请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
) ]9 {, {1 ]% @3 u* Q% Lglobals
' \% _8 t2 Q1 D) U/ l5 |$ B[
4 P3 g+ m! v4 _% L max-grain 3 m$ V* ^$ r' x5 D Q8 X
$ @0 |9 T1 G" h
]8 M8 A* r7 O5 ]9 y; P9 v. ]$ I
& |9 l- |6 f( f3 K# E
patches-own
6 G4 h. t; v D[! X, Q2 N3 L) W. g( v
grain-here
e8 G7 a7 m- P0 U% a* Q max-grain-here ( J/ u& |: z) g8 q+ @
]8 h7 A; | A3 Q) F, {6 |5 w
" \3 y$ f+ e+ \+ o W1 Y }2 E# _
turtles-own
! t0 [6 `( S2 }0 n' w/ y[3 C1 q. T$ e1 n, H+ u* \! \
age / U/ C& t d) ]! J# F
wealth " D/ @8 @0 {6 g: d$ R9 Q+ _7 v# p
life-expectancy
# G; \1 u4 o: _5 k8 `. s5 ?# z6 ~5 E- ` metabolism
+ |$ b7 Y$ ?# f9 b K: P$ ` vision
$ [' r0 o, x+ q3 n; h inherited + {7 k$ n/ _ Q( @, R1 U
]8 \6 @: i' [# l8 A
3 @3 e5 `) w! t' w1 G
# I; [% p8 t. N1 c- b( X- ]
to setup
$ ^3 p; n3 `+ _- s ca
0 N; @, M* c2 i! u6 m! |" |: Z set max-grain 50" D6 _% t$ D: g- \7 E8 w2 N- J" ^+ O
setup-patches7 L* Q W$ A+ R/ l
setup-turtles
* c- k. d6 n7 \; j+ f+ \/ G setup-plots0 Y* T9 g% K+ X) J% A# p5 m
update-plots6 t0 |3 ]7 i/ e( W {: {. t$ y0 J. q
end
$ a( k6 d% l; gto setup-patches6 F3 S! U0 B" _8 G
ask patches# _/ A1 T4 e D/ R
[ set max-grain-here 09 u" o/ M7 R. m/ h$ c8 {) g3 H
if (random-float 100.0) <= percent-best-land. n7 G& J" |, T+ X7 S
[ set max-grain-here max-grain4 |& P4 t+ G! L) {0 n
set grain-here max-grain-here ] ]8 u) T8 U. v+ R! ^
repeat 5: d$ _5 Q0 A, E8 F- S! j1 M
[ ask patches with [max-grain-here != 0]
* B% o0 k/ Z6 A3 v. [9 J z [ set grain-here max-grain-here ]
. v1 o3 d. W( t diffuse grain-here 0.5 ]
& t8 C3 G6 J. @) ~7 @: `& A6 e! [ repeat 10* A6 {! l# ~7 l
[ diffuse grain-here 0.5] / B& S1 G+ \; U; O
ask patches
& g7 y% F* w2 N2 p: Y [ set grain-here floor grain-here 6 Q. ~8 s) j' v/ C& r+ ?6 S
set max-grain-here grain-here
" f3 [) ?2 Q% H# o" C0 u% \' V recolor-patch ]
% j6 }& ^9 h' @# Z* Gend L0 c# I# _6 J& G) U
to recolor-patch
9 \6 {2 D& W+ z- R set pcolor scale-color sky grain-here 0 max-grain
- H M" {! i' w8 ] tend
# Z8 i4 h0 N! Z2 Lto setup-turtles. K# X, G% P' U2 c
set-default-shape turtles "person"
, r1 @ u" V4 g* O+ J! K! B% d crt num-people0 u3 @, R5 i# O" d9 e& n; q' M
[ move-to one-of patches
7 A: I$ K8 r D- e2 }3 L" Q set size 1.5
6 c9 _: ~- s9 a* H/ j+ A: H6 O set-initial-turtle-vars-age+ }6 [" x* g8 g+ T9 y" q& R
set-initial-turtle-vars-wealth
; i1 A' H C0 g" Z set age random life-expectancy ]1 @, N& _8 i+ G' a
recolor-turtles
7 t! f! u! {8 X P' C) J+ L2 Q/ o- \end% @8 j5 l+ t2 Y' d
* l1 z" y( v. \5 x9 V8 Pto set-initial-turtle-vars-age* U6 c/ h. l) I. P: s6 T" j
let max-wealth max [wealth] of turtles
5 g4 l. h% u" l, k& p& q
( M+ r" P3 I5 f0 J2 D8 ? ifelse (wealth <= max-wealth / 3)+ N* S- b- \ N7 b
[ set color red 8 v& W" Q6 u. Y Y* t
set age 00 k, @+ {4 o/ r6 c# y9 E: S
face one-of neighbors4
1 \% ]% `3 ?! r+ J$ `+ U set life-expectancy life-expectancy-min +& S7 l+ E. h6 n* l1 ^$ I% N( a) I" @
random life-expectancy-max
Q2 K4 \9 S7 U6 B3 W6 c, \ set metabolism random 1 + metabolism-low2 f1 L' a& O) D& v' G
set wealth metabolism + random 30
9 l, e& F8 U. N set vision 1 + random max-vision0 q$ j2 ], c1 Y6 K
set wealth wealth + Wealth-inherited-low ]
! s3 ?$ u1 r, a: ^* n5 [ [ ifelse (wealth <= (max-wealth * 2 / 3))
, K L9 s7 K7 ` [ set color yellow
8 L) m, c; T! {& O! @ set age 0
0 K0 c( f0 `: A) F" h/ R face one-of neighbors4
' |" u% r4 B: M" R set life-expectancy life-expectancy-min +1 M0 }9 F! d1 v
random life-expectancy-max + 11 E7 _1 d$ B8 Q5 V- y
set metabolism 1 + random metabolism-mid
# W6 E1 O* D4 T6 D set wealth metabolism + random 30
+ w& R2 e" D6 S, K7 e set vision 3 + random max-vision
- h1 Z; L1 ~7 m% V set wealth wealth + Wealth-inherited-mid]8 P" y) K; A8 ?
[ set color green
# [/ U J+ g, g5 @+ E set age 0
/ E6 D8 W/ U" l: g! S face one-of neighbors4
- O! a% f( d) D3 F" S5 s set life-expectancy life-expectancy-min +) Q# D& _6 Y5 \$ u- H
random life-expectancy-max + 2
+ d; M( d3 p/ X6 x9 C set metabolism 2 + random metabolism-up8 o7 H/ R9 { {
set wealth metabolism + random 300 O1 X6 x: D% p6 k& d2 | ^7 N
set vision 3 + random max-vision* L6 m! L! a: t+ x6 g: v
set wealth wealth + Wealth-inherited-up ] ]
# O# t+ Z: j7 v8 s4 p% W6 L7 h
, n: ^9 q0 C2 G3 u0 d4 @- ^end) [9 z$ T) k, G
to set-initial-turtle-vars-wealth
" {, u+ v2 G2 e( e3 V$ {7 p/ U# N let max-wealth max [wealth] of turtles
$ s( a# ]: w0 s! Q6 o set age 07 N5 Y) |* F3 t% k
face one-of neighbors4 # Q! Z3 o# w+ Y |4 K
set life-expectancy life-expectancy-min +: I2 t: ?. a1 P2 _, i& V& _/ b( K
random life-expectancy-max 1 Y( r S8 U/ ?8 |4 l
set metabolism 1 + random metabolism-up# }- E5 F' r0 h) V+ U
set wealth metabolism + random 30
+ I& a- X7 v0 Y5 ` set vision 1 + random max-vision
f- O! x% v" q0 Gend/ g, t9 e, @8 w! C( v1 t
to redistribution
) g# W1 H2 b; y: o4 t2 klet max-wealth max [wealth] of turtles
% E4 z8 I( [; r3 N; r6 glet min-wealth min [wealth] of turtles
( _2 G; N$ i( b7 cif (wealth <= max-wealth / 3)
7 `4 z: D6 m; ~0 M+ O. s0 U% E [set wealth wealth + Low-income-protection ]
# Y( F' Q @; ] h" r' a4 T" Qend
2 y/ e7 P( F" x9 `: T2 E& d2 F
% Z; q3 w- [2 zto recolor-turtles
3 Q, r4 o2 `" b! H let max-wealth max [wealth] of turtles
# e `- t1 D* n8 p6 L8 C; X ask turtles
5 g# w# }+ |. o4 M9 F [ ifelse (wealth <= max-wealth / 3)' r5 u" o9 C; Q6 `
[ set color red ]
5 T9 x5 p0 @, M+ j! K3 U [ ifelse (wealth <= (max-wealth * 2 / 3))1 J3 t) a8 C G' C. A N" p
[ set color yellow ]
( C; B( h8 O0 _6 P, L [ set color green ] ] ]6 w2 @+ d4 s* ]5 N4 W; n$ L$ ^; Y
ask turtles [ifelse show-wealth?% z. Y) ]* d1 B0 Q
[ set label wealth ]
: x, w* \3 T; p [ set label "" ]]. m' E, p$ t3 l* r6 p, b
end
6 f( S8 X* A, D$ @: D8 `5 J7 |# H$ o, ]5 M9 s
to go
+ M! g* n/ s6 k9 ]1 w9 J ask turtles
8 Y$ P- s$ ?& {6 J2 G [ turn-towards-grain ]
1 l. C; j: \- n& [* @, H2 g6 v. ]6 K harvest
" p/ P' K) J. J5 H! ^9 y% }: d ask turtles
( @3 d8 b0 C& O [ move-eat-age-die ]
6 ], W9 F$ P4 F5 @ recolor-turtles
2 A; Z7 t% ~$ e9 h4 E* p if ticks mod grain-growth-interval = 0! h: I" g3 ]. Y/ G9 u
[ ask patches [ grow-grain ] ]4 o$ l4 m, J4 T" e5 d0 ^+ Y
! e9 n2 g3 r1 {; L+ T+ t if ticks mod 11 = 0
* l2 R9 E7 P; q( N3 c+ N [ask turtles
7 H& n- v4 `3 g4 m3 ^ P( h& F [ redistribution ]]& H9 t, e$ C1 {3 e: I1 F; f
if ticks mod 5 = 0
" g7 N" E. K- m$ c [ask turtles
$ ?% B3 i! r/ H/ c" d5 [& x0 {- H [ visions ]]; J* o8 A3 I8 J4 n4 ] _* P! _1 B
tick; d/ s, J; x% {0 S6 H
update-plots
4 Q) O" d3 O/ i* O" d3 Y# D" zend& T5 b6 P2 D" ]! a8 ~
to visions
8 R) F# v# s4 q3 j. |# K# j$ H5 a( ~ set vision vision + 1 # o7 c4 w8 C. ?0 n5 }
end
3 {; |- s6 @1 p2 h* W+ w( T
/ S3 a4 `6 T# l. a
* l5 }+ ~# ?& g2 w& g* C( |" i# y: N% u; r. j
to turn-towards-grain
( i6 C, m9 E' y: ^- C set heading 05 ]8 {. m) J) L1 z
let best-direction 0
4 g1 E" ?4 H! f0 U" ? let best-amount grain-ahead
, H, \/ E; W8 m9 H* R set heading 90- s' J4 U$ _; {2 R5 V6 [
if (grain-ahead > best-amount)# w, ]5 G0 Y$ [2 P
[ set best-direction 90
5 F/ F$ _ J+ ^ set best-amount grain-ahead ]4 D" \* F/ r7 L4 a2 V8 P3 H# o
set heading 180
) O7 ?" s) N8 X, {7 T) V% O if (grain-ahead > best-amount)
$ u/ g( E5 N1 f- V8 V' K5 k [ set best-direction 180$ I0 V2 M- h+ o* [& g3 x+ V y6 D
set best-amount grain-ahead ]
5 a2 T9 R a5 p+ d set heading 270% Z' p* f9 o: e0 }+ F; Y5 {
if (grain-ahead > best-amount)' m, x% K3 w) ^" i0 d" g/ U
[ set best-direction 270' W( w) y' ?" e$ O, J4 r) V' A
set best-amount grain-ahead ]
. z$ h- Z, ^! r' n1 j. V8 o- ] set heading best-direction
5 r5 u: s( W; T, Wend
- ^ K8 l+ f# F& N4 w3 O$ V' w. f$ H/ \) S! N
) r# x1 A' L2 Q) }& Rto-report grain-ahead
# m) U+ P1 I5 a0 W/ L# Z let total 0
4 e! }. o- C: j let how-far 12 @. t& m: l* k0 g2 W4 U1 p
repeat vision
9 M. L, u) _4 I, I; R! h4 b6 c [ set total total + [grain-here] of patch-ahead how-far
" P9 j& ]( o% u1 S% H# V3 O! z set how-far how-far + 1 ]
, V' n) i2 d- `/ G2 |6 e$ K) E# t* j report total
( }% |5 ^/ B6 I9 Tend$ P- ?8 g# t( l2 I: G% {' i
1 B# R& u5 o" l# nto grow-grain / Z9 A/ p' @& k5 v
if (grain-here < max-grain-here)5 z" {0 L, [9 ^# @& |
[ set grain-here grain-here + num-grain-grown/ F7 K+ F9 Q5 I/ }% ?
if (grain-here > max-grain-here) 2 S" [* `) F5 a) Z
[ set grain-here max-grain-here ]' s& s$ W( G% ^* e T: n: I
recolor-patch ]
! w: ^" g- c+ v6 Dend9 a) F' C6 ^- o5 `5 e9 |$ J
to harvest/ D* }8 g$ ]. K, |) e
ask turtles
( u: K' v; { ]& e* w+ B7 W [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]$ K5 ~& t8 A/ J4 C+ g3 i+ F
ask turtles4 N* d2 R T* P
[ set grain-here 0
: S- H/ q- r) Y3 y" X3 n* T$ U5 I* b recolor-patch ] R! Y8 C$ m, f! ^
; j* d! T& V# {7 _# p: `end/ q0 w5 a- _" u
# `2 R% }* l* Tto move-eat-age-die
) M8 p4 \- G* ]" v( q, J: V fd 1
/ e' j% r& {$ Q; C, V1 J) n0 K set wealth (wealth - metabolism)
& z. i; X8 x1 n. K; j" @ set age (age + 1)
1 N0 ~( h- O: M w if (age >= life-expectancy)
3 O6 {5 k" W& [2 J3 t0 Z$ h [ set-initial-turtle-vars-age ]
( u, I. Y$ K. g- {; P. [1 s if (wealth < 0). | A% d" _* i' @& D& h) h" n* k
[ set-initial-turtle-vars-wealth ]
, i% w D* {/ X9 I / v9 ^6 E. ~8 J j0 \
end/ {% s" W# s3 f
& ^. ?) R1 _: o1 h, p4 A- e. {2 f
& q7 M# q) S# S M# [, Qto setup-plots5 L+ D! u, n" a- m/ x
set-current-plot "Class Plot"
: ?* G$ H! N9 I! Z: _1 `( [ set-plot-y-range 0 num-people
, J3 E" E' U4 y3 O0 i1 k set-current-plot "Class Histogram"6 w+ z V9 q/ l$ v# | t. Q
set-plot-y-range 0 num-people/ M$ F/ R) c, L6 g& |( i
end
& G* R; E, u! k& _4 z9 P
, J. m3 R, e$ x! d8 C! Rto update-plots# ^: |- D7 ~1 g' d* I
update-class-plot
1 g3 L" \0 _5 ?4 R update-class-histogram
' m; ?1 g5 Y" }! |2 ^ update-lorenz-and-gini-plots* C3 m! z; T+ s' o# j9 p( e' ]
end( O- N6 z+ X1 V+ P) e% p; B" R
& _5 c/ ^2 `; M9 K7 ?- f7 jto update-class-plot
! ^ ^& `1 j& m set-current-plot "Class Plot"
$ f" J" ~& I. D8 m O2 I* \4 y set-current-plot-pen "low"
( [: g! j" o* P2 U2 ^/ |9 Q plot count turtles with [color = red]
) \, N" I0 Y" I( O- _/ k: P set-current-plot-pen "mid"
" S7 O: A/ c5 v0 Z5 Z' R plot count turtles with [color = yellow]- u3 M+ \. ?, e0 ?) c' `- H% @
set-current-plot-pen "up"% A4 X2 L( m' i" E( R) ]
plot count turtles with [color = green]( e4 S1 i6 X! z( \2 W7 U
end
9 @) y" l5 Y4 S% z9 l( f) C; ?! M' ^
to update-class-histogram* S9 W/ I8 O1 X" p
set-current-plot "Class Histogram"( g' Y$ ^9 A" ] F7 _- W
plot-pen-reset
# G( m5 }' Q9 l0 y. A set-plot-pen-color red/ X; E7 R2 p9 W" H8 s: m2 G: v
plot count turtles with [color = red]0 k# M" H9 P6 c0 T
set-plot-pen-color yellow. y9 U2 k) x0 k; M9 |8 h S- p
plot count turtles with [color = yellow]9 D$ ?6 `! U4 J
set-plot-pen-color green/ G$ e) b) R+ [5 k
plot count turtles with [color = green]3 y/ P9 u E8 U+ x( O7 `
end
1 ?: D. \+ O+ U4 r8 F0 dto update-lorenz-and-gini-plots
5 k% }+ I# m/ Z2 F; p2 U; r set-current-plot "Lorenz Curve"# m) h! P$ c# V; D/ h/ v: ~5 ~
clear-plot! P8 T& H) W2 {: z, R) F* ^
4 ?) ~1 f6 M0 I: s d
set-current-plot-pen "equal") h8 l! x- q, L6 ]
plot 0 x5 `" [1 G) {- c* W
plot 1007 ]+ Z1 c" m* U7 H
7 p. }6 j( y" ?- s) A
set-current-plot-pen "lorenz"
" [9 g/ m, z0 ^( x set-plot-pen-interval 100 / num-people8 Y& c, x: L4 h3 }7 i
plot 09 {. T5 r" ?# u! ~' G
. X7 x, n+ v4 w' Z
let sorted-wealths sort [wealth] of turtles' g4 a. D8 v! C( y0 @
let total-wealth sum sorted-wealths& i& ?+ K3 n7 P+ c# W# T& \
let wealth-sum-so-far 0
8 P& V5 S+ o+ f- Z! R: X let index 0# M! W! m7 o5 H2 K& _8 d6 \
let gini-index-reserve 08 t8 w% m9 w) @' S4 u
A9 C/ t2 A# I9 D1 E repeat num-people [
$ ~" q( N) _, U* x) i set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
- ?7 `5 S5 h7 X' b6 b plot (wealth-sum-so-far / total-wealth) * 100
8 U5 r% _9 I1 t }- J2 b set index (index + 1)
$ h; h: ^5 d$ w s& G5 i set gini-index-reserve
* f' K8 ~! O% _( L0 t2 Q* `$ v gini-index-reserve +, U: k& ]# h+ a7 U
(index / num-people) -
V; M$ C; F% m* z8 u (wealth-sum-so-far / total-wealth)
: x. p# Z" F( ]/ v ]
4 Q* P0 E2 i) T" [ J8 S
& B, e. z) {) _/ Y set-current-plot "Gini-Index v. Time"6 \- C: h" s; j) b( b3 ?
plot (gini-index-reserve / num-people) / area-of-equality-triangle
1 ]( B5 G8 Y1 ^! {end
: A i6 y- k6 i ]. {5 Zto-report area-of-equality-triangle
* k" [: S( o. B1 d report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
0 c8 S* m1 z5 l( x' Yend |