请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
. T% @( `5 ^8 Z3 A, c( S5 Cglobals
3 y6 K! @& C) {& n: h/ j- p[
1 W% a$ |+ C9 {+ |* e max-grain
6 N( i9 q/ Y2 W+ s5 X0 V% p- K. o) o E6 J( C
], X" S: P' `7 R0 g2 J
. V& y0 W1 e1 Y- ]2 H+ {5 j- Gpatches-own$ @/ H. i. b! o6 y1 L5 S9 X) j
[
! f0 E$ z" K) K( R3 ?8 H grain-here 0 j3 k; G! n2 d# P# l% t% @
max-grain-here 8 {- ?6 F# i0 X8 K& _
]
4 X; S+ `) v0 [* |: a, u3 w+ R" |" C' H, \: t) ]7 T
turtles-own
( ^8 f' ?, s! I5 V! q[+ b' X- f* u4 W
age 9 r5 L9 m6 z; a ?# M5 b) l% c* v
wealth : j, w7 r* s) i* J
life-expectancy : m( u8 H, Q4 D3 |0 E: R4 w
metabolism 6 u% j, I' Q) I7 f* n: p1 w! j5 ]
vision
( m( ~& f- l* n7 M) A, K( b inherited & U) m: @9 {, e( K3 v. i- m# J( {
]5 A4 d2 _- U g7 T5 c+ k- W
7 L" B+ R" X7 U
, l6 \0 ?& I2 Y% D- Sto setup
5 m( h# C( S3 }# z2 G8 o ca# }, S$ H" I F7 Y; B" b" @7 E
set max-grain 50
! v1 n+ ^7 v9 N setup-patches; b3 j% j2 \2 ]5 _5 [( a; l$ M A. }
setup-turtles6 o4 u* m8 J. g9 k
setup-plots
; s& O! F& z* d: v update-plots
; E2 o* _- R! k4 @# ~+ lend! V0 Z. y# U% H+ ]9 H
to setup-patches
4 Q) Q5 x) i; |& \3 j. \3 j ask patches, i) h) u8 X5 V
[ set max-grain-here 0: u, G5 v- G" ^* S7 H# o v
if (random-float 100.0) <= percent-best-land' y* ~* S3 K0 r* D" L' H
[ set max-grain-here max-grain
) P8 E A6 Z# p, ~ set grain-here max-grain-here ] ]! R+ R) x9 F9 B$ W' |# C- S+ Q
repeat 5
/ O/ P6 R+ X+ _9 a [ ask patches with [max-grain-here != 0]7 _5 [) ?) c9 l+ h9 I* ?
[ set grain-here max-grain-here ]0 J( }( a. Z1 R, E2 w2 H
diffuse grain-here 0.5 ]
, l, C5 b: Z& r) d# O5 k; m repeat 103 ~6 K |$ X P5 g: O4 j
[ diffuse grain-here 0.5]
# k+ j7 d( H8 W ask patches0 u# t2 G0 a% r F6 Y7 ~
[ set grain-here floor grain-here + q6 ?. M$ v7 Z9 W, b1 R
set max-grain-here grain-here
0 a# V9 O" a4 t7 {+ C/ q recolor-patch ]
8 z# ~1 O% u5 |% z9 _% Hend
2 K5 w% n S, Z6 w1 W, t& M* Pto recolor-patch
" G: v3 A5 i( |* H& T1 B* \! ~ set pcolor scale-color sky grain-here 0 max-grain
: S- h _" }5 K& e6 P; Gend
9 D3 w( x6 S5 t/ B! D1 Q' Cto setup-turtles
0 d* K( @+ X' d3 x! D3 e6 W9 K set-default-shape turtles "person"3 h' i0 p c' j& c! O
crt num-people1 ~, q" F" H2 T) X! h4 o/ r* \7 J0 l
[ move-to one-of patches
! f& o, c/ A% L2 c set size 1.5
( W* k" K! ~8 C4 B0 {) \1 E, A8 B! D set-initial-turtle-vars-age
- T+ F1 n$ R9 l6 Z set-initial-turtle-vars-wealth( |9 ]/ Q$ @" e, _( Y# c/ {
set age random life-expectancy ]# X1 g3 |8 e+ y" h$ h [7 X, X
recolor-turtles5 s7 C H% l: l" N
end1 z! _0 w& O; T6 p$ N& v. s5 F
% I8 X0 k" H% h$ F4 P& B
to set-initial-turtle-vars-age
" F( U, M* |0 k) t* s0 A8 w let max-wealth max [wealth] of turtles
. u* v9 A) p4 j; C # z" F. D Y8 t6 Q9 [
ifelse (wealth <= max-wealth / 3)
! l7 S. r7 t x5 Z$ C# u0 z0 ? [ set color red 6 B* E* ~2 f, y, E+ {
set age 07 c% O! a$ G# c" M* _
face one-of neighbors4 " n) [; d) G1 k, p1 X' `; A
set life-expectancy life-expectancy-min +6 \$ L1 X! {/ o9 N3 C' g7 Z
random life-expectancy-max ( E7 ~8 S$ G; G
set metabolism random 1 + metabolism-low% R6 X" F6 T: \: V. V8 g0 ^
set wealth metabolism + random 30
/ Z7 R1 N+ l a& y set vision 1 + random max-vision: e& H$ y7 W4 a \5 p9 b j
set wealth wealth + Wealth-inherited-low ]+ m' o0 x& M# ~% N& n! I8 \
[ ifelse (wealth <= (max-wealth * 2 / 3))8 L+ q0 b: D+ K
[ set color yellow 0 r+ I0 F. V7 d
set age 0$ P6 `1 m0 d0 D( X* D
face one-of neighbors4
+ _! g& k4 I1 Z, K set life-expectancy life-expectancy-min +0 F4 V% C, n6 h& |
random life-expectancy-max + 1
7 j# ^) P v8 C9 j* y6 L5 w set metabolism 1 + random metabolism-mid
" N- s/ w' l3 v$ G3 i set wealth metabolism + random 307 D9 U3 \& ~! p5 X
set vision 3 + random max-vision
1 c* l' B! u+ s" z' c7 l$ V! r set wealth wealth + Wealth-inherited-mid]) }/ L- ?) X3 T. H8 m P- z
[ set color green
$ J1 m3 |& a$ u& ? set age 00 ?- H# D" j+ v1 M/ I
face one-of neighbors4
5 O6 F# h; G9 D, U set life-expectancy life-expectancy-min +
, B6 t. ` W1 ?# } random life-expectancy-max + 2. U! h* F; a. R# P, i
set metabolism 2 + random metabolism-up
Z! Y5 z' C q- K7 G/ @+ S set wealth metabolism + random 30
* |6 @- x- }+ ] set vision 3 + random max-vision
5 O2 _% u/ [: u3 d set wealth wealth + Wealth-inherited-up ] ]
' Q5 Q& ^, Y1 Z& K/ g5 P# b % I! p1 {. U: E9 [
end
7 o7 h/ n1 t& u/ ^+ T3 u+ Bto set-initial-turtle-vars-wealth
5 B) U( v" V/ ~, w3 K" `+ |3 U9 I let max-wealth max [wealth] of turtles
8 G z/ r" X' p, A3 P set age 0! }: Q1 L) f! q) _( w! k( \
face one-of neighbors4 7 c3 b/ ?9 e7 P! S3 b8 b0 W4 z. v
set life-expectancy life-expectancy-min +
) Z4 f- T9 ?% s: B random life-expectancy-max 8 b9 f' A, b l7 Y, c5 L. [% b
set metabolism 1 + random metabolism-up
) \# C3 C; ~: G9 Y5 g1 q' Z set wealth metabolism + random 30% L9 a6 _6 ]9 R2 A
set vision 1 + random max-vision
% K7 ?5 x5 r# Y3 x% _# Bend3 t1 Z* X- Y1 R& @
to redistribution# ^9 s5 a2 M$ X7 r: o1 N; `& M
let max-wealth max [wealth] of turtles
: w. z% z" S% `2 X1 c$ T' B, Ylet min-wealth min [wealth] of turtles. h! ?& X! _) I& d/ c& x
if (wealth <= max-wealth / 3)
5 [- @1 _( c$ }) z [set wealth wealth + Low-income-protection ]1 O& T# [$ R/ ^) j! E
end
( _, w" b, \6 v
% Y+ H M. H: f* \ Z9 Nto recolor-turtles
4 z. p$ k! w# G5 o: d let max-wealth max [wealth] of turtles
2 n) O9 z7 C3 ^- w; i ask turtles
3 }2 w9 g y0 v2 F+ g: h( L T+ K [ ifelse (wealth <= max-wealth / 3): K+ ^. T& G) v2 |/ C2 }8 t
[ set color red ]
$ c4 f. B& A1 f3 o1 d z2 z [ ifelse (wealth <= (max-wealth * 2 / 3))
4 C6 I, @& L7 ^ [ set color yellow ]
) k( Y# \% W- q$ q, x [ set color green ] ] ]+ |) ~: w+ `( ]
ask turtles [ifelse show-wealth?
5 I+ A% d4 W) H+ X [ set label wealth ]
& o4 U' i1 v/ f8 j4 Q7 z( ^) i [ set label "" ]]
/ W7 X3 Y a) X0 v1 c$ Pend( e1 ^ f B2 ]! O+ [* a' p
# \- c9 d( T$ ^3 Nto go" {+ a7 N5 a2 V7 O K7 }
ask turtles
* M- v4 E0 U$ J( t3 d* N6 D" O5 K [ turn-towards-grain ]
/ O* }5 I0 g) ?% E& c( |( ] harvest
% Y" o" x$ e' O ask turtles ?5 L) \, J0 `
[ move-eat-age-die ]
8 N' e* z- O* l2 k recolor-turtles
+ \; O8 Q6 v, D if ticks mod grain-growth-interval = 0
! ]) d. k/ u$ M; b4 K1 K [ ask patches [ grow-grain ] ]
1 q+ g2 c, F% e+ A9 w' c
, E; D1 [! Z* i# n& y0 } if ticks mod 11 = 0
: J; |7 j+ {* U$ x- o [ask turtles
5 m7 h* V$ V0 Y9 O [ redistribution ]]
! a5 n/ F; L8 p3 T% ] if ticks mod 5 = 0+ j0 W0 j8 ~: [: `; F5 f: }3 A" j
[ask turtles
. m4 N; @+ q" [, i8 p5 m/ w [ visions ]]4 l3 p* v- g( v" u
tick
C; A! r3 O( _: B q% Q H4 W update-plots
) m# _+ \! e! S; [$ W( Nend1 Z0 k) H; w9 P, y$ i3 O
to visions
; q5 }6 n |3 K) q5 ~- @6 i* \ set vision vision + 1
, a) k8 @' s0 D! b: Vend
! i& ]4 E, T, @$ T7 q
. j" i8 L! p& t/ b8 x* S
* Q1 j# l* [' X( H3 e: ~3 t% F2 v2 }" L' s; N* s
to turn-towards-grain $ h6 d, I# b8 l7 `
set heading 07 X+ C g! _$ P9 U/ U. s
let best-direction 0
0 d! f1 S7 P8 F0 K" n" H let best-amount grain-ahead9 T$ r) @$ I8 l0 ~% |9 A
set heading 90
8 v/ M, Y! ?, ]8 R9 X# Y+ h2 {8 v q if (grain-ahead > best-amount)% K1 E3 H6 d, ~/ \4 N
[ set best-direction 90% I- K) \! A5 W' g
set best-amount grain-ahead ]
, ~1 s; H9 c- _: q4 X4 { set heading 180
; _1 \- V( }* g& a if (grain-ahead > best-amount)( @" ~/ K, u+ N7 A
[ set best-direction 180
b) x& c/ A, I0 q set best-amount grain-ahead ]
; X; x6 A: P2 s+ s/ [7 L set heading 270
7 \2 W- r- _ N* S3 d! d/ q if (grain-ahead > best-amount)
$ Z( l3 Z* P: z! e3 f7 a [ set best-direction 270
2 R3 [3 C7 C$ J* }8 r$ t" b set best-amount grain-ahead ]
' l- ^+ {6 w% ]" N8 _4 Y set heading best-direction c+ Q% p2 o" }/ V# A" F
end
. v' }: {. w6 t6 j3 @% \" x" U5 J- |% d t9 ?2 x) f# o$ v
; z, k3 D. b) L( c8 k' a
to-report grain-ahead
0 i2 `3 _' ` G( ? B! y let total 05 Z* E* p0 E( ~0 A+ g
let how-far 1
% H0 ~; x: d1 X4 Q repeat vision
( p) G3 K* p8 k9 i [ set total total + [grain-here] of patch-ahead how-far
6 I& k% o3 Z& m( x set how-far how-far + 1 ]
4 O/ c! {8 ~8 q2 ^) B0 T report total
8 l6 }+ l. V. w. x* o' c. Y2 vend
- D. J3 r$ M) O& h3 X+ M# _; @. m- u* w* p" _# j. l/ M, P
to grow-grain
9 t9 a) R* \' x/ ?' |( t5 c* p if (grain-here < max-grain-here)
* m2 c$ M$ f2 t: |# g2 y7 D* z [ set grain-here grain-here + num-grain-grown
, B, ]0 e& F- | if (grain-here > max-grain-here)
. h) V: u% k2 \& D( P# C' k [ set grain-here max-grain-here ]
6 F! Q, w- I6 d. ~ recolor-patch ]
+ g' ~" E! N7 `% gend
+ R- C% b+ Y$ pto harvest
" H, y2 ?# T0 X4 B1 Q ask turtles
P) v% i* c# l) k6 w$ t [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
- T8 o* O" c/ i8 @' j+ G$ A# t9 ]8 `/ B ask turtles
% V- L: H0 `( I$ j! V3 w9 ~; A [ set grain-here 0
6 N6 s$ `4 W8 b% [8 f/ k recolor-patch ]
6 C4 n6 m6 F. j8 b2 _# G
: f( x# w; [, j) d& S6 Tend
$ f. G3 N' j7 f' x9 m) Q/ Q' _! ?5 \6 z
to move-eat-age-die
2 T" R; J) P+ W2 R fd 10 {& u8 f. |9 Q5 `
set wealth (wealth - metabolism)( O" A# L0 @8 z
set age (age + 1)
' p' o+ d; S2 N/ a z if (age >= life-expectancy)
d0 w& l" W2 n) f5 ~ [ set-initial-turtle-vars-age ]& } l# q6 {8 o# ~; X
if (wealth < 0)
9 }! b# a: ^0 y6 }+ C2 @ [ set-initial-turtle-vars-wealth ]2 P; H% y* R* a' a! O
; F4 }5 r H* x5 p5 O; z6 \8 xend
! l' a( q8 S3 c8 @' c* |2 [$ a" o0 I$ s. |8 o- V% L
8 ~% ^0 q- ?+ w8 f2 Q3 Y0 p6 Mto setup-plots, Q/ t- T8 ^$ z' w8 f
set-current-plot "Class Plot"9 [& }, [- b8 o9 P
set-plot-y-range 0 num-people
8 E" ~& z: h7 N. {; I; n6 c( @ set-current-plot "Class Histogram"
4 e( z$ I- U! V- u set-plot-y-range 0 num-people2 a# @7 D( M: |) M
end- e( Y% @* d6 G
% m" T/ h" U9 C& I. T+ h# T; n5 E& g9 oto update-plots$ C$ B1 R' J1 e9 g
update-class-plot5 O. o. N& S! V" ~7 F! [# r1 r( l
update-class-histogram
7 U5 d- r, G3 H5 Z+ u3 d2 ]' b* T# _ update-lorenz-and-gini-plots
/ P. g+ k% H! Wend
, X& @0 B- G6 @3 ^
! L6 x( g- q3 f# k* m6 d! C: O# Tto update-class-plot
8 j# q3 H! u1 {( a% I: l set-current-plot "Class Plot"4 P3 T+ l3 S+ k: `3 i2 F
set-current-plot-pen "low"5 q( J5 Z! ]% ^. R% Z
plot count turtles with [color = red]
) r3 @! w) A, {9 |' | set-current-plot-pen "mid"
3 ~2 F) S+ ?: W' p; C9 R" l plot count turtles with [color = yellow]3 m' u: P1 D7 [% t0 d4 i
set-current-plot-pen "up"& z2 g# t6 D# O g9 V
plot count turtles with [color = green]
. l9 M, j0 F$ a: u, m1 Wend
( l4 l/ `/ F) Z
, _& O [+ x5 d) o& [; Z9 e; eto update-class-histogram" H1 f( y" M% }- P, n& r) O1 H
set-current-plot "Class Histogram"
- E% z& P! B; S! O& i plot-pen-reset! W5 I s8 i) }' F+ u
set-plot-pen-color red+ _) R5 _5 {& p# p
plot count turtles with [color = red]! {- ^% ^7 D* q H
set-plot-pen-color yellow3 _* F! B+ V8 n$ ^( G
plot count turtles with [color = yellow]
; k: ?: D: k$ @$ r set-plot-pen-color green
+ `# E" }4 p1 l1 s7 Y1 K plot count turtles with [color = green]& y" ]; t+ b* t0 o' e6 s8 R- [
end
0 W: Z9 R! X/ A. Zto update-lorenz-and-gini-plots
- J/ Y$ U( {1 R& B set-current-plot "Lorenz Curve"3 T4 @) I) ?, M2 e8 `* P
clear-plot
- Z1 ]: @( [8 `4 X% v0 t' Z- B
- E, ^0 l' f% s# L7 c# ^0 f set-current-plot-pen "equal") J5 {' r; C$ I- E8 t6 q) y- y
plot 0( |) j7 o1 l' z+ l, h
plot 1000 e% j& H4 y* `+ W2 o1 ~8 o8 h
& O0 S6 e, U% e9 Y* G0 Z
set-current-plot-pen "lorenz"
6 C+ h8 `% D' ?- f9 Q set-plot-pen-interval 100 / num-people7 A2 T- s. t& T! } C" H( H2 v
plot 0
! v( N& X0 D% f1 h; n+ q6 l
+ r3 _2 q& |% Q* g9 [) L! f let sorted-wealths sort [wealth] of turtles
& @) a2 p! S" l9 { let total-wealth sum sorted-wealths
1 z g0 u* \/ |* F& n let wealth-sum-so-far 0
$ U& K; ~" W/ U9 ?& u; H let index 04 j7 Q) N) X f( M1 V h
let gini-index-reserve 0
' v" z9 y! O; s
6 W2 C/ C3 v6 `/ P8 a repeat num-people [
`8 e( t8 q4 ?" m set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)% s* U7 p. o$ T* {- J
plot (wealth-sum-so-far / total-wealth) * 100) C5 @$ O) `- z7 A
set index (index + 1)3 [) R6 K! u5 S1 U5 P
set gini-index-reserve4 v9 q5 n; v0 j( R% P2 j+ }2 w
gini-index-reserve +& Y0 r+ N) O# i) m# e" k4 B
(index / num-people) -6 C( V6 {9 `2 F
(wealth-sum-so-far / total-wealth)5 E7 O0 Q! D% H; y' J" e+ N
]+ W1 J7 J& t6 z4 _* |" X
7 B$ u9 E! M% Y0 C) O set-current-plot "Gini-Index v. Time"
, j* Y. L6 w2 S& [( O. a plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 F! y% X' B, P+ p6 }- ?, Tend+ U3 W6 }+ h) K8 S
to-report area-of-equality-triangle3 q2 ]) ?( q( z
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
! ^: L e# o, S4 u) ?6 r d9 Wend |