请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现4 s0 Y' k5 r+ w' a- m
globals
7 v7 l, D4 w$ z$ |8 c[, I3 K$ d: o. M$ V; g% `4 V9 ~4 v
max-grain
! z( e' _" I8 I F/ f2 y! F4 |1 ` _0 m. P: R ]0 |
]
& m! E* n. S7 i" I* o* @$ `6 Q& D: ]& F% J2 h( \9 P/ j
patches-own5 y9 l2 ?0 ^( l: s& n7 ]# ~
[
" C! \9 F) n# A; L. B grain-here / B6 U0 W3 Z& k
max-grain-here
' K, u! ?2 W- C]8 \' A; h( ~* B% b0 ^- p
& l5 Q L! B0 O) U, P, |2 u# ~
turtles-own
& g( R4 k9 {0 W: n[; A; A: G- j! T, N( Y
age
* Y6 G, V; J& ?: o9 L) N4 @ wealth
1 h1 P% ^' \+ W- q life-expectancy
) z& h) T6 m# g% y metabolism
& Q3 `; S9 E. U vision7 p: t0 `. _* h4 o. N) F5 b
inherited
- p/ W2 S: J6 V; Q& ~( ]+ t7 I3 ^2 q]
% _* k3 E& I4 Q5 ]! \; ?
3 ^+ U8 O& q. f9 N1 U8 z- I1 F
1 I$ B! t' M% o# B2 S Ato setup
# ~+ S6 H/ C* ]$ |, D( G( N5 J ca; U9 }& x! Z1 j) m% q
set max-grain 50
# U3 |9 u4 m3 l) G2 H setup-patches
* |, T" }/ i; y7 W6 }# t$ S& _& L- H! r setup-turtles
# y+ e& @+ u/ E2 c& }5 q% q& O, F% c setup-plots
7 d1 j$ M; S" L/ P update-plots
5 j% b$ b! J9 t6 R7 l! [end
, r- Y( u8 d2 `8 k8 |to setup-patches
- h' e {4 h3 }" }) i) y! @ ask patches# V* Y$ b% G8 H8 k; E* [. e
[ set max-grain-here 08 B# U0 i4 O2 E5 T
if (random-float 100.0) <= percent-best-land
% b1 d" x, j8 H [ set max-grain-here max-grain5 X0 {: @$ ~- D5 y; C( J" w
set grain-here max-grain-here ] ]' M0 T! E) L6 j I* t
repeat 5
5 |& B' X3 k7 M. r- H) w, q/ X3 v9 K$ n [ ask patches with [max-grain-here != 0]
- S' }: X! J' ?2 E [ set grain-here max-grain-here ]( u& p& i3 o' n: P, l* B$ ^
diffuse grain-here 0.5 ]; k3 y r' r) |3 K# C- |% ~
repeat 10
$ z- @8 ?7 A0 x1 r2 ~ [ diffuse grain-here 0.5] 7 q9 ]& Z- C% B. F. d
ask patches
4 ]7 \. l: l" H1 ]# v/ E' C- X [ set grain-here floor grain-here
9 c* {, c( Z3 ? h$ Y* @; i set max-grain-here grain-here
- C1 H0 d0 S7 Q' h. R recolor-patch ]# C' h4 Z- e$ A9 O8 t: v' o2 [$ r
end
6 q$ q1 r9 g# t) J- H' Q' l4 Yto recolor-patch % W* C3 f4 J3 J
set pcolor scale-color sky grain-here 0 max-grain
5 l; t h% _ y" ?0 aend
4 c( F; C" Q' i" v( \: hto setup-turtles
* s0 c6 J: g4 b8 G; f0 d( } set-default-shape turtles "person"
" L1 V4 U2 q' W* |1 l crt num-people
' b W9 A% _, n) |8 k" _4 A8 K [ move-to one-of patches , m: w3 p4 {' N
set size 1.5 4 I2 H4 |+ r8 w/ ]
set-initial-turtle-vars-age
4 w2 `" G3 K- i" |3 I set-initial-turtle-vars-wealth
3 a) e' f2 V% q2 V set age random life-expectancy ]" W/ c' E$ B* w1 U: x
recolor-turtles2 I# Q4 ~2 Q# m4 S; m% p' {
end
6 p8 l2 P( A& |0 p: @- a4 u
A3 S! n' d3 e# j fto set-initial-turtle-vars-age
3 l; l; i/ _% h9 D: _ k let max-wealth max [wealth] of turtles
3 I0 A/ k" x1 y+ l
5 I7 \- z3 h" s R ifelse (wealth <= max-wealth / 3)/ @: c/ Q5 P0 F e0 o
[ set color red 8 c& I1 i* k/ V9 E7 e( i4 |
set age 0
( Z& O& B! f5 @* s/ t face one-of neighbors4
) S0 Z0 _! z6 @" g& t9 d set life-expectancy life-expectancy-min +
2 q( o0 q. S# K1 { random life-expectancy-max
& s. N3 F/ a' w7 ? set metabolism random 1 + metabolism-low8 X8 c$ ^. y" w: w v
set wealth metabolism + random 303 t P3 H% F" A
set vision 1 + random max-vision
) X3 ^* `) ~- P1 f; t; ?2 D set wealth wealth + Wealth-inherited-low ]
d% E& E! M# E& K% R [ ifelse (wealth <= (max-wealth * 2 / 3)); [! `8 k& E2 c/ Q) P
[ set color yellow ; s1 o" T3 d% T% j: ^5 k i
set age 0
7 K1 {" P5 g/ g5 t! Z+ L! q face one-of neighbors4
8 o1 c6 N, ?( g1 d4 J* t7 n! b set life-expectancy life-expectancy-min +
( u. h: H" T5 s, m& y% j random life-expectancy-max + 1
3 d) v( ?4 j1 N P3 z! r' Y set metabolism 1 + random metabolism-mid9 p1 c, w0 t6 n2 \( e' |& G& n3 V
set wealth metabolism + random 30
5 y# e1 T/ E4 v" g: {5 ? set vision 3 + random max-vision
+ D1 }1 h& Q8 v" ], ^3 ^ l4 \ set wealth wealth + Wealth-inherited-mid]
1 d! H8 _, y/ K- J1 U [ set color green
7 o3 k# U: s& k% Z set age 0* a2 M5 L8 H4 X+ Y$ m* N+ f
face one-of neighbors4
6 ?( t4 |/ f0 ~. W, E+ ^9 n/ b0 F set life-expectancy life-expectancy-min +
1 ]% h, F" z8 @. |$ o+ t, a/ m random life-expectancy-max + 22 ~' B7 P0 N' ]- z" t& @
set metabolism 2 + random metabolism-up
2 R5 `7 r1 T C, p* j" ^6 E' K set wealth metabolism + random 30
, b# @( C, W2 t/ w0 S set vision 3 + random max-vision/ P5 T+ [1 Y, d8 [9 A
set wealth wealth + Wealth-inherited-up ] ] : Z+ } R$ V( l( E v
5 n* i% ]9 A, W: j- jend: R: n% |" |8 E( u( t" C
to set-initial-turtle-vars-wealth }6 E# B$ T8 i+ i9 B
let max-wealth max [wealth] of turtles
2 I- [0 ]! W, A. d" I3 N set age 0$ b5 Z, u) J; C" e9 J
face one-of neighbors4
; n1 B9 ?& q$ \5 ]0 |5 Q# c set life-expectancy life-expectancy-min +/ m M* J# ]: N' h
random life-expectancy-max ) L' p1 ^. i" _" ]7 a1 i& p$ K
set metabolism 1 + random metabolism-up
% ?. O5 F4 R( T. X" p set wealth metabolism + random 302 W% T$ z/ v: }$ B$ P6 l
set vision 1 + random max-vision 5 i0 E5 b2 u+ _1 f& D( n
end
' T1 b/ z0 A/ a' o" O( K( p" ~# r2 tto redistribution
( I7 [: J" p8 u: Y6 A0 k# x3 u" j5 [9 S" Plet max-wealth max [wealth] of turtles1 [0 X% x. R, m$ w7 Y& {4 B
let min-wealth min [wealth] of turtles+ F9 D( K# P e! L" I! O6 e! @
if (wealth <= max-wealth / 3)
# a7 i. r( \; \8 Z' K2 Z5 z) m3 a; M [set wealth wealth + Low-income-protection ]
$ g3 j% V# G8 p+ G9 K0 Uend
8 y, ]2 q6 |8 k# F |: `9 | & n0 H. k- `9 d$ q. h
to recolor-turtles
$ ]4 j# q* N' U4 e6 V) `! Q let max-wealth max [wealth] of turtles, f$ a0 y4 B1 a$ ~+ l, B# R$ j
ask turtles5 n/ ^+ _1 R4 b7 x" m
[ ifelse (wealth <= max-wealth / 3)6 r+ i- `1 e% W. J4 ~
[ set color red ]
' X3 C' S! c# J6 w) Z [ ifelse (wealth <= (max-wealth * 2 / 3))
+ K$ }, v# J$ a* {4 t- g' b [ set color yellow ]
) p$ r1 @9 f# p [ set color green ] ] ]$ l( `3 Y- O0 O
ask turtles [ifelse show-wealth?5 ^# a+ n ^& j, F& E) X1 l, }# l
[ set label wealth ]
) B& Y( v4 s1 r& F I0 @. e4 s- S6 e [ set label "" ]]; N- Y. ^. P& f2 H
end, [& P9 X( y8 r( a! t' @
) P, z. Z: b/ B; C0 d! u' v! sto go
, ?+ y, ]/ m* b& m, { ask turtles
& a* \3 x# G; x8 s q' Q( C [ turn-towards-grain ]
+ q0 G, E0 \2 {( g harvest `: C4 D% e& ~2 @
ask turtles5 `% A- B! |. b
[ move-eat-age-die ]4 \! N( E# @' j6 q$ x2 |$ ^" v' S
recolor-turtles( L: S. s* m% O% N3 ~
if ticks mod grain-growth-interval = 0" L7 _, H3 c4 J
[ ask patches [ grow-grain ] ]
7 P1 B) }1 Y M ' g2 a( Y4 s0 I
if ticks mod 11 = 0' h, H4 [7 S5 M" P+ {
[ask turtles
3 k+ m+ Q) f: c3 ~ [ redistribution ]]
1 Q! W1 t/ @5 d! N; I2 U if ticks mod 5 = 0% a9 u& F$ J1 e- u* R8 b0 _1 z
[ask turtles
0 k* ]; W: {) D( } [ visions ]]/ u' Y, b; n5 b4 v# s$ L
tick1 i) K' X6 S4 W* \8 [9 k
update-plots3 A6 Z" P% V/ \$ I
end
) a3 v! Q8 @) x( E" t) _9 X( c- tto visions
3 B7 Q( h3 H. F+ F& }6 O set vision vision + 1 $ M8 i { Z( @" B; P) m
end8 j: b. T9 S) s) A
" f( O4 B( P% U# P% }
+ s4 }( f$ U. Y7 {; M G
1 S8 c: V ?# {& g3 Y1 R9 Pto turn-towards-grain
U; b5 v9 T& F' \# } set heading 0" ?3 }9 ~5 r$ A- f! t
let best-direction 0
5 W3 F: p, n i( h let best-amount grain-ahead
: x' W) Y& o# i+ j2 } set heading 90
9 |( K! h! I `& g3 {# m8 f if (grain-ahead > best-amount)
8 T; f+ l8 E) g7 l4 {) l [ set best-direction 90
2 a8 ~2 P! g9 T, F set best-amount grain-ahead ]1 ~2 O, [/ _+ m2 j
set heading 180
$ D0 j# W2 U- a! z g if (grain-ahead > best-amount)
7 E* I* |4 P% c; B* e5 j2 t [ set best-direction 180# m2 j- O! U9 r& m. x
set best-amount grain-ahead ]
6 w' G' D. n9 H9 F5 c set heading 270. B Z: b) N0 |, k" X
if (grain-ahead > best-amount)
1 [' p" P1 x( Y# Q [ set best-direction 270
1 F/ l4 Y; X7 |. A, w2 d% v' a set best-amount grain-ahead ]3 J3 r8 s7 `# F3 N$ f5 [6 b
set heading best-direction/ W P6 ]8 l( u, q; j% ]
end5 Z3 S p, ]3 g) b! {" N
+ v+ _4 _% |3 R( ^
- I+ p* Z' x! H j
to-report grain-ahead 3 h6 L+ u6 R7 f3 R; p
let total 0
) g/ }0 l4 M& K! v let how-far 1
: C- l0 e# C' w5 }& o [ repeat vision
+ f4 c @9 f# w# h2 k' t [ set total total + [grain-here] of patch-ahead how-far
2 z9 f, K8 H" x& g' b- e& V* @# W3 I& s set how-far how-far + 1 ]- S5 ^( V u; m1 d6 i# B
report total, w4 G( F% o: F3 j! O
end
6 Z& i. g$ g- b/ O" U% m2 f" k" t) N
to grow-grain
6 n/ M- Z) p. k& |0 M( ^, d/ j9 \8 J if (grain-here < max-grain-here)4 ~1 F5 l. q0 l+ D
[ set grain-here grain-here + num-grain-grown
: Q0 @! Z( {; O if (grain-here > max-grain-here) 4 F4 [9 _, n: s1 I
[ set grain-here max-grain-here ]
! Y8 x. K$ B+ @3 | recolor-patch ]6 U+ T% t" I. _
end
& g/ v& k9 Z# N* }& ito harvest
" X e2 P' i6 s% w ask turtles1 B7 w2 y+ s; v- ~
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
- J/ K. [2 B* S' h) {. E. ?( a, Q ask turtles
/ `4 i9 P. O5 G3 `! s6 W) @ [ set grain-here 0
& U4 c* ~: N1 K t8 v2 Q9 E recolor-patch ]2 Q4 [: a8 ]2 H! s1 O1 V3 _
/ P9 f6 h3 N9 X: W$ {* Vend
! J, W* {8 }: T8 \: f) t$ S$ ~/ p* T1 [! h3 ?, o/ e3 B7 l
to move-eat-age-die , q" ]& l( {6 k% a0 q2 Y
fd 1- o2 T3 `7 R6 ~6 b+ a, o
set wealth (wealth - metabolism): x# Z8 D; l+ s/ H* B5 n+ Z
set age (age + 1)
$ O8 n" m4 z5 j _% N# L8 S if (age >= life-expectancy)
% r+ ~9 R7 ~; L" K* E6 D [ set-initial-turtle-vars-age ]
) X0 ? C! l1 Y3 F4 J* p if (wealth < 0)
3 Q# { m$ B$ F+ l& B" s W [ set-initial-turtle-vars-wealth ], M3 m5 p" i. h
7 P6 @9 r( }" M; @, s, b
end
8 k& P' Y0 t) P1 Z2 ~8 K7 N* H# t" G$ f2 |' u2 z
% u4 ~* l, V5 _( [2 ~# Gto setup-plots# j2 K% z* b3 O! K6 z- M3 b
set-current-plot "Class Plot"0 V+ J4 }$ C" m; ^
set-plot-y-range 0 num-people( e% ?7 v& s$ t9 Q
set-current-plot "Class Histogram"& u% p/ O r1 V1 d6 n
set-plot-y-range 0 num-people
' V$ A Y# B5 t0 p1 J2 y# Cend
/ B; \/ M& e) V8 M- A6 |4 H$ ~0 }2 ^ Z0 b- h
to update-plots! ~# e0 e4 J" ^ y/ C l
update-class-plot
; w0 A: _2 A/ |8 J2 B, Q update-class-histogram" S9 m) g. P Y; n5 f* u# r0 y
update-lorenz-and-gini-plots+ g7 W1 l3 ?; U8 l: V& Z' x
end5 ^" E1 M. Y' {1 p7 M
% P4 U7 G9 \7 n$ z, c
to update-class-plot3 N6 Y0 M- I0 b$ {0 q
set-current-plot "Class Plot"5 J8 m" T: p5 X5 Y
set-current-plot-pen "low"9 _4 W& k6 h+ U- N
plot count turtles with [color = red]' I3 S# c! a f+ I
set-current-plot-pen "mid"! ^* ~( |: ]$ _- U
plot count turtles with [color = yellow]7 ~% D K$ z, z# }
set-current-plot-pen "up"
$ |7 r* ]! e- D, Q5 o/ h W plot count turtles with [color = green]
& B$ M0 o/ I8 ^; zend! O. f O( y9 P! ~
! a. W# K' A- h3 S3 A$ }% lto update-class-histogram! a! x0 u+ g7 S# {# m" M
set-current-plot "Class Histogram"
& m- i1 f7 o5 C2 H( [7 F: a) ^7 z' v! c plot-pen-reset( h O9 k+ B& b9 Z4 p
set-plot-pen-color red+ h% K# ^% P5 c4 ]4 u# @6 R
plot count turtles with [color = red]
6 m0 a0 i. \% R ~8 p! Q( D set-plot-pen-color yellow# k8 h5 }, P( y1 `& T1 ]
plot count turtles with [color = yellow]
- Z4 t2 e! H% O6 W set-plot-pen-color green
* c( [) x9 f) A+ A e6 ^ plot count turtles with [color = green]
|6 O! c6 |) G. u* H$ c! yend( b& q0 b N7 a+ v# M+ A1 t
to update-lorenz-and-gini-plots
3 ? W3 D2 o& g ] set-current-plot "Lorenz Curve"
" g; j) y1 I" f* G2 [! A5 b$ m* G clear-plot) A* B$ l& e6 x8 |8 Q& M/ ?
( N0 v, A: ^1 S6 R5 t5 @5 s7 B7 e set-current-plot-pen "equal"+ T8 O" v/ |- Q9 _ i s+ }
plot 06 r) i. Q7 N2 J; x
plot 100% e! { y; m/ r$ {- q, V$ l
% C- Q! c9 Y5 u7 D
set-current-plot-pen "lorenz"
' m1 C" K* r& q2 b8 _1 R' I9 G set-plot-pen-interval 100 / num-people
5 B( b' I1 o2 g: S9 p7 e% p plot 0: ?3 W* u6 f8 X. l
5 x# I F/ J# |9 h+ ~ let sorted-wealths sort [wealth] of turtles' k [" G% G% q/ Z- T& K$ v
let total-wealth sum sorted-wealths
K5 J0 V5 @6 z( b S let wealth-sum-so-far 0. R' [5 z2 |( W: [
let index 0
' G8 ~7 @) I/ i. q- P let gini-index-reserve 0. l# }2 s2 f: p
7 Q' H$ Z0 u, _* @2 F repeat num-people [
W3 s# F% J* H# E set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
5 t i% K& U6 L) a plot (wealth-sum-so-far / total-wealth) * 1003 w) `' G) l9 I+ r
set index (index + 1); Q* r4 _! @; Q0 `0 f. c2 v
set gini-index-reserve
" F( i7 d8 d- ~' k* r( C5 B$ R8 n( J gini-index-reserve +$ n+ _" Z" Y" o5 b3 v; e6 _( @, N
(index / num-people) -
! Z0 T4 a$ y o! N. q, `5 p. C (wealth-sum-so-far / total-wealth)! W2 w) k2 x3 o, c
]9 a0 Z5 q" Q$ v) H. G2 K: D% }
0 ?/ k! t& X) C7 U2 [ set-current-plot "Gini-Index v. Time"5 J% f2 V4 y. P" E
plot (gini-index-reserve / num-people) / area-of-equality-triangle* Q8 ?. ?1 w5 R6 u: N- I Q9 i
end6 d" t5 n: _1 N" F
to-report area-of-equality-triangle
1 N4 Y% ^. [. s1 Y report (num-people * (num-people - 1) / 2) / (num-people ^ 2)6 s/ N) J" J6 U! }
end |