请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现8 W/ B+ B0 U9 l) G9 G, ?/ C7 _$ o
globals
7 S2 T9 M- L( L[
4 { }7 M+ T7 e max-grain
! G) q! Y8 m: x/ _6 c5 |& M- K( I% |' f/ H) E
]
+ Z- _& I1 k7 r4 n3 d! }; H) u Q2 P; Y! S8 @: m6 [- C* E9 B
patches-own, O! E% Q* p+ z! {
[5 `( W& K5 T% }! x$ n& Q# n
grain-here
; F- o- r- l. `; a3 [6 s# {# X max-grain-here
E" L+ P% J; T; \/ C8 m; {]5 z9 O# v3 c' ?& U+ S# Z& v
& ~1 b5 K; v9 D6 Q2 nturtles-own4 q2 T( g4 Z& ]8 f2 G2 w$ a
[
. U' H+ {8 }. I0 k# \8 w age
- e& x _7 t6 K9 f3 k- W wealth
0 T" b g5 W' s& { life-expectancy
% V1 M# S+ S& [/ g metabolism
: E. D6 Z9 k& J$ w' ~+ R( ] vision3 _7 i2 H: z% [* y- C
inherited 2 N$ k$ C0 }0 ]' b
]
6 P: `4 r* E( ~8 t4 v0 M0 t' e! W- J
- q4 U4 H$ s U
to setup2 U# D& _) g2 W# h
ca4 S% m1 S6 l, |9 A( Z0 B0 }/ a1 ]
set max-grain 50
8 Z2 d; W! L L1 S) | W setup-patches
; |& \- r5 P+ {# Y2 l setup-turtles
" J/ ^# V7 F) Y setup-plots
1 Z% \0 j! G$ G/ g1 r/ H update-plots
; B9 Y* i* U; ^: [3 m7 I. aend( X X5 l p8 m5 N; ]5 b
to setup-patches
$ m% T7 G3 F: l0 @% {# T6 J) a ask patches
% g8 t# S, D% \ [ set max-grain-here 0
9 t, C* n, @! _% \5 p, ` if (random-float 100.0) <= percent-best-land! `. P8 v, @( y' j" W+ ]. S& e. K
[ set max-grain-here max-grain
9 ^" i- N6 z% ?- {/ n set grain-here max-grain-here ] ]' H; v0 y0 S5 A6 q( P
repeat 56 q) C: B% G1 V f, h' x2 o* [
[ ask patches with [max-grain-here != 0]
Y! O% N+ T, X8 Z1 R [ set grain-here max-grain-here ]- ]5 T2 j: e9 |+ n3 O& S
diffuse grain-here 0.5 ]
; ^% o) p8 U9 e" U repeat 10. N+ S$ @: A' X" m% B8 G
[ diffuse grain-here 0.5] $ S7 O- p# `: m
ask patches
( h5 R/ g& Z1 i) Q* c" I5 K- j7 q) L [ set grain-here floor grain-here
2 [. |: ~. p" M1 f8 { set max-grain-here grain-here
# g( ~5 J0 z5 E3 g" Z1 D recolor-patch ], B& I5 n3 ^$ R5 c1 | U% G
end' a. o* U. R, ]0 P: `* d+ C/ I
to recolor-patch
2 P, z6 X9 P' B; I% r/ y( \ set pcolor scale-color sky grain-here 0 max-grain
1 X. a( p7 f) q( i. X$ bend
- V7 w# B* ~( u3 c- o! dto setup-turtles. G( B0 S* x+ z0 n e
set-default-shape turtles "person"5 c0 ?1 o" _$ z3 Z
crt num-people n+ ]9 V5 R& }- E/ G
[ move-to one-of patches $ p+ A, `8 e# U7 H% E4 n7 B
set size 1.5
8 r" b1 z; k, {) T+ y) F5 { set-initial-turtle-vars-age9 p2 t1 u$ r& ^0 P& H
set-initial-turtle-vars-wealth# l, X& }. U9 F# j, j B
set age random life-expectancy ]3 J( P0 e6 \0 ]
recolor-turtles
2 S! K$ _0 @4 y0 gend) H& M' G# v3 y0 W+ U
7 s j1 S* o8 G) rto set-initial-turtle-vars-age: w7 F. @( j4 a
let max-wealth max [wealth] of turtles* [- g* D) m2 s% u9 a1 w8 O' [
/ Y2 e: V O+ R5 a @ ifelse (wealth <= max-wealth / 3)
/ W" M: ~9 M9 M& B& f3 B K [ set color red
% V( S0 m0 Z7 l: ?7 J I set age 08 w5 N4 l* _6 G; m( Z* Y4 W$ ?
face one-of neighbors4
7 @7 A1 g6 W5 J% S0 [9 N3 | set life-expectancy life-expectancy-min +
8 @6 e$ F4 T6 A1 n random life-expectancy-max
" Z2 e$ Z' n7 B. J4 @ set metabolism random 1 + metabolism-low! @5 k, Y& O; C: }$ D+ K
set wealth metabolism + random 30( f$ b* p2 o- Z, {
set vision 1 + random max-vision
0 T; h0 K2 {; t, Y set wealth wealth + Wealth-inherited-low ]$ T! b/ ] ^6 b9 O
[ ifelse (wealth <= (max-wealth * 2 / 3))5 v0 G1 H' ?1 T8 ~/ P3 a3 R2 n
[ set color yellow : `4 L# ?( I2 W, f+ g2 g6 K! K" K
set age 07 t9 W& M0 d' n( D5 }, s' x
face one-of neighbors4 ( ~; I+ b% Y e: }& w" l4 S
set life-expectancy life-expectancy-min +6 z$ K. m! W* U
random life-expectancy-max + 1$ |3 I( Q; }+ n x9 V& r
set metabolism 1 + random metabolism-mid
9 T$ \3 b( ]. e" g" \/ U: V set wealth metabolism + random 303 X1 f. j1 s; x
set vision 3 + random max-vision
; L' X( l; J' w$ C, B# _- X set wealth wealth + Wealth-inherited-mid]
2 d* }! ?9 z/ e [ set color green 4 Y, l! u( o4 T8 v. s
set age 07 t+ V- l0 h+ L
face one-of neighbors4
4 C8 n# b1 w5 }( t% t* p. e set life-expectancy life-expectancy-min +
6 r: C* }. j3 U b5 s( S random life-expectancy-max + 2" D' v: J8 L1 M
set metabolism 2 + random metabolism-up% _- O% _# P- I. O
set wealth metabolism + random 30, h" M, @$ S* E4 E2 v
set vision 3 + random max-vision3 u+ a+ x- D% `. ]
set wealth wealth + Wealth-inherited-up ] ] ) t6 @+ H' H8 b
^ n/ @3 z8 b$ M2 @4 `" t
end/ a, i1 S! ` @
to set-initial-turtle-vars-wealth3 Y, @% e3 D! h
let max-wealth max [wealth] of turtles
$ J2 g5 W: O7 v3 y set age 0
# |, B a7 M1 s/ n face one-of neighbors4
' P' J# _2 v: i3 S) p# y! { set life-expectancy life-expectancy-min +9 V. l9 C R4 \& I' m) i) w
random life-expectancy-max
2 O$ b% T( p9 f; w6 E* S# s set metabolism 1 + random metabolism-up
: u; Q8 E/ p- o, w set wealth metabolism + random 30, k( G$ M; t+ t6 Q
set vision 1 + random max-vision ) N6 [0 {' {$ e
end* J9 Q# d' W9 F0 M1 X! n
to redistribution" Z/ C, Z8 c: F: A# q4 v' M9 k! _
let max-wealth max [wealth] of turtles2 R' [ F8 _+ r. E! `1 b
let min-wealth min [wealth] of turtles
' E& I4 L, F) Fif (wealth <= max-wealth / 3)
) n0 b+ k: u+ C, `" \: K( u; } [set wealth wealth + Low-income-protection ]' _/ U( x1 R" B0 ]6 {
end
. p( E8 v$ Y! G2 l( ~% m' R ; T J/ @$ ^2 v2 E2 F
to recolor-turtles3 w) D0 f6 {1 i
let max-wealth max [wealth] of turtles: u3 P! \! k9 j* y: x1 {! i
ask turtles f& ~8 P x- {, D9 H( Z6 T& o
[ ifelse (wealth <= max-wealth / 3)
5 }1 y8 S/ j% G0 \* ^) S [ set color red ]
6 {2 r; d2 J4 K( F; ^ [ ifelse (wealth <= (max-wealth * 2 / 3))
( ^. }/ F- d8 G, F) [, w7 D ^* ^1 A [ set color yellow ]
3 V+ k% [% u6 B9 R) ]- d$ M [ set color green ] ] ]" k6 D( A( n/ R \- z: T) m
ask turtles [ifelse show-wealth?' S7 E" } _2 m
[ set label wealth ]
! p7 ?8 h1 x4 m- c: { [ set label "" ]]
7 ~$ t) }* |8 A A3 U2 rend' q5 J1 y$ U7 @$ K, w4 b7 ?9 s
& _- c/ D: i+ Q4 d9 {) ]2 E# {$ S
to go
; i& Y" a/ |1 w ask turtles6 x5 I6 v; y# ~. |9 x
[ turn-towards-grain ] ; z' i6 `* R2 f' x" V
harvest
2 @1 h+ V" y/ P0 N3 j+ R ask turtles
3 Q" U e0 j5 M: ~( M0 N [ move-eat-age-die ]
. v9 S& {) `7 x% I1 g recolor-turtles; q) B- Y$ [9 B' g% ] ^' ~4 k
if ticks mod grain-growth-interval = 04 q+ T7 }! N8 x2 T5 z2 `
[ ask patches [ grow-grain ] ]8 w: V8 h' m- { |
. j* w9 C$ Y. \6 H5 K+ H
if ticks mod 11 = 0 E6 |8 o( p. A# Z! I
[ask turtles
6 } c+ P8 W/ \% b' m [ redistribution ]]
/ [- B" ^! Z4 T* I) R3 l9 P if ticks mod 5 = 0: b5 U+ M* g! G. ]
[ask turtles3 a) K. E* v V6 c: `
[ visions ]]( f" ]1 l! S$ x7 H& r; T! v8 ~
tick
( w1 f2 Y" J& A/ X- x& p; V update-plots
3 N" O& ~8 H/ ^* |4 Rend: i+ |' L0 }1 F. S4 @1 t/ N8 e
to visions! J, U" V$ e1 y0 m! z1 P6 L
set vision vision + 1 / i& f/ O# o& O9 C2 y5 w+ }
end6 b8 v7 |! M" d
) f" g, B5 O" ~2 ^, ]" |5 q& z1 z, h
% g* e' c& I7 `. q! ?
4 |! K1 `, z: h$ S# F% Yto turn-towards-grain % U1 [6 u: d; ^, q
set heading 0
% ?9 C( [7 W) l! `8 _ let best-direction 0( M9 X6 m4 W/ F& ~: K4 G
let best-amount grain-ahead
1 e5 B. M+ [. `, Q set heading 90
( g4 t- P6 }' J% v if (grain-ahead > best-amount)
3 Q0 n- t0 t N! S [ set best-direction 90& {& o. i! c7 C, l: d$ Q
set best-amount grain-ahead ]# ~2 j4 m2 `6 q3 ?6 l+ L
set heading 180
6 X/ C) v, s3 |' b if (grain-ahead > best-amount)5 C4 Q0 M& L9 q2 D0 t, b- N
[ set best-direction 180
* \5 x1 D$ w$ U& n% E0 ^& f" ? set best-amount grain-ahead ]- \9 C% O# N6 }: T
set heading 270& N1 o' _) f4 {* {
if (grain-ahead > best-amount)$ `1 Q) H, x" i! S1 V5 k
[ set best-direction 270$ H$ y, a& ?8 ]
set best-amount grain-ahead ]5 I( w W( ?, a( M; X, H$ {6 Q' p
set heading best-direction) r9 _! p/ b/ ?
end
, C3 c" R6 ~) D& @' L+ T2 A3 i' V: G! ], y# t% e* E
7 c5 z+ v. O p {to-report grain-ahead
# E: D7 z0 k# P% i" S let total 0
8 U- `9 }6 S8 c( p% ]) p let how-far 1: w3 p; E0 E" L5 t$ A! R, j/ J
repeat vision# ?1 P. f- S) c: ?, b/ V& Y7 G* n
[ set total total + [grain-here] of patch-ahead how-far
+ u' I& G6 M) h/ s# X2 I set how-far how-far + 1 ]9 |* w( b8 g: S( O2 j
report total
. b% p. J! L- A0 u' fend4 c5 e/ g6 P; W) f
( Y& ]5 N4 f! ~: Qto grow-grain 0 Y0 P1 P& C8 ]- y# s4 N1 S
if (grain-here < max-grain-here)1 O2 A7 h2 S6 A0 A, D6 B/ `5 I
[ set grain-here grain-here + num-grain-grown
@/ E. T3 v- J% ^2 u, p if (grain-here > max-grain-here) / F5 M: ~. |: C& w E
[ set grain-here max-grain-here ]
" r# }3 a/ ]- [& V, p: H recolor-patch ]
, _' Z- ?! \' X+ Z! bend2 G9 B; y$ S, Q8 U
to harvest
6 y4 I& z+ A0 _! u; k( n1 e( P ask turtles7 ?3 a A( ?, f; o7 I' N
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]1 W$ Z0 f0 y7 O2 k7 {+ _8 y! q
ask turtles- S6 q Y; I. Q+ U% }& w' p
[ set grain-here 0& }. x ?/ [0 I- @ y+ \+ a7 j+ v1 x
recolor-patch ]
8 w1 Z j1 |' A6 l+ E- ^
0 U& G9 H8 J4 H$ B. R# d2 iend9 r* \* Z, u- D9 x3 H
% t" F: p9 f! J6 d1 \# |0 ^. H& A8 v2 _to move-eat-age-die ; f! ^" Y" r+ k( h# S, F4 q* j3 P
fd 1% |; ]% Z5 ~# v" Y3 B( S. Z0 l
set wealth (wealth - metabolism)3 B. ~- u' M6 q, z
set age (age + 1): d! L4 e: x3 p
if (age >= life-expectancy)
2 {6 U# ^. ` |+ u [ set-initial-turtle-vars-age ]
3 d! X: t: g2 E! g0 T# j if (wealth < 0)
4 e1 Q$ w$ R5 |* i! ^0 y [ set-initial-turtle-vars-wealth ]6 Z% G& q0 u9 K2 E+ Z
4 b6 o6 O" C) P; Q8 Gend
6 p+ [) z1 h' L. D o9 n& \( z& c& X0 L! T) u
4 F* o1 t' b# Q, _7 v: ~' Eto setup-plots+ R0 S! G* v# j6 k! G% u9 ]
set-current-plot "Class Plot"' @( M' k1 ?, D2 V8 w( k8 x
set-plot-y-range 0 num-people# `- F) [2 P/ \( Q
set-current-plot "Class Histogram"* s7 f+ i1 p Y* i- j
set-plot-y-range 0 num-people( v( H- T( V+ x
end
! }2 m. D, c& e8 v2 G* H
4 v- ^0 w/ o) Y8 o* d+ kto update-plots" ]; a! a* H9 } S8 j
update-class-plot5 x/ G8 e9 [$ Y( N
update-class-histogram9 E1 y! a' E, k2 | y) H+ T
update-lorenz-and-gini-plots
' W( w+ U+ x1 ^8 t. G- y* N% uend" ^( ]$ n$ H! f! M- e2 m
l6 y6 G8 ^6 H, y, H
to update-class-plot# O- U& S8 ~1 m% Q
set-current-plot "Class Plot"5 {+ _ ]7 v: B, v% }1 O4 ^
set-current-plot-pen "low"
, B: N/ h0 k' T, X1 |9 o3 R5 T7 q: Z plot count turtles with [color = red]
: H) S; T% l/ _+ z: a set-current-plot-pen "mid"
" L2 C* n7 P# U( ~6 D plot count turtles with [color = yellow]
4 u2 A! b" @. o- O; c+ e set-current-plot-pen "up"5 \- k' x; R1 ^( Y) z$ |
plot count turtles with [color = green]
4 E+ Q0 O' v" M* b/ Jend2 S2 R* K3 e( @. O/ Y9 ^" r
U9 K+ H! g2 f% z; E1 dto update-class-histogram( `* M3 p- D* s% N" H6 }# F3 m
set-current-plot "Class Histogram"$ W; j# H. w% C# h
plot-pen-reset% [1 F* A7 L; j
set-plot-pen-color red
# s8 B/ Q. R ^ plot count turtles with [color = red]
`9 Z9 S% d& D2 \) \ set-plot-pen-color yellow
/ R; N( K: y5 N- O' o" H$ y0 u# _ plot count turtles with [color = yellow]
/ d& e9 z y, {$ x set-plot-pen-color green
* b6 e* F! z$ r$ ?) }* x8 ? plot count turtles with [color = green]/ p i0 o$ i# H7 N
end7 d2 Z% C; I8 Z/ J
to update-lorenz-and-gini-plots
! b! y& B. V, E& }) A1 k4 }1 @ ]: S! q set-current-plot "Lorenz Curve"
4 O5 w, u# l6 O clear-plot
- J" a8 q4 [& y2 G% ~2 p
: Y: }5 k3 p; {& m; H set-current-plot-pen "equal"
0 s. D- u, p5 z3 P$ o plot 04 k8 z' M- p) h
plot 100! K' D& ?0 C6 P! E U; y. C
; U5 A% X0 p/ g. `. x
set-current-plot-pen "lorenz" f! j1 b- }; u1 h% p0 ^( ]0 L
set-plot-pen-interval 100 / num-people
( F' |7 N$ J7 Y4 z plot 0
, J! z4 X( W, P2 o. `" [6 D/ x
" i6 b/ P8 a8 Q+ ]: j let sorted-wealths sort [wealth] of turtles6 k. ~/ g! Q# @9 h+ b
let total-wealth sum sorted-wealths
5 p. s1 Y# ^' T+ `& W0 k let wealth-sum-so-far 0* |& O, S' d8 f# {/ ~+ e$ v
let index 08 Y: A4 x( A3 H0 v6 s
let gini-index-reserve 03 ` q' |% r$ G* j2 t
! \7 [3 f: s; m! ~+ T
repeat num-people [0 ?, V9 {; o& }/ F- v5 U2 `
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths); M4 f; t- X X5 Y, v ?# W$ P4 J
plot (wealth-sum-so-far / total-wealth) * 100: Z' F# A1 ?6 X1 s* }
set index (index + 1)
& M# L$ t5 @ h$ {4 D {0 E set gini-index-reserve2 s; m1 ?2 r4 A8 R& e
gini-index-reserve +
/ \/ Y. q0 m" D9 G+ x; c5 H# _( o0 F (index / num-people) -
# q# N k7 G7 k8 z( p (wealth-sum-so-far / total-wealth)7 t6 ^3 A; w& U1 z$ B" ^! I2 L
]/ n' \/ F) f$ q& X
, }4 p7 X8 ?4 c7 O2 i, A
set-current-plot "Gini-Index v. Time"
1 l0 Q+ P) ~. d0 z plot (gini-index-reserve / num-people) / area-of-equality-triangle; N- _8 c/ p, M$ B, D6 K }. W/ [
end( m1 Z9 J3 e* ^/ u
to-report area-of-equality-triangle9 L% R2 @# d N& \; G7 e
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)7 F+ L1 m# p( C( \. [7 Y
end |