设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7062|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
/ U- `9 O# j: U  ]& H8 aglobals
- E7 x* I( r+ k+ q[$ K) C; T" J5 h+ c# u' B4 w
  max-grain    7 P/ G( B2 C1 n) {7 J
+ b+ y0 `! V5 Y+ x" o4 [
]
9 r4 H' t6 C9 _+ t2 F
$ g1 a" s2 F/ u& fpatches-own
) W3 ^$ ^" z; o2 }2 Y) S3 C) N3 b[
6 d' d# O  A" y# P  grain-here      1 m2 I2 P# d& ]1 x6 o! W
  max-grain-here  ) t- R4 K9 Y) ], H
]. `1 M0 ~; l& t6 ?

8 }% K* {- s3 S* X! \3 g3 ?  A$ `: n" bturtles-own
% t  f( r! a+ o/ X[5 t' F8 Z8 a6 p- x8 T+ J3 a5 T
  age              
) A3 k& a+ O/ A( q5 Z  wealth         % E; f9 k( ]  |$ s1 B3 T
  life-expectancy  
" d) x: A, `9 {* Q! s  metabolism      
) q* V+ n- {' p4 U  vision+ i4 }7 B: V# E3 L& T4 |4 T2 m1 ^( a
  inherited         
3 z5 S& Y  A/ x  W+ A) P* S]
0 x  r* F: B+ t+ F+ v( G, m- n% ?- Q
# G* S5 h1 m1 ~; ?& O* [) j
to setup
8 N- ]+ r) u/ p7 [& M& C" t  ca2 u; |. ]9 j# k
  set max-grain 50
/ O4 ^& _5 }8 P' B6 M$ M! u  setup-patches
% Q  k) n. W" @. I4 }  setup-turtles
" F  q" S6 j9 R% g( G  setup-plots
$ P8 Y+ a) p' ^( x7 n( E8 j3 b  update-plots
7 E6 B8 R6 u0 \- r: F( nend
. z$ {4 }# y. }6 L6 T: Nto setup-patches& h  R! P5 B  m- X$ c" T" W
  ask patches
8 ?; `# m! \* P. Z$ w& n    [ set max-grain-here 0
) }/ Y$ N7 K3 G6 D* [      if (random-float 100.0) <= percent-best-land
# x6 x- d" c4 O! i* M        [ set max-grain-here max-grain1 E; C$ T4 O4 S" F, @9 z: Y
          set grain-here max-grain-here ] ]3 A1 z5 `# |/ N! N% ^4 h) q
  repeat 5' Q' q3 K9 ?. t8 P1 Q
    [ ask patches with [max-grain-here != 0], ?7 K9 D) B+ S5 {
        [ set grain-here max-grain-here ]) ]3 Q; s$ D( _. g# f
      diffuse grain-here 0.5 ]7 y8 x/ b5 T, |$ U% v) h/ x8 I
  repeat 10
# H% N$ r. P. J* {1 n' f" e/ a  o    [ diffuse grain-here 0.5]          6 _/ E) e% q0 V  v$ B3 X
  ask patches
  m! B' _8 C) T2 h    [ set grain-here floor grain-here      K4 s& ]* W3 L: M5 M
      set max-grain-here grain-here      
4 O: o5 h) z$ o6 h: n      recolor-patch ], Y# m4 l" N2 ~
end
" W& X' B) \) p: i* }$ vto recolor-patch  ( U0 n2 S& ]% k7 ~9 E, {
  set pcolor scale-color sky grain-here 0 max-grain" a' W0 @( K+ E& ~# }5 n/ D8 J
end0 f* p7 O) j' ]4 p! X2 n$ X
to setup-turtles
$ o2 @4 k. O% t1 d2 p' k( |  set-default-shape turtles "person"
7 [; w1 h; N" F. G  P+ W8 O- L  crt num-people) x. ~/ o! t. ?2 V+ Z
    [ move-to one-of patches  
5 N8 r4 b0 @, e! Q      set size 1.5  
5 M. i6 \! f& ]  j4 H5 |3 a" x% M  C      set-initial-turtle-vars-age
9 Z) ]. X7 A6 K( a2 N, n# k      set-initial-turtle-vars-wealth* E+ a* F0 u  I# g# U
      set age random life-expectancy ]
7 ]/ E* c% Q% y# w$ ~9 g  recolor-turtles
# o& x% E. M; Z' oend
; i- S4 s, p) ^5 S4 D- t
8 J+ o3 q" Y) _. c7 xto set-initial-turtle-vars-age+ J1 _. n; A9 r1 A' |- o
let max-wealth max [wealth] of turtles- X: c) }) {8 q" S
   
* I7 w) W' p) a  p/ ^% W     ifelse (wealth <= max-wealth / 3)) J, j  ^$ ~. C2 _
        [ set color red 5 _# \4 b: T3 e7 _1 f6 ~( O# r
          set age 0
1 k! c! B) U$ s, ]7 t$ a          face one-of neighbors4
6 D7 l& U3 k/ T1 [, z7 J  z# Y8 \          set life-expectancy life-expectancy-min +
* U! G+ N2 U1 f2 E% O* v, G2 _- S/ e7 ]                        random life-expectancy-max 1 L0 R  F! b. E! ]+ F# J
          set metabolism random 1 + metabolism-low
! w  v4 a4 v2 ?. I4 w1 J& D+ S7 J          set wealth metabolism + random 30
" C( M( w* k- Z0 D# Z1 ^$ \, p          set vision 1 + random max-vision/ v- T2 E, o6 |
             set wealth  wealth +  Wealth-inherited-low ]
% n- c; I; V3 e' T2 y# J        [ ifelse (wealth <= (max-wealth * 2 / 3))
& D, C' k) ]- m. I' _            [ set color yellow
. ?4 B7 L. D7 s              set age 0
) H' m$ `' [5 U" X: e% O6 G, W$ V              face one-of neighbors4
* h/ Q) n# {+ ^! w/ ?1 j' h# D              set life-expectancy life-expectancy-min +# x) u$ f& y9 O
                        random life-expectancy-max + 19 D8 w. _/ N( I( E
              set metabolism  1 + random metabolism-mid8 B1 B" o7 L3 W, B* q4 @
              set wealth metabolism + random 30
% ~  M8 |/ Z& F. y) M" ?5 e              set vision 3 + random max-vision$ h& M; H& c% F8 F3 l# p6 R! u- F
                set wealth  wealth + Wealth-inherited-mid]/ u  e# G7 a" o( q
            [ set color green
4 X( p+ z2 f# s0 ?: A* q' l( c              set age 0
* n/ ?  l; x: t              face one-of neighbors4 " E4 S" P4 y" c6 J) T. J: H
              set life-expectancy life-expectancy-min +. S+ |3 L6 ?" O" o7 c0 A
                        random life-expectancy-max  + 2  @) j! c' Z  K" S1 u
              set metabolism 2 + random metabolism-up" ?- {: |- {; K' o$ f9 K. M
              set wealth metabolism + random 30/ R2 R! {7 H  S' x; G
              set vision 3 + random max-vision: E8 Q: }4 }1 c1 `5 F
              set wealth  wealth + Wealth-inherited-up ] ] ! L, l2 B: n$ q: O; D! W# u1 y8 J
8 S+ D; Q9 c( q* t, [
end
( A& s5 r2 S5 a0 S1 v4 y) q# Ato set-initial-turtle-vars-wealth
# l- `0 q4 B  E" J, }' P- M let max-wealth max [wealth] of turtles
7 ~* b$ ~- R8 Z* }1 u$ e          set age 0% d: D, Y5 m1 f, G" }! S8 Q$ @1 m
          face one-of neighbors4
: F& A# n1 y& H! i: N& s5 p4 B          set life-expectancy life-expectancy-min +) q% x3 m) l! Y: A6 W; E
                        random life-expectancy-max , S  ?% N1 K$ W- D# I
          set metabolism 1 + random metabolism-up
" k4 e, r; T% s2 Z          set wealth metabolism + random 30; j6 p8 a, p/ m4 L
          set vision 1 + random max-vision
% d3 V6 n+ z, g; A% n/ C0 wend7 z, z9 [3 A4 k7 o  x, S$ u& E+ }
to redistribution; B: |( @: f/ f& [0 A) ]- T; V; z
let max-wealth max [wealth] of turtles- o+ l" _  P" F% d5 Z' O9 v
let min-wealth min [wealth] of turtles
' Q& s# O1 c5 I6 {if (wealth <= max-wealth / 3)
7 l7 ~, V8 b: w  ~- e+ L4 | [set wealth  wealth + Low-income-protection ]% _; E. D2 X( P+ W
end# \+ m2 R8 f& G$ e7 F: }
         
+ m; m$ x0 [+ g1 W+ ~to recolor-turtles
9 R1 T! \3 R) l4 u! v: ]" X  let max-wealth max [wealth] of turtles
- t% o2 C" U4 c# L5 }! u7 a  ask turtles
- b. z! l3 B$ v/ M9 Z   [ ifelse (wealth <= max-wealth / 3)
( p5 o/ F+ `# _2 Q9 C        [ set color red ]
1 s6 `: I' {8 E/ K. x+ l4 r' @        [ ifelse (wealth <= (max-wealth * 2 / 3))
6 v3 \4 r0 z. F- ?/ R$ P            [ set color yellow ]2 f5 `9 ?' v0 D0 n2 f; K
            [ set color green ] ] ]  w3 E. S! w: v0 k% J8 F  K
ask turtles [ifelse show-wealth?8 U- u) O& [- O: ]) g! Z. u
    [ set label wealth ]
1 [) ?$ U9 g, W  `' Q4 i0 b    [ set label "" ]]
8 U# p1 `7 X3 \0 uend
# [% U2 V% C+ K/ E$ E1 {$ Q% v& c8 x  x
to go. T5 S# P; g3 Z
  ask turtles: k* ~( f; e# w* F$ z: }- A
    [ turn-towards-grain ]  & j# [. J' w- p  U4 B4 V8 P2 F
  harvest
; E/ R1 S3 e. S6 z# c& c' T  ask turtles
2 M7 Y1 X+ U: I6 g    [ move-eat-age-die ]
% A2 B7 a& Q1 f1 L, N4 O% @  recolor-turtles( W' c# V1 }7 k1 P) w3 P
  if ticks mod grain-growth-interval = 0
. Q3 K: Z$ c, F/ g& P/ d    [ ask patches [ grow-grain ] ]8 J& I, @9 Y3 x8 U
   / K& m8 k5 u+ V+ T1 E
  if ticks mod 11 = 0
( v" g7 J# g# ~9 b' e% P0 L  [ask turtles( W( l4 W0 R$ r! s
  [ redistribution ]]. L( _% t4 D! G' G/ A; h
  if ticks mod 5 = 0
0 P% Y; g" L( o: Z: N- U   [ask turtles
5 |3 D' D, C, g- ~8 S+ s0 g" {  [ visions ]]
6 B9 m0 T6 a' I4 T+ ?  tick, J3 L* u3 _' e) O* X
  update-plots8 W$ W% v9 F4 n* F: ^9 Z
end
* K1 A; X$ ^4 dto visions( A+ [. _" o: k0 `
set vision vision + 1 2 [$ w9 V2 z4 B$ k
end
+ l" u2 w/ z1 W- H! _6 u! X3 _1 A* \+ ]9 r/ K+ [: J
" v) X: U9 N) k( s3 r1 ?1 c
* v# }1 C5 }$ D: a2 C& [: @
to turn-towards-grain  $ N& R: H/ M* {. Z
  set heading 0
) p* _/ h$ R" [( \: A( Q  let best-direction 0
% `4 j, L3 V5 J2 l5 {% r  let best-amount grain-ahead
9 Q9 \4 o+ L/ I! T1 v0 }# L5 M( z  set heading 90
4 J  a: h+ S/ i; R  if (grain-ahead > best-amount): P; j) ^- f& Y
    [ set best-direction 905 `& X  \& V* C6 |2 t' p
      set best-amount grain-ahead ]  j9 e: s1 q1 L: ^- G- I
  set heading 180  M3 A9 x6 {2 ^) U+ M
  if (grain-ahead > best-amount)
2 I$ ]! A% V) j0 Y" V) ^    [ set best-direction 180
! ^3 k" T7 M0 O2 I& c3 f      set best-amount grain-ahead ]! B5 a0 P* @' U# Y
  set heading 270
1 ]: ~% I) ?6 D# h  if (grain-ahead > best-amount)+ W. b' [% x0 c, V  {0 l3 t4 _
    [ set best-direction 270
& x) _8 ^: [/ g9 q      set best-amount grain-ahead ]
, R9 o1 m. }9 G' N; `9 N9 G  set heading best-direction
( ]. @/ `0 ~2 V1 v  I6 [end
( K2 u4 Y: y6 P. ]2 a/ a  u
4 ?0 o6 D: L$ b: E6 T" g0 N# a* P7 ^' y3 U6 ~+ a
to-report grain-ahead  
( d4 c4 q3 B# B0 I8 v  let total 03 t7 M6 o4 U/ x4 I# j/ ^
  let how-far 1
9 j  f& R5 S* s% |  H0 K3 O  repeat vision
" Q8 Y5 j9 F7 |( `9 u5 u6 j1 N1 J+ ]    [ set total total + [grain-here] of patch-ahead how-far
) q, `7 Q% c. J: x: s7 h      set how-far how-far + 1 ]
5 a8 M3 b# ]) N& z- E) x/ e  report total% a8 e9 T8 n* L& V6 v9 g( `
end
3 C/ P. O' F% c8 {0 B% P
: M. C* x4 t" ?% e& M9 Sto grow-grain
, r1 y% N3 j, U1 I. m7 i5 X9 M  if (grain-here < max-grain-here)5 H0 N' l2 {4 c1 p, `
    [ set grain-here grain-here + num-grain-grown
- W/ }' i: Z& D8 t      if (grain-here > max-grain-here) 7 c+ u6 C. K2 c" I) X1 [
        [ set grain-here max-grain-here ]0 Y! I5 [, g% ~* f
      recolor-patch ]
6 N& d+ d3 H5 E7 W$ s4 yend
; M. r  T/ x' e4 J; B: s% ]to harvest
1 t- f$ R; R) P  }) z  P) Q  ask turtles
/ f& }- W. Z1 a    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
3 u6 E' Z0 s1 `, p5 Q: [" T. o/ R. u  ask turtles
3 q- W3 s' v- M9 t    [ set grain-here 0
+ U) u( ]0 J7 h: D! `2 x+ E      recolor-patch ]/ ?) }8 C! H3 ~, p) o
  
2 Z- ^$ k2 j; X$ K7 \end$ Z) Y8 h2 j) v4 Z0 y

3 ~0 x6 ?6 y/ S; ?1 V8 g: J; O0 Pto move-eat-age-die  2 ?+ b2 X4 P# Q( X) t; ]# d# v
  fd 1/ f# i$ |! n$ `) X
  set wealth (wealth - metabolism)
, e* x. o. v9 E# D1 W$ S- H    set age (age + 1)
* }" G& ^. b& k3 |  ]3 w; [  if (age >= life-expectancy)
3 \7 _1 o$ a, b$ Q    [ set-initial-turtle-vars-age ]; P1 L$ J9 {# M- t+ e: \9 p
  if (wealth < 0)* d4 D/ j4 @" z. l3 L- o7 @5 G
    [ set-initial-turtle-vars-wealth ]
( |- N" M, w# R# u) \6 b" A  u   
- B- j0 I& V5 T  D2 X% q* nend6 i, Q: t. e5 G% \

% L  i# u& w7 M
& j, Q" E; j# @' c  L) y, Qto setup-plots
- D1 T+ q) `9 g1 c2 K( D  set-current-plot "Class Plot"6 L! Q! r0 Q, v
  set-plot-y-range 0 num-people
0 M; H$ \. c" Q* C9 C5 C7 q  set-current-plot "Class Histogram"8 E6 a: P* Z5 X
  set-plot-y-range 0 num-people
- h; P7 t. _7 f: F( Nend8 p' t) w7 ~; s2 @
3 U+ J2 N8 {( x# m& u
to update-plots/ n: d$ a$ K/ ]3 C
  update-class-plot% r0 l0 a6 U+ E- H* s
  update-class-histogram
$ i9 ?! l6 d- @5 K" T' ^  update-lorenz-and-gini-plots
+ \: B$ D6 n& H! bend
* c) H8 b7 H4 b; R# x. v0 |/ ]6 E. f
to update-class-plot
4 o' y0 v0 x, e. X# H3 x% A  set-current-plot "Class Plot"- H. S. @) W8 {. h3 G
  set-current-plot-pen "low", d7 C6 _# U7 ]7 u$ E) `8 p
  plot count turtles with [color = red]
$ e3 N1 J- }! Y) O% k5 X. _& i( C  set-current-plot-pen "mid"$ v, B. Y( Q0 H* d0 o  [8 ~
  plot count turtles with [color = yellow]
, v6 n& d8 }9 j% B, P* k7 z5 |  set-current-plot-pen "up"/ K; B) Y1 K9 h% T# N5 c8 D
  plot count turtles with [color = green]. Y* H2 j1 E9 w/ e. u
end' M% i1 h1 I: A' O1 g9 W

! C: E3 a4 M* ^; mto update-class-histogram
6 c3 V" Z2 R3 |8 T& ?  set-current-plot "Class Histogram"
& a/ }( j: r1 [6 C5 G0 L6 K  plot-pen-reset
1 z% e; j$ ~( }' ~9 K$ e) E; }1 c  set-plot-pen-color red: Y. k9 W: A1 _7 \
  plot count turtles with [color = red]
. e8 i* C8 b; G( T" L, J. N, u$ I6 L  set-plot-pen-color yellow% `7 q1 G, j  ~5 H
  plot count turtles with [color = yellow]
+ a3 B. N2 ]- f+ k& Z6 `  set-plot-pen-color green
0 I" j; x; I% d  plot count turtles with [color = green]
( G. K( ~$ @$ b) hend
8 t$ r' h0 E& v' ]* jto update-lorenz-and-gini-plots
9 r7 z! l) s( U! t  set-current-plot "Lorenz Curve"( Q, K" a2 r8 G" j' E4 |4 T
  clear-plot( P4 D( f( i" t4 B- L9 R
0 @8 W$ ?( r) P* E' ?6 `$ }$ V
  set-current-plot-pen "equal"# p$ K4 ]3 i8 l6 \, J+ @# X
  plot 0
$ J9 h5 `. O3 M  l& ~3 E- Y+ L# i4 `  plot 100% L" m/ `, z  L7 h1 y! v

1 M& C9 d8 U( ?$ s  set-current-plot-pen "lorenz"
8 ]' x; K5 W5 Q5 L) k' a8 Y! H) B  set-plot-pen-interval 100 / num-people/ V  n( D& Q9 |/ r9 M- C
  plot 09 T. A5 z2 W7 Y3 c: \' y/ ^' ~$ U/ I
. s  A6 U2 |# b- A& Z5 ?# T0 Y) {
  let sorted-wealths sort [wealth] of turtles
( I+ {: U: y8 ]3 d  let total-wealth sum sorted-wealths
* L/ A' u5 R' A8 ~  let wealth-sum-so-far 0! A' `8 d0 x6 ]8 W9 P& V: c1 F
  let index 0
  K) t* E. N7 Y) G. `/ K& H, l/ l  let gini-index-reserve 0
( ]5 i" Z. e6 _" y4 b3 U& \! U1 b! k
  repeat num-people [
& ?, S- b. T) l& H" j% ?    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 e: z+ N1 I; Y0 v
    plot (wealth-sum-so-far / total-wealth) * 100+ e0 Y' ]1 r  |8 P5 l
    set index (index + 1)$ B/ v: E( p3 T8 O5 P2 V' z$ l
    set gini-index-reserve, e$ c! B* |, _' S3 u
      gini-index-reserve +
! G2 D9 p/ O" J+ ^, m+ O      (index / num-people) -
+ _$ _7 f; t) k0 M      (wealth-sum-so-far / total-wealth)
4 W* U" x+ o5 e9 Z, I8 w0 E5 `  ]
  a7 e7 ~& H( D& T( j5 g. n8 v2 {: Z  o3 Q- h7 e
  set-current-plot "Gini-Index v. Time"
+ S$ I+ F0 ^4 i9 @' X# o  plot (gini-index-reserve / num-people) / area-of-equality-triangle& z1 T$ Y: @; U1 v
end1 q0 C) t& V9 n5 Z$ t, n/ y
to-report area-of-equality-triangle( V  x* A- }% `
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)5 Z1 O! x" _' @0 `
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-11-30 11:58 , Processed in 0.015179 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表