请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
" R: p4 Q* i+ f" R7 ^/ t% tglobals0 b* L: B3 A. N2 C8 J) v! Y8 z
[: p9 v7 U4 J0 P) y; t1 Q8 _
max-grain # L( q; S$ @9 f2 U/ x" y5 S
$ @# ~1 m7 ~6 X+ J2 N: T- y
]
9 r4 z) r5 U, E8 ~* X2 b( O9 V s$ d2 J" S6 G# s- B& _6 u
patches-own
* L% V" E7 Z) {6 {- f8 y8 O' {[
. M$ \/ A9 b8 N, G; }" ^ grain-here
# C! W" |: N# `2 c" t max-grain-here
9 K; D9 x& ^$ e! m]$ w7 `4 o$ [8 s( H4 O
7 d5 w& h* r6 n6 m
turtles-own
7 x @! Z2 Q) s: e, r4 A[" [3 f8 N( L' d& A
age $ l8 {9 G- E9 c U8 Y
wealth . p% F0 B, \% ~
life-expectancy ( k* Q8 |& X# G" Q, e$ U
metabolism
, ^3 g0 u/ E: J9 O3 H5 R vision
- r/ b; ]3 L5 K S- K! z inherited : {" O' D& u$ h# W% x1 [
]
' M7 G% g- d1 z
+ s8 l/ A, b6 Z! D, d) y
+ F2 D* C% v( {2 _2 @to setup
6 w$ S) m4 |, m9 n ca
0 @! a/ l/ F' X5 S$ M$ `! L- w set max-grain 50/ |" Y0 y4 B! S. N r& T
setup-patches
* l6 Q' F8 [' Q# Y" ] setup-turtles! z% `, |* M) d6 M9 b( @
setup-plots
3 N7 |2 P5 j0 Z' h8 c" n update-plots9 m/ p- V# I: F0 }3 K, i7 z+ h9 {
end
8 {& w& B# n% \( F" n$ lto setup-patches
% ]' o2 F- A# h* k9 j7 ]& ] ask patches
1 l; g0 r, x; z% S4 X" Z) ~ [ set max-grain-here 0
/ `% V9 C1 q' O4 G6 W- K, G0 D( H if (random-float 100.0) <= percent-best-land) ?) S8 u" [( K2 _) c( o
[ set max-grain-here max-grain
W9 z1 d. K9 o9 ]# J5 y6 o1 J* }" G set grain-here max-grain-here ] ]& q* A) a0 A' ^4 _( `
repeat 5
% {8 `; N2 X6 @2 i$ ]+ v, p [ ask patches with [max-grain-here != 0]
! Q4 l: m" {& ]& f! Y [ set grain-here max-grain-here ]
6 U! ~% i4 g, Q S diffuse grain-here 0.5 ]
7 A1 i5 i& z& w* T( m' G, { repeat 10
$ ]: Y2 z& m! z6 |1 w6 T: @; w [ diffuse grain-here 0.5]
D6 M- i3 a( p# Z; Q9 e7 V7 f ask patches
5 g5 ^" c4 T( M+ M1 z6 I% v; V [ set grain-here floor grain-here . x9 J C+ a+ @$ `( W0 q* `
set max-grain-here grain-here
5 {' @1 y# b; c _7 g4 ~/ h) ]+ E recolor-patch ]6 m+ Z! l6 t( b
end7 d7 k! Q! [, z+ y9 o1 }: d) r7 Z
to recolor-patch
f' i d u+ S q# m' p set pcolor scale-color sky grain-here 0 max-grain
6 L8 e+ Y& a8 y0 ]2 tend
$ f# b0 o# Z8 G6 P; Tto setup-turtles* Q8 x5 u" r1 [1 f' }$ n
set-default-shape turtles "person"
- J+ T, X7 D2 I8 h1 N( _1 l crt num-people& o1 R1 O! F+ e1 i& T
[ move-to one-of patches
( d- B4 S! b8 j1 D; F set size 1.5 . J# v+ H3 ^) `0 G$ Y
set-initial-turtle-vars-age
# P; _0 x4 P5 ^+ D, J set-initial-turtle-vars-wealth6 g3 \6 \" p" x: C3 G8 {+ d: B
set age random life-expectancy ]4 R' {9 S1 r! h" S1 l4 Y
recolor-turtles
$ Z# E3 L* [5 a: vend
( k$ x. Z- \1 Q% |/ b5 k3 s$ [: [+ S. `3 D
to set-initial-turtle-vars-age
! l. }1 P! r# P let max-wealth max [wealth] of turtles
1 Q1 U4 v! _, U' d2 w, e( T; J " i: ]# L) g& u/ ^
ifelse (wealth <= max-wealth / 3)4 U- x- P) o% I0 D( x/ @
[ set color red
) o' V/ C2 G" y0 d' K- Z set age 0
( h$ s: g; q% ^ Z) `' p5 b4 [. H face one-of neighbors4
) ^$ H, j B. H1 |+ _$ R6 ] set life-expectancy life-expectancy-min +
% m& G- ^) F7 J* s random life-expectancy-max
; K. D. T$ { k' L, o$ N8 @ set metabolism random 1 + metabolism-low
) I( J! L# F8 w9 q* u set wealth metabolism + random 309 k0 G( {: `: X
set vision 1 + random max-vision
5 F' O' r/ o! S, }. Z set wealth wealth + Wealth-inherited-low ]
7 T2 Z M6 `# X, Q [ ifelse (wealth <= (max-wealth * 2 / 3))" A5 e# [5 |$ Z' |% S
[ set color yellow
" B- X! t K4 i set age 0
- F1 i Y/ D( g face one-of neighbors4
- L6 w% F9 \! P, k6 U5 M set life-expectancy life-expectancy-min +
p- K# Y1 `3 C# K1 g random life-expectancy-max + 1
; @: J) d8 L1 }: v9 Z2 b, N2 w# j" o! E z set metabolism 1 + random metabolism-mid
! O$ u" i2 X* l& J) F0 v7 o' A set wealth metabolism + random 309 ^* |8 S3 W) I$ r: {, [
set vision 3 + random max-vision
/ c# Q5 O/ |9 e1 t3 |& v Z set wealth wealth + Wealth-inherited-mid]( ~& n( `) z6 [0 }+ D5 y& v! p/ d
[ set color green
; F/ U. B2 I5 |* s& R) y4 S2 d set age 0
+ f3 w. y3 M3 }+ a face one-of neighbors4 ) ~6 V* O. A# E% y) i4 `4 v
set life-expectancy life-expectancy-min +' q+ [1 X) R* M% E1 U
random life-expectancy-max + 2
# A6 \# P! Z" R0 D |1 g set metabolism 2 + random metabolism-up% l4 D, ?* [4 j! `7 @# }& O4 W, e
set wealth metabolism + random 30
: Z6 z8 r& X2 Y" H set vision 3 + random max-vision
# e D, Y z9 a: E x/ ]* c q set wealth wealth + Wealth-inherited-up ] ]
* D* Y. b* g! f( S6 {
( f1 @! l" Y( O0 O: N% Z- m1 f& `end2 a8 w+ p ]+ e# p, `1 `1 J7 V
to set-initial-turtle-vars-wealth& o/ m( S% V) z/ t) W, E
let max-wealth max [wealth] of turtles# k/ E3 E5 X6 l- D. B6 b
set age 0$ ?/ w" j! s' E6 i6 P7 s
face one-of neighbors4
1 t! j+ I; @+ o4 Y set life-expectancy life-expectancy-min +
& K0 \; @0 A; Y! y: b( o3 ^ random life-expectancy-max 0 y% ^& N$ K: \8 m
set metabolism 1 + random metabolism-up% c! J' q& ~) W' V) O3 V
set wealth metabolism + random 30/ J& s, o' U& B" l3 N: U" M
set vision 1 + random max-vision
5 u* M2 P9 W# Iend; I- j3 `2 y* u- N' R7 ]7 o( o0 Q
to redistribution
9 l) f! t d. }: y2 Ulet max-wealth max [wealth] of turtles* ~+ b) H4 Q4 v3 v4 H
let min-wealth min [wealth] of turtles
+ E. W& y8 x4 M; F N7 |if (wealth <= max-wealth / 3)
1 o0 @7 `- \7 c5 H; W% e' t6 B [set wealth wealth + Low-income-protection ]# C+ ~1 h& \0 n- ~0 x. w6 D4 l
end; Y: N( S5 k, d" g; z& ^: M
% S" s! w- k* P; w9 Dto recolor-turtles9 o& | n1 ~9 Y7 Z, c
let max-wealth max [wealth] of turtles
3 _ `# b) u9 ^2 n! a0 t1 r ask turtles
# ~7 I* @# y9 Q [ ifelse (wealth <= max-wealth / 3)
& M; [/ e+ \* \# R [ set color red ]0 Q4 Q; v' Z6 J) s! n
[ ifelse (wealth <= (max-wealth * 2 / 3))
" \& |2 \2 o% d8 n& o [ set color yellow ]
+ o3 e! f4 E. ]8 i6 P- L u( \ [ set color green ] ] ]
/ j' h8 Y4 q4 N: z ask turtles [ifelse show-wealth?, y% T2 }# T4 A I# v
[ set label wealth ]- j/ d3 {- b! V' x' Q; `
[ set label "" ]]3 c, l: m; l" g; M
end
. h% V j7 z" \- E; v( o, ~
) ?7 Q& \9 E7 L4 V6 s2 n$ lto go* j7 L7 A/ }# E7 {+ c
ask turtles% e: k" x$ b3 O3 a, H) Q
[ turn-towards-grain ]
6 \$ ~- W0 V' {/ I% i0 d harvest# W s( x/ W- g$ }8 y
ask turtles9 ` |8 b/ Y5 W* s8 H
[ move-eat-age-die ]
# ^; [) I6 ^7 r: f recolor-turtles( Q) t0 i# k, Z
if ticks mod grain-growth-interval = 0
2 D; ?3 U8 v( i9 i9 H [ ask patches [ grow-grain ] ]; I$ _. p/ ?; K; R9 {! l. B
@) x: O1 N! A& s5 P: M if ticks mod 11 = 01 Y1 R2 n6 z$ B% \% o+ V' I2 ?
[ask turtles
: {3 { e1 S# O* [) b& p [ redistribution ]]' P/ D" o, X' `% c; `
if ticks mod 5 = 0
8 G' y9 D+ L) ^ [ask turtles7 S0 V" h) z8 v4 y
[ visions ]]
; _7 c" Z |0 ~$ w, N% c tick1 V0 R9 x- n6 l- {! o
update-plots
! W) V/ D: R# ]. U. B2 send
0 ?0 u6 Q# w0 J5 v9 c9 r' fto visions
( S6 U+ \5 A( h$ _2 b( j+ O set vision vision + 1 - O+ w3 t' ~) v+ A
end) e4 B% O& z. K! Z
2 }, A2 L& B- ~/ s4 K( z( {$ j; K
9 i% Y x D" ^% Z9 {: Y+ i6 g9 @
to turn-towards-grain ( q1 l3 ]$ ^3 c! j# ~6 J
set heading 0& a7 j% n$ r% T2 H
let best-direction 0
- w0 @) m, I" l5 [5 o let best-amount grain-ahead
9 d, q% {4 H! e7 ~3 l set heading 90
. K3 e8 ?% H7 C( Y+ ^- ^- Q$ F3 z& n if (grain-ahead > best-amount)
+ ~9 T, d* a' q4 c8 E0 ?( w [ set best-direction 904 r1 d/ F+ `1 w8 C! h, ?
set best-amount grain-ahead ]: I- X& H0 w( @& `
set heading 1805 U( R: f+ T C6 Q: f2 u" S
if (grain-ahead > best-amount)6 I& A3 a3 E$ m, n4 a; k. _4 r
[ set best-direction 180
, ]1 u0 l1 k6 i! n+ M( Z; d set best-amount grain-ahead ]
8 f8 o& o, }9 B2 ~7 P set heading 270
5 k% j6 t/ x! |( D* Y if (grain-ahead > best-amount)! c' M; F$ c& Z$ U+ k& Q. e, c
[ set best-direction 270% p2 M# ~* D$ g* m3 [
set best-amount grain-ahead ]- u6 r( _# R/ i! p; X7 q3 f3 p
set heading best-direction# m: V" N9 }; \2 V
end7 W& ~' E# M" e( i& L/ Y/ U# P' E3 S
5 i# S6 Y7 Z O7 l9 S3 N% G
* z- H* ?( m; C0 f9 J
to-report grain-ahead ) ~. d/ ?4 q: n# a
let total 0: K3 e; x% H; P. d
let how-far 1" z3 ^5 }: [2 z; Q
repeat vision
2 I* L+ P9 s7 b4 i9 Y# E5 } [ set total total + [grain-here] of patch-ahead how-far
2 d' {1 w ^/ E7 F7 n8 s* N' Q set how-far how-far + 1 ]6 ?3 Y- ~. s+ j% K
report total
* B/ y7 w1 M: r! a% B& c+ S; g- |end0 o$ U5 q; G# P5 Q$ B7 p
; X' u- R) g4 g+ j# _to grow-grain
4 y1 I1 M6 n7 S2 J+ X$ b, s! q if (grain-here < max-grain-here)! n: ~' C+ y$ E2 q$ I
[ set grain-here grain-here + num-grain-grown& a+ O: I) @6 s1 m3 u; V! A
if (grain-here > max-grain-here) & A2 g$ M! }+ v
[ set grain-here max-grain-here ]
( f6 S I8 C6 ?: Z recolor-patch ]' ]: P' u7 q t" ^
end
5 U/ i: E, X! i, A' R8 Mto harvest1 d3 s" n, X8 s* u' j* L
ask turtles8 e) P. S4 w: |
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
; y" X0 V9 p2 b- d. ~. Z) P# j ask turtles
4 J2 L4 D8 S( I& e0 f* d" _ [ set grain-here 06 ^5 v. k0 q3 U
recolor-patch ], ?' Z* _& ~3 B* w3 k8 I' D
1 y: E$ z' t1 ~- v9 Mend; \) ~( x1 ^' P2 [( b2 [& d8 `2 E
6 U. K1 ?3 H4 N( d9 F. @0 ]to move-eat-age-die - @2 b8 r n, j7 ^
fd 1; D, @ W1 @" f! c0 V
set wealth (wealth - metabolism)
1 H- x6 Q% l- C& r% ^( Y( y3 A set age (age + 1)! z/ m" ]* ]/ m: {
if (age >= life-expectancy)
# _1 c9 Y* \; v5 ] [ set-initial-turtle-vars-age ] `. L' H7 s8 Z& F; J5 {* T* {
if (wealth < 0), [# e+ l( T( J$ ~" P/ ~( C
[ set-initial-turtle-vars-wealth ]8 L6 c. j0 h, m& k
& n3 e" |' K0 `9 r' H2 p0 \
end8 b+ x$ W% V5 P
! [: G6 x: |" H4 g
& A7 A! X. ^2 T& S# }
to setup-plots; y; Z. J+ F+ w$ p
set-current-plot "Class Plot"
) X7 v4 g3 j9 A. ]' Q9 ]( s0 S1 |2 D set-plot-y-range 0 num-people. T; M& N; L) b; N3 a/ b' k
set-current-plot "Class Histogram"2 q' u' X' ^6 a: }; l6 |! Q
set-plot-y-range 0 num-people2 }+ A- s" m' h1 y' y6 y6 s6 q
end
- ^: e3 I+ m. z* f1 p% a4 |3 G9 }5 {3 k
to update-plots7 f2 ? l: p& ?
update-class-plot$ b0 U; j% r4 l! X8 c8 I$ m
update-class-histogram
6 h& y8 \5 V- A4 B" V- Y. H update-lorenz-and-gini-plots5 |5 O; g3 n# ^, E
end3 t- k% [0 x. e8 b
( x- @6 G8 {. {: ?% C$ tto update-class-plot
; Y: M; I0 X& h+ x' s+ W) A set-current-plot "Class Plot"
6 G# H5 v9 p1 Y+ N$ ] set-current-plot-pen "low"
& f% s/ ~0 d% t plot count turtles with [color = red]
% u6 ^" u" Z6 w, R9 n set-current-plot-pen "mid"
" M& f: B& N, v8 |9 M plot count turtles with [color = yellow]( x! H& v8 N. m% n; M. E3 [/ d
set-current-plot-pen "up"
5 u% h! [7 v$ R, O( J8 H plot count turtles with [color = green]- S+ ?) w' {$ A! @$ u
end( q* m3 }; ~8 i; U: G
; E s& t* f2 [9 r3 D4 Hto update-class-histogram$ X% z; s P3 r/ A, b L1 e
set-current-plot "Class Histogram": E% H- D/ X) r% Z
plot-pen-reset4 s6 A2 M; \8 Z
set-plot-pen-color red
! s% D8 ~ I1 g! o0 u plot count turtles with [color = red]" Z& a& I$ V- g8 v
set-plot-pen-color yellow4 t9 r' W& b& \+ m
plot count turtles with [color = yellow]0 m: S% }8 E b$ Z
set-plot-pen-color green
! r' x! }+ j6 [; A9 J plot count turtles with [color = green]
8 f# R5 M4 M, O; f, Uend6 v# Z. z- S( p& R
to update-lorenz-and-gini-plots) N0 K* I9 x; F( T: _7 r g
set-current-plot "Lorenz Curve"
5 f0 Q6 K. ]5 f clear-plot
8 L; F H# {" o( t: ^6 I
6 h! J# N4 S5 e set-current-plot-pen "equal") }+ c. K2 \2 E7 q6 l/ @7 ?
plot 0
/ M4 S& A8 h$ `1 _5 G plot 100
3 @9 _1 ]9 `, h8 E4 J* i, t. f# ~( E1 Y) X5 u% E; q" f
set-current-plot-pen "lorenz"8 J0 i7 G" |" B- z& ~* m: D
set-plot-pen-interval 100 / num-people+ T' i% |# m6 H( \
plot 0
4 a1 U& U( W6 d5 [: Y. Q6 L
3 N6 c- U; p. |2 J+ z- N let sorted-wealths sort [wealth] of turtles
! V$ m5 X6 g% u. y4 l3 v* d let total-wealth sum sorted-wealths
; H. P* |) L" E5 u1 A. R% p' b let wealth-sum-so-far 0
. Q8 e. e6 C% U5 m4 \ let index 0) `7 P* q6 c9 Z' v
let gini-index-reserve 0; V1 C0 n2 \) O6 m- b
4 F+ Q1 @( I/ Q1 Z, B; M6 e | repeat num-people [
' z, f% _7 D$ `1 i1 \9 `/ c- M& Z set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)) K5 j) D5 e+ C `
plot (wealth-sum-so-far / total-wealth) * 100
( O/ {/ n4 g P set index (index + 1)* j& B* }: W4 @ j9 }4 i. I% c9 I
set gini-index-reserve
/ n/ o3 Y) d* i ^7 H* R8 o2 O gini-index-reserve +9 A- a. @$ c+ d# @; y. j, {
(index / num-people) -
6 n: o' r1 q5 R3 c. ^8 _) A$ Y (wealth-sum-so-far / total-wealth), W9 E4 c4 S2 e2 H
]: Y3 t: h3 S- v% l/ y) _) s
: H/ C' l5 s5 A9 _3 i! ?2 s set-current-plot "Gini-Index v. Time"/ V# `' X* |. P9 _
plot (gini-index-reserve / num-people) / area-of-equality-triangle
' b/ W* o" e5 Rend
3 M) _ |! v" H1 V/ r0 d% qto-report area-of-equality-triangle% F+ z2 V3 S; T% \# s6 B8 x
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)3 t1 S- k( D: i& p% S
end |