请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现! c1 F2 [( }* q. {% [# `9 r8 j
globals% }9 V7 M: S( \* @
[( @3 A! v" ~5 L$ l* V
max-grain 3 a( O) T3 I; Z3 C- j! L9 z* E
- X* }" C2 C( R- L2 J2 W6 \
]
1 M4 o7 [3 S( o1 g' ?. O* ~9 Y
$ S5 T: t4 p( V% b& x( Ypatches-own
" q* h. C* ]% |1 k[9 M$ D g8 p4 u' [ j
grain-here
5 M N# H" Q+ n# _) s! ` max-grain-here
" Z$ I; s% \! G' G]
* D7 s: m2 @# ]0 m* l5 \$ @- W* A O
turtles-own
- T3 i; X) z. A/ ]+ x[
- ]$ ~* v% \2 d: V age , @ Q0 f: P0 M# d5 d
wealth
+ m+ m; y$ d* f( e2 w. S% \ life-expectancy 5 B$ m' \, }3 e/ P
metabolism 4 P& t; u& I U* x! w& _
vision9 j9 b; F/ A7 T! q5 S) ~; e
inherited : t# Q9 w f$ T
]
6 ?& ?8 F# ]9 ` Q7 [$ d. Q \. L
" R- B2 E+ y$ w
# i# l$ v& T* {# M( Eto setup( p' `; g# v3 T3 S1 {
ca
8 L9 T) `2 I7 v; B' t set max-grain 50
6 g; N7 A2 P# E. L9 j; {5 x& w( E setup-patches
5 t B! ~, ^- U6 c( D% G3 e7 T setup-turtles$ X1 |* M; I J" V8 J0 R
setup-plots, w( A" i, ?3 a( z& [$ q! R
update-plots
+ s/ p+ ^" F4 W: q8 yend
# F: m# l" d s: O) h9 A3 |to setup-patches
; |/ e. j6 g( t/ p ask patches9 o& u$ ^# S6 R6 e7 d
[ set max-grain-here 0, K' U! U) D" E. ~
if (random-float 100.0) <= percent-best-land
/ h8 G) L$ l2 d6 C( V% Z [ set max-grain-here max-grain
* t4 e6 z% {+ ?9 \( Q/ t set grain-here max-grain-here ] ]
: Y0 {5 [, }1 F. x& u repeat 5$ n5 \ f6 ?: E* q }5 {
[ ask patches with [max-grain-here != 0]) B e( ?5 Y0 W7 {
[ set grain-here max-grain-here ]
; P% L9 a0 R, p; m: h3 b diffuse grain-here 0.5 ]
?% o1 x4 F: q/ f repeat 10
6 |! l4 c9 I8 K* P! Z( ~ [ diffuse grain-here 0.5] % ?1 g/ p A8 u7 f
ask patches2 @1 n( F8 H4 A! U: f6 `3 M
[ set grain-here floor grain-here " o/ b4 N' G6 a& [
set max-grain-here grain-here , _* W! R* w6 R. W h+ Q7 \
recolor-patch ]
Z0 T" m9 P7 tend
! R+ j+ v' a$ V, wto recolor-patch
# m% g. G! X4 o; t, ^ set pcolor scale-color sky grain-here 0 max-grain
, L* Y2 S6 s8 D5 G9 n; I8 W8 Nend3 f! U) P. [$ k* g' m7 c
to setup-turtles
9 |# y# ^9 j" A" I set-default-shape turtles "person"& Z3 l+ Q2 f9 n: ?/ y
crt num-people
- \4 `' z" ?7 }7 U; h/ @ [ move-to one-of patches
# t+ R% i ~3 z8 X' T; O% ? set size 1.5 4 M8 `1 z. e( q' M6 y1 w, {
set-initial-turtle-vars-age5 ~& B$ P2 M" L' C3 c% l5 G4 Z) h
set-initial-turtle-vars-wealth& {$ |% w! \6 ?" z% D( f n
set age random life-expectancy ]
/ H. p& `6 o a3 B$ L recolor-turtles
- ~: f- b2 ]! y- ]8 lend/ @! ?9 Q$ E; J2 ~/ H, q4 l
! S! h7 j4 z3 c2 Xto set-initial-turtle-vars-age
& B6 v b5 [- c" _$ m# T& W let max-wealth max [wealth] of turtles. u9 f! m3 o. o+ c, M+ O' \' ^
7 [ o( r; J5 S! _
ifelse (wealth <= max-wealth / 3)
9 J. X' G1 h& l6 w2 N' @/ [ [ set color red 3 {' S. Z7 A' W) R
set age 0
- N! X) |. q2 s face one-of neighbors4 * x! t; [- q& E; w
set life-expectancy life-expectancy-min +3 N1 K$ i) z1 Z( D" w/ s# k
random life-expectancy-max 6 U5 n' x/ K3 ?, }* J) P; p$ K
set metabolism random 1 + metabolism-low- ^9 T7 T8 Z4 i1 B5 z
set wealth metabolism + random 30: I4 |. q- e8 S- ?* z% L( O
set vision 1 + random max-vision
+ `& [/ c; |6 R+ B5 u! ]# L set wealth wealth + Wealth-inherited-low ]
$ _' b# Q3 ]+ v9 w1 C' U [ ifelse (wealth <= (max-wealth * 2 / 3))( {6 q0 Y m, M0 @ ^5 ~$ D
[ set color yellow
& G, B* D9 A' h% ^2 z set age 0
, ]" M% k- _* {' e face one-of neighbors4 ! n" \/ U3 \$ ]% D; l4 m
set life-expectancy life-expectancy-min +6 E r/ t. R3 i3 T) t7 Q8 F
random life-expectancy-max + 1& @% n0 {/ N4 G7 Q5 y& b, ~6 N0 q
set metabolism 1 + random metabolism-mid
" l, m7 M7 F* E set wealth metabolism + random 30
' T4 R* N4 v) _3 G( [9 a+ y5 S, i* F set vision 3 + random max-vision
6 ]/ k/ Y. m# q' Y6 d set wealth wealth + Wealth-inherited-mid]
& K' V! @$ N9 n* Z# x, \% r [ set color green ' J! k% Z- N$ s) p4 `. ^% x
set age 04 \# t" v+ [0 p- Y$ V
face one-of neighbors4 . i! g2 V7 ?% h9 n! H9 E& u
set life-expectancy life-expectancy-min +6 L' d- p. u' H4 k
random life-expectancy-max + 2
' E. A3 v; f& Q/ J# T9 A; X* O set metabolism 2 + random metabolism-up
' I5 [: Q6 l: {0 J" q, Q4 z set wealth metabolism + random 301 u1 K8 B" u1 P0 O' p
set vision 3 + random max-vision
' w' `. P) D; q set wealth wealth + Wealth-inherited-up ] ] 7 o) R9 l: Y* P6 y$ g3 \
4 K- W) w! W# `6 Bend
/ d6 @8 W& O) R/ {to set-initial-turtle-vars-wealth
8 n; [" d( ]. A) H. A let max-wealth max [wealth] of turtles
6 ]2 i) p6 H/ C2 p' Y set age 0- C$ F; e% K1 I0 ?4 x
face one-of neighbors4
, f% S0 }2 ^% z! h set life-expectancy life-expectancy-min +
7 f, r: X) `2 x( k# P* b random life-expectancy-max / m3 p4 r8 o; |$ `
set metabolism 1 + random metabolism-up, c6 x! Z6 A% H% @$ x. H5 A+ p
set wealth metabolism + random 30
, d: _( D# |+ t3 V set vision 1 + random max-vision ) F g% R! n5 c8 V1 p) m
end
$ H) F4 O% O1 E$ P: L- Eto redistribution
( t5 w( s8 C6 [1 f! Ulet max-wealth max [wealth] of turtles! W* C0 S' \' x: \8 U! C2 l
let min-wealth min [wealth] of turtles' L% |4 [8 E. K
if (wealth <= max-wealth / 3)
$ O3 k7 G' ^- x: N9 {, X2 I [set wealth wealth + Low-income-protection ]) ~" T7 \6 o- t. W: K# e9 ~% u
end
% o2 v( Y% \" T. z) v 1 J5 }6 E& s/ f: p
to recolor-turtles
" h3 h9 N9 s' d let max-wealth max [wealth] of turtles
& F% @2 O9 q6 o5 o ask turtles6 d1 o2 Y9 a6 ~5 n I7 S
[ ifelse (wealth <= max-wealth / 3)1 |& ]# C4 J( C1 m+ N( E/ L
[ set color red ]
1 T* V; |+ E9 s7 K, e+ X) f: K [ ifelse (wealth <= (max-wealth * 2 / 3))
# [" L P. M" }+ W/ N [ set color yellow ]
' O: y( i, e1 `- ^ [ set color green ] ] ]* U* B+ U5 _' t, x5 a
ask turtles [ifelse show-wealth?
- r3 _$ y' z/ O8 m7 c$ e [ set label wealth ]
+ T+ ? i) Q4 p. E- {9 ] [ set label "" ]]
2 l6 | v4 o4 B2 z$ o/ k# b/ C) eend
" H p! a' v7 K1 f) x8 r
* d% W# H/ D& s. @6 J) Zto go
8 F. q" A: Y" V1 D- \ ask turtles; N0 w/ {+ G4 W
[ turn-towards-grain ] " O0 s2 F) U, C
harvest; a) v. h' q; s1 b; G: a6 Y% m0 ]
ask turtles1 [! r; O' y! ^- R1 Y
[ move-eat-age-die ]
/ K: l: X6 B+ \4 ` recolor-turtles
7 ~8 P6 \. N F+ F$ |2 p if ticks mod grain-growth-interval = 0
6 R4 T! ^2 z; r7 Q [ ask patches [ grow-grain ] ], b; |+ }- x3 C1 w, ~' U
7 v& f6 N' B: |3 @9 j: z* U if ticks mod 11 = 02 u+ a* f9 r, ^2 d' N
[ask turtles
# @6 X% B' c2 w9 t. n4 v+ N$ a [ redistribution ]]
- n3 E5 y" f# S/ `! ]( w if ticks mod 5 = 0: t! C- M" O7 {( V; t% o# N
[ask turtles8 I+ f3 F- K# d; Q0 ^$ m
[ visions ]]$ o: e; e: l/ d+ @7 ^
tick7 A8 H4 N- M' `) r N% T+ z( s( G% M' u
update-plots
% u8 Q1 {1 C9 G0 M# u7 j1 k/ hend' ]3 G( V& {9 |+ m
to visions7 s, h5 H+ \& G7 R" f8 {
set vision vision + 1 5 ?7 c% t9 U$ `* e! S2 V7 ~) f
end
6 N' [- ~( p z. F2 X) N/ d" [' M+ }0 ^4 E, ]# t0 [2 d& d
1 L \6 O3 E* |6 E
& O4 t. l+ y+ _3 t4 @to turn-towards-grain 9 Y1 n1 l. L; Y; Q4 _: d3 i+ g
set heading 0, z' W/ P: W4 r
let best-direction 0
/ B5 L% `, Z( c* R- j4 [) r# a let best-amount grain-ahead
! X" z8 e" q0 C% e set heading 90+ [& D+ C; C( k6 W, G6 B. ^
if (grain-ahead > best-amount)5 P" a5 u' ^* v4 [" T
[ set best-direction 906 O: C. X- g& z: P1 D r
set best-amount grain-ahead ] j4 Q6 y. i2 W* C6 N& ], [7 C
set heading 180! f" q/ x0 b2 \5 b; n6 p7 Q
if (grain-ahead > best-amount)' T5 H6 H) @, H$ _$ a
[ set best-direction 180 v" y* m1 a. t$ t$ g9 p
set best-amount grain-ahead ]. `2 ~5 H" p0 }: Y% L* ]% X* Q
set heading 270# I+ _# A2 o$ l: i+ i8 T/ A
if (grain-ahead > best-amount)% w3 V( L" E* ` {
[ set best-direction 270
) r. t6 i1 d/ G7 j4 M1 ~ set best-amount grain-ahead ]
# V6 D& j6 T9 _ set heading best-direction
% q$ S2 V% t0 g" C% Qend
; C/ t9 H" h" m
; f5 Y0 n8 f* T- [+ e: P' y+ {1 I, W% l5 o; t0 M; r' K
to-report grain-ahead
( s- E1 h1 f& |- z let total 0& X, O0 [) V- z" }
let how-far 1
/ {& P9 X3 p! E1 } repeat vision
4 b, F T y9 _- ?+ l [ set total total + [grain-here] of patch-ahead how-far
3 Q R7 {7 a6 e+ B set how-far how-far + 1 ]/ d, o3 m8 a& T; J Z* q
report total
% p, H& Y- y T; C9 _end
) E* B' [1 n! S% G4 M8 I. A' ^$ ^6 ?1 e- k6 ]% i9 `
to grow-grain
8 j+ {$ d) v4 O+ t. O3 a if (grain-here < max-grain-here)+ v+ R4 H% Q, w
[ set grain-here grain-here + num-grain-grown( a4 {9 L4 t! A: M
if (grain-here > max-grain-here)
2 l8 |! y) F4 z1 r" k4 _ [ set grain-here max-grain-here ]
, }5 h7 U7 g1 o) S4 U recolor-patch ]
( o' E& d: w+ X+ R7 k7 }0 [end
3 i" ?* H3 E+ ~1 I( l) eto harvest
6 r0 C1 t7 R& f ask turtles
- S; U q) z: e' Q [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]* i K3 r. I) u" |
ask turtles1 \* A% D& D* k$ h
[ set grain-here 00 ]9 R6 u8 c1 i0 S. ~
recolor-patch ]4 g& A5 j7 k& L9 Q7 H/ T
2 I1 x4 O: d4 G, E$ S
end
Y4 E. [( n/ z3 g. m( X3 {4 p1 a2 [ E- H( x
to move-eat-age-die " x! Y1 J, C' s$ g
fd 1
0 c7 ~8 w6 ?6 y6 c; { set wealth (wealth - metabolism), g1 F$ K- Y: ^3 _2 B1 n7 C2 p {
set age (age + 1)& Z+ P4 Y0 a- X
if (age >= life-expectancy)
- d$ } M& [' A3 r1 @+ t [ set-initial-turtle-vars-age ]
/ v6 R* Z' ], A4 r1 \) U if (wealth < 0)
8 A3 F; C4 r# v- J4 l [ set-initial-turtle-vars-wealth ]
' L2 k7 ^8 ~: N) T
0 h& C/ K8 b8 x2 A" pend
2 Q) x$ @- ` g4 B* h, a
% y0 s- F- {0 [3 S$ F3 i& x
5 m1 m7 j. i" V. ~to setup-plots- W ^) n! K0 f9 F6 o: `- U8 h3 q& j
set-current-plot "Class Plot"7 c% \+ T$ q; u% [; f
set-plot-y-range 0 num-people# T+ q: z& Y. H0 }- S2 z
set-current-plot "Class Histogram"
! R- f$ d5 R& F: U/ B {7 _ set-plot-y-range 0 num-people
( Z5 m8 M' e: y8 kend
2 `2 U2 x2 r; |" H! D$ B: H# f9 \
/ x1 Y4 M: j* O6 H+ xto update-plots6 o f8 Q* u+ {4 ~! s
update-class-plot
7 ~* x' [) m* y5 q7 F1 }, v2 ~ update-class-histogram
9 ~! F2 V5 P$ K! A- P, s update-lorenz-and-gini-plots
9 Q- Q, c0 j9 U) @/ Jend
- U* N' b3 \4 k
# k j) U1 f* l8 L) ~# vto update-class-plot5 x: V- H: K) U; }
set-current-plot "Class Plot"
& m- n6 x: _6 y8 |( s) G set-current-plot-pen "low"8 V3 Y1 n0 Q, n5 G# ]
plot count turtles with [color = red]& b x j- X# a7 I+ p+ L# M W% f% @# K( u
set-current-plot-pen "mid"
6 [$ L+ |) h# G( ]; Y# x plot count turtles with [color = yellow]
6 J! k8 g9 R, j* _ set-current-plot-pen "up"
; ?2 b; y: r( j8 Q) @1 k8 f plot count turtles with [color = green]
* D7 [; ?& x" }7 b& Z! R9 _) x- A! fend% a4 K( w3 f+ y0 q
4 ^) f6 j) n0 F$ \5 wto update-class-histogram% i+ A5 Y/ [3 V% P& U. r! L7 E3 W
set-current-plot "Class Histogram"5 L5 j1 D) g( | b3 Y" D8 Z
plot-pen-reset
* O' Z5 ^7 `( C set-plot-pen-color red$ r" L9 W5 u2 g+ R' a
plot count turtles with [color = red]
* Z0 j+ y8 M! |, E set-plot-pen-color yellow+ I& s8 J+ Q5 k' s& T$ f+ W! W
plot count turtles with [color = yellow]
0 d0 I. ]/ A( a" g+ B0 D4 ? set-plot-pen-color green
0 @, D+ l: d3 |9 Y# | plot count turtles with [color = green]
2 Z$ J2 H. ]* e* w1 iend; X% Z+ @1 K; S( K3 [
to update-lorenz-and-gini-plots5 Q x7 O. X+ X/ b5 A4 R
set-current-plot "Lorenz Curve"" Z4 s9 H2 }) o& d/ Z9 l% C
clear-plot" ~3 P" F$ @8 f. `3 o
8 T+ F# e4 ?2 k% Y& @1 \- K+ s& K% m
set-current-plot-pen "equal"
, V5 R" g" ]* i" A; l; N& h2 ~ plot 04 B* Y% h7 I6 n
plot 100
' \' H1 `* y, u8 ]$ f+ @2 l% y5 h1 o+ a0 T) h) f \2 l
set-current-plot-pen "lorenz"* r/ ^4 J; v) W' F# x; F- Z8 h
set-plot-pen-interval 100 / num-people+ U! k' P; K% b5 g6 Z0 A, Z- M
plot 03 G- A3 D" U) F, o' }. n
$ q7 o+ a6 G, i% y5 ^ let sorted-wealths sort [wealth] of turtles
; s7 t% z3 q$ i1 I4 A let total-wealth sum sorted-wealths4 n* O$ v& W* q; t( X
let wealth-sum-so-far 0
6 U. F5 {2 I7 R6 i let index 0
- _, d5 n7 c) T9 \. G+ [ let gini-index-reserve 0- u% W& ?, D; p! x2 l* F
5 g/ D4 O( S) \7 [0 ] repeat num-people [+ S- a0 {+ S: H: i7 C
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" K/ F/ j8 ~) {" Z9 L* e& v
plot (wealth-sum-so-far / total-wealth) * 100' K+ [* c1 S( h0 A( D8 ~3 b, l
set index (index + 1)
" z& i9 h+ w& ^/ ~; I2 ?+ a0 r# V set gini-index-reserve
6 D# E B8 C! ^ gini-index-reserve +7 ?8 o6 w2 n9 @2 h
(index / num-people) - q: Y6 r9 J7 S4 q0 ?3 }" `
(wealth-sum-so-far / total-wealth)- W& M9 W' V2 j! h) h, ~8 A
]& U. H/ [6 D. s9 u8 j. x( F
0 h. y: K! b! s+ I& T/ \, K
set-current-plot "Gini-Index v. Time"
9 T6 P. ?( \* E/ N2 `. c! M plot (gini-index-reserve / num-people) / area-of-equality-triangle
, D% A) B2 L1 L" U t1 Bend
. m2 z5 |9 N8 N" |- Rto-report area-of-equality-triangle
5 W( }' }' `/ W report (num-people * (num-people - 1) / 2) / (num-people ^ 2)) K) a6 D& Y/ y
end |