设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 7115|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现/ ]! e/ X  e% r6 ^% E  t' i5 E
globals
! _9 S& ^5 t; c3 f9 n[
: Y) K- }% Z- K; a; z  max-grain   
. d- m2 {# A' D7 C: Y8 b' c  Z) B6 S5 @
]7 w! Q# o' W/ f1 R+ _/ {' U9 B

- l6 ?7 W4 I* y2 c7 Zpatches-own) x9 i% B2 q( b4 ]! Q
[
; ?! x! S% e6 A  grain-here      
4 `' l7 ]8 i! y1 P9 x/ H- h  max-grain-here  
/ S, O  O) M5 W1 m! F]2 b- j" R9 S  K  t" p

: F6 W% n5 V. tturtles-own+ w; s7 ^0 z+ u3 o) P* ?9 h: ^* r7 G
[
, W0 N7 U- y, u8 w+ d( b  age              
# F3 L; k+ n! j( r; s: W  wealth         
6 V2 T" ~: W! O$ b, v  life-expectancy  & X& I2 P9 e/ [
  metabolism      
7 K, m, c6 W  O1 B$ Y: F7 b  vision0 r+ g" A% V2 H
  inherited         
* t9 M* W! V! t  l% Q]! }& m* [1 h; b) J2 w; n

5 u$ E( e/ n1 I! [& D0 F
2 a# E1 e7 o5 j6 M% Vto setup) E, g  R! q* ?$ g
  ca. Y" S' o- H( d$ D. m7 q
  set max-grain 50. @) s4 Q$ q* e8 y8 \
  setup-patches
/ x! c+ g$ u8 x' w0 A0 _$ h  setup-turtles5 r5 U- a2 X* O" b
  setup-plots
2 f- J6 W8 {: ^5 b1 g  update-plots
1 @0 u/ J( k$ {, ^1 Hend- A0 H1 r. V  o4 a# `
to setup-patches4 [. U' y/ e6 K: u0 O
  ask patches
9 a# [7 b( T0 q8 z    [ set max-grain-here 0' j7 C% y0 P/ E' f1 B
      if (random-float 100.0) <= percent-best-land
, n5 v; `5 P1 K) c- B% |9 [' U        [ set max-grain-here max-grain
: U1 [0 b' L4 A* b# R8 c5 Q          set grain-here max-grain-here ] ]* y4 I) @4 A. [; B2 l- V6 P
  repeat 5
# h' L1 M9 Z+ u9 Z8 d, R8 H    [ ask patches with [max-grain-here != 0]; I8 E. q0 }) D
        [ set grain-here max-grain-here ]
9 Z* s$ D% J: L% |% T      diffuse grain-here 0.5 ]7 n1 t) ?: l' J/ g% i8 K
  repeat 10
* ?/ F* M" U1 R2 i3 G    [ diffuse grain-here 0.5]         
; e' l) A; C' D  ask patches
! ~5 C* D" K( u' ?7 M    [ set grain-here floor grain-here   
* r5 _1 O) s' I) F" u      set max-grain-here grain-here      
% \9 ~! Q% w. S' ]5 L  Y4 j; B! Y1 L      recolor-patch ]1 U. V6 h' F& t6 F0 h* }  e
end5 w! ?- Q; p$ h% y
to recolor-patch  1 S' I% j( F, g2 Q# V1 m
  set pcolor scale-color sky grain-here 0 max-grain
. \9 n/ }* Y" m% ]4 t) A7 ?end6 e  x4 }# p: c* |! N& n% G3 d' ?
to setup-turtles4 ~9 P' }9 ]  Q8 `0 z
  set-default-shape turtles "person"
; T2 ]* c1 i" z+ Q8 O8 W  crt num-people
1 T0 m0 f9 |+ n/ U8 Z' A) q    [ move-to one-of patches  
+ D- A+ W- Y5 w+ M! \      set size 1.5  5 Z9 `# j/ \( f8 D
      set-initial-turtle-vars-age7 I0 m" }! C! V( `9 E( J9 I
      set-initial-turtle-vars-wealth" R# v9 L9 j4 Y, s
      set age random life-expectancy ]
' E9 ?! X2 p% J8 m  recolor-turtles, H, {; j" Q. X0 T. V! ]6 n
end
5 @# t6 C1 I. W7 C9 m
/ N  k; k5 }& I( V* T5 Qto set-initial-turtle-vars-age
1 v. w. V  V0 f2 m- @8 V let max-wealth max [wealth] of turtles9 b- j8 I4 O+ F) q6 m! t/ y
   
3 e8 q+ N( U3 s! S! O2 Q( e' k     ifelse (wealth <= max-wealth / 3)8 V1 n- Y( d+ h" B5 H+ z& U/ P  d
        [ set color red ( k0 ]" r& ?  \. i
          set age 09 [& \8 n; L! p7 ^& d0 u
          face one-of neighbors4
2 ]8 T/ A9 o( C+ O! Z9 F/ g          set life-expectancy life-expectancy-min +
: S" [8 w' ^- L2 ^                        random life-expectancy-max - Y' k! s) {, J- Y) q4 Q5 A# h
          set metabolism random 1 + metabolism-low) A# z4 m0 X5 U  V* f
          set wealth metabolism + random 30
6 S- ?* w) U- j+ n6 L4 Q3 }% d          set vision 1 + random max-vision
0 {- y* M; M: k6 @; N& ^$ r* f& K7 D             set wealth  wealth +  Wealth-inherited-low ]
9 d. k' ~( J. U5 _! C: `, G8 W; g        [ ifelse (wealth <= (max-wealth * 2 / 3))
; }5 o8 x" A! h3 f$ L/ ?            [ set color yellow : ~, a' K$ k; Q+ a- H  r4 ?
              set age 0
; @0 j, M8 j) h" _6 L              face one-of neighbors4 0 ?$ a7 Y% j8 M) D; w- Z
              set life-expectancy life-expectancy-min +
* P* G6 I  [9 U: b1 ]5 d* P6 a                        random life-expectancy-max + 1
: J( v! K2 Z* I8 ]' }              set metabolism  1 + random metabolism-mid1 |0 Z  W! R' e" v2 W
              set wealth metabolism + random 30
7 ^8 M( g3 S9 [1 X: c              set vision 3 + random max-vision! e3 c3 c' ]4 w" e/ p# X, k# `
                set wealth  wealth + Wealth-inherited-mid]
& J3 H) ]7 t3 R- d7 S! t            [ set color green % e( o, b9 h" s% e9 y7 W
              set age 0
$ A, x( h1 E" C0 Y0 l  W* p              face one-of neighbors4
- k8 e2 q$ y+ N. Q! U              set life-expectancy life-expectancy-min +( l6 Z0 H/ @- K8 I
                        random life-expectancy-max  + 2
6 e6 P5 S3 \+ j1 E& M              set metabolism 2 + random metabolism-up; K/ `. ?: s9 a5 G
              set wealth metabolism + random 30, b2 @+ @- [2 g: Z- _* H2 E
              set vision 3 + random max-vision' {5 r% p  z, D: Z3 Z( |% n& F1 {
              set wealth  wealth + Wealth-inherited-up ] ]
' P' a' q" q4 P9 P2 O4 }, \! m
) I3 H4 `. j& Xend
* f0 g8 V6 B- m: Rto set-initial-turtle-vars-wealth# \7 o7 d' o: M5 v, ^& j
let max-wealth max [wealth] of turtles
3 @' B) g: R1 e- ~2 }5 \/ I# |* H$ ^0 p          set age 04 R3 U2 k% o$ N- X7 c3 `% L3 R
          face one-of neighbors4 : R" f6 `% V" H5 i+ L
          set life-expectancy life-expectancy-min +8 l2 h/ V4 \  D( o  v
                        random life-expectancy-max
4 w8 K; s  t: [3 j( n# l          set metabolism 1 + random metabolism-up
! z3 s7 e! c4 j% B7 {* F' b          set wealth metabolism + random 30
) K& }1 e! ?* Y1 M0 q( n4 s0 R          set vision 1 + random max-vision
* ?1 _# A* H$ Z# |end' Z) a. ]  m( l1 C8 R
to redistribution& Z1 g  e+ q3 W1 G* P$ i+ c+ K
let max-wealth max [wealth] of turtles
* Y+ E. k! S' @# J& c% a- Plet min-wealth min [wealth] of turtles( j" W$ c- u' b8 c% U; z+ E
if (wealth <= max-wealth / 3)
6 Y* c, J7 i: F3 @0 _* f- S [set wealth  wealth + Low-income-protection ]& x/ f# `  [) B* I" @% A
end& Z; k# E7 g2 P" ]0 n. i; M+ u. n
         
. J7 w( g1 Q0 `  E4 wto recolor-turtles
; V1 y/ P$ q4 ^- z* n% u4 h9 Q( D  let max-wealth max [wealth] of turtles  Z5 w# U$ i  _/ \: I* l
  ask turtles
% T$ f$ j1 W2 q2 b4 A. t; ], H   [ ifelse (wealth <= max-wealth / 3)8 [' y+ X2 ]0 j  i- h
        [ set color red ]
0 A( x8 h' y- d( r3 |2 t1 ?/ ^# w        [ ifelse (wealth <= (max-wealth * 2 / 3))
. e, Q* E: e$ I3 y  A4 _2 G            [ set color yellow ]
0 U' }' c$ e# T$ |6 Z1 s            [ set color green ] ] ]
# R- M+ b5 Y# d0 ^- n5 X# a ask turtles [ifelse show-wealth?8 ]9 L0 a' ]: {- S
    [ set label wealth ]
# W  r2 A3 U& M( B& A  j- \    [ set label "" ]]
. r8 O. `* d! N" f4 W/ iend
7 Y) R/ j1 Z0 A' n, D% ]5 m0 U+ z7 X  U3 {/ ^  C  Z  ?
to go; L4 ]* O: P7 [8 E6 R
  ask turtles. B8 ~7 f0 a, R! h5 J  D5 Y% L
    [ turn-towards-grain ]  
& E" s4 `( s7 k: m9 B1 n  harvest( _* S/ o- C) }2 F) ^6 y/ c0 c/ h
  ask turtles
2 x8 f' j( ]& I6 w, |    [ move-eat-age-die ]( X4 U, o; G8 [1 w# c( a
  recolor-turtles
5 R" X" R) _5 A7 j  if ticks mod grain-growth-interval = 0
4 p% o5 d5 J3 x) A, K    [ ask patches [ grow-grain ] ]  D0 P0 r. v5 f
   / f' C# X$ }6 G1 R' u' j8 J
  if ticks mod 11 = 0
6 y4 O, Y; O% P9 P  [ask turtles+ K1 X9 ~. ]7 J) n( X8 N5 c
  [ redistribution ]]
1 W- e4 ]' f& R  if ticks mod 5 = 0
' ~/ a6 f2 `, A   [ask turtles
" d, c5 e. |6 v, `' |" |- D: s  [ visions ]]% @+ B% r% x6 X4 U8 V/ ]; |/ P0 H
  tick
$ Y  K; \  v3 U  update-plots  w; @+ M- A. ]. `1 i! v, G. l
end
5 C! K! J- N4 U& k" L, z% rto visions8 o% H7 I" b# X9 K7 p5 r( ~2 n
set vision vision + 1 9 _( ~8 w# R" A* V1 X4 [0 f0 S: t1 t! o
end
. S* Y; x! a- `3 h5 I7 Z$ k, }! m5 ^% m/ |, f( P% W* O3 c1 d
8 ?+ U- `8 ~5 [) N

/ ?# y% \, G! c4 Jto turn-towards-grain  
9 l  T4 S" L6 S9 {  set heading 07 ]/ m1 p, G* [2 J3 h- z/ o6 M3 i) \
  let best-direction 0
' d, c  J) r- U. ~* u  let best-amount grain-ahead
! M# X3 b9 t& s  set heading 90" J5 X8 Y9 n$ |& K5 N7 f
  if (grain-ahead > best-amount)
& J( F+ o7 ^- L/ }4 p4 E( T' F5 P    [ set best-direction 90
' u  O0 M& D/ V3 |4 J' _2 L& K      set best-amount grain-ahead ]$ a+ o& f6 h0 G* d; ^
  set heading 180
0 t0 h! |& E' `  K# h* f3 F- f# m  if (grain-ahead > best-amount)
$ @9 _, K. n1 O    [ set best-direction 180$ B1 ?/ O9 g% y  J: d
      set best-amount grain-ahead ]- b2 x( g. Z$ {6 D
  set heading 270
9 ~% h9 B5 E3 {% x# `) R* z  if (grain-ahead > best-amount)
' X/ q1 ?. j  P$ _    [ set best-direction 270
4 I' C/ A, m, \4 C9 }      set best-amount grain-ahead ]
, V2 L# x: @( N: A9 J  set heading best-direction
, S# o& e# z9 x. t. |" Wend
9 ^5 J4 C- w0 R! d( B
  [2 ~6 V/ S) ?4 X4 x" z# c9 w* A* }- O  V
to-report grain-ahead  
' k5 D$ I* t& u, a; J8 r) o  let total 0
2 I. ]9 s- U+ a  let how-far 1
1 c- X! o' t; f7 R! [1 _  repeat vision
- ?2 h1 T" [3 o$ w' `/ n2 b6 R    [ set total total + [grain-here] of patch-ahead how-far
% _9 W( x  y9 a9 a      set how-far how-far + 1 ]% G: E* u  V; H0 U+ r
  report total
% G' I5 ?5 G5 b( Cend
: Z; M) H, i0 }6 d9 _3 s+ g7 |" E( ]1 F) y# W
to grow-grain
6 X0 H9 n3 r: w4 {/ I, f  if (grain-here < max-grain-here), y: b6 l& ^6 C" l& F  G: `  X
    [ set grain-here grain-here + num-grain-grown
& C+ k1 g5 L# v: \9 P% f) X      if (grain-here > max-grain-here)
! f" `1 d0 H8 N' ]/ u8 ]# ]. P0 o' n        [ set grain-here max-grain-here ], B) l4 m& W4 T/ h
      recolor-patch ]
! w- o; ]6 |4 g! B+ ^  S# gend
* ]/ j. B  X5 G* Bto harvest
" n0 E: F/ b. @5 I) U4 g  ask turtles, y2 R# O/ j/ f: `/ ?
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]6 i0 v7 O# q; N3 L
  ask turtles4 Q0 E& `6 J; J2 K
    [ set grain-here 06 F/ v1 p! u5 T
      recolor-patch ]
" F. n" ^0 [  m2 S  
8 k9 V, }: Q* W- D) R, wend
" o5 }  h& M5 h) C
- B- ?+ L. x. V) U3 m; Eto move-eat-age-die  
8 m4 I/ K* w7 H$ o+ {" r- d  fd 1
. `6 K2 Z9 R" p4 Z/ l  \) s  set wealth (wealth - metabolism)7 \; l2 x) J6 \6 K" U5 P
    set age (age + 1), |+ _4 q! D5 S  G- y# w
  if (age >= life-expectancy)4 X( D7 I6 q" c) b0 Q( H) W
    [ set-initial-turtle-vars-age ]! y+ i6 W+ J. b7 }5 t" I$ |
  if (wealth < 0)2 T: t: B& b& k7 ~; _
    [ set-initial-turtle-vars-wealth ]
- [8 V# C$ F4 |! I# k    9 S6 G- X2 h5 A6 W0 ^9 X* O
end
# I( Y! E+ H+ h/ X4 {! K9 p$ K/ b' {" M7 Q) `* a+ t( B
, ^: F% F/ h5 q" [: k4 f
to setup-plots: `2 p- X3 _; q3 I. h2 o8 I/ y  O
  set-current-plot "Class Plot"1 H4 J. G- L- s" ~: z
  set-plot-y-range 0 num-people
6 _/ ^' I& y5 K, L% f  set-current-plot "Class Histogram"1 h# E5 ^" K7 Y$ [% I. |
  set-plot-y-range 0 num-people+ X3 {7 [4 v2 ?; s- `4 J
end1 _8 {: w' R- r/ _( I2 K
+ v. U7 ?7 R5 f8 `" N+ m
to update-plots
+ v/ Z5 A9 q# F# f9 V  update-class-plot
7 N) b: ~" Y( |- j( t/ ^; X  update-class-histogram: A- C/ q7 w0 E, U7 N6 r- z
  update-lorenz-and-gini-plots2 K3 p" `2 w/ C+ M
end
) z5 G7 ~% Y+ Z3 w7 l/ u6 i7 Q; V6 z7 y
to update-class-plot
! Z# g: W1 X6 }( _. h  set-current-plot "Class Plot"
7 F  ~7 H0 m: D7 u( B  set-current-plot-pen "low"
+ c9 M: u" [2 N; s  plot count turtles with [color = red]- {8 C9 D- K0 Q) o
  set-current-plot-pen "mid"
/ J' G# C, r! h( V$ l  plot count turtles with [color = yellow]
, ]5 ^3 |% N* J4 x3 Y( q  set-current-plot-pen "up"' |! {: \3 R: X
  plot count turtles with [color = green]+ z, E9 _0 D7 d, O) e- X
end) \4 l- P" B, o$ u! D8 m2 w4 [& a

/ @5 h6 I3 `3 y: Bto update-class-histogram
$ q  O: q& O; J$ ?- \' _/ Y9 ~  set-current-plot "Class Histogram"2 q  |# I. _4 Y( X/ o6 L, [; ~* e. _
  plot-pen-reset
; y: s2 U5 z  h* w: h$ T  set-plot-pen-color red% [5 j# H  \3 v) e! p
  plot count turtles with [color = red]
5 W" n9 I% L( ~. s2 H  set-plot-pen-color yellow
1 |# o* L+ _  ^  plot count turtles with [color = yellow]
8 q* O: B; f, r& r+ Y  set-plot-pen-color green4 m! v$ u3 R( x2 D2 s* Z! L
  plot count turtles with [color = green]
% N( {; }1 i+ }8 n+ Q! @end
: B( L; }! _: B2 \5 gto update-lorenz-and-gini-plots
% t; W9 U, R+ ?2 B5 H# C% o0 a  set-current-plot "Lorenz Curve"
9 I  I( R: t5 c+ Z" {  x% i  {5 `  clear-plot8 b/ G$ J" W$ e

) X0 z  |) e2 {9 q% ?4 {  set-current-plot-pen "equal"
' g/ A4 ~1 j# G2 n. F7 a  plot 0$ c& v7 ^5 ?4 T5 m7 U7 |, P& B! V
  plot 100& ~0 d- D2 T* E, |8 K/ {
: g: }! O( ^$ w) `- H
  set-current-plot-pen "lorenz"
" |3 o8 i# b3 B2 [  set-plot-pen-interval 100 / num-people( j2 j: u: [! `
  plot 0  y; [# T$ a; t$ N% D/ ]
  b% B" _9 x6 v, s$ p4 a
  let sorted-wealths sort [wealth] of turtles
! d( C! c  j: S$ ?6 E  let total-wealth sum sorted-wealths* G$ {* {" O$ G; A; _
  let wealth-sum-so-far 0
6 V0 s$ ^8 {7 o1 d& |  let index 0- q* ?1 P& H, r3 T8 k- n
  let gini-index-reserve 0. V2 ^& F# h7 E. T5 y8 H

& O1 V2 [+ f' b8 B. c  repeat num-people [& Z. x* Q8 i/ V( `4 ]/ r
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)5 S  Z" z+ J) }3 x- U* P6 O
    plot (wealth-sum-so-far / total-wealth) * 100  b# a; ^( y  G3 t0 a8 H' I3 B6 R
    set index (index + 1)
& c& P8 h8 C' q; w/ B* n# K" R    set gini-index-reserve* j0 v& a! R; c' |8 F% \4 W6 p
      gini-index-reserve +" k& Z$ _6 `% G% a
      (index / num-people) -$ Q) \0 G0 w$ |& }8 H+ F( J
      (wealth-sum-so-far / total-wealth)
  |, j9 b- q* g  ]* e) Z" ^* y1 M( D: ^. X5 I, v

$ m' z9 `, J. Q4 z( U  set-current-plot "Gini-Index v. Time"# ?. I! l8 ]; ?2 W1 C) z
  plot (gini-index-reserve / num-people) / area-of-equality-triangle
: _1 r  P8 d! v' J8 eend3 I2 E: p* x0 s( Y
to-report area-of-equality-triangle
$ i: f1 Q8 V* j2 L& Y) U7 `  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
4 \2 T( Y& z+ V" Eend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-12-8 23:33 , Processed in 0.014738 second(s), 15 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表