- h
set-plot-pen-color green
; d, Y: e9 u2 F& l$ S$ O9 D2 @% N plot count turtles with [color = green]6 N+ @& ]8 U; s- Q
end8 |% u% R6 j ?7 K; n
to update-lorenz-and-gini-plots. I2 x6 j7 J, C* _$ [4 Q
set-current-plot "Lorenz Curve"+ R( D4 `, Z/ M$ t" d
clear-plot" a( R2 x- n& F, O1 m/ J
: Y p# |/ R" J5 E' h5 k9 `. C. q
set-current-plot-pen "equal": l# v' F/ N- p9 X
plot 0
+ o; Q2 g6 p- ^ plot 100; `5 c3 w1 Q2 }& A; L6 V# q
! _: S0 A1 {9 y3 _ set-current-plot-pen "lorenz"3 E1 D" U$ e f+ _! Q3 n7 @
set-plot-pen-interval 100 / num-people% b9 r( p3 D* q5 u* j9 J; ]$ [8 l
plot 0
5 Q O% v/ l* y; O0 f. W5 {: F7 v6 B& R
let sorted-wealths sort [wealth] of turtles' }. y: D3 D3 R: y5 z a
let total-wealth sum sorted-wealths
3 J3 K. T- l6 d$ l let wealth-sum-so-far 0! a! w( r8 ^1 K& d1 i& ]
let index 0
( o r. |9 [% J w3 J let gini-index-reserve 0
. S+ h; y! V5 _- I" l: j% I+ x; X5 l7 x8 n" H) N
repeat num-people [
( u3 P+ D$ u5 {& A+ j; A4 F set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
! x5 v2 t$ r: P: l plot (wealth-sum-so-far / total-wealth) * 100
2 B' u9 m! v: g set index (index + 1)+ ]6 K% p7 l& _" o. v" O
set gini-index-reserve2 T3 |: N0 s/ }( f
gini-index-reserve +/ P+ }( x F/ g! f: s% Q) a, }
(index / num-people) -9 c( c6 Q; h; Q) Z# Z. S. w
(wealth-sum-so-far / total-wealth)
6 w5 U5 g. k7 T: {+ @6 k ]4 P7 v2 w" Z' n! B! g: Q$ D7 n8 P
+ k; ] d$ o& Q& @4 p. y
set-current-plot "Gini-Index v. Time"
0 ~- V0 h( b* S+ @' _ plot (gini-index-reserve / num-people) / area-of-equality-triangle
8 T1 i- x# K0 ~& E) h3 Tend1 C% E7 R: ~- O4 S
to-report area-of-equality-triangle! ?0 V0 g% C9 ~7 ~
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)! J' k/ ^3 t9 C6 Q
end |