请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
3 L7 D! D s6 m8 \) H6 [globals
Y2 A/ b4 T8 e- P" ^[
( Z6 g- N0 J* W5 T( E5 L1 ` max-grain
! t$ c4 G- K$ e
" \. C3 n! u5 W n]
* X& |3 n2 t, L+ H w. f" C2 S
6 E3 t/ E m9 y2 I5 H3 Q3 U, Lpatches-own* L5 m4 u4 N6 ~" Z3 t5 I9 W
[
1 F; P5 F# m: Q" [6 M* S grain-here
0 `- w# s1 ?: n" Y e, s max-grain-here ; c' _5 X" P( ?( A1 I8 X# E+ i
]5 o8 q; O1 `8 x. [
0 C, Y. ]/ B) j7 ]' a1 Lturtles-own4 m K. O' ~9 q$ ~
[3 S7 C" }: B& D* f3 `$ z6 ^
age
/ v1 a; G) A( P! U wealth
% V" h. G r: V( D) ]" E6 c3 s, { life-expectancy
t. D3 j+ W9 g! B% T metabolism
2 q* h& ?) [8 e! v4 U vision
0 @+ x: C1 N5 V; B inherited + j5 ]2 }+ i+ F: A
]
" T) t3 d+ y0 q; M j
! [% ^. O9 f' a9 D4 H8 O" t/ T/ y# J3 Q
to setup
2 Z) z6 |7 M! w" N4 S+ d3 w1 C ca3 w+ ?+ B6 D! \" N5 i# p
set max-grain 50
, Z! `. K! c7 k9 ~$ ]5 ~ setup-patches) ^- g" N! b1 d
setup-turtles
. h$ j8 w& Q6 v: ]- |/ | setup-plots" Z: F* B! m6 q' O3 s- B8 U
update-plots
! j# k& P( V! o- Bend
5 E s1 U; {: H+ ? Yto setup-patches0 J1 c, m" L' ^; w! C
ask patches& w: P4 A/ B. b1 Q
[ set max-grain-here 0
6 H+ G5 N4 f$ d, T, U2 g/ A2 r& W if (random-float 100.0) <= percent-best-land4 f8 e! u. x$ d n% ]
[ set max-grain-here max-grain% b& ]) y7 k2 u4 s) X- b
set grain-here max-grain-here ] ], d6 u. M U3 |: l% `( W# {/ \
repeat 5
% i8 O+ ?' e6 m3 `3 |6 q) _, s4 \ [ ask patches with [max-grain-here != 0]1 O" S' D! f) A
[ set grain-here max-grain-here ] i* y4 A# f m9 ]8 ~1 m+ [6 Q
diffuse grain-here 0.5 ]. O; }# }9 Z v& n* Z6 X
repeat 10* { J7 y7 F- V/ t% r* ~# M
[ diffuse grain-here 0.5]
7 c& Q- A& f+ F, J4 o ask patches, G( y; A2 T; b" _ |
[ set grain-here floor grain-here 3 B* t6 e: g: p- `* c
set max-grain-here grain-here 7 |9 }! k% f, g9 V. J% Y
recolor-patch ] Q: Z- H& B" F3 N2 s
end1 S5 t1 A% Q* D
to recolor-patch
8 |% n" U% @) `3 f5 \- Y; j8 D set pcolor scale-color sky grain-here 0 max-grain
8 x/ Q* c1 K0 i. {end* ^* U$ Q. V8 H0 N" w' W2 E+ x$ W
to setup-turtles8 }) _3 }# e0 C6 i
set-default-shape turtles "person"+ N% ?+ k5 T. H* f* L1 y
crt num-people
6 I& v6 `$ O4 ?/ I" q# {; L [ move-to one-of patches
" w8 V+ Q0 R/ \( d5 w3 q3 {! q& @ set size 1.5 ( V3 w) V3 D! @ H: L8 }
set-initial-turtle-vars-age: S! E. L8 k* {( s, G1 c
set-initial-turtle-vars-wealth
- @! [# E6 R- g3 u set age random life-expectancy ]6 |8 | N7 E) O+ b
recolor-turtles
( a. j; u k7 Y: Wend
; J1 W, `9 ?' X& t. ^. @. T. B0 X/ a1 ?7 w& ~4 L( F7 I9 N" U
to set-initial-turtle-vars-age; Y' k% l& _$ F; j1 ~ x; @
let max-wealth max [wealth] of turtles, I, z5 ^/ K. X
, G" v- p$ [$ Z+ g8 v ifelse (wealth <= max-wealth / 3)- \/ ?' E$ U4 ?( a: D0 l! ^" w
[ set color red
, E9 c6 X8 n2 `. U o; b set age 0
3 {6 m) N$ q- H face one-of neighbors4
3 f1 v! M% E) O set life-expectancy life-expectancy-min +
& }- Q. o0 \- B1 u& E; [ random life-expectancy-max
8 i% c# T4 N+ W set metabolism random 1 + metabolism-low
- X6 G3 c! I; o) M3 y set wealth metabolism + random 30
+ R8 a, B& @( _) N, i set vision 1 + random max-vision
! e8 O3 _; E7 C8 I# } set wealth wealth + Wealth-inherited-low ]
, i5 O' C1 v( L* O# ] [ ifelse (wealth <= (max-wealth * 2 / 3)), {* G5 }+ M& c: x% x, c& i/ e7 E
[ set color yellow 5 {2 x% j3 U4 s* a# ^' T% u
set age 0
' }2 r8 B' N O6 u+ }9 r face one-of neighbors4
) q% X# s( }. o set life-expectancy life-expectancy-min +
+ G' l* } k& C8 b% q+ v random life-expectancy-max + 1
$ D( q7 Z( b2 |+ l set metabolism 1 + random metabolism-mid( y, o% S" e5 Z0 J g3 g
set wealth metabolism + random 30
) _( ]' V7 R4 L: r9 o, k! G set vision 3 + random max-vision# a, Z! p6 p5 D! U& o
set wealth wealth + Wealth-inherited-mid]
3 `& M% ~ S0 b. u [ set color green
7 N( x2 \0 D3 z& `2 M5 ` set age 0) ^1 F/ I' r, R4 I; z
face one-of neighbors4 0 p% I5 d, S9 v; n
set life-expectancy life-expectancy-min +
6 Q: ^$ L8 s, D* g. P4 O random life-expectancy-max + 2
/ T2 T, ^, C+ g0 }# `- O set metabolism 2 + random metabolism-up1 Z" j/ z9 I( C1 p; t- M
set wealth metabolism + random 300 ^0 q3 y4 J$ ~9 i2 N
set vision 3 + random max-vision' h+ }0 I# `( d/ h; z
set wealth wealth + Wealth-inherited-up ] ]
1 `- @; d Z5 I3 t% p4 J1 I
! o+ v- b3 K% F! L3 s% X/ {* ]end4 d' ^3 X j& M/ s3 k2 p# f
to set-initial-turtle-vars-wealth; s# q- U; T' V
let max-wealth max [wealth] of turtles
0 L# u8 r; _9 Y set age 0# B8 L1 O" e( c- o7 b2 B
face one-of neighbors4
7 J9 s- f% b% q" ?2 u" n# c6 E set life-expectancy life-expectancy-min +
3 Q$ V* }8 A! ?( g$ C random life-expectancy-max
: }; k% Y. P/ ^3 b set metabolism 1 + random metabolism-up- |: U6 ^# i# {) T4 @- D) {4 p) }
set wealth metabolism + random 30; T2 O- |2 j# p8 a7 Q2 Y$ G
set vision 1 + random max-vision 9 O, f+ Z1 x* E% t& k
end: \% K, B1 E" _! |- d
to redistribution
' n* X/ z6 n$ N, slet max-wealth max [wealth] of turtles& D; I6 |4 ]0 g# [7 ~1 K m
let min-wealth min [wealth] of turtles. r9 [; C* W1 `0 I$ O$ q
if (wealth <= max-wealth / 3)' J6 u! V! ^8 {9 p% k' O K4 t) H
[set wealth wealth + Low-income-protection ]
3 {, m0 H2 E8 G. aend
# G* r4 I2 }6 L. r( F
9 g3 m5 E/ U- C1 {* Q9 j! Wto recolor-turtles
0 ?$ T# Z- {( _9 c( b m' D let max-wealth max [wealth] of turtles
4 c5 {8 G" l+ o. c& h ask turtles: e0 F/ r0 @' x6 N7 F4 k
[ ifelse (wealth <= max-wealth / 3)
2 r' k# R9 U% O [ set color red ]$ g* Y$ W, z$ ?* \/ W2 {# S+ k% c
[ ifelse (wealth <= (max-wealth * 2 / 3))
- g2 d8 s0 o* `% b [ set color yellow ]
# k6 l/ @0 l$ m* k$ Z6 B [ set color green ] ] ]
# v6 b5 n' \* k/ J n ask turtles [ifelse show-wealth?6 h4 Q5 ]" [9 p ^( w4 z
[ set label wealth ], N; ~' H, F2 |( ~/ d5 m
[ set label "" ]]
% \1 T: n0 k1 d* z+ Eend1 h4 e. Z, R( W4 h7 G
) |! G! A: G; K4 Dto go
2 {# z" Y% A4 d$ j& F ask turtles0 p. @8 p( Z6 b. _' t
[ turn-towards-grain ]
: \+ y5 {* E, f8 ]/ ^ harvest
' p" _( b% c- A5 `* g ask turtles
8 l" ]; W7 l8 W- J: E+ j: X [ move-eat-age-die ]
. c) @& F/ M* S recolor-turtles6 F0 J, ]) ]. f- K5 ?( _% E
if ticks mod grain-growth-interval = 0+ |4 r$ j6 ~8 C
[ ask patches [ grow-grain ] ]% e& n' I8 g* I5 j& b
8 [: b. g8 A+ p7 e7 T if ticks mod 11 = 0' C! z, b2 l+ N2 t7 _6 d
[ask turtles
8 s# k2 C0 Z% o; ]& W( v4 X3 F [ redistribution ]]- N O9 L/ V: w# K [( J
if ticks mod 5 = 0: y5 a: H) Y, T) ~ k
[ask turtles, R, l0 [( k0 T9 e* S! l; G+ `. Q
[ visions ]]
6 H; e2 H$ ^6 t7 F* j) [ tick6 g- ?0 y2 N _% T0 o1 a
update-plots8 n* T8 g, d2 d% ]8 l% h0 b
end
+ U- l* M! r* w: |; Lto visions6 j W5 `, p/ T
set vision vision + 1 8 E& d0 u V( K% J
end
! i* E9 Y5 D( Q2 ]6 Z& k# x: C' h. S5 B [$ [; ?+ P9 {2 G3 D( X; h
6 C& }; o" s9 Y) m; ` q; `
# [3 l1 e* |/ N( k+ Fto turn-towards-grain 5 h) k& @( S! B, `+ w8 H' I |* d/ x
set heading 0
& e9 w( }6 L& [2 t5 R let best-direction 0
' q$ \9 L" [8 |( H. d/ q let best-amount grain-ahead6 G5 c9 B R) v" i8 @1 n) I! u+ v
set heading 90
9 p8 n* r H# X* u; S if (grain-ahead > best-amount)
9 h1 H2 J- q" B" N# ?4 A [ set best-direction 90+ ]1 u% {* d" v
set best-amount grain-ahead ]
* O+ c0 `% b9 @' l7 y* G& B) b& [ set heading 180
1 F' i( Y" e/ \ S; T if (grain-ahead > best-amount)* x: ]5 F' U& G
[ set best-direction 180
5 C( l, k) r* I' [" B set best-amount grain-ahead ]9 n9 ?8 C1 p! N- |1 g& @
set heading 270
6 D: t7 m4 O" |/ }* Z) [ if (grain-ahead > best-amount)
/ K# c/ A( C$ F! ~/ E a [ set best-direction 2706 C! D3 z J9 o5 e
set best-amount grain-ahead ]5 n8 _: e& n/ D
set heading best-direction
D. b8 R1 @0 O! v T7 s6 yend- Y- x7 ~, Z l1 w! b
/ a9 D0 l1 j# C
! l) g: B7 H5 a0 S* L3 v
to-report grain-ahead * ^- y: m2 u7 P* L4 c
let total 0 {3 k" h/ Z9 H, q$ i
let how-far 1
; m5 j& [! q* G5 W7 f repeat vision
( o% d# m r; t0 r+ Q, C" [9 [; { [ set total total + [grain-here] of patch-ahead how-far" A+ [1 m5 J: _+ q: n; v
set how-far how-far + 1 ]) H+ x/ m) K y4 g8 @. Q$ r
report total
8 i& t3 y) m$ v9 b# U* Oend5 w, W- _; Q& T5 b. ^" e3 j% q
9 H3 {" s3 A- M9 V* a' B% A: dto grow-grain
) }! V1 X& T1 R5 g! ] if (grain-here < max-grain-here): x3 k* D' U" h3 L- b, p# M
[ set grain-here grain-here + num-grain-grown
( d) X$ M8 T+ d5 C7 w if (grain-here > max-grain-here) 0 u y$ p* z0 a8 _
[ set grain-here max-grain-here ]) N+ P, B. C% m) q8 R D
recolor-patch ]
4 R! a# p- _- ~2 l* eend
4 V; Z v2 j, U/ |5 G; `to harvest; Y- s+ \! E: I, |2 F8 G( ?
ask turtles: \$ K0 S, i; C' T n. ~% k; N/ z
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]4 |5 f9 f1 a9 B5 A1 D! l
ask turtles
8 V2 C4 e$ D5 ?- Y0 f) m [ set grain-here 04 U" j' B( J9 m6 f
recolor-patch ]8 N3 ~, s+ \* ]3 ]" e" j
4 J% o0 @" L" aend
$ p/ P: \7 i, v$ r* x9 e/ r) q7 T! M$ }3 s+ }$ c: G: `
to move-eat-age-die ( e/ w, ]) G5 n
fd 18 Y6 E+ u2 W. L8 V! f, V
set wealth (wealth - metabolism)- S6 a* A4 y. R4 W# I, F1 |# q
set age (age + 1)
, Z5 H5 V8 H5 w) H3 ]/ x if (age >= life-expectancy); r7 |% A& a, R; q) p; r4 C
[ set-initial-turtle-vars-age ]
" M N5 Z5 u8 L: _ if (wealth < 0)
6 d' A* h, v2 y3 e* ^2 ?: r4 g [ set-initial-turtle-vars-wealth ], z% G2 s% A; e* Q1 Q
$ {2 C6 P6 ~' G3 _+ c0 O2 d3 Xend
: D- V& S2 I5 X5 D1 O, n4 O L
; w. h' t. v1 L }, B% Z' [9 a* v( B/ F
to setup-plots
% i! P3 D X9 D7 u set-current-plot "Class Plot"
' H* R0 Q+ u5 S" B set-plot-y-range 0 num-people7 H/ I O; x% p( ]; D3 m
set-current-plot "Class Histogram"
& l$ C% g' d2 o. u D set-plot-y-range 0 num-people) Q8 O, m% N& y4 G- ?$ Q4 l
end$ n0 [5 _1 `, X
, v& ]$ C, N c3 |2 D/ p
to update-plots, l! a4 c; Z. f6 s
update-class-plot/ v9 l9 p, W6 e# U, Y# c2 U
update-class-histogram- p9 f z" \; _- F, ~
update-lorenz-and-gini-plots# J w* T* v( o9 M) K
end% W3 i! T' Q$ p( G# z* o
e3 v O l" r8 h% B6 Pto update-class-plot, _) l. p6 H# m9 r- W V) D. H
set-current-plot "Class Plot"8 V2 Q( R0 G, O0 I
set-current-plot-pen "low"1 a x! f% P! h6 ?# B
plot count turtles with [color = red]
& r% ]) _; l3 e$ n4 T/ Q8 z. u set-current-plot-pen "mid"
6 ?% v7 N# m( d9 }( N& u plot count turtles with [color = yellow]
8 {" k3 N; E4 x8 k0 J; | set-current-plot-pen "up"0 r6 `- P1 `# R7 A
plot count turtles with [color = green]
2 f3 y: ~8 m' _$ A- g! `( _end0 E' m" M' _6 w, v w2 k' K! d
4 V3 r. V- }) Z9 t9 sto update-class-histogram
$ X0 x0 a% o" N# F set-current-plot "Class Histogram"9 P; q9 A! h- T; p: ?
plot-pen-reset
0 x9 D- B" ?( g4 d5 v' S- w! u set-plot-pen-color red
?/ q2 S; F# N( Y# {3 f' t' W! c$ i4 L0 ] plot count turtles with [color = red]9 W6 f0 G3 O. s- M/ u2 F' B* [4 ^
set-plot-pen-color yellow; N5 N; Q( f& N# r$ J
plot count turtles with [color = yellow]
) x: f& i' I8 |! n% t! L set-plot-pen-color green
2 O9 r8 q" `, _3 A0 T plot count turtles with [color = green]
@$ z6 j4 ~% W7 Aend
! q4 u, |$ x0 b% ~to update-lorenz-and-gini-plots& ?9 v, N% W( R* j
set-current-plot "Lorenz Curve"
2 v+ A3 B Q$ v8 R7 K clear-plot: T& e# `$ G; y! {: H% n
$ K- {3 `4 A v! W$ Z set-current-plot-pen "equal"
! g2 P5 p0 V" h* q plot 0( @) v' Y0 D6 A& {; z+ |
plot 100- ?6 v7 [0 `/ ?0 Z6 j& d# j' R
4 m# W% U2 ` v5 f/ X
set-current-plot-pen "lorenz": }1 I8 f+ A* j: }0 V+ Z5 c
set-plot-pen-interval 100 / num-people
6 ]7 U! f. c3 W; a1 I) r plot 07 F, _/ ?8 L% I& s+ @ ]3 D. W2 M
' P9 }: j; T* R: W$ Y' @; U let sorted-wealths sort [wealth] of turtles
9 Z4 P' J# J! \' m: y5 Y5 \ let total-wealth sum sorted-wealths
; w; U! w: m/ ^8 a, | let wealth-sum-so-far 0
5 {) V! E T3 u" _% z. o& f let index 0
5 I; [" W, _" j/ e8 { let gini-index-reserve 0$ ^5 `, E+ f, k! A; d
& t" f( u- ~* T7 a7 E repeat num-people [
6 G, B/ F" @. } set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)9 Z% q7 q! W: c) o4 H5 g5 J
plot (wealth-sum-so-far / total-wealth) * 100
# h w3 \ }# G. O# ~ set index (index + 1)% U% `* R' F. Q7 q h& o6 b
set gini-index-reserve, N `7 \# n% d$ i5 I2 N X+ {
gini-index-reserve +
) N0 B; y r. T7 w& a' t (index / num-people) -! t$ V/ Q% g% n9 o% M
(wealth-sum-so-far / total-wealth); V# t: E; u' H# B6 a% A& G( t1 n3 @
]
: c9 ]& `0 F/ G* E( W; s! q/ D: Y* x* k. A
set-current-plot "Gini-Index v. Time"# n, Y* r* c% A u- K: U/ ?
plot (gini-index-reserve / num-people) / area-of-equality-triangle4 q @/ q6 P# l
end
2 a6 m* w ^0 b# W+ b9 Q* n; J+ hto-report area-of-equality-triangle
7 y8 Y% y. M* E5 K! ^7 Z/ ~* _ report (num-people * (num-people - 1) / 2) / (num-people ^ 2)4 K4 L; ~* d& ?& `0 M: K, H
end |