请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
- c, `( F9 ^; l; N1 rglobals
6 B5 t; C% s9 G, Y- S[
/ @( O' |& D, T1 L+ W" r max-grain
; f2 }- X/ C( J& y: s: \' m
1 P( J( t& S7 ~: N4 H/ b]
! d8 ]+ `1 M# X
3 r; ^; ]: j/ }6 qpatches-own
7 j) N; k- p+ o1 e) W; f }[
8 p' i" K' y. r6 \4 m0 Q6 v% j. k, Q grain-here 7 r; C0 G4 D" k, E
max-grain-here 3 {) D: B/ X; b+ w" W- q$ F
]
F+ g/ ?. ]/ q. j
- S+ M7 g1 E) U6 i# Q: yturtles-own
! s( R" r, v* W0 {# i/ h4 |[; O# N$ ?" L. C" i
age
) K* K, j* o- S! J wealth
) |0 L' ]) [+ ], k1 z* g: Q life-expectancy 4 u; l; r, M& |# L8 n$ U; D
metabolism 6 m4 H2 C/ b& n
vision2 R O: ^; h" I2 c: Z# x
inherited - K/ p# {0 t& o: o( C7 n% L4 R- G
]% ~' Y7 E) W, ]* [
: F5 d; Z5 ~8 H% O F/ s
7 N* f" D& I3 V4 r$ A
to setup
, x0 V" A8 ~ W; k9 D3 H, u ca* m. y: a* {2 p- u$ ^7 m8 I- I; _
set max-grain 50 W. m5 U% H c& r, e
setup-patches
) K# E- x; r* c6 I2 g; ? setup-turtles
7 S# w/ Q/ c1 d, L# } setup-plots8 R9 B0 M& E0 t- {
update-plots8 l) U5 D7 N; `8 l, i: K4 A
end
: W' E4 J8 U/ Nto setup-patches/ N2 S5 j4 v- }. [
ask patches
8 s0 c) o8 n; Z n0 F [ set max-grain-here 0% P5 K8 i# g, Y4 [2 E- Z/ \4 Z
if (random-float 100.0) <= percent-best-land; U7 c4 @: e1 ^1 s9 n/ _& k
[ set max-grain-here max-grain
[4 q- S. r+ i# Q; n& v set grain-here max-grain-here ] ]( J. j+ l& B$ n) f* p" M- i# A
repeat 5
) S: [( \& g2 m7 ^ [ ask patches with [max-grain-here != 0]6 c* C: q9 A0 V2 _8 |. F9 `8 V4 @1 h% u
[ set grain-here max-grain-here ]
* a0 f) _" U8 Q3 h+ p* z diffuse grain-here 0.5 ]( S" Y) m- w4 J' \6 R
repeat 10
) |8 b# `6 I. I3 L2 F5 l [ diffuse grain-here 0.5] ! n3 N$ c: g# ^9 ^& I% w1 X' |
ask patches3 Y6 K+ g" J- |" y
[ set grain-here floor grain-here 7 C( Q6 p% s4 e! ^* C1 p/ D, m
set max-grain-here grain-here - c; R# M. n# _! [) f) [
recolor-patch ]: D0 V: D! _9 ~" m
end
4 h) R0 N# j0 H7 Eto recolor-patch
) r# r( s9 q' _* t" \7 q! Q, T6 d set pcolor scale-color sky grain-here 0 max-grain& `- z* f. o ~4 A8 W& G) I5 T
end
. d2 T, k! J: t2 M+ X! ~( t: Fto setup-turtles
4 f& @- j$ n; W$ Q0 e/ }2 H- d3 K set-default-shape turtles "person"
9 b( M2 X6 Z% b; o$ O: A crt num-people# t; ~+ w$ s2 p' h$ Q* C
[ move-to one-of patches $ S a, p# R2 j& C' C' U/ X
set size 1.5
! s, s) M5 b1 a! R+ I$ u( A# ^ set-initial-turtle-vars-age
' v6 {& Z7 r; o7 g- z9 ]! m set-initial-turtle-vars-wealth. a5 w L& \0 L3 n. b |
set age random life-expectancy ]1 b7 d$ i7 B+ f( |" T: ?
recolor-turtles
2 v& N1 ~- }7 vend7 C- j- @: H1 H# j+ M
- U6 N0 }* ~( ?- \( \1 |6 e7 Gto set-initial-turtle-vars-age
: I' L) T' d0 p) ? let max-wealth max [wealth] of turtles( V. B9 A- ~& k. A; y
" b- [3 b% _; _. Q- } ifelse (wealth <= max-wealth / 3)
8 j' l# g+ c! V. q. a5 m [ set color red * \9 B. y+ s* W O6 x4 ~
set age 0
/ ?% Z; U7 q6 H face one-of neighbors4 & F) W1 p2 s& c7 Y- ]
set life-expectancy life-expectancy-min +
: h' W$ o. s) h2 e, _8 b random life-expectancy-max # C2 {2 e, ~2 j# A+ k$ @
set metabolism random 1 + metabolism-low
! \/ i. e# E! q/ e/ l: H/ \, t set wealth metabolism + random 30/ j q% l" R+ m! e4 q) \& S1 _
set vision 1 + random max-vision
& X) S, [# H# H+ o set wealth wealth + Wealth-inherited-low ]
9 E: P: w$ H& {1 u* w* @* h [ ifelse (wealth <= (max-wealth * 2 / 3))- A6 d/ |) Q# o
[ set color yellow
: K$ P! D, x2 s1 [5 M) P set age 0
8 a# C1 P9 V" A* y1 G8 t face one-of neighbors4
@; j& S- z/ E6 x8 [ set life-expectancy life-expectancy-min +: h* i+ s- I1 T0 S( C
random life-expectancy-max + 1
/ k1 l% k) J+ v4 W& q+ ~# @: z set metabolism 1 + random metabolism-mid: U$ l! |: \- U
set wealth metabolism + random 307 Q( H6 @6 ]0 X. Z; G- c
set vision 3 + random max-vision. i6 b3 W+ H E& _( P
set wealth wealth + Wealth-inherited-mid]
: l' K9 R T# o9 r! Z; ] [ set color green
$ _3 Y1 m' v% S' B' { set age 0( o. A8 A% j( o- }6 A
face one-of neighbors4
8 k w( T6 g% l$ g set life-expectancy life-expectancy-min +
; Y5 J8 D- P) W; k+ D random life-expectancy-max + 2( j3 q3 h5 M2 l2 f; l% ?7 n
set metabolism 2 + random metabolism-up7 w$ t4 Q6 w$ h3 Y0 g
set wealth metabolism + random 305 c- @0 t! N. C0 u
set vision 3 + random max-vision
/ L1 [% r; q! m0 v set wealth wealth + Wealth-inherited-up ] ] ! [) S/ `& S' h; e# l; g+ t3 Y3 _
. ~# y( S( O% ^& U/ D2 p- a3 N6 O
end! K& D! g8 _$ l
to set-initial-turtle-vars-wealth9 c5 l1 D, E4 \) ]0 N9 U" E
let max-wealth max [wealth] of turtles# A% w; \! |( _6 ^: [
set age 0
8 k% S# l% [$ ^; \ face one-of neighbors4
' f! @& E7 R% X. t# V1 J. P set life-expectancy life-expectancy-min +
, v* V; L% ?* u' v$ P random life-expectancy-max $ s H. e; T/ B3 @' ?" n
set metabolism 1 + random metabolism-up/ w% u0 g3 r+ ?, f- F
set wealth metabolism + random 30; k: \8 \. L" K( }7 e5 a
set vision 1 + random max-vision
7 ~; w( _& \4 m0 A# I! k( f7 zend
; a' |7 e3 n: Ito redistribution
% Q$ x: i' }5 Y$ B, F5 u' Vlet max-wealth max [wealth] of turtles
8 e1 R/ ]8 q) b$ R( k7 p: tlet min-wealth min [wealth] of turtles" w: m4 h& s9 e, H/ I* K' i" E
if (wealth <= max-wealth / 3)9 T1 {0 e$ e9 ?0 _
[set wealth wealth + Low-income-protection ]
O0 R4 c% E' O4 g4 r6 Y4 _. \end
0 P, x* x! G: I2 R - e. Q% N+ d' l5 ^9 z. t
to recolor-turtles
" @4 {( E1 @# i; M0 P2 U let max-wealth max [wealth] of turtles
; u$ c3 V6 E4 Y ask turtles; P0 _- Q* q& v
[ ifelse (wealth <= max-wealth / 3)
5 a6 |0 u# }" v C# L: P$ U; O [ set color red ]+ I( o8 @6 k9 _; O A3 w8 C
[ ifelse (wealth <= (max-wealth * 2 / 3))
8 g/ e2 u+ g! \ [ set color yellow ]: m; X0 c: Z5 e
[ set color green ] ] ]5 f3 e T$ {$ \) K% K( Y. E: V
ask turtles [ifelse show-wealth?
' L/ R0 l' k; h& s$ l- } [ set label wealth ]
* P+ t) i, ^9 f( O [ set label "" ]]
3 S3 j* H; l7 n2 |5 Pend: b& |8 P- I* O( |
" ^$ ]- D& N; |7 q1 a# u
to go
. H8 b, w# s# T; I( y ask turtles
8 A1 I* i; o# W' s: T8 a [ turn-towards-grain ]
- K9 C+ ^: _3 y- z3 v harvest3 ?; P* `8 g9 K: ~% {
ask turtles$ ~' H( r* G4 v* e
[ move-eat-age-die ]
2 Z; G+ }7 s& a recolor-turtles- d1 E2 }. g5 a s8 I+ R- p
if ticks mod grain-growth-interval = 0
: _8 I& A8 T( O1 S5 I5 T% N [ ask patches [ grow-grain ] ]; \, p [8 k9 Q& U) |
- `& U3 x$ e8 m0 E1 o5 P$ s
if ticks mod 11 = 0. j( e8 k) p4 w' }: ~8 L
[ask turtles
$ N( o! ]0 E2 T- M* D [ redistribution ]]; Z [3 g4 g; O1 [/ c3 m
if ticks mod 5 = 07 l, j6 T6 ~# P
[ask turtles
( d; U$ }9 r; y3 ?/ d8 c, c [ visions ]]
' r6 O) Y a! D6 x- R tick& r9 W" a2 s: Z3 T! c. |- K
update-plots$ e1 X3 J/ J5 R! d8 F+ S% I; o- ?
end" Y1 [: H8 y4 k( ? K
to visions
2 ?, H1 Y/ c3 H* B- X. X set vision vision + 1
2 f2 J4 n) d, }2 ~3 m, F7 Yend
+ m- ]0 N0 s$ j- i/ q5 J
! t- O9 D O$ D) ]3 X+ G8 H
' i7 H4 j0 k- ^+ R8 G1 z
" J* P8 o* H6 q& ~1 ]to turn-towards-grain 4 O- K N' A2 e; K
set heading 0
1 j0 ]4 L% J& \# v1 o& x& e1 Q! r let best-direction 0- m. G* k* ?* u" d n7 n" F3 O
let best-amount grain-ahead& t9 ~" Q% W4 i8 h+ j# E
set heading 90 q5 H+ P, X7 v" j
if (grain-ahead > best-amount)
* Z4 T' U( \/ O, O) C( Q* d( b [ set best-direction 90
! `/ v( J# S" }2 e0 C& {" v set best-amount grain-ahead ]' B3 L- d; T2 Y5 k1 y' ~
set heading 180 w0 p' f1 V$ H" x1 W
if (grain-ahead > best-amount)/ l$ H" w! Q* q: N1 |/ v
[ set best-direction 180
6 r; t! ^: W) y$ ], Y2 ^" n set best-amount grain-ahead ]- [+ ]) V7 M* i" L8 e/ C1 L
set heading 270
3 C9 \& K) C1 D& Y* h: Q if (grain-ahead > best-amount)9 J7 X8 n- n2 C' D3 |6 n
[ set best-direction 270
4 ^3 G5 ^/ h' G$ h set best-amount grain-ahead ]
5 s0 Y' b4 I1 |" r( E! P set heading best-direction
+ K; i2 i# e0 M- r$ _3 d1 @( e* B7 Tend
& U1 Q% Y; c6 u/ Z
- X+ U8 H( K2 G& U
3 T: j* h* v: x. e4 Q$ t1 ~to-report grain-ahead
6 e) o. W$ v/ s9 i: B5 W" h% S let total 0
* o* y7 j! |5 S: E let how-far 1
6 \" i1 ^4 O* B a) [ repeat vision
- a6 x4 `( r; n$ G [ set total total + [grain-here] of patch-ahead how-far
9 O3 L# M$ V8 z& V: y set how-far how-far + 1 ]
0 K! b- l! Z5 ^* T6 |6 R report total
8 A5 w' a( W$ ~' r; }4 M1 wend
+ }6 @ `* b& j- h. y* i* _. U" z8 g9 {: k" |
to grow-grain ) g+ L8 w+ ~. p/ a6 Z) F
if (grain-here < max-grain-here)
3 {2 \8 ]* u6 J: a/ |: X [ set grain-here grain-here + num-grain-grown' \4 w7 P1 o% z; |8 L" [
if (grain-here > max-grain-here) ; e8 s8 K, v$ i' o+ k: t
[ set grain-here max-grain-here ]
. T6 L3 r8 Y, c: p( Z* _ recolor-patch ]# v3 T/ S" Z9 T" n; O
end% N* n& _ ]7 Q3 t- n6 o& i1 W
to harvest
3 E3 b5 o8 A! V6 i7 t5 q ask turtles
- l; j6 y: E% j [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]6 O9 {# N5 f- _3 Z
ask turtles
8 o' e' {* K4 R! x* P2 _ [ set grain-here 0
- H0 h! R p# ^( `5 s recolor-patch ]
7 m! S7 [! \; L# X- f
6 ~% [# w) k* \# T/ z, d8 pend
- i+ X+ T! \- i6 p
9 l$ M! F4 s* _3 C/ Hto move-eat-age-die
, r; M- X9 D; K6 F6 U) I: d fd 14 `6 o; a" ], Z( X; m z6 ^
set wealth (wealth - metabolism)
- Y7 a4 E7 {: i* Q set age (age + 1)
. z# l& J1 v- y3 p& l if (age >= life-expectancy)
+ c7 P, j/ N! w9 U0 _. l% Y5 r [ set-initial-turtle-vars-age ]
! f7 t% B7 f# [2 Z if (wealth < 0)! |1 A: d9 h1 O* Y. }* h! K+ L
[ set-initial-turtle-vars-wealth ]
6 ?: k( x" _, [
% h* f$ Q+ H% K9 u& Gend
1 C3 F7 D# Z& h$ [7 i8 g9 R. F1 n( @2 V0 N e* V9 x: y8 T
$ f! I4 ^5 f& c4 Q7 [to setup-plots
. v, j/ E2 j& T8 v# Z+ `) u set-current-plot "Class Plot") W) x8 n" B9 y6 V7 g
set-plot-y-range 0 num-people6 h. e( w, X' p# M# F2 f* U3 c
set-current-plot "Class Histogram"
: k* r7 s& S" A5 y+ U set-plot-y-range 0 num-people
8 V( K6 w, i5 B$ y0 s1 Uend7 w: D2 _; y1 m/ W* l
4 H9 r7 c8 ~: O) J* m( N
to update-plots
, V* I0 j# w9 Z' Z! R8 z, m update-class-plot
6 S( E! }0 N, q9 t6 V update-class-histogram
" X# j& Z& D9 [4 `5 X( @ update-lorenz-and-gini-plots
: h' ~+ Q" A! X. `- l/ x- A. tend; B! U8 x# B$ @2 q; l
q! o( {2 F! H* \- S: {to update-class-plot. d4 B9 m5 w$ B. D! _, g5 s
set-current-plot "Class Plot"
; \' Q& S. `& M# A' y: b set-current-plot-pen "low"2 H$ w( v, E% T% e7 H
plot count turtles with [color = red]
# E- W6 i; ^3 S. a$ }" d/ g5 k7 F set-current-plot-pen "mid"
, D) C3 a6 E# t# f plot count turtles with [color = yellow]) F5 b6 E& B2 U8 B- J
set-current-plot-pen "up"
6 X) S* r, l2 H& T: t/ O0 C plot count turtles with [color = green]! A* ?1 G- V8 j% W9 ^" J; {
end1 j$ j# l! }6 ^5 s3 ]9 Z/ K" h1 O
3 c$ ~7 Z, q W, _+ s7 Zto update-class-histogram, N5 R; d" T S `: _; m$ F) @
set-current-plot "Class Histogram"
! a) r" G1 A& i* D9 [ plot-pen-reset
( s4 E/ p8 }, D( h4 Y set-plot-pen-color red
7 J7 A* c, a: `' b8 X8 D plot count turtles with [color = red]
- _7 |3 p1 S8 i% Y set-plot-pen-color yellow& O& o% P. _( }0 L- }2 I
plot count turtles with [color = yellow]3 S5 s0 E+ ]8 t
set-plot-pen-color green
; D3 q: H2 {, R8 q plot count turtles with [color = green]
1 `* Z- C$ `8 P0 _. }end
! h- X3 t' `$ Qto update-lorenz-and-gini-plots
. Q) b. R' I" P, Z6 @' N( Y4 j set-current-plot "Lorenz Curve"
) b& ]/ O% G3 B, t5 F clear-plot- [7 g, ?5 e P9 U
: K2 q( Z" U; l
set-current-plot-pen "equal"
6 m1 E4 V' Y/ e( @& w( B plot 0
" v/ {. V3 w( v$ x6 H) Y plot 100% U5 A. q1 o9 n3 m/ w- ?
1 z2 [ G2 z7 m) p3 C3 }
set-current-plot-pen "lorenz"
1 p! T6 O) {, a6 ~, A set-plot-pen-interval 100 / num-people
9 k4 n4 h# q" z- \ a& v4 h plot 06 D; {/ W1 C+ @- j6 q' y
# h2 y3 N9 L5 d4 q9 h let sorted-wealths sort [wealth] of turtles; F; K7 Q; r3 Y; I
let total-wealth sum sorted-wealths
& \1 Q, V5 w2 o* T! c7 s$ N8 r let wealth-sum-so-far 0
: S2 q) l" Y8 o( H let index 0
7 h Y3 ~8 |& r2 }" h o let gini-index-reserve 0
" X6 m0 u ?& }
0 {8 F- G3 h! H0 Q4 j l repeat num-people [
! X# S: J) V7 L; e( u, m( u set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
9 F+ ]- Z7 ]) S5 A plot (wealth-sum-so-far / total-wealth) * 100- }- y6 s# _! d" i9 V
set index (index + 1)
1 w9 s. V( L) \5 J3 p( i5 [! G set gini-index-reserve
, M, o# V2 A/ [/ ]. W* m gini-index-reserve +
" N, U6 e5 o$ U; @ (index / num-people) -
?, G+ S' Z0 [" ?$ a1 C5 t (wealth-sum-so-far / total-wealth)
& w+ |' a5 v: k } ]
2 t. @/ w' }) d. W" Z
6 x" W2 q3 P7 ^ set-current-plot "Gini-Index v. Time"4 M, f7 e2 f! H8 y! `4 G6 [
plot (gini-index-reserve / num-people) / area-of-equality-triangle% D; l+ f: V' m! _$ @
end
+ O: V) f& ]# ^3 G$ ^to-report area-of-equality-triangle
/ s- {" k& E/ J report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
: i' e t$ K7 e/ c9 d$ uend |