设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7085|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现; o6 @! @/ j8 M% m
globals6 l" s. M- K0 Y; I" j8 E
[
  L  H" V9 w, q% m) C" ?, P  max-grain   
! k5 I9 s2 h  Q) ~; a4 K& i3 D5 @6 T8 T
]* \( e& M4 Z+ X/ {  u: i+ t: X8 Z

- a* a3 l# W3 E' zpatches-own
7 [0 J5 |& `5 h2 x6 U[  x3 s: t/ B& P0 J) @3 u
  grain-here      % C- b" ]/ d8 a
  max-grain-here  
7 ^) ^4 x) d  t& `6 B6 L4 M8 j" V]  G0 Y. F5 T, r  t  k

+ e5 h1 R: L" q: @turtles-own% x+ o  u1 l% t) s3 U1 T4 Q
[4 E* ?6 U" v3 e5 K& W# n
  age              
2 P. j6 |- ]! w4 E! f4 \5 u! K  wealth         
: }! ?6 B7 n5 ]5 \0 E  T- c  life-expectancy  
: q0 O  {7 i* r! E8 W  metabolism       0 G# E! [" y! e. N9 n
  vision* {9 {  s5 \7 {+ }
  inherited         
0 E$ ~1 @: \( Z; s9 V( \" Y3 h]
$ }2 k$ ~9 C# q, v* P' e' k9 E/ Y# i. |% y3 g3 ]
* v. A* J( @. R0 E
to setup! t  z' L- n$ H" ]$ O
  ca! Z. w" i" m8 `
  set max-grain 50" w4 a7 J$ ^8 U+ }
  setup-patches0 `; a+ l% D% e7 r
  setup-turtles
% S" X6 K* f3 k! L4 {  setup-plots9 g6 S5 I1 y3 u, @
  update-plots; f3 h& ^- a6 \) {" y6 o
end: |/ j7 a9 B- P
to setup-patches* u$ l# k6 ~3 g6 t! }
  ask patches
7 c0 e; @7 ~; h1 @/ s    [ set max-grain-here 0
( G7 ?) @6 f; _3 y+ ^5 h7 t      if (random-float 100.0) <= percent-best-land; F6 ~8 K% t" B" O
        [ set max-grain-here max-grain
2 p% M% z: O8 K: B4 r          set grain-here max-grain-here ] ]1 B# ]$ @+ R  U
  repeat 5
1 o* @: A1 x$ t* E    [ ask patches with [max-grain-here != 0]" N6 M, n/ P5 k
        [ set grain-here max-grain-here ]
  l5 B( Z& I0 b* Y# s  ?      diffuse grain-here 0.5 ]
  i9 P/ y4 W! T& S/ P; i. s  repeat 10
- Y8 o5 p) L6 b  |- a    [ diffuse grain-here 0.5]         
& J' m$ w( L8 Z5 j  ask patches! ]7 a& U5 w$ d5 S0 k
    [ set grain-here floor grain-here      X# T1 a$ F2 P. o  t& K
      set max-grain-here grain-here      
+ A6 R& `: _- L      recolor-patch ]
( `$ i8 J6 @  Bend
  P' s9 D; c+ d- [( K; Dto recolor-patch  & M8 W3 u1 T: [9 i0 s8 x
  set pcolor scale-color sky grain-here 0 max-grain3 Z# P8 F- U+ p8 v: p4 K7 a
end
6 b7 |1 A$ ~$ B! }' fto setup-turtles
  U0 F9 ~3 z8 f1 N! c" D) `  set-default-shape turtles "person"
; ?2 a6 g. Z+ d  crt num-people
1 C  ?+ y; k1 Y. A. \. Q7 y    [ move-to one-of patches  " Q/ _% T7 e: p( L0 }' }
      set size 1.5  3 h2 R" a, D% f1 _; F) H/ U( v
      set-initial-turtle-vars-age
8 Q  G# X( S# y: @2 N      set-initial-turtle-vars-wealth
% k1 J7 Y; n: K- [) Y3 f0 ^  X" o      set age random life-expectancy ]) \1 v8 J# G- D$ W0 x0 ]5 @4 ~
  recolor-turtles
) M1 L, C9 E3 \- @7 R* Iend
9 b' h: w: d1 U9 Y
$ D( l, k  V! i- M, ?to set-initial-turtle-vars-age" z0 K& t; u# i  H% r. o3 R
let max-wealth max [wealth] of turtles
  @2 d% X7 g, a, g! i7 k8 K8 ?    3 ~# F* x3 f: X3 d$ A4 Z" c1 s$ T  Q
     ifelse (wealth <= max-wealth / 3)/ |. y" t( D( v  a
        [ set color red # ?1 ~, P4 f9 R/ T
          set age 0
' T' a* t0 r& R7 k          face one-of neighbors4
: ]6 B; F7 E. p/ e  A# v  \          set life-expectancy life-expectancy-min +
1 k/ l: p$ a7 \9 y5 d- M4 C& z! g                        random life-expectancy-max
/ B2 V/ S8 i& |          set metabolism random 1 + metabolism-low8 q" W  V# m/ _# Q: y; l4 ~7 s( m
          set wealth metabolism + random 30
! C! W: X8 X: t! L% J# V          set vision 1 + random max-vision/ V7 D) w  w. g* I
             set wealth  wealth +  Wealth-inherited-low ]2 H' y' p9 h# Z  v
        [ ifelse (wealth <= (max-wealth * 2 / 3))
0 }: ~* k2 Y2 z* `            [ set color yellow
# K3 M5 q- T" e" ~' @: ]! \              set age 0
* v& U* w3 C0 j9 @+ p& }              face one-of neighbors4 9 `6 \3 I0 Q/ ?( U% l
              set life-expectancy life-expectancy-min +# w7 {. D  \+ ]+ c
                        random life-expectancy-max + 1) Q) j6 E( M+ Z! X3 v
              set metabolism  1 + random metabolism-mid
7 C: s7 R+ u5 M5 F$ `; G              set wealth metabolism + random 300 s& N4 L+ H, m; W( A. c
              set vision 3 + random max-vision
1 B  z3 v2 {9 t6 i0 ]+ b1 H                set wealth  wealth + Wealth-inherited-mid]
; q! k9 l1 P+ z' V* v  r9 _( y            [ set color green # O# L5 n' P8 L1 J
              set age 0
1 a" a6 @% h; r; q! a1 f& M8 ^              face one-of neighbors4
$ Q! h  q- I% i, y4 p+ @              set life-expectancy life-expectancy-min +
$ d1 F/ c  M, Z; e: V+ {! r                        random life-expectancy-max  + 2# i  a: C1 s5 B4 H' ?" N/ J
              set metabolism 2 + random metabolism-up
: X8 ~/ @& T7 i4 o$ Z              set wealth metabolism + random 309 Z. k4 |3 M2 O4 B. I" Q9 Q
              set vision 3 + random max-vision/ q' a  U, S! Q+ Y2 b/ h8 b
              set wealth  wealth + Wealth-inherited-up ] ]
7 D8 g$ r4 E; a8 _& I
7 c6 R6 a7 D) P6 W7 T# Dend2 A) e7 D- V' ~; L" p* n8 Z
to set-initial-turtle-vars-wealth
0 B- ?( S. h, `+ u4 D  e* b7 { let max-wealth max [wealth] of turtles1 C6 `9 x) b6 L* h/ L1 ^
          set age 0
6 p5 X* }  `- _, a          face one-of neighbors4 ( a+ Z" M1 ?) i: z3 T2 L
          set life-expectancy life-expectancy-min +
: y2 E. C3 y4 T( w1 l/ a8 ?7 ^                        random life-expectancy-max $ G# i: }% f: ?. e  p
          set metabolism 1 + random metabolism-up
2 }: @" \) j: `2 B$ w- _* H4 y          set wealth metabolism + random 30
" }, s+ r5 s( g) D) X+ h# M          set vision 1 + random max-vision 2 l; O& k% M& g* h  _& a
end) O  m& Q" Q; e; f1 v% J* {! @
to redistribution! [& e; L! c0 h) z
let max-wealth max [wealth] of turtles
& X5 Z- v) m. e' S! Jlet min-wealth min [wealth] of turtles' l( Q# y  Z' k. N
if (wealth <= max-wealth / 3)
$ W/ [, v9 `8 b5 H/ u% O2 ` [set wealth  wealth + Low-income-protection ]3 m) Q5 o% a& }1 Z0 v6 [/ l0 ]
end
4 w& }6 \# T( A" }1 ^- _& A         
  o  K: B. F- m1 B" Y1 Nto recolor-turtles& h" l+ q& f. I2 V4 E* h9 N& o
  let max-wealth max [wealth] of turtles
1 s( o$ {# h; w! l0 m  ask turtles
. Y9 N! z1 c2 G" |( [   [ ifelse (wealth <= max-wealth / 3)
' f! a' P5 P/ S7 i, ~& h) c        [ set color red ]5 {# V5 O, \) G* }
        [ ifelse (wealth <= (max-wealth * 2 / 3))
+ ^8 ^( n4 _2 k( Y( H, J' c            [ set color yellow ]) d3 ~* }, X- L0 r- Q0 h
            [ set color green ] ] ]
% z' b  I: _* z: ?0 f! _7 I/ F' T ask turtles [ifelse show-wealth?" t/ D$ h3 o5 @$ p
    [ set label wealth ]
# y+ u$ `7 J& i1 e& f: I% s! j    [ set label "" ]]
8 J  |. P8 h+ O2 Q: {- L# M5 oend
# E* s, C. R: G3 D; ~7 O! P% x4 Q  |' k- C1 C- n( K. t' `
to go
. C# u: A1 \9 b# d) s* L: j4 U  ask turtles' C8 m" o0 L2 S3 J/ C1 |  D
    [ turn-towards-grain ]  
6 F2 |, B( Z* }2 }2 J! ~3 i  harvest6 S7 @4 l) ?% |- K
  ask turtles
2 B7 W; C! s9 T5 ~3 g  P4 N    [ move-eat-age-die ]1 H6 }1 s! z4 a$ }
  recolor-turtles0 u9 b0 P, ^% L: \: i( N) V/ c+ w
  if ticks mod grain-growth-interval = 0
" r* N* l5 {& M) e" B; l$ ^% K    [ ask patches [ grow-grain ] ]
7 b8 H2 G4 N+ C, n: y   ! |& a9 g! F* g& v, k6 ^# R
  if ticks mod 11 = 03 I9 s2 h- i! X# g
  [ask turtles  H: S$ A; X; C- [; V! M
  [ redistribution ]]
; a& P0 v& G/ x5 Y  if ticks mod 5 = 0
, ^- K2 b8 Q; g# w* G5 |7 S6 [   [ask turtles
6 \# {9 S" Y* D$ v! r  [ visions ]]
  p& q: H" v0 J/ S+ p  tick) ~- v8 R' i- a
  update-plots/ }: M! Q' p& N' N( Y6 x
end+ f( v4 q3 @+ S$ G
to visions
; g& D& J. S  M8 V3 K set vision vision + 1
! x% n+ q: y4 W6 S) gend
: n/ h0 d8 x9 y. _. V( C3 j0 o' K0 N7 Q+ a

! s) S8 v) p8 b2 U3 ~/ K1 a  W/ o  g9 ?, M& A8 i
to turn-towards-grain  " m- L+ Z) v5 C2 k3 {
  set heading 0
2 b! H! ~8 ~& K( _% \- W+ c; G" D7 z3 Z  let best-direction 0
* J4 M3 q3 r9 m  v4 n% \" T8 _+ D# M  let best-amount grain-ahead
/ [. Y$ k! c5 C  N: i" F+ ~  set heading 90) G6 I  U* m5 A! f: z6 V4 Y2 I1 j
  if (grain-ahead > best-amount)+ L% r) `9 Z3 |! m4 D+ S6 A
    [ set best-direction 90  c: a0 h: K" Q  y
      set best-amount grain-ahead ]" {, K& X' w. g* c5 [* G* ^
  set heading 180
$ ?' z& {% H1 B+ t) o- m0 a: c: k  if (grain-ahead > best-amount)
: y+ N2 i. P0 g3 ?: P* c4 _    [ set best-direction 180  Z/ I$ }& m7 d2 O- S
      set best-amount grain-ahead ]- t4 ?* s# t4 a" N; w- k: ~
  set heading 270
! s1 J; D* B  S% v$ p  W" k  if (grain-ahead > best-amount)
7 @' V: ?% l: {% d    [ set best-direction 2708 \9 C( O( E) m' U
      set best-amount grain-ahead ]- ], P+ Z! d* O) p. ~+ c3 v9 h
  set heading best-direction
2 _. P3 m( P" u' F3 zend2 e9 _" U- K- W

) W: P! e$ j2 U: f, T( O# s4 z" L
7 @+ C* w! M! F+ _* y$ o5 Fto-report grain-ahead  5 ?3 H. P; w/ _& a
  let total 01 {. l$ ]8 o' n& f8 O; s+ J# a0 `1 x" C
  let how-far 10 h$ D& i. k( W0 @7 {7 {
  repeat vision6 |. A4 [$ g5 x; W
    [ set total total + [grain-here] of patch-ahead how-far8 B5 u( y' J- b9 H9 H
      set how-far how-far + 1 ]6 }  s% ^  p6 H" i+ k! A
  report total- l& e. l( |! B+ y7 |) D3 k
end
5 M' i7 u1 U% b, K0 s2 f& y8 {, Y( S: ], l8 ?, Z! X
to grow-grain
9 l' f) V, [# |9 V  }( Y  if (grain-here < max-grain-here)
3 V$ s/ L: r5 G& C+ @1 L* ]    [ set grain-here grain-here + num-grain-grown, Z- c- g% i) E7 m1 [' v" b
      if (grain-here > max-grain-here) $ r  P4 {+ u* b9 O) c0 r
        [ set grain-here max-grain-here ]5 ]3 e5 b) E1 L" n& B
      recolor-patch ]
& d% E8 |2 u9 p: e( K+ Nend
4 C# V2 x4 m% r) ~: a$ [. c/ H7 hto harvest" L  v0 e  `! _  j
  ask turtles6 U/ ~% ]. p# a- D
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]0 M0 l( D& c. ?' R6 w  B
  ask turtles9 D) O, S4 m6 M/ l3 A3 c
    [ set grain-here 0# X! h, g8 t. \  Y1 g2 {
      recolor-patch ]1 k& _, r0 l: U7 \3 u1 A8 }
  3 U: P6 ~4 k- N6 G5 k
end. F  _$ A* X& z9 j0 o" {

/ @" K5 @2 |' K' G4 B9 Xto move-eat-age-die  
6 G7 I9 `4 o) U4 M2 N  fd 1
9 c" o4 C' f# C  D  set wealth (wealth - metabolism)
, }( r5 S( L9 e) G    set age (age + 1)3 H( ^3 ]5 Y* e! I" E' r  a! n
  if (age >= life-expectancy)9 T# h: b) N, Y1 o
    [ set-initial-turtle-vars-age ]
' b( \# w, b- @0 A- m- B/ e) G$ C& U  if (wealth < 0)) x5 N2 e# ^: g' j4 h) I
    [ set-initial-turtle-vars-wealth ]
+ ^- u# k: r1 B: I( V" n   
( g& x2 h$ d* nend" F% l. x# x. D. F0 [! S

8 k- v5 m& W& T3 t9 V, u+ y) z9 P- f, Y7 f
to setup-plots8 J, O- U3 I$ V) B  s! X
  set-current-plot "Class Plot"0 X1 s$ N3 y  V6 F, g9 J
  set-plot-y-range 0 num-people3 b; Q. J: W2 d2 L, R4 n: y
  set-current-plot "Class Histogram"
7 d, f+ F  O5 z4 |5 v. H  set-plot-y-range 0 num-people% l. {$ z8 x2 H+ Z
end/ k2 [7 ^5 a" n6 @. l
* K% ?0 c$ k& H+ L
to update-plots
& v6 T' [! I% g4 C4 O3 b2 {  update-class-plot  B4 |7 L7 n) ]% X3 M8 `
  update-class-histogram
! _# q5 j3 x* |) K/ \  update-lorenz-and-gini-plots
+ M; H! c* Q1 l. N# |end/ Z( ?, l1 P+ ]+ M
/ X2 t& X0 m7 q: v1 ^- S/ d/ Z
to update-class-plot
' r1 w7 p  e- o: @& w1 M1 H  ~. ~  set-current-plot "Class Plot"
0 w2 P2 L! Z- i' ?5 u3 Y9 O0 Y& L  set-current-plot-pen "low"5 y4 n. R+ e/ l0 T5 C6 K9 P3 y" y
  plot count turtles with [color = red]5 g* @7 c' @! j5 K8 T
  set-current-plot-pen "mid"9 C) K3 Y% ]9 ?6 w' R
  plot count turtles with [color = yellow]! E  X$ h/ S8 r% e& W, D9 w
  set-current-plot-pen "up"
- M3 F) y) ^; H7 y* F  plot count turtles with [color = green]
, N$ a' N; R: c  }% bend5 p+ B; _% z0 K& ]- Q$ Q+ s

  ^1 J' U0 l# z: S7 b4 y9 H5 B4 sto update-class-histogram
1 B$ U" P9 `% _6 E( ?, M1 D  h- ~  set-current-plot "Class Histogram"
" C8 U: B) J& L+ \2 |  plot-pen-reset. i( ~2 ]- d* y/ b. q
  set-plot-pen-color red
/ k2 y1 D6 N5 f# r) \8 D  plot count turtles with [color = red]3 e2 ?7 F! {+ g& h- u7 R
  set-plot-pen-color yellow
2 h8 D, ^0 f; `+ o+ W) }0 P0 T  plot count turtles with [color = yellow]
. `2 G3 i6 z/ M( K# x( f  set-plot-pen-color green9 J- L8 v" D  i' H& \3 M
  plot count turtles with [color = green]
! P! t. w: a8 L+ H* lend
6 d% f4 w. w0 `3 F( F2 Pto update-lorenz-and-gini-plots0 \8 u. [2 W* g- ~3 s3 A6 a- g: }! P
  set-current-plot "Lorenz Curve"* h% l: \9 @1 z5 C3 z$ w
  clear-plot
# r6 E" p# b5 \, _% @7 }' j. c8 E
  set-current-plot-pen "equal"# m3 W3 ~1 ~7 o7 S3 b4 |9 S
  plot 0
6 P7 }. k+ R& ~4 T, c# H: n' g7 }* C  plot 100  R/ y6 s# t- h- E& R5 ~9 i
; i& S' Q2 e$ C9 p1 p; g* F
  set-current-plot-pen "lorenz"! H" T& w( J6 I$ q7 d6 y+ ]
  set-plot-pen-interval 100 / num-people
" O4 c5 e+ Y& x2 t  plot 0
' D0 x2 n" C& t
: Y9 B) u9 n5 y+ Y/ U  let sorted-wealths sort [wealth] of turtles+ p  f; K, M7 q4 I; a7 W" O2 k% m
  let total-wealth sum sorted-wealths
3 I* h- @4 I- _  let wealth-sum-so-far 0
) A1 ?- K# f7 |- j# U  a/ m  let index 0% V; e* o1 ]/ u% b" P; q. i
  let gini-index-reserve 0
3 ?8 n4 k: @3 r, E, i& b. e
, z- i  J8 M0 r% L  repeat num-people [
& g  F: z. N, v    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
# G$ _2 A6 I7 ^6 ?; s    plot (wealth-sum-so-far / total-wealth) * 100
6 Y9 p$ o3 @3 d* u6 E4 r    set index (index + 1)
- Q8 K% w' G# W6 |4 D, P    set gini-index-reserve2 q, Y% e5 w  N0 \' a
      gini-index-reserve +
$ G' g2 }( M# Z4 u4 e$ R      (index / num-people) -
5 w% K/ g' |4 a5 c4 C; R1 n      (wealth-sum-so-far / total-wealth)
4 D8 y& ^5 t: `6 S( v' b  ]/ V  [1 L$ {- W5 |7 r

% B# x" B' A8 `; ?  set-current-plot "Gini-Index v. Time"
% x1 g% B5 }( z9 Y$ o* a9 j  O8 s! K9 Z  plot (gini-index-reserve / num-people) / area-of-equality-triangle
/ v( w% t. n: x" Z$ ^  Q" {; dend
0 O  j9 q, P2 b" Hto-report area-of-equality-triangle( T! I) Y! {1 Z/ H: F, _6 x' Y
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
6 e" ], U! W+ p" c3 r+ K% I# A/ r2 yend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-5 19:27 , Processed in 0.019187 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表