请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
5 T# Z( j8 w3 lglobals; t" D) M q( i h
[' y2 R( k) t" N
max-grain ; h5 T4 D) ?( K3 P- C
2 K: j; ?; x! K1 s! u
]' |5 }" O2 f6 l8 W! D
$ P$ C+ K4 S5 [; V: O9 _
patches-own
; i6 f8 @6 |! p% j5 X6 |[- _6 K8 S1 g5 q/ t P
grain-here : U. M3 m+ T' l& H8 ^
max-grain-here 3 }1 \' Q+ ?$ A! [; t0 U
]' j: Z$ {1 _0 C! `; ?9 y
8 v# ?# f, P3 u+ x7 R/ \, V# r6 s aturtles-own9 T, |7 p `) c7 S. z) m
[. }' `& Z% A; q( x' t
age 4 Q. z5 b5 f$ `8 V
wealth
+ M6 E1 Q% e% A; Q5 d5 m, Z life-expectancy
$ I" U( O `4 K- }$ @& g metabolism
) x" }: c# Q }! @ vision
w# c: y2 E, z7 S: G2 [. s inherited 1 D. j, [8 S9 P7 t7 r# f% L# K$ j
]/ ?$ H& P6 q; Z1 L
* ] G" U3 k9 I" A8 q
9 }/ ^( c$ Z( zto setup. W1 u; f8 R d/ x A, |% O
ca
3 Y0 H$ h8 u4 z% R set max-grain 50
- V, d) @$ x6 D5 a! L setup-patches% p+ r& I! d! ~7 J1 K8 j! T
setup-turtles
% B& h6 K$ K8 i6 W: ]4 E8 X* b setup-plots
" l D+ q0 w) _' D/ X# c update-plots& d9 V; d2 o- N! Q
end
; x5 B8 F2 i4 `$ }& \8 }) Z, n/ N: P xto setup-patches
# A( v( e* M1 _) b; e ask patches
& e8 \% p, s! M- O. f [ set max-grain-here 0
$ E1 d' n* l' q$ N6 { if (random-float 100.0) <= percent-best-land& J9 s$ v- ~6 q- _* D+ i; ?
[ set max-grain-here max-grain
) F+ [. q$ z, L/ l set grain-here max-grain-here ] ]
; Q6 |8 ?. t% C3 E# }- a* U repeat 5
% q! f4 s0 W% o' I) b [ ask patches with [max-grain-here != 0]0 _: z" p% {& ?" U" }7 u
[ set grain-here max-grain-here ]2 z# B) R. Y+ s; N9 L$ e4 Z
diffuse grain-here 0.5 ]! Z$ ^& p6 t4 ~
repeat 10
6 r* |9 S7 ]% G [ diffuse grain-here 0.5]
- N& V: H+ n( U5 x) c0 Q3 b) U$ H6 B ask patches1 o& Q7 D8 J1 B0 u% l0 ?! x6 m6 X) ?2 h
[ set grain-here floor grain-here & a! g3 d# _% }; ]0 C5 g
set max-grain-here grain-here . b2 R l; D, [! |8 ^
recolor-patch ]
5 P; d8 _, |$ }7 zend" n7 B$ X2 o4 z, ^
to recolor-patch
+ J' N. M0 R1 O6 T; ]# I set pcolor scale-color sky grain-here 0 max-grain
6 I. i4 B& b5 E& l, Hend$ i1 ]+ F7 J! w, _, E* W( N
to setup-turtles
: T. w* \7 x/ R2 y$ f! J set-default-shape turtles "person"# @6 I8 Y6 z6 C" \; W1 V
crt num-people8 G' p! |" b2 I4 F) J
[ move-to one-of patches
) q) E4 Q3 x/ t$ O set size 1.5
5 p' E' o' G% m' d; J5 e set-initial-turtle-vars-age
, b% L' `7 R$ j' l- R set-initial-turtle-vars-wealth- @& P! ?. l( F S( g- P
set age random life-expectancy ]
, P" J1 `: Z: c( ~- K recolor-turtles' w; K+ q" X6 A3 x6 i) }5 d9 g
end
1 K P4 \: d+ E* p/ ~9 K* v! D4 |* A! s
: D/ M0 E/ c" Cto set-initial-turtle-vars-age
# f# ^7 s2 O2 c let max-wealth max [wealth] of turtles
6 v: J0 l( p* r) M% Z , E" t5 k4 m$ X
ifelse (wealth <= max-wealth / 3), Y7 h" R. x) p: P8 o- z6 k& O
[ set color red ) U; F5 h0 u: o3 O
set age 0
1 g6 z$ H" [% |# z9 ^$ W6 o1 C face one-of neighbors4
9 i W: t, W) ]0 @( x set life-expectancy life-expectancy-min +
. _3 m) \8 ^3 X random life-expectancy-max " D( N, ?; G3 [. o
set metabolism random 1 + metabolism-low
M/ @$ x& ?7 x, X. n% Y set wealth metabolism + random 30
/ ^6 J1 E; S* m q8 L set vision 1 + random max-vision0 E& U1 x: p! R& a
set wealth wealth + Wealth-inherited-low ]6 j# ?7 |' A: f9 d. G
[ ifelse (wealth <= (max-wealth * 2 / 3)) U! U1 a) v) P* j1 o( F6 Y7 F
[ set color yellow 7 i8 `, k# D v7 s7 Q
set age 0
: {# u: N a2 w! T: v% a face one-of neighbors4 9 j0 ^8 O- P8 E$ X- l- u4 \) i
set life-expectancy life-expectancy-min +* t6 a- a, S' ^
random life-expectancy-max + 1
$ ?4 R+ @% R! [$ V8 _ set metabolism 1 + random metabolism-mid
2 z- O4 n& l+ P5 m" M set wealth metabolism + random 30+ O$ N; x5 [5 c) G3 v" ^
set vision 3 + random max-vision
. ^- y5 i* K; F$ G" n set wealth wealth + Wealth-inherited-mid]0 B) E0 p: ?, z# ]. k
[ set color green
# }# ]& u8 r0 w: z# D1 @ set age 0
& D9 @: V1 s9 O. X2 [+ j face one-of neighbors4
, b. x, t* C, ^$ f& B3 D set life-expectancy life-expectancy-min ++ U+ E; r" l8 z! m5 v6 ?
random life-expectancy-max + 28 p# K; @ x, U7 U
set metabolism 2 + random metabolism-up
1 J' f; E- W2 _2 h0 m* P; H set wealth metabolism + random 30
$ B& Q- w1 q) f) X- r/ Y! j set vision 3 + random max-vision
/ G" f+ h; H; F' b+ E4 S# O set wealth wealth + Wealth-inherited-up ] ] : ]- w' w$ f: n) V6 T8 y- l; d# t
( \! I, I# d) @7 }; j4 d& wend
8 |. i" V0 n/ j, W8 Pto set-initial-turtle-vars-wealth N2 Q: V$ f/ M! { W
let max-wealth max [wealth] of turtles) U* x @# Y1 W5 J# D+ q
set age 0. X" H& |% T" X* r+ y* ^8 _1 P# B9 f
face one-of neighbors4
4 F5 b3 V$ S9 g set life-expectancy life-expectancy-min +/ \5 N0 T; S, _) s4 Q
random life-expectancy-max 7 n, w* n" X1 |
set metabolism 1 + random metabolism-up
8 f3 x9 }8 T* V. s( n set wealth metabolism + random 301 J4 I2 H2 _$ y2 @1 a
set vision 1 + random max-vision
2 i D6 v8 G9 N/ F8 yend" C/ H, g, Q) l2 k o* z
to redistribution
F$ w) s4 A* G. alet max-wealth max [wealth] of turtles
: i: M: D& R- p# k, Z$ alet min-wealth min [wealth] of turtles' n7 N* N! ?$ q
if (wealth <= max-wealth / 3), g9 O- z: D7 q5 h9 ~2 H% t: i
[set wealth wealth + Low-income-protection ]. f- Y' `1 K' o& F4 C' k+ h
end* y+ h, i) f0 i% O* I% t! }* u
) R! _: N6 ^) w" x% Hto recolor-turtles7 `' j8 \5 P' k& P9 D
let max-wealth max [wealth] of turtles
1 J% S7 x7 w' f) F/ Z: b ask turtles
! N4 L s' Q2 q* Y8 T [ ifelse (wealth <= max-wealth / 3)
0 G" A6 \& {' H. R: g# H' ^; ] [ set color red ]. ~$ I/ Q& @2 b6 H" H0 ~, n
[ ifelse (wealth <= (max-wealth * 2 / 3))
$ m$ X1 B* p) g. ]# N' n [ set color yellow ]
; y% a* B; R/ c& x. Q+ ~ [ set color green ] ] ]
; V# N% c9 T( I3 {1 q0 V7 Z ask turtles [ifelse show-wealth?7 p) i7 k9 X, J' y
[ set label wealth ]
1 \. n$ X4 p! e2 Y0 p6 v [ set label "" ]]
$ e6 A' V' a1 W2 l0 E# Uend
- o* y5 I% D/ V2 V& j% I% d. ~2 j3 X1 p* N: G* q: B8 M i- s
to go) Y8 t5 o! m7 f3 c T( r# R9 w
ask turtles( b+ }( B* t* X
[ turn-towards-grain ]
& [3 Q! o0 J! U0 z0 F M harvest
3 {9 W6 @6 ?& y) K( h3 P0 \ ask turtles% b L* y$ ~) _2 k
[ move-eat-age-die ]* z- D* U h- N3 k+ Y2 T
recolor-turtles' N7 f, E, [8 R9 \8 Z% X7 b
if ticks mod grain-growth-interval = 0
, Y3 ]! K& v$ Q6 U5 L) k4 C0 a: z [ ask patches [ grow-grain ] ]
1 I4 q) J6 X' w- |. e, U# x : `: w4 u; {, j1 ~) i2 D0 `
if ticks mod 11 = 09 Y5 l. J, D. A: d! p
[ask turtles
, u8 }( R( v8 V [ redistribution ]]) j/ p6 y2 x7 x& C
if ticks mod 5 = 0& ]' E& O; G- b( z& W9 {' Y
[ask turtles$ Y0 J9 q1 Q8 N
[ visions ]]
: g# Q/ a, h* m8 f9 T% f tick1 d2 s* G% A% i% b6 n
update-plots: X! d8 g# T/ ^; k
end
( k2 i- o8 [$ U$ ~0 G! F: C1 fto visions
- j& t; U7 Z# U) ?- f0 G7 Q' j set vision vision + 1
7 f$ }7 W" w/ Z+ ~% \, l% w- |# \0 V! yend& Q8 ]8 C' T$ D' x, T" P2 {5 k
$ S: X' d$ q' W4 a; s1 o2 Y9 |# @6 i& m
% G' r- Z, Q% D1 sto turn-towards-grain
6 K3 Y) v% H6 S set heading 0. K$ [3 n; G5 {0 L1 X
let best-direction 0
" x5 k% L, H& ~! G4 R let best-amount grain-ahead
+ N& Z9 e( s3 `8 {- f# Z% e$ m set heading 90
3 A( R3 F# m# d if (grain-ahead > best-amount)" F5 m/ V- B2 C
[ set best-direction 90
/ K" P6 t7 K$ D" |, N set best-amount grain-ahead ]- O( {& ~5 l3 [- y. @) X0 c
set heading 180
/ Q6 h& V: k \4 G9 [* e# r2 y. R0 N. l if (grain-ahead > best-amount)
& C' Z3 ^# [& M2 k1 C [ set best-direction 180
$ }0 t4 Q# T/ v set best-amount grain-ahead ]) r0 V6 _% C v, a
set heading 270* M1 J9 ~4 k/ E- a5 e
if (grain-ahead > best-amount)
9 w" T0 B% }. Z. R( N* h4 t. u [ set best-direction 270
5 G% T" D8 i" }; r: K& Q6 A* G. ?+ f set best-amount grain-ahead ]& G6 g9 {3 \3 E% _% b
set heading best-direction; c+ _/ b' u8 ]& \6 F1 M( F7 y
end+ I6 s6 e% `( G+ E# z0 B" v
. m# s# X6 S1 x& w" r
8 O- t# w8 s; k
to-report grain-ahead 2 g3 b v ^2 Z8 _
let total 0
" [( B9 T! t: V let how-far 1
3 R4 X' n' L' l) F repeat vision
. C0 G3 a2 E: @9 E% w E( b" l [ set total total + [grain-here] of patch-ahead how-far5 B3 b1 a8 s, Q
set how-far how-far + 1 ]* {& t9 R6 u2 w! M2 v/ F
report total ]0 ]4 f+ N5 D
end; s& x5 @8 C5 }+ ?
8 Z9 p: _' x' m/ d4 N& m- tto grow-grain
0 L9 E; v% {. F5 ] if (grain-here < max-grain-here)8 r. `/ f, G$ x. V$ E+ [
[ set grain-here grain-here + num-grain-grown. ^/ t4 R {2 t
if (grain-here > max-grain-here)
" Y7 O& d% G) _ [ set grain-here max-grain-here ]( h# P9 y& R. w- y# A& }" b
recolor-patch ]9 @6 u. A$ ~( G
end W# Z/ y# |+ K; c J7 f
to harvest
- A* @. l; n1 S9 r+ t2 x2 }! t% ] ask turtles
- E, ]3 _1 [3 H: U+ ]- K0 f% t' r* S( q [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
6 A0 z. r4 }. R; g ask turtles, f: r4 x; O- [
[ set grain-here 0: |, f" J. ~3 A8 |+ W: ^; O4 w
recolor-patch ]
! v9 ~0 A; u6 w; o0 f. L, c
5 J8 p4 g# y, T) z A- dend
& j7 J$ M7 k/ O3 e' \0 ^3 g6 k8 K& W2 `4 U/ C3 _/ s
to move-eat-age-die
% p6 J: ?( \% c4 R8 a. X; S fd 1
+ H- s" J5 f* k( w% K set wealth (wealth - metabolism)
0 j; |8 a. k& Q" y set age (age + 1)8 e9 }1 ^+ \* P) q o
if (age >= life-expectancy)5 p9 t. q( V, x4 k
[ set-initial-turtle-vars-age ]$ C$ @7 M- ]$ I) F
if (wealth < 0)
+ X$ C- [1 v& i5 e$ M0 ` [ set-initial-turtle-vars-wealth ]
+ [0 G0 j% m( S
1 Y5 p& r' @( J5 C; k- Kend2 n* x# b+ L0 _+ n* a
) ^% t' y. ]) y
. ^, H: D- A+ ]. \5 @, Eto setup-plots
8 ^3 f4 Z( u! {, E set-current-plot "Class Plot"6 H4 K4 {* P+ q$ p$ z/ k5 b2 B
set-plot-y-range 0 num-people }) i- H# i# v; O" S
set-current-plot "Class Histogram"
' s& ~* i4 y" C, W( ~8 f set-plot-y-range 0 num-people7 H7 R3 T9 E: v r
end
& k6 Q& t# s. e0 q1 _3 s: H& Z' c6 j3 U% r* z
to update-plots
4 d6 g# p8 E0 O" P5 N- q* v update-class-plot+ m- i8 p( J% j+ D- \4 U
update-class-histogram; c& ^! |* L/ t# q# ^, B
update-lorenz-and-gini-plots
) Q1 z- I5 P' {8 |1 kend
0 t, F2 E( c2 a( d0 J$ z& b ^! R* B- }9 g
to update-class-plot
, c9 Z0 r0 m8 P( ?0 s set-current-plot "Class Plot"6 X+ A# {2 |% _: { V
set-current-plot-pen "low", L1 q* k2 c" ?
plot count turtles with [color = red]1 E% T6 M% T0 }1 j, E, }
set-current-plot-pen "mid"/ h1 L" g) C' \7 @
plot count turtles with [color = yellow]( t, d. a. h0 g" p+ V
set-current-plot-pen "up"
. n0 M% n M' l plot count turtles with [color = green]2 T# F4 |- c% C6 [$ w
end- E; _- H1 f+ U7 t, Q- y: @ Z
m- S! c S6 t: i
to update-class-histogram
7 }+ P$ o" J4 P4 c1 ] set-current-plot "Class Histogram"7 p# Q' H+ S0 W, [
plot-pen-reset6 O1 y0 n* s3 t$ e
set-plot-pen-color red
6 {- V7 j4 ]; _. G. o" a5 ] plot count turtles with [color = red]
3 p0 s1 ?& t7 e6 \6 q set-plot-pen-color yellow$ E1 y) O6 O) j
plot count turtles with [color = yellow]
+ e, \: S, s6 `/ |7 X set-plot-pen-color green
' S+ M( a# S: K3 B! C) |- Z plot count turtles with [color = green]- ]% f* Z2 b* v/ r% v
end- u$ ^$ d. }$ Q+ Z" R4 S
to update-lorenz-and-gini-plots
6 l* v1 Z: S2 y; O1 n( r' X set-current-plot "Lorenz Curve"
* J3 A+ W' ?. h+ v" m+ w5 } clear-plot3 [7 A* F( H0 j) k
) R) S$ r( A( P: @5 G6 P set-current-plot-pen "equal"
% n/ C: k, b4 K$ E plot 0/ J+ x3 X; c, E3 p
plot 100/ I0 g8 v+ n- I7 @. L4 u
% `$ x1 W( W1 a# |) b( C
set-current-plot-pen "lorenz"3 P* _5 M( b( o. m
set-plot-pen-interval 100 / num-people
~/ I/ l2 W; w: }, B plot 0
- a) g8 y" T: U, y% J+ J
5 R% {. C/ t' w& O- l let sorted-wealths sort [wealth] of turtles
( J# Z8 F( Y! ~ let total-wealth sum sorted-wealths
/ o2 u, t& d' r! c# x& N let wealth-sum-so-far 0
0 b9 e; k2 p6 K1 C4 H: Z let index 0& w$ K6 N- |* O$ y
let gini-index-reserve 0: v- L% @) E6 T* w5 y4 C
& P! O% `7 h. S; F3 ]7 Q9 a; N
repeat num-people [1 l O6 S8 T' o8 @
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)- X; H) P. s: m! J
plot (wealth-sum-so-far / total-wealth) * 100( ^( f7 H6 e) T" [' K& U8 J6 K
set index (index + 1)
! Z% Q) H1 P( W4 ] G set gini-index-reserve
3 H5 ]5 A- l4 w9 C! }& H7 D4 ~ gini-index-reserve +- P3 i6 M0 ]; u6 A. O$ c. F5 l
(index / num-people) -
( W- T9 H( S, C: o; {# B9 O (wealth-sum-so-far / total-wealth)
3 u& n6 `2 T5 ~4 a! U, @5 V ]
1 ~/ i3 a% ]* [" c5 u) s: N7 a- k. A+ J( c/ i1 ^9 h8 O( u/ r
set-current-plot "Gini-Index v. Time"
& v6 Z+ I. p8 o1 Q4 r7 u; L plot (gini-index-reserve / num-people) / area-of-equality-triangle
+ O: e0 N- Y, l2 e/ s i# V/ ~end
1 g/ C& }9 ?2 T g$ y+ U5 Hto-report area-of-equality-triangle" {6 G( k7 _3 w' c Z6 i0 H
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
8 [0 A: ^ {* p% j* a7 Yend |