请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
, \6 ~8 z2 c3 s) r; t% S5 Rglobals1 q8 T' @ c5 I4 w
[- C. y) t0 q4 {! r9 j
max-grain 6 V+ B c) @, E8 r9 ]
* A+ q9 w1 e3 `8 c' M+ V6 j1 Q]* W1 M* N ~1 S$ P& L3 ~+ d
$ I' R: r6 Y' Z1 Hpatches-own7 b3 H! V4 u# c
[& B6 f+ W/ z! l) P) E) J
grain-here
% k, ^5 J! F* J& P: v max-grain-here 2 C4 c V" V! l7 n9 u) _
]) z4 W0 y7 G5 O4 X. A/ e, }5 [6 y
0 R. Z- o) R6 }4 R8 N% v
turtles-own
$ a9 L2 \& Q0 P& A[1 ^: u$ u) m; w7 D0 U
age ) g" e8 W0 ~- \: e( l9 v
wealth
8 S3 f5 g) A& U% V. F7 E; b life-expectancy . g+ q |9 x/ r8 z( c" n( N
metabolism 0 t1 U* [3 ~+ F
vision' ]3 v _1 c/ g% i0 [7 n. O
inherited
+ \6 t- d0 r7 p+ ^: H3 r2 A]
1 I) q, D# v' }- H2 [6 L, ?. {+ F1 c7 U0 h9 v0 X0 H ?
% }0 l& A( U: }; x" Ato setup
4 M% _# |4 i$ s! h7 S" E ca+ W/ c! Z$ \5 n; X- Q
set max-grain 50$ l# G, R9 L5 J: F
setup-patches
. L" a1 ^& j/ c; t setup-turtles" U( X8 D' ^, r
setup-plots
+ a9 B( x+ ~, ?* E- C3 h update-plots
- E2 U- v) R* C: yend$ S$ W) a1 I$ U
to setup-patches
& \) k* g: p1 W' b% T ask patches
) P3 Z. i$ j7 I1 Y) q6 k+ A2 i5 [ R [ set max-grain-here 0
# L! s5 G0 X9 z2 p$ h if (random-float 100.0) <= percent-best-land
! B4 V5 f2 O4 n2 k" ? [ set max-grain-here max-grain( K4 G6 l; {) i& s) C
set grain-here max-grain-here ] ]
6 k4 S `/ Q1 k4 L5 A repeat 5
7 ]* R8 N! _( o6 w [ ask patches with [max-grain-here != 0]# ?( \( k; u% B* Y# I1 I
[ set grain-here max-grain-here ]" z2 U+ m$ l7 h$ o& k) ]; e* K" g
diffuse grain-here 0.5 ]
' M) W/ i I% b3 ~; ~% F# L# l! |" R repeat 10" `' E+ A; u9 V
[ diffuse grain-here 0.5]
9 @; e8 m8 B, q- ]2 A/ w ask patches, g0 Y' \0 k# G
[ set grain-here floor grain-here
: o" k3 J. O2 |$ `! @" d) V set max-grain-here grain-here
3 [/ B' m S+ ^$ m recolor-patch ]3 ]1 g9 k0 s, N, @6 ?0 f& @
end
+ g" T9 ?5 x/ Ito recolor-patch
" E% R7 D* [( ]- d; } set pcolor scale-color sky grain-here 0 max-grain% d6 e6 f2 U/ T) b3 ^2 x- s
end9 h1 ^% h* r# ]+ w4 F
to setup-turtles1 [( a9 p9 X' w9 B# V4 A) A
set-default-shape turtles "person"; g3 k7 K2 Y {. f1 @; U
crt num-people
5 j" [- e; r: r7 e1 H [ move-to one-of patches $ v: R; E) T/ O% r ~, S' w# @4 W
set size 1.5 3 w5 W" Z2 x: |
set-initial-turtle-vars-age
8 U( V d& }7 L1 u, C) A% k N set-initial-turtle-vars-wealth5 i8 Y5 u' U. \2 W
set age random life-expectancy ]
/ g+ o) Q; z# n* g+ O2 n recolor-turtles
' m6 }% D: Q9 k& Yend
6 H6 m$ l4 o% ` f; C& Z9 f( }3 m0 b& b2 X6 r, @( N
to set-initial-turtle-vars-age. X! X& C: Q' c- U
let max-wealth max [wealth] of turtles
$ \: t& A& }# X3 X1 d0 G. H' p. G " \+ L. U; o8 c3 ~, @' _: R/ f
ifelse (wealth <= max-wealth / 3)( K9 N% E& O/ `9 z- [: ~. b& O
[ set color red , F; A9 T7 E% l% F$ f' s
set age 0
" h1 R* }, A: ~3 ^3 z4 N" ?/ u" g face one-of neighbors4 1 u, X4 ?3 r4 z# G: Y9 r
set life-expectancy life-expectancy-min +
# N& k% E1 ^4 ~9 |/ K random life-expectancy-max
; a" @/ E$ M+ q0 z: u# N: X1 J set metabolism random 1 + metabolism-low
0 E+ w6 ~" K' `$ m+ Y, t set wealth metabolism + random 30
$ F x7 G2 `- [# H# {6 Q# } set vision 1 + random max-vision& {: k0 d0 A! I* q, P7 `) m
set wealth wealth + Wealth-inherited-low ]" r2 q% D! u: C$ N
[ ifelse (wealth <= (max-wealth * 2 / 3))1 p0 p, E+ s0 g n1 v; m
[ set color yellow
# W1 o$ I- W3 Z$ u$ v6 V% K6 X: h' r set age 0+ t! A5 a: b# b+ Q. l# J0 A
face one-of neighbors4
6 N% _: W9 _( r8 H! D2 N set life-expectancy life-expectancy-min +
" \& P" B) D% R' E: [# |) z# e random life-expectancy-max + 1
1 d. H+ [4 y T set metabolism 1 + random metabolism-mid
; A4 _& b) P- O+ I set wealth metabolism + random 306 _& y- q1 c1 B O
set vision 3 + random max-vision8 V: ?- ^7 O$ b, j
set wealth wealth + Wealth-inherited-mid]
, o5 W& o0 Q- G2 `: ?; f6 e7 `8 c" b [ set color green
# L: E% }8 \' u( p% i set age 01 B8 [: B3 W/ t7 O+ E/ @$ ?' I$ z
face one-of neighbors4 - @* I, C8 @% U7 T) e! O
set life-expectancy life-expectancy-min +
7 e3 M) f) w' l random life-expectancy-max + 2 _ G+ s3 U/ }, ?: g( e; w& J& C4 g' R
set metabolism 2 + random metabolism-up1 d! \0 E& l2 g! v# C7 P
set wealth metabolism + random 30. Y( s& Z1 u6 B. B, d; s
set vision 3 + random max-vision
9 p- u5 a* A$ w' h* \$ l G: I set wealth wealth + Wealth-inherited-up ] ]
! I4 }) Q& n0 R3 O2 e 2 q4 t6 U( I" y. A0 s
end
" H' [8 ~( A! r) e5 Zto set-initial-turtle-vars-wealth
! u3 w6 H |5 U' ]3 _ let max-wealth max [wealth] of turtles
# |3 R+ P7 l: n0 M: u set age 06 z9 D/ ~! \% V- ~+ h4 ?
face one-of neighbors4
+ s: N" R' X/ u$ i set life-expectancy life-expectancy-min +6 c% R4 M7 _9 _' q. E. u
random life-expectancy-max
+ ^" H4 Z$ W( c" ^: t" g! n1 ]* L m set metabolism 1 + random metabolism-up
+ n0 H( b/ {2 R# q set wealth metabolism + random 30( ~. N1 W" L6 C9 s& x4 U
set vision 1 + random max-vision * L. C. U T4 ^. i% `
end: v; U! [* Y1 P; l u
to redistribution
; S2 B& t/ e$ F# @/ L6 D2 e% klet max-wealth max [wealth] of turtles
/ w( I0 }5 y' v1 q3 u) O2 elet min-wealth min [wealth] of turtles
3 n- o; t0 ^3 a) N! R8 I0 a# ?if (wealth <= max-wealth / 3)
; Z7 H1 w/ V/ I8 Q [set wealth wealth + Low-income-protection ]% z5 E3 x* b y. b3 s! Z
end: K1 E6 v3 a6 x- y ]" r2 I- e
/ N' x. g4 E0 i# v3 y" P
to recolor-turtles
: V+ g) B# V- u let max-wealth max [wealth] of turtles
& j- D+ k8 b# H) o6 l. p0 W ask turtles
) V! z; n- p# v4 H [ ifelse (wealth <= max-wealth / 3)
) q, D$ m: i4 v6 [: u+ @ [ set color red ]
3 E' c d( K7 @6 K8 h [ ifelse (wealth <= (max-wealth * 2 / 3))9 K$ f- d2 J0 U+ |& i( V$ A) P
[ set color yellow ]
) q4 B) T5 R' A- K, `% A5 R+ E [ set color green ] ] ]
; @2 N7 v% I. R* l# J4 U$ D ask turtles [ifelse show-wealth?
& ]3 _3 J/ B( u [ set label wealth ]
$ x$ o+ J7 X" {2 d [ set label "" ]]: I$ D4 B5 h; I/ g
end# V d1 n$ [6 a1 i/ Q+ a6 `
4 e7 I1 Z; M4 T2 o; L6 m
to go4 w/ f, ^6 M3 \/ t
ask turtles$ f2 Q1 j- g# a) d, a5 o: f' p; p
[ turn-towards-grain ] : a/ c: x2 o8 W6 I9 X5 t6 t
harvest
+ a& f, r) y2 }& |, W ask turtles
: x+ Q% D) ~/ V9 @" z4 P [ move-eat-age-die ]
5 L, V3 |& b. Y, j, f recolor-turtles9 S6 n* p1 n+ g3 y/ Y2 x O
if ticks mod grain-growth-interval = 0
+ }2 X0 O; W6 s5 E0 z8 q [ ask patches [ grow-grain ] ]- l5 _+ v% E" A6 ^5 ?; O
( H1 i5 _6 S) n' l* E
if ticks mod 11 = 0
~% S( _2 J3 i* u2 @! E' w. F [ask turtles
, m3 ^% Y& U7 V& Z" V- j; _3 } [ redistribution ]]" S1 y# Y" X# c: Z
if ticks mod 5 = 0! ]: Q9 A. o0 P! p6 `
[ask turtles/ [" @# M8 ? i$ ?4 j8 a4 _
[ visions ]]
0 \# F6 E8 S2 t, v/ Y+ ~1 J9 o tick @% V, _% M3 t4 g/ N# |
update-plots9 o4 L7 P* D9 v! Q
end/ y- W' c: {! y, x' V, K: z8 @
to visions8 V* h" k, W g+ U* t& F
set vision vision + 1
9 V5 N+ p# b0 a9 E* _- E# Oend9 P: s! h) X9 K. ~
6 t2 q+ ?" O( _. t0 D S) B# S
$ ~2 w* V c- f
. U Q0 A8 t! E& \
to turn-towards-grain & i2 ]/ c8 L( ]3 d6 ^& m
set heading 0
$ `9 ^5 C3 Q; X/ T( w1 q5 F let best-direction 0
1 B1 H: G6 U' o. | let best-amount grain-ahead: W9 Q9 a4 v8 m# m3 R3 R
set heading 90% `6 v# d, s# s' F5 N$ I
if (grain-ahead > best-amount)
/ x, S" {' c8 \$ e3 ]) g [ set best-direction 90
! p/ c# U- p) o0 B) M set best-amount grain-ahead ]) A( \, X* r$ d% Y1 T1 e2 g
set heading 180
+ m& E1 P. m0 i: w if (grain-ahead > best-amount)
' M5 a) s' P2 _& i; v% t [ set best-direction 180: C, j+ ~3 M' i7 M! d5 I8 l
set best-amount grain-ahead ]
5 |5 `/ [' M& F g2 m$ l set heading 270
% X/ u2 @5 @' e, t9 p if (grain-ahead > best-amount)0 V1 }' z. W; s* {# d7 W( T+ o
[ set best-direction 2700 `4 ?' W1 z7 e8 v: ]' w4 U- D
set best-amount grain-ahead ]' f( l# C9 y) l1 [# X2 \
set heading best-direction V! `0 Q6 V1 {3 f; g7 ]" k: ^* B
end
: a% F$ H8 N- j$ Y: t; R" R9 l# O' u
: E! F5 s+ Z! Q) I1 M- F. c
to-report grain-ahead 4 Y b: y( O! S7 g
let total 0
r4 \# b6 w. c$ F+ Q) m1 ~, D* Q let how-far 19 N3 y7 o2 N1 b0 p' g( Q) X' Y
repeat vision) R$ [8 T' R' x3 [4 @: Q
[ set total total + [grain-here] of patch-ahead how-far
. O0 k9 y7 e [. K" g) U set how-far how-far + 1 ]
( [/ m7 r$ Y7 M report total9 N7 u/ ^. c" V
end, b$ R1 m: a0 A: }2 b
" l+ g6 z4 y7 S& W8 z0 wto grow-grain
, o( a7 r- v+ {3 T if (grain-here < max-grain-here); s P+ G: W/ v. d' x( Z
[ set grain-here grain-here + num-grain-grown
. G. q! t0 R2 |) E9 j6 e if (grain-here > max-grain-here) : m6 @, P' U, S7 l
[ set grain-here max-grain-here ]# a* c* p- f1 o7 {! Q( z2 }
recolor-patch ]
# K% o0 H! @6 tend
( I. J0 b4 x4 Y$ A: V6 Y7 uto harvest
# o n. d; `7 j+ \3 u ask turtles
i9 x( H$ t( V/ W0 x+ K [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
4 f ]5 d$ C9 t/ [% u6 v1 v9 n ask turtles
" q' x0 g0 m; {5 B6 Q [ set grain-here 0+ F3 h3 m& d. \1 u
recolor-patch ]
5 }/ q" t$ i x . K% ~* i9 k) g' k. X
end& L8 a' R# H& O
3 @& v4 Z9 l: u0 Q
to move-eat-age-die 3 _/ [8 i, p0 x
fd 12 y0 T: b8 o4 I, v* }
set wealth (wealth - metabolism)
/ T" v* L, i7 N/ m- z& { set age (age + 1)4 N( W* o5 \3 \1 f, K/ K$ m
if (age >= life-expectancy)
R4 @& |) r: Q b; g- z" | [ set-initial-turtle-vars-age ]
1 `. U. ~% n" ~- w/ r if (wealth < 0)5 n: H/ w# \4 t/ u
[ set-initial-turtle-vars-wealth ]- F3 V" Y/ u; H; d: X4 ?- C
0 u9 O- w D/ l/ T) d: v( n+ Vend
9 Q: n, i& |) X4 h9 e7 i
# e6 _, K z% `# f0 N6 i6 A Y6 i; G* r6 T r
to setup-plots
0 B, S5 l1 l2 ` set-current-plot "Class Plot"
/ L* \2 C0 d9 x, X6 E9 U set-plot-y-range 0 num-people
# {, _# K. A' W2 y6 y+ H set-current-plot "Class Histogram"
% m& x, _0 E( p. { set-plot-y-range 0 num-people$ f, C+ g: m# ]3 n
end6 _$ j) o2 ~" ]* W3 Q5 r
3 f0 ^5 E" f. Oto update-plots+ G) N5 Q v: n: ]0 u+ P; F
update-class-plot0 W4 Y% T, ]6 @0 v2 c& c0 _ @
update-class-histogram4 M' G% O/ L9 n; B
update-lorenz-and-gini-plots
R: K+ J5 h: i" Kend: E. P) p2 O- q( x% I" {( g/ M
0 s4 C) t; e! \8 H e
to update-class-plot$ R* i* D& t4 k" q* H& @
set-current-plot "Class Plot"
. a. ~6 f, o5 |7 b J& a& H6 v& m set-current-plot-pen "low"& d& S1 U. f% l( E6 _( E
plot count turtles with [color = red]# ^) M3 f2 `# x' P7 X+ M& J6 |8 s
set-current-plot-pen "mid"# l7 i( L' B. D/ `
plot count turtles with [color = yellow]8 T3 Q7 R' r2 e! J/ U4 o/ b
set-current-plot-pen "up"
2 h: W5 q" N7 [( b plot count turtles with [color = green]
- i4 }; c/ W( r: ?5 |end
3 S" W+ q3 D. Y+ X7 G) U* ?9 p7 X* x J$ s
to update-class-histogram' U; Z; S* L* O. K! H
set-current-plot "Class Histogram"
- N- I0 c) N; A9 f1 l4 l plot-pen-reset, V1 x/ Q6 q' L6 W
set-plot-pen-color red
5 ]8 d. C" j# z% z0 u8 b plot count turtles with [color = red]( {) _) }3 L: C" h8 Q
set-plot-pen-color yellow! X/ H# v! Z2 O! z2 E) s
plot count turtles with [color = yellow]
6 R2 c0 A0 w K" K' U set-plot-pen-color green; K! \) v, J" R. t
plot count turtles with [color = green]
; l7 {4 X0 D5 X/ e3 v7 yend
# E) g' @# ]+ _" f- a! ^, I$ tto update-lorenz-and-gini-plots" @- T' {; z* V5 L. O
set-current-plot "Lorenz Curve"1 _; R4 L% R2 y9 m
clear-plot
& h/ c# S# S% L$ ^, i% |2 z& b. u& |0 q$ g% m
set-current-plot-pen "equal"& Q2 d" ?0 d/ J. V! c d
plot 0
1 d: A8 m( v# F! P: ?1 h# v plot 100* ?6 J3 h* I1 ?
- ^* w: w) k. e! I8 o* k2 r set-current-plot-pen "lorenz") J; k; C0 z2 q/ I$ F
set-plot-pen-interval 100 / num-people
+ T- a( i+ o6 b1 L" {" N0 S plot 0; j1 Z2 o+ o* d
( \- h1 M0 z6 u8 q let sorted-wealths sort [wealth] of turtles
9 ~# ?; X: e8 u3 d; `5 G$ Q+ W let total-wealth sum sorted-wealths5 t7 H) x9 Y& }# s& P8 [+ }) k, S
let wealth-sum-so-far 0- t, F+ ^$ U; o
let index 0/ c8 i. f- |2 G# K7 U
let gini-index-reserve 0" T# w3 O; o! B% }) ?0 x. Z, ?
) r% v0 h6 }, G( ^! u6 B
repeat num-people [
6 X& A/ |/ ?. A7 `% ?2 F T set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
2 p' ~% R A @& Y+ {$ I- |' D- Z plot (wealth-sum-so-far / total-wealth) * 100* _9 H$ d0 r& a8 [- V
set index (index + 1)
; q/ r! @# k, j s: c set gini-index-reserve
. X9 c: h$ ^) r gini-index-reserve +5 [7 d' n3 Q! m* T- y1 M- \4 [* T# A
(index / num-people) -( l/ s o* x) |& ~2 W5 v
(wealth-sum-so-far / total-wealth)3 C1 n' t* Q" i z
]! T0 `) C& v. Y/ C& F& s. q
0 e1 x9 d# t2 K T9 d( `1 B set-current-plot "Gini-Index v. Time"
: A% x! [$ H/ Y plot (gini-index-reserve / num-people) / area-of-equality-triangle
2 Q }4 x5 Y$ j( iend
0 n8 S+ M$ o" ]to-report area-of-equality-triangle3 G6 v' d1 ]5 V4 k
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
$ f( R; P1 `( o. L! zend |