设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7407|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
, x: Y2 C2 Z1 {7 l1 bglobals
/ \4 b8 j: i8 r3 T[, X3 t  X* Z- {$ h3 C) u$ s
  max-grain    . p  z: k- q# s7 `" b8 N
# P* x2 e$ d% v- g5 Y
]
8 }$ a6 a) G* X* t. X. ^/ a
3 O  W' |$ {: o/ O* H$ L+ jpatches-own: J. J* \. |& |& b# v! c+ v
[" H/ S& `$ w7 ?6 n4 A
  grain-here      + B, ~  q" ?4 A0 ]2 _
  max-grain-here  6 U" J: }- `; e& X& o1 v7 J
]
, }' g* C" j/ k" i
: D5 n! E! {$ e4 ^# Vturtles-own5 H; O, [8 I0 s3 n
[1 i! q3 ?; b( K4 ^& w* i
  age              5 j7 u0 t& t0 `9 a% A3 S% l
  wealth         " l, J$ t3 z( e
  life-expectancy  2 k8 E9 w- a3 ]# A+ _9 o+ H
  metabolism      
: Y' R% L: E. g) m2 U3 ]# x1 H  vision% }- W  C: j" m) n2 ^
  inherited         
4 a1 n" H1 H2 Z, q% t  J4 B]
/ s: w3 g6 U3 s5 a  t6 j4 n4 L' @. n5 e' E- x4 k

  b* p- q8 s3 N' o4 qto setup/ y0 N4 d. u' s# d" j/ J" P
  ca' d# u2 g0 b* _1 ^
  set max-grain 50
2 |3 ]% ~; e/ P  setup-patches. V( A, `) p0 |' e+ m
  setup-turtles- p4 A2 r9 `! s  j5 s( l; F4 P
  setup-plots8 s* z- }2 A8 ^2 @6 b" ]9 X! ~' r
  update-plots% X7 W; N8 B& j& e$ l- t; t
end7 m- m5 p* h# y, w: `
to setup-patches; P$ M0 z" s! P! x0 [) A
  ask patches$ g5 N7 T" H# \
    [ set max-grain-here 0
: D: _' {( o) I% g( K      if (random-float 100.0) <= percent-best-land( e0 }6 f( B. n4 q
        [ set max-grain-here max-grain; y' i: a. ?* R. x/ F5 m: V; b/ @
          set grain-here max-grain-here ] ]
: m& e% h) c1 {/ S& X! g* O  repeat 5, S" M3 \9 B8 @2 C
    [ ask patches with [max-grain-here != 0]
' ~3 H* _4 U/ l; |) r5 f, C        [ set grain-here max-grain-here ]
, D4 }  T& `4 a) g+ z      diffuse grain-here 0.5 ]& \2 }0 O: w" p
  repeat 10
) ]! |. F' ?$ ]% e$ H    [ diffuse grain-here 0.5]         
! h5 u% {: [0 w  ask patches' P! N; G) J. `% c# v) l- _  z
    [ set grain-here floor grain-here    * E) o3 w8 ^" o% _/ I4 I' f$ }  R: ~4 @
      set max-grain-here grain-here      8 B+ t) c: q8 R; J' d4 [# ^
      recolor-patch ]0 t2 M' g* w- A1 j
end
% L# d8 Z) t" u; p; ^; W& Tto recolor-patch  
2 Z+ ~  r0 D/ |7 w7 |( D, U# Y0 Y  set pcolor scale-color sky grain-here 0 max-grain9 [  D# T$ m( q! g$ d; A- p/ @
end$ s4 @8 L1 _* R8 Y5 e
to setup-turtles
* u- t4 K* N( A$ s+ H  set-default-shape turtles "person"
" o* ~8 K1 O( H. H. o  crt num-people/ j8 i) P  [+ ?& W) s
    [ move-to one-of patches  
& k/ z# [% p' f  J      set size 1.5  
4 o/ I" q1 o+ g( V, K3 k" ^% f      set-initial-turtle-vars-age
6 }$ w- M1 K" Z4 |5 H* s, [$ ^5 B      set-initial-turtle-vars-wealth
" _! r6 Z  v! y0 F6 n      set age random life-expectancy ]3 H6 v2 u, z% w
  recolor-turtles" H0 _; c) i+ M/ Y" I
end3 \* b( w+ @: ]3 n* o

! ^" g* C; f4 M' _' C6 B! Fto set-initial-turtle-vars-age
% V9 A  d8 V" {5 x1 u0 s* L, v" d let max-wealth max [wealth] of turtles
4 i! @1 ^) O7 W    8 f- [" Q( g( M0 I& {6 f2 E
     ifelse (wealth <= max-wealth / 3): [; ~- Y, S* @) Z$ n+ C* o. J
        [ set color red
5 D6 i! P, h' C+ G          set age 0
0 d( Q/ Q4 h: N0 Z          face one-of neighbors4 + G; \/ {; Z* d& T4 n
          set life-expectancy life-expectancy-min +) ?( ]' ?. M+ P2 s5 ?' v1 n% Y
                        random life-expectancy-max
+ }, k1 v* x7 S. V          set metabolism random 1 + metabolism-low1 K* W) Z1 R! |+ v; A1 g* [9 U
          set wealth metabolism + random 308 n& Y% r: g# R) L
          set vision 1 + random max-vision* W0 M" k- x  c  [& z2 }
             set wealth  wealth +  Wealth-inherited-low ]/ Z; o2 o& I+ t) ~6 G
        [ ifelse (wealth <= (max-wealth * 2 / 3))
$ A, @" T4 S# Z! m# P5 y8 |  q            [ set color yellow
, a3 H6 l! L7 X1 b% ?" L2 _$ Y7 M              set age 0
6 u- F3 c/ `; Q" G9 k% G6 W, q              face one-of neighbors4
& d  x$ n$ S7 _" s& j              set life-expectancy life-expectancy-min +. F2 r* t/ ?5 C# B" }% M
                        random life-expectancy-max + 1* X' b8 y' t" o' m* ]
              set metabolism  1 + random metabolism-mid9 ?# w1 D5 S2 r; k( J  i" e( ?, N9 U
              set wealth metabolism + random 30
3 w; S1 B  h6 v& \! X              set vision 3 + random max-vision
& S2 A1 U# E) b& W                set wealth  wealth + Wealth-inherited-mid]
4 f1 \/ K9 f- p) d            [ set color green 4 \4 @1 n9 b# \9 C
              set age 0
1 d  X% ?; [3 y7 {              face one-of neighbors4 1 G7 j; f. w, h* G9 d
              set life-expectancy life-expectancy-min +
: r8 G" p" e9 b/ ?2 b                        random life-expectancy-max  + 24 P1 l& w' w  |8 ~& u: ]
              set metabolism 2 + random metabolism-up
3 X" C1 S/ x3 e, X              set wealth metabolism + random 302 m/ s! j" I3 S- G
              set vision 3 + random max-vision, c9 h, P  u6 D
              set wealth  wealth + Wealth-inherited-up ] ] ; Y& Q9 m& j5 e9 C% P$ y

% L" c6 R) e: ]end
1 U* ~1 m9 E4 Z8 N3 A' j2 ^8 q! i" Tto set-initial-turtle-vars-wealth
% {9 a3 S6 m5 h0 B! K) ]5 ` let max-wealth max [wealth] of turtles
: @  A# p% I  a! [3 G1 `" |          set age 0
4 Z3 C, S7 Y7 ~: C9 }" C          face one-of neighbors4 $ }  K2 r$ o. T  x3 a
          set life-expectancy life-expectancy-min +3 n$ S1 [5 t( B/ U
                        random life-expectancy-max ( i& c8 M; b+ m
          set metabolism 1 + random metabolism-up- a  S& J$ Q  Z  v: P3 Z
          set wealth metabolism + random 30
* e2 E! x& x: R. M# U          set vision 1 + random max-vision ( g% [6 @' i9 v  q1 L" w
end
" u$ s; X1 n7 y3 J( r! h, v- Wto redistribution3 i2 b5 V! A9 t; {1 ^2 Z/ X4 ]# b" H
let max-wealth max [wealth] of turtles
) [" t3 z* o. hlet min-wealth min [wealth] of turtles
. k! r! @; w7 Wif (wealth <= max-wealth / 3)# u( w6 D# U, n: a
[set wealth  wealth + Low-income-protection ]6 T) {1 P& f5 \' v) p( Y
end9 {6 s, L- L/ S; B" B3 @9 v5 f
         
2 A- X  ]/ r6 H$ L% }3 dto recolor-turtles. Y1 |  ]. j( I+ l: c
  let max-wealth max [wealth] of turtles
4 D! t+ n* s* U$ n, H, Q4 \) B- P/ F  ask turtles- N) |6 r3 Q* B9 ^/ L
   [ ifelse (wealth <= max-wealth / 3)
: A+ A2 F( j/ c/ u3 n- O        [ set color red ]
8 I' [3 c  P; c0 c$ Z# N, L) }        [ ifelse (wealth <= (max-wealth * 2 / 3))
9 S1 e  B: H6 w/ c            [ set color yellow ]" O# x. N1 b" O" |* K. t0 l6 U
            [ set color green ] ] ], n1 [+ _& s- [8 b+ _9 {- N
ask turtles [ifelse show-wealth?+ u: {; X; z, Z0 a. X
    [ set label wealth ]: _: @- O, U* X( b+ u9 l
    [ set label "" ]]4 P& F" n  Y- q6 N
end7 |; J6 Q0 H, Q7 g
6 V$ F" m' w* g/ Y% ^
to go
6 H9 u% A. N4 E7 ^3 F& k# A7 J" I  ask turtles6 M# ]2 M9 J* _4 k
    [ turn-towards-grain ]  
. c: x- ?3 A8 C" @$ o6 _  p1 e  harvest5 E$ U- Z* z6 u5 n
  ask turtles
- H/ {9 ^) g1 A- T+ F( M    [ move-eat-age-die ]' A! L8 J- ^7 K: W, U
  recolor-turtles  d: \4 M0 u  S( E. m6 r4 ~) b1 R
  if ticks mod grain-growth-interval = 0
3 H* F, O" O& M+ V/ }6 J( I    [ ask patches [ grow-grain ] ]
$ M. ~( r  V! w8 N) Z+ @9 ]# Z   9 [0 H  M5 x6 ?6 s+ ]- Y$ m& `1 P
  if ticks mod 11 = 0
: a# ^; M) m5 _  [ask turtles
" _! G% W4 k' t8 T1 Q  [ redistribution ]]
' z; _0 X! A8 P' r  if ticks mod 5 = 0
( A+ T& Q" N% v7 x: B   [ask turtles
2 l" \; S/ @! ^8 [7 U& E  [ visions ]]$ i2 d& c. t) Q1 v) p* H
  tick' G1 g+ c8 \6 |6 J! t8 M
  update-plots
4 x  u0 C% k7 E6 X3 iend
# t. |) P: Z  Nto visions+ V" T* n# o+ g+ o
set vision vision + 1 0 ~5 r1 T1 a7 @6 R. Q% L" S4 u8 b: S
end1 w: l7 R* ^* u- X- }  u
7 ~9 x, f9 x, `6 }" s$ g9 g

' B/ F# {  q5 ?( g
- E7 h% C+ ~; xto turn-towards-grain  
' f/ V2 ~8 n) s) X0 w4 L* O  set heading 0& R" R# U* w0 n; |, A# w; O
  let best-direction 0
$ K2 \& J8 `. l4 t$ M( {  let best-amount grain-ahead
- \* S& G, O( f* O$ K  set heading 90: _5 Y3 ~7 K1 C1 k/ q: Z  v/ ^% @
  if (grain-ahead > best-amount)0 d0 w& m3 ?* E
    [ set best-direction 90
" e: }6 N! y3 u4 b      set best-amount grain-ahead ]# R4 V" j# u" E  T
  set heading 180
3 \* q  U, I8 h  c, n5 l7 H0 `  if (grain-ahead > best-amount)
* x& \+ a; ?9 B" Z, N6 H    [ set best-direction 180
: ~/ O6 W0 k0 v6 v7 u+ v/ a2 j. j: A      set best-amount grain-ahead ]) p3 y) u: a! r: j8 K. j; h( w
  set heading 2707 v( ~0 W4 P& W' `, a6 c! J
  if (grain-ahead > best-amount). |6 m/ b0 y) X2 ~
    [ set best-direction 270
5 C5 c$ H0 [8 L      set best-amount grain-ahead ]
) x8 ~+ c3 h7 H" o$ o) H- z1 b  set heading best-direction% `0 q' m+ G1 ?
end4 _6 Y6 r/ S3 x3 H/ e5 f" d

* R5 x% H% S$ v" O( j6 Y  u/ w2 z' e
to-report grain-ahead  - z- {  E- p9 M4 V" b
  let total 03 d- a; M2 A1 v5 U
  let how-far 1
3 u* f; t# j# o$ T* b% {( _/ @/ ?  repeat vision
+ J" z/ S  _& x5 L- e  S9 [. I    [ set total total + [grain-here] of patch-ahead how-far
# I2 u/ |2 `8 i9 v# R$ X      set how-far how-far + 1 ]
8 W+ k: |1 `  @! C0 Y% j' j+ F  report total/ }% P. _! K* @' I8 a
end
1 _5 E8 E& D8 R- N, F0 O
- Y; W5 o6 |0 |0 p% m$ }6 C4 G2 n" ^to grow-grain
- m2 }: {5 i0 ]4 ?. ?, b8 q  if (grain-here < max-grain-here)
/ g" V5 @) T# K2 p7 B, o2 z8 p    [ set grain-here grain-here + num-grain-grown7 v; @! W$ q1 ]3 I9 P
      if (grain-here > max-grain-here) ; a! O, O3 K: o- A8 a
        [ set grain-here max-grain-here ]5 X$ F7 E2 ]0 N8 M6 `
      recolor-patch ]
9 S; U! I, i+ Y1 h, uend# c1 J. ^+ H& j! y$ d7 ?; G
to harvest
3 Q% E8 l+ B0 Z" Q. T  ask turtles( Y0 C6 L- Q; L) N
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
( x! x$ o. N2 B8 E6 p- W% B  ask turtles
2 S+ _8 z) H! l; v2 P3 @    [ set grain-here 0
9 z! u$ t9 r: x) C- N      recolor-patch ]( h( @2 ^0 b  n6 w
  
3 K# V+ c* r/ V4 T8 z9 d$ ~3 gend3 \( h0 Y% q- u0 X
0 B, B: y3 M  |- p0 D6 L
to move-eat-age-die  6 u  W) D$ _( `4 X6 S/ I. n
  fd 1
" e. B) n# M! ^' |  set wealth (wealth - metabolism)! a4 t) D0 F/ T' |& B
    set age (age + 1)
; a& R+ a' H6 |2 J2 d! z+ m+ v  if (age >= life-expectancy)
9 s, [# f, C3 ?+ R/ m" d- m6 f    [ set-initial-turtle-vars-age ]
* l0 F8 B0 R0 T8 F$ I( m* o  if (wealth < 0)
( b- b/ l; r; c9 }    [ set-initial-turtle-vars-wealth ]
7 A6 l2 s/ J3 e) P  ?    , K1 b1 b6 }6 P
end
6 S4 z5 @, f! v5 o* H8 C) B; C# V: I) z( U3 L3 C
1 j8 ?5 C6 T$ t$ M2 W5 E
to setup-plots
- Y, _- ^& l# B$ p$ ]& y  set-current-plot "Class Plot"
: V) p- G  z' G% U) h  d  set-plot-y-range 0 num-people5 D( v1 Z' t, k% U" ^1 e
  set-current-plot "Class Histogram"
' f' M" H; ?5 q5 A. V' d  set-plot-y-range 0 num-people
# w7 F" b! V- Xend3 L1 w8 r; U+ B1 V

: m( _% b4 k2 O, B% z# ?to update-plots
; t  a9 f9 N7 ~+ I7 |  update-class-plot
4 i# z7 a4 p; I  update-class-histogram0 X0 W0 Y" c# Q% x' G
  update-lorenz-and-gini-plots
, v5 d  c$ |! @9 ^# Qend
% `8 c! Y; C# h2 D" X) J6 L; f7 p0 L9 W0 `7 M! J
to update-class-plot
  l9 ~5 L3 N1 V4 {5 V  set-current-plot "Class Plot"' x, p' u3 |4 U- A5 {* G& V' s2 Z
  set-current-plot-pen "low") R" i. T+ _' s3 r& G; _  c8 }5 s- y
  plot count turtles with [color = red]
) n5 n' n- J% W! B7 s( i4 ~8 U  set-current-plot-pen "mid"1 C4 s- Q' j8 @, Q0 c2 O; Y
  plot count turtles with [color = yellow]
8 }- E( c& q( A; b; X* x% ?  set-current-plot-pen "up"
" M7 N# u' [' B  plot count turtles with [color = green]( o; C: J0 b- b! \& `
end) E: M' z) {5 V2 F0 o
6 T( A9 F5 v9 D" [' }+ N. C
to update-class-histogram
6 s5 ]: A8 J6 G. x( S) C. S  set-current-plot "Class Histogram"& ?. Z9 j3 q3 j5 Z! p  ~5 F
  plot-pen-reset
4 O( t6 c6 \; n; J8 V  set-plot-pen-color red# k" R  x5 W% v" |7 o0 Z5 b
  plot count turtles with [color = red]" y9 q4 M1 v5 Y
  set-plot-pen-color yellow
; F( V$ b. D9 w4 e( F% ~6 H: y  plot count turtles with [color = yellow]4 T0 |$ ~+ v" P+ g
  set-plot-pen-color green% L& b. X8 P3 t! j' c
  plot count turtles with [color = green]
% m. U0 h' s) D0 |2 s7 N( `end
" b5 |/ R+ k; w$ o; [to update-lorenz-and-gini-plots
" E8 l7 U* p. W( h: Y' ]  set-current-plot "Lorenz Curve"2 W; B4 q+ s4 ]6 e; @% w
  clear-plot
# O  Y  {& t# E8 W8 ?+ P  v; Z; k4 ~0 ]9 b
  set-current-plot-pen "equal"5 t7 q& V/ U& X9 M: q
  plot 0
- m* ]4 N, s/ z8 [2 q& v/ |  plot 1000 F( q  }5 Z7 _3 K4 W7 @( C
# c/ `0 L# z" P; s4 Z1 m
  set-current-plot-pen "lorenz"- `( S: K" l  G
  set-plot-pen-interval 100 / num-people
, o4 e8 K, {: S" a7 j! v  plot 06 E- X: G" B5 T+ T. B7 Y% w' e# [
. Y/ E  |+ t0 H+ k& v
  let sorted-wealths sort [wealth] of turtles
9 x3 u6 M. k8 _  let total-wealth sum sorted-wealths
; N) Q; _  T6 A# S  let wealth-sum-so-far 01 `! g- ?" d8 f$ x4 f4 r% R4 w+ P' T; A9 C
  let index 0
6 W- [( D. L; |, \( q  let gini-index-reserve 09 i! X) y8 \9 n+ }
* y* {' Q+ O0 |7 w
  repeat num-people [
. k8 [- X% p; d    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
: S$ c  l! V" e    plot (wealth-sum-so-far / total-wealth) * 100
% ]+ c  z" ~$ n/ U3 C: ]/ v    set index (index + 1)" l) u- T* B0 F7 x7 `, O
    set gini-index-reserve
$ D- z) a1 _2 f; p% T3 U$ ~# p8 Q0 `0 p      gini-index-reserve +2 E$ p/ t; Q9 w1 U* B6 ^. f
      (index / num-people) -; c. O9 L% T( `6 j6 n0 T
      (wealth-sum-so-far / total-wealth)9 F" U( H7 w0 u# j- O
  ]& y2 p4 c# |" `+ F1 A7 e( H* g0 m, L

% T7 r5 r1 n$ a8 |. H1 Q, y  set-current-plot "Gini-Index v. Time"* T* C0 x) T6 h) L2 B- Q1 w" `: h
  plot (gini-index-reserve / num-people) / area-of-equality-triangle. x0 A  m( s$ T5 Y- ~
end* p+ ]$ {. f$ ^3 V- t3 P  C% N& ^
to-report area-of-equality-triangle
/ E/ n' p2 ?1 f) _% z. P3 z8 Z  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
  U+ a: y5 ^( i& d& K" Q  Eend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2026-1-21 19:15 , Processed in 0.018023 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表