请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现' T+ R, }* [" @- v' x
globals
5 a3 q3 B$ \% c" c[
' m) K& [3 Q' P; @1 [- s% S; @ I+ ~3 h max-grain
8 [4 S) m' `$ m$ H3 M: P% g# u3 P5 e& r
]$ x# j; |9 V' |" r8 C, }
# u) ~5 g( R; g2 t0 P# A
patches-own
j1 H) W5 t* b[
/ c" f8 t+ Z! @& _3 R' a3 I9 J grain-here 9 S0 `0 y6 n6 M
max-grain-here
9 O- b" L9 d8 k2 c, d/ r]
: H/ ]* Z+ H0 s. j, u
8 w( m6 E8 _4 v( v4 mturtles-own
: p* ^4 U, C. c; |3 {' W[4 i9 T. W5 q3 a
age
% r9 f- l+ W, e+ B wealth , {4 c& L _1 k: {2 R* J! ^% s
life-expectancy - ]% p" O9 J- ^" Y# v2 n: [: J3 |
metabolism 1 f: c* D2 |, U# P% }
vision" d. F2 C. {# u* T5 V Q5 c
inherited
' K7 n2 \1 o/ k+ U- W]5 B- `& K5 E5 v% G; w+ w
M$ J0 {' ^% J4 ~
9 D% D' X( J r3 \3 J) Qto setup$ N7 E- e: k) N6 s. g% u9 L; j
ca
. D* {8 a& I- V( a1 X7 | set max-grain 50
3 t; Q& J# U2 e setup-patches
; p/ w! E0 `7 F* ~" { setup-turtles4 H0 l6 t6 `7 t7 |
setup-plots
8 C; P0 D8 `1 X. e8 |. A update-plots
) J- i' h7 }( a4 D C3 }$ k, fend
5 V, ?) S4 d- n( Gto setup-patches& C# U5 q+ o9 y7 I: U0 R2 O6 W! u6 x
ask patches) y* `5 Y0 V* N& x) b% D
[ set max-grain-here 0& m2 _& J& h4 Q
if (random-float 100.0) <= percent-best-land
4 Z" V" n0 {3 R! J [ set max-grain-here max-grain8 w. @" X3 ^/ Q% f
set grain-here max-grain-here ] ]# X+ |. [9 S& w
repeat 56 {# Z. B& k3 Q0 N v% Q
[ ask patches with [max-grain-here != 0]
* s2 F4 d3 b3 I% [0 s0 q. t [ set grain-here max-grain-here ]
* M, S5 ^7 }$ X% O diffuse grain-here 0.5 ]7 j! g! ] K7 i! u5 q% v
repeat 10) D2 a' o0 D6 [; B1 x0 n! e; I
[ diffuse grain-here 0.5] 2 }# c" X1 r: G9 y) |7 e
ask patches. m3 f$ }6 l0 u& |- m7 }
[ set grain-here floor grain-here % }. K% X# f3 M& a* p b, `
set max-grain-here grain-here , @! H6 i5 X, ?, i6 W
recolor-patch ]
) R. r+ r7 B4 V" xend
* K( w7 G+ A( r2 _to recolor-patch
3 C4 x, L5 m2 l set pcolor scale-color sky grain-here 0 max-grain5 Z! d6 a) c8 S# s
end
3 \# m; [% A& Jto setup-turtles1 R0 ]; [1 r* U1 M3 w
set-default-shape turtles "person"7 P3 |/ R( h- p k( i2 k
crt num-people
1 s4 I( j, H: p& N [ move-to one-of patches
5 F5 ~1 N8 Z! M, d, o' r. I) l set size 1.5
# C+ X2 k3 u9 ^3 x set-initial-turtle-vars-age
* p W& s9 W; j; C. j/ t set-initial-turtle-vars-wealth& d" v2 Z. {' |( R
set age random life-expectancy ]
$ I7 x1 T% |5 _4 J9 C recolor-turtles
4 W& u' p' a5 d2 _$ O- I% ?end
% Z8 U/ ?) b6 b' f9 |5 {/ ?# @! L* u
to set-initial-turtle-vars-age
) c& j, O* G7 {1 H4 l let max-wealth max [wealth] of turtles
& q1 ?! v+ w2 C# |7 F" q9 | , D( o0 [* a- }0 k0 C" P
ifelse (wealth <= max-wealth / 3)- N% N6 b5 l- S2 D7 l
[ set color red
; @* q# A5 D- R! \6 { set age 0
+ Q' c( M/ m- P* L0 e' b! W face one-of neighbors4
& l9 ?: ]% v- ? set life-expectancy life-expectancy-min +" o& ]- H7 \) {& g$ Y
random life-expectancy-max
* O4 L" U! w- U. c5 d, c9 V set metabolism random 1 + metabolism-low1 r& V" f( O5 c, k. _ Z2 w7 m
set wealth metabolism + random 30
+ W: ?! N; \: U2 a: Q& j' b6 l. F* | set vision 1 + random max-vision5 l0 @1 d0 d ~0 \' B- c
set wealth wealth + Wealth-inherited-low ]. }! p# y& D) Y" _- h" J+ }
[ ifelse (wealth <= (max-wealth * 2 / 3)), i$ j$ c6 g d
[ set color yellow 3 n# O- W5 W$ G5 K0 @
set age 0+ S8 T6 P k0 U5 M$ u
face one-of neighbors4
' L: r# J6 o7 N* u9 N! U set life-expectancy life-expectancy-min +0 u- k9 b7 |8 i& Q5 g3 s' a+ t2 N
random life-expectancy-max + 16 c& T5 r6 a2 W
set metabolism 1 + random metabolism-mid' b" k0 D$ ~- h1 q6 T9 J
set wealth metabolism + random 30
7 n) U C8 D$ ~1 W V set vision 3 + random max-vision
5 \- X# R9 D- a1 A5 f/ L set wealth wealth + Wealth-inherited-mid]
. _' @2 _, @9 k+ E% E [ set color green 4 n* i7 e$ w. J0 [. v/ N' c4 |
set age 03 V4 k: W6 l1 U/ X0 W$ d
face one-of neighbors4
% ?1 O8 T7 |; { set life-expectancy life-expectancy-min +
/ y* |; U9 [4 N% ~+ _" u7 \3 | random life-expectancy-max + 2- R% v5 |0 B/ X
set metabolism 2 + random metabolism-up
" w& E3 J( G! |" `8 ~ K9 l1 ? set wealth metabolism + random 30
3 w% m4 v1 R; o, N* M set vision 3 + random max-vision$ N) l U l+ g; Y6 u
set wealth wealth + Wealth-inherited-up ] ]
- X6 X& k, m4 q9 d+ r9 S3 I
# D: a7 a: L( [2 q+ Eend
, v/ c3 [/ o9 L( E6 T, X- Cto set-initial-turtle-vars-wealth
- g6 m+ s3 n; k let max-wealth max [wealth] of turtles
% t1 H: k2 @8 C9 B' t set age 0
! W- {8 Q* V4 P' R3 j# u face one-of neighbors4 3 w/ c _! J7 r; B
set life-expectancy life-expectancy-min +1 }* J7 o% g/ w) c3 ]% C
random life-expectancy-max
( ]. f! y+ S z# z9 d5 Y( P7 j; ^ set metabolism 1 + random metabolism-up( z0 T; N( _! L
set wealth metabolism + random 30
) J* `+ n% E# T: N% ~/ L set vision 1 + random max-vision R% p6 T% V/ u9 x, T% Y
end
; h1 m' } V8 D+ K( lto redistribution. o: M2 K5 O: l) `" Z9 X6 N
let max-wealth max [wealth] of turtles
8 O5 D5 m6 `) Y+ Z3 w. m# }let min-wealth min [wealth] of turtles. G6 F& B) ^2 r1 D W% F5 b8 M* Y
if (wealth <= max-wealth / 3)
( \6 C. v! C# V3 Q& ~; X4 x [set wealth wealth + Low-income-protection ]0 _5 @ N3 Z2 M& x3 n% y: P
end
Y% ^! O% f) Z% d4 x! ~1 F& ~# M j
9 n2 |; ~# l$ ~$ jto recolor-turtles- w' G% T' Z: A; J$ U ^' G. a
let max-wealth max [wealth] of turtles
% [2 z5 S3 Z+ b+ r$ G ask turtles
/ }# O+ A, n% X8 t [ ifelse (wealth <= max-wealth / 3)% {2 o8 ]* c' p4 U- F' i- \
[ set color red ]. M3 t2 z; Z, J3 [0 ^3 \% T
[ ifelse (wealth <= (max-wealth * 2 / 3))$ U B |7 V/ P' p. k& m4 G
[ set color yellow ]! r/ X, A, i" O
[ set color green ] ] ]* |- l3 q8 ?/ j' J6 x, R0 i
ask turtles [ifelse show-wealth?/ s$ m/ M: @9 v2 B# u
[ set label wealth ]
6 W7 d. [# R5 k$ x [ set label "" ]]
' A. n; B9 |( j" K8 dend
! X$ R4 b+ Q1 H9 k+ V
# Y6 {4 V! O0 Y5 a4 L2 ^3 ~9 T7 X0 Yto go8 t7 ]6 ?) V0 ]7 m
ask turtles- C# c) R4 J9 ~0 ]% G |; f! s* i
[ turn-towards-grain ]
' _; K, `9 j) N" o+ S harvest P" O x( C0 a7 F
ask turtles8 Z$ W3 e- ^& `! G( O
[ move-eat-age-die ]
7 E+ x- Y& N/ d F+ ~5 E% T recolor-turtles8 B0 k o* ^8 A( P7 I0 g. {
if ticks mod grain-growth-interval = 01 W' @$ Q" u- _
[ ask patches [ grow-grain ] ]; `9 b+ O, Q5 W7 z. ]/ I
) w# ~: y6 \* W3 ?$ W" @
if ticks mod 11 = 0
# L7 [% |$ K" @ [ask turtles9 Q0 H; w& v' S
[ redistribution ]]
) E& l2 j3 e0 f+ [ if ticks mod 5 = 0
6 V/ y* e8 p. L3 m) z [ask turtles
& e s2 F& K8 ^, Q [ visions ]]4 F, P# R* ^0 o& q' `& ~
tick; e) K3 Y. ?) @$ U" F- G" r
update-plots
( V. A2 b( M/ k X: `' `, pend
* u: w6 j0 H4 g, tto visions [4 \6 Z2 W# W" T* O: n
set vision vision + 1 $ F( O6 v- [9 D M: I. |
end: x4 F" |( J9 J; q6 _' I* [! D
3 n4 ^! q2 e, _2 U3 B$ n2 V6 H) a
( t$ m: j6 ~. tto turn-towards-grain 7 Y8 l6 A/ X8 p7 `7 m( @
set heading 0* w" X [3 ]' [/ ~" J4 u& v
let best-direction 0
$ c2 ?9 W4 c' y# h- w M let best-amount grain-ahead
L$ [1 U( E7 v0 g" L set heading 90
5 U% C2 s- ]( S7 @! o/ ]- w if (grain-ahead > best-amount)" ] c5 b3 V: a& P& ^6 z5 G9 p
[ set best-direction 90
" T/ ? J3 b+ j# u, z5 z7 G set best-amount grain-ahead ]
9 ?$ u/ n. j; @( R set heading 180* @. K5 u) W$ m" Q- G, T. c/ v
if (grain-ahead > best-amount) H3 R6 D2 T" \
[ set best-direction 180
$ U: N* k* ^7 U5 l: p set best-amount grain-ahead ]
- [6 c/ k$ J) c: n% \7 b set heading 270+ \& T. t: Z# w* Z% l
if (grain-ahead > best-amount)2 ]1 \* p* c& d9 L4 K h6 D
[ set best-direction 270
. |) E+ N( _/ i% f( M set best-amount grain-ahead ]
3 L+ R4 o6 B! ^4 i$ V s0 I6 { set heading best-direction! C6 E0 }9 c8 ?* O+ Q- O5 N( L6 Q
end) G7 _1 G: ]: T: \% u& P
, Q0 K% h7 k( z& |1 e, F/ Z/ x0 F) s. m7 y* o
to-report grain-ahead
' q0 J! f N- N' K) z7 | let total 0& v% H3 s; I# B. m% l
let how-far 1
8 [" }7 [& l5 s" m" p) o repeat vision! ]- }: H! q u5 V6 ]3 X
[ set total total + [grain-here] of patch-ahead how-far
$ J2 i( ? }# z1 G3 Y/ }% F! j0 w set how-far how-far + 1 ]0 _+ ^! i; ^+ K1 Y8 d
report total
; G) R9 n H d& T1 i* iend& X4 t6 Q5 b F7 P: [$ P
. X; L+ c) V6 @0 H
to grow-grain ( f4 z. j! E/ D' C
if (grain-here < max-grain-here)
5 k, M) f. Y u. ?+ ?2 F [ set grain-here grain-here + num-grain-grown; U2 V, E+ ^. Q0 R" E3 K0 F
if (grain-here > max-grain-here)
; Y1 P7 j6 U& W4 b; j! o, f [ set grain-here max-grain-here ]2 M4 u: [/ w& K% ?7 {$ {
recolor-patch ]
, l, L$ c4 l7 Z3 {( q% l6 y8 D/ Wend
4 x) f3 |# B$ J5 f, i: F* D" eto harvest
+ m+ W% h' X' K0 [7 N ask turtles
3 E3 }/ y: r% J3 ] [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]5 H7 y- _& i0 m
ask turtles
% s- s* \9 |" i [ set grain-here 0" y! L W. s7 ^1 }7 j& N. v
recolor-patch ]3 m& k/ `! E4 n- A8 i9 z
) \" a- h* y6 ~
end4 Z- z1 Q: B! q
, P1 x: ^2 R( Q5 n8 A' Rto move-eat-age-die
; \2 ~+ k$ P6 l4 c" A8 _ fd 17 N( D) ?( n8 l+ v& F( I, s0 M( p( i3 M
set wealth (wealth - metabolism)+ h, W+ @+ t: U, k: g
set age (age + 1)+ G! P* F4 f. Z+ q. t2 Y
if (age >= life-expectancy)
2 u" N/ r% _ w [ set-initial-turtle-vars-age ]
/ w! G6 o0 {: E- D8 k if (wealth < 0)
6 |* }$ d5 y7 [, m [ set-initial-turtle-vars-wealth ]
( M$ A, d8 A7 ?6 T9 D
3 m, a) x. i& r# P% h5 Qend" s# @* e- {* ~
) q% @+ L/ z% r5 z* h* x0 o1 r
' V! G/ E: q! vto setup-plots
1 V" G' V8 U% g set-current-plot "Class Plot"0 i. z9 S" N" n! ]" O
set-plot-y-range 0 num-people4 e; T8 ~( n& u1 K' ~- g$ i
set-current-plot "Class Histogram"4 u0 {: D2 j1 h; v$ J9 h
set-plot-y-range 0 num-people
# } l9 p+ U3 e+ Oend5 G1 }+ m4 C4 x4 h4 T
6 }. F- _- L+ `! mto update-plots. l4 L( ^% z9 s% d
update-class-plot9 [) g$ N8 n0 k8 ]4 y1 a% b' T
update-class-histogram% U6 @; W, [* b5 b, S5 L Y0 e
update-lorenz-and-gini-plots
2 r" @( |/ Q( k! e* J$ Tend2 T7 K9 E9 C8 P
2 \+ A2 X9 J4 k
to update-class-plot$ e7 a' u3 x' w
set-current-plot "Class Plot"
! A5 u2 d+ X; a) T9 i, s* J set-current-plot-pen "low"
; j% {7 j6 m$ a# S plot count turtles with [color = red]
5 L3 T5 b! G* R% ^$ H# ^ set-current-plot-pen "mid"
* u/ h' G4 A- Q: f+ H* A plot count turtles with [color = yellow]+ u8 x0 O1 k: y3 v
set-current-plot-pen "up": C6 H4 T- Q9 R% A3 C f
plot count turtles with [color = green]# [6 I" l1 p+ b& I. I) @
end
4 `) _5 P+ O7 S4 h0 W# e* v& e
% Z& T7 A. n# Y1 p& E- |! N6 I) \to update-class-histogram5 L: k* N. H _" k5 Z& ^- s9 w
set-current-plot "Class Histogram"+ D( P8 o6 P" ^% K+ b
plot-pen-reset: e$ N$ I8 p0 ^# i+ M
set-plot-pen-color red$ f4 Z) x" |1 t+ _- [
plot count turtles with [color = red]
# s* e* s5 u/ C4 W4 F set-plot-pen-color yellow
6 i4 F# y% U8 ], O4 Y plot count turtles with [color = yellow]4 a: R0 N9 ^. Y a4 e1 h: j& z6 s1 ?- }
set-plot-pen-color green# n9 j) b, D9 Q% ?/ b% j! C$ G0 u5 d
plot count turtles with [color = green]( G+ g+ @; o1 s5 n& ^6 I7 S# z' A
end1 ?! k! Q& ^ i; I
to update-lorenz-and-gini-plots9 U" \3 R3 K$ N" b5 l9 x
set-current-plot "Lorenz Curve"( j/ I- X. [4 q+ u
clear-plot+ d6 F8 y- w: @7 M
! l# K2 r# G) E( s6 y$ L8 G set-current-plot-pen "equal"
x( c. R4 i: ~% Y( U" ?# w plot 08 P* ~/ g0 c* m W" z; `' r
plot 100 u2 F) B1 g( X9 p+ G; d
8 P# @! y" d- ^, ?( N
set-current-plot-pen "lorenz"
, [9 |. l. m( [$ {% Q' N, L set-plot-pen-interval 100 / num-people% w. l$ \& ~1 i) W( F; S* B
plot 0
1 N, D' C X6 q. X% n3 b5 J1 k
% e1 }- R4 w; D$ w0 b3 | let sorted-wealths sort [wealth] of turtles
% ?$ p/ N5 m# y let total-wealth sum sorted-wealths2 X$ y7 D' i8 W& [; N
let wealth-sum-so-far 0% c; |' d N3 ^9 K9 |
let index 0" |" g( f7 G+ U) c# O4 O
let gini-index-reserve 0
& ~; Y& m- A" Z: _1 s
+ h! @9 [: @$ ?# q3 Q repeat num-people [
% k' J, `/ c! m set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)4 b6 F- s$ q( s# H# B' T
plot (wealth-sum-so-far / total-wealth) * 100* P+ R; ~, u9 l0 p7 W/ M
set index (index + 1)
; N8 t/ g; W& \% c/ S. v set gini-index-reserve
5 q( W/ X# g, U gini-index-reserve +5 G. {& g2 V% f, n5 P2 M
(index / num-people) -
. {) W# F+ W; Y (wealth-sum-so-far / total-wealth)
9 @2 P6 @) {; P& V( Y3 I ]
7 @ n6 b* e5 E: u# y( {
0 J" n# N0 d/ m8 |4 x set-current-plot "Gini-Index v. Time"
3 n) ]+ h! F: R, T) v- J9 E' e% [ plot (gini-index-reserve / num-people) / area-of-equality-triangle: l$ ]& }( H0 A+ Y4 C+ _/ H% m. ]" N
end3 B3 Z& B2 J C* Q
to-report area-of-equality-triangle1 R( f1 r8 y+ V
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 A ]* M% f/ Z4 g% K
end |