请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
8 s6 H* m. c+ X5 k, w# [; bglobals. m! y$ X1 O* V
[
! G) r) h8 `) R5 d! T) A max-grain
* A' b! W) @+ I! @' n: d
$ @$ o/ X3 A0 f) |0 m% z. _7 j9 m]
8 i. U: o; f6 g
3 O( i# Q3 W6 Zpatches-own
g' l- r) k! p) j2 S[; I+ i) {4 P+ x1 h, j
grain-here $ C6 K9 x I: C' u* i
max-grain-here & ?$ }7 O& @. t' M Y" f
]' L' L( H7 s$ V/ h1 |
' p( F- z3 K) p* N3 B* K
turtles-own3 u1 V% A1 |2 B; k0 v7 c$ g
[
* i0 h; x- y! O' L6 j, P$ b4 N age ! C( I6 R( q/ F w+ `
wealth 6 w8 {9 P' ?5 A
life-expectancy
* l4 M6 S O' c metabolism
0 I% w$ v- g9 s9 T vision
2 \5 a% r; O& @% d h! [! M inherited
- k5 ?* o. ]# R, }; a: n# Q]* f0 Z2 {$ y' Z! `: g$ X
( D6 Q7 r# e: `& i7 v) w; ~' M
0 v! l+ P0 c' o$ n1 y1 x' Y. B, yto setup
4 v9 y7 D1 l3 j+ i ca4 _# U4 k; S* h
set max-grain 50
5 o) j% }( f/ k9 o: P% g setup-patches
( M( D! [0 D0 y# L9 W$ n setup-turtles
5 t! ~/ [2 X' O2 ~+ ?+ |' z setup-plots
. d& ^1 d, D6 C update-plots! c' Z1 r- ^! ?* B: J
end
6 v: Q4 c% b1 l& lto setup-patches3 a& j4 @) d7 M% {1 }
ask patches
: W4 j6 S6 r9 [ p! J9 m [ set max-grain-here 03 o. A3 q. j! g" ]
if (random-float 100.0) <= percent-best-land
3 K" [8 ^ E9 w/ m# S [ set max-grain-here max-grain
# Z- E' g ~6 M* S set grain-here max-grain-here ] ]% ]6 l6 T+ |3 Z' j/ B2 p
repeat 53 Y1 S# P: t/ c6 d3 e
[ ask patches with [max-grain-here != 0]: k0 z( e3 B5 K
[ set grain-here max-grain-here ]% q7 z6 r: Z" v J% v7 ?& `( \
diffuse grain-here 0.5 ]6 [$ V, Y8 r7 Z
repeat 10
0 \. W) x( o0 A9 N! B [ diffuse grain-here 0.5] - m# }' k& [( r2 \. d E
ask patches, d# ^, d" K+ y
[ set grain-here floor grain-here ' D' M: s' C0 Z. F6 S5 N) y
set max-grain-here grain-here
+ c( ], ]% r+ N% [; X recolor-patch ]
8 J" K, A$ W# t8 z' D4 }- c. ^end
- ]" ~, }6 T, \2 Yto recolor-patch
! k& R4 y0 L, W& h" S set pcolor scale-color sky grain-here 0 max-grain
/ L! [7 ]4 c( B" P9 rend
! n, L/ _3 u% V* [5 p1 Xto setup-turtles9 }2 s$ @. L; ]( {: z
set-default-shape turtles "person". k5 N$ ]( A! m# o: ^/ ~
crt num-people
( F0 s o4 k1 [& T1 v0 m" b; F [ move-to one-of patches
+ k, ^" x9 ~" k a, A5 Z( B set size 1.5
/ F0 x( Z E) B: Z8 A6 q set-initial-turtle-vars-age8 |& Z; w5 n/ Q, F
set-initial-turtle-vars-wealth W) W; F; b6 J- M8 D/ A6 g$ N# f
set age random life-expectancy ]
7 `. y9 G7 C" ~; E/ Y% Z2 W1 y recolor-turtles
0 `. M& G8 o4 Z5 f# h$ w4 iend* x5 ~) Z- {5 ^4 C% M
6 A" H1 m' O. S6 Y8 y
to set-initial-turtle-vars-age. A" ]$ I6 _# x9 Q, A4 E
let max-wealth max [wealth] of turtles
: d; ~- {9 m% `
( M9 i. T: X. n+ q ifelse (wealth <= max-wealth / 3)5 W* N1 C% B- c9 _9 p6 [
[ set color red
+ Q9 x4 ]. w' m8 W: f+ @. X- P set age 0
7 e7 ^/ p0 X6 N. P face one-of neighbors4 2 u7 n5 t; l$ R6 w0 z, O4 {4 x' @8 V
set life-expectancy life-expectancy-min +
1 l: r R. ?4 k' @+ b random life-expectancy-max 1 Y Y* p& s1 P% r# h
set metabolism random 1 + metabolism-low
2 x8 u8 g! E* h- j& w8 ^3 | set wealth metabolism + random 30
, |; k K0 y9 R set vision 1 + random max-vision
9 i/ k3 n: L' x' y2 L set wealth wealth + Wealth-inherited-low ]4 e6 W( T8 y: ^" K& A/ o
[ ifelse (wealth <= (max-wealth * 2 / 3)) s, F5 h8 m7 B
[ set color yellow
7 d/ d6 R5 h# @ G$ H set age 0! A6 b2 }4 P0 f. ~7 w( V! d
face one-of neighbors4
0 G- g+ M5 Q( l. c3 C1 ] set life-expectancy life-expectancy-min +( u/ q* \& c1 {% m
random life-expectancy-max + 1
6 |( R' P5 }4 f6 Q* }: ?3 ^ set metabolism 1 + random metabolism-mid
6 v4 Q, n# L8 q" l/ I/ |3 [0 G* N set wealth metabolism + random 30/ X- L4 {4 g- `3 [# a0 \# W
set vision 3 + random max-vision
( n8 Q- e+ l9 g set wealth wealth + Wealth-inherited-mid]
) `0 d" e8 Z9 i2 [& V% o5 Z [ set color green 8 c+ T$ |) R L/ j, a
set age 0; }& j: H* ?6 x/ X4 Y
face one-of neighbors4 2 x& }/ F0 {' M
set life-expectancy life-expectancy-min +
3 A: J8 o( d- n- G. K random life-expectancy-max + 2
' ^3 M" f4 T0 f) k set metabolism 2 + random metabolism-up. B* P |/ B; J! ?) F H# ]1 c
set wealth metabolism + random 30
/ a! h+ |/ n2 S: U( g8 l set vision 3 + random max-vision' h2 h+ D' }$ o
set wealth wealth + Wealth-inherited-up ] ]
$ N0 W/ @" }0 N( v3 J* h 7 I) J* f5 w0 D7 M- t) T. Z( G
end
0 h+ M. I: O- b% wto set-initial-turtle-vars-wealth: A' [* X) S: h: E" f, j
let max-wealth max [wealth] of turtles
7 c: Y9 q9 {: N* r set age 0
8 N; \3 I( F) B- F# U' H2 j0 r* X face one-of neighbors4
2 [" k3 G) ?7 h2 ]8 t& R set life-expectancy life-expectancy-min +
- T1 r$ m1 z& ?2 M% O5 A8 r! V random life-expectancy-max
: O4 w# ~% F* k$ S$ a$ M4 c set metabolism 1 + random metabolism-up
5 K% J8 U N: k9 p set wealth metabolism + random 30; N6 A( I, }, @% j, m
set vision 1 + random max-vision / [3 f8 S* \# u; G- `
end( A1 s! U, Y2 X5 u4 p7 D+ b
to redistribution2 ?! {6 y' _' E2 `/ W
let max-wealth max [wealth] of turtles, K; D1 a& H }1 }
let min-wealth min [wealth] of turtles; I! k" ?0 { K8 x% `6 S
if (wealth <= max-wealth / 3)3 ~# \9 z# S* c# x5 b' W
[set wealth wealth + Low-income-protection ]5 k! }1 O0 |! a. U+ q
end
4 C8 o+ ]; @8 y0 d8 N6 Z 4 c% H; p; r* W% I* \
to recolor-turtles) d s& i; @3 e; w
let max-wealth max [wealth] of turtles5 l' y6 c- J3 |2 Q
ask turtles
- t) V+ F2 e j! ]2 }1 r8 p [ ifelse (wealth <= max-wealth / 3)& {! S0 A) n, s; N" a
[ set color red ]
! s1 k2 @0 e! `; ?0 o3 P" @ [ ifelse (wealth <= (max-wealth * 2 / 3)): o3 g6 C; N h# x- p
[ set color yellow ] U* ^. ? Q6 ~# T$ [, I% b
[ set color green ] ] ]8 U# {+ Z* c4 x! | H, k
ask turtles [ifelse show-wealth?7 p/ L, [/ ?8 y4 ^- t% F9 N B
[ set label wealth ]8 X, x* @- U% [1 M( M
[ set label "" ]]) Q% Z6 E" y6 w
end) C+ I4 Q1 ?" M7 q, q$ I
. L+ V% s* G; Y3 S8 ]1 P- H# R$ {to go
2 T* ?0 u/ ]( o, S, T; {5 D$ Z ask turtles
3 ?& E9 `, v# s1 N [ turn-towards-grain ] / f( [8 {5 {$ b; a( q
harvest
! F0 G" M; {- W4 b8 D7 ~ ask turtles
& w( i' C% V/ h* v [ move-eat-age-die ]0 f( [5 |$ S6 M2 w, s( l! `9 f2 r: L
recolor-turtles
) c2 i" K2 `+ O B- o if ticks mod grain-growth-interval = 08 h8 i( L2 z# P: h
[ ask patches [ grow-grain ] ]
0 l0 q# k8 |, f* A3 {7 A8 P , Y4 |1 [8 t1 E8 F; Z. P5 J' H
if ticks mod 11 = 09 R1 z4 H A# Q {1 N1 S- h5 ]
[ask turtles6 X0 E8 I; S) X3 [
[ redistribution ]]3 [5 D( y. Z) m
if ticks mod 5 = 0
( ~- q) u) F% ^" \/ _( _ [ask turtles$ d% N' V: Y3 O' `* @" d8 W& O# \% d4 {
[ visions ]]
6 g* _6 s# x- A; |* o0 V" ^ tick+ J% t$ p: C5 d- o
update-plots
% s( F2 r* q5 C U# r. _end
+ L- e4 w8 N( H+ `to visions
0 V8 k, h4 g% r, I: W. q6 f* V set vision vision + 1
( A1 x. ]+ d/ c b; x4 N. f% i send1 u1 ~$ q, E4 _: d
8 i0 J8 T" w/ l" F4 e1 m, f
, V) m. E3 }. K# {* _
( [& e* }* _/ ?
to turn-towards-grain ! S& d+ \) G' S1 o6 {: @4 R0 F
set heading 0' H* S; p" P( n% x1 h h
let best-direction 0' E2 ^6 G! H' i; J* L
let best-amount grain-ahead8 V( s S3 J9 C0 f# T$ e- `
set heading 900 W5 ^: ]& c" k/ ]2 h
if (grain-ahead > best-amount)0 y* m( m* k3 q4 p
[ set best-direction 90
1 ?0 a( N, i; c/ |1 ? set best-amount grain-ahead ]: S3 `. ]4 Q$ K* s
set heading 180
: C* q6 O8 s; i4 |" e3 `6 y! j if (grain-ahead > best-amount)
9 s( Q0 j& J9 B) a% \ W [ set best-direction 180
6 |7 @2 Z4 z% c. v6 ~ set best-amount grain-ahead ]
( V- L7 L0 f k; b+ w set heading 270
; f- T& M$ U' C9 w9 p if (grain-ahead > best-amount)3 E+ {5 e+ ^/ e* J* S& D% O6 C' N
[ set best-direction 2706 S! @( z' b6 A8 j
set best-amount grain-ahead ]2 }" r+ z$ \! t/ j' t* k
set heading best-direction
7 d! i2 v, N! d/ pend
# h# R% Y; e+ S2 D* y: N/ p C, `# k6 W3 }9 {, U0 N
' k, m+ K; K$ j# k2 |
to-report grain-ahead , C Q9 y+ v; H1 V# u+ C
let total 00 m# R) Q3 g. O4 n @
let how-far 1' R* e) M3 C% A5 ~+ ~
repeat vision5 {9 a0 {5 g! ?
[ set total total + [grain-here] of patch-ahead how-far, R9 V& g4 }. B3 u! [6 H
set how-far how-far + 1 ]
4 ` U* C0 ^( c3 X) D, ~6 M report total
( a, l8 M7 ?+ iend) m$ W+ _ Q' u
2 Q( A, G/ j: n: Z" C ^% B1 Q' W
to grow-grain
% F( T) _2 s( X, U# }& r if (grain-here < max-grain-here)
* W3 }! g3 E! \ [ set grain-here grain-here + num-grain-grown# B- J5 G$ `3 \0 y) f
if (grain-here > max-grain-here) / l e2 L% s- L8 V0 \
[ set grain-here max-grain-here ]
: f' p) A& O k2 D* t1 n recolor-patch ]
$ y3 d5 I0 l9 k# A; `# hend
! D( q# O* t! }& \. y: p7 Cto harvest/ k6 e# o q. F3 p' b& `" ]
ask turtles* O$ R* y5 v' f, a
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]) Z( h e0 Q5 i. t" d
ask turtles% ]/ T H) U3 p$ s9 k
[ set grain-here 0
- g5 c* u" c( @( } recolor-patch ]
, J/ }1 a$ G8 A/ T4 p 3 I( n* e. K7 B
end
: v4 o7 F8 C& ?5 I; ^3 Y! O; w5 I: O0 @/ \6 |
to move-eat-age-die
$ `2 I+ V& I/ v4 }+ D; A6 Q3 B fd 1
2 ]4 z; D% W7 @& d" ?+ u6 S set wealth (wealth - metabolism)
! G: B( a$ u+ @; V4 y0 [ set age (age + 1)
1 C* ?8 }( ^1 c" `8 N( f7 g) C8 |0 P1 Q if (age >= life-expectancy); l& M) n! c; q' `' X4 K. ? B! v
[ set-initial-turtle-vars-age ]+ M, a. A' m! O/ L# ]
if (wealth < 0); X9 } b* ^/ r+ U8 F: K. R
[ set-initial-turtle-vars-wealth ]# E, l" J6 m5 C% \
$ ^4 p8 K3 J `$ q7 n- J
end" g. e7 Q. V3 @
4 k& Q/ A5 Z4 a4 c! p/ i: b5 B% S. U3 ^0 G+ P+ ]
to setup-plots9 ~ i# j& Y E$ C- P+ [
set-current-plot "Class Plot"
: ?' k5 r g) e0 D+ l! g set-plot-y-range 0 num-people* E+ B' \5 P0 L. A O7 c8 `
set-current-plot "Class Histogram"4 r) b% L' m, Y+ B7 N1 V
set-plot-y-range 0 num-people4 ~0 Q+ \4 L1 \/ @
end
% ~5 B, F N$ ?) S. T8 R% ]
& u# a6 d) N1 l# A* X1 N8 j% Z5 nto update-plots
& S G) N) A3 X. a# Y* D& I update-class-plot
; l5 n4 F8 H, _3 r- ` update-class-histogram, O- Z, S( h8 o2 ^
update-lorenz-and-gini-plots
. g9 V/ k* |$ A$ w, aend8 B" r- ^, t" f9 h) X
! h C3 i6 P& }, m& C. L( d/ V
to update-class-plot
1 | Q+ |% ?' }$ F4 |, j$ G) X set-current-plot "Class Plot"8 c0 t* M: X) b @7 v9 D
set-current-plot-pen "low" L( h/ N) l/ m' y5 Z9 P
plot count turtles with [color = red]% w6 N7 D0 {" l2 S$ I
set-current-plot-pen "mid"
- _7 r! Y. d+ |2 }2 \) I plot count turtles with [color = yellow]
& d+ ? F- G& D set-current-plot-pen "up"
' ~% `, _3 h6 c! {2 e5 Z+ P: \ plot count turtles with [color = green]8 e0 d, r% q- {; \8 I
end
8 m, V. ], g" t4 l7 c$ i6 A- N/ ?1 ^# Y$ \
to update-class-histogram3 _* _+ C0 ]& ^9 q
set-current-plot "Class Histogram"
, L; x" f) V% ^. @1 { plot-pen-reset
- B8 J: t5 f) `( A set-plot-pen-color red2 u" |! Y* r& {7 m; p H( M \" y
plot count turtles with [color = red]9 p Z. a, L6 [" Z6 n# L3 D
set-plot-pen-color yellow2 U3 k6 F' I4 _
plot count turtles with [color = yellow]
# E) w& ~+ m1 ]% j j1 G set-plot-pen-color green
6 |( d# w/ ^/ Q8 j, K* X3 r& | plot count turtles with [color = green]: S% Z2 w& j0 C
end
! l2 K: g* J* K7 \ V! Sto update-lorenz-and-gini-plots$ R4 H! k0 U7 E+ v( I1 f- G1 A
set-current-plot "Lorenz Curve"
4 x- q* p' n) v2 l. P clear-plot2 Z/ m* F& z$ x/ u& E9 Z4 ^* P: F
% \( c+ c8 u5 A
set-current-plot-pen "equal"
' E; k' e9 g$ x5 Z, ]8 F plot 0
0 e/ n4 F% o3 f5 q2 T2 J4 {; o( J5 @ plot 1002 u5 u7 H% v7 S# i& l0 ^. G, f
& E" {3 v! d5 ^: m+ Z( D% v9 l. V set-current-plot-pen "lorenz"; m- a4 h8 E' ^! f( l0 T" m
set-plot-pen-interval 100 / num-people- K% \$ y4 e3 ~' l. ]2 l
plot 0
2 s) _# R n M: M
, f7 u& `" D }' y' O$ }6 `% ? let sorted-wealths sort [wealth] of turtles1 j" P7 g2 v" I$ W7 V" U
let total-wealth sum sorted-wealths
9 N% N4 ^ L: y6 n% B let wealth-sum-so-far 02 p7 X0 V: |% J" r8 L
let index 08 d ]. g# Y. ]; ] q
let gini-index-reserve 0
, _0 x$ n0 o* { R- X; i& _. o9 K5 t/ w7 S& k9 u' m
repeat num-people [5 K( O1 J$ s4 g7 k% N+ m$ Z* D
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
8 F& s# ?, v W% A# [ plot (wealth-sum-so-far / total-wealth) * 100
& F: p' Y9 M8 Y6 \ K+ D! ? set index (index + 1)9 L0 k- }0 A7 M) g, ~* p# n
set gini-index-reserve
* b% H3 i5 k- u( W' T. v$ Y gini-index-reserve +
! y; R( Q9 P$ N* o$ F, n (index / num-people) -7 o1 V+ B1 r9 e
(wealth-sum-so-far / total-wealth)0 `" Y* n" R8 ?$ X% a
]
8 X5 p7 t, b( U+ g. G
" u( @4 ]2 X7 m v$ `# [( R) J set-current-plot "Gini-Index v. Time"' U4 j* m8 m; ~! G3 f$ [% V
plot (gini-index-reserve / num-people) / area-of-equality-triangle
! p. A( n5 V, }* Jend# W7 B& R* x9 Y% D% F5 {
to-report area-of-equality-triangle
4 Z- z; v; u: s3 U7 P report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
1 U2 k0 f4 }, @8 A& U- kend |