请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
. k" j) w2 ~6 o! E: fglobals: U0 |3 l7 i% V0 l4 X# c0 B
[+ d B& U1 I, t! K! ?( s
max-grain
; R) W! q0 E) m R, t
* x' G* V- D, r7 \ i]
' L" T/ m/ a) A6 v- d6 P
9 w- [) U7 L6 W, n! l* spatches-own
1 s4 {8 X$ Y$ ][7 Z8 @0 B, g3 h3 m
grain-here
1 O/ d% p/ l+ C* I) N. U max-grain-here
: M, t: i+ P4 k" g; s4 ^7 h]& |4 @4 r+ {, N8 {* B
5 {9 {: A ]6 t$ S- \/ N/ _3 \5 }* aturtles-own
! E( F4 E8 n2 H[( H0 Q' ~5 F; N. q: q
age ! A6 x6 s9 l0 g' {* d2 F# c
wealth
# V" n& v9 ~* B life-expectancy 6 j: R& e$ c1 Z( L0 z* ^
metabolism
7 t7 V+ M2 Q& ]4 O/ E vision
4 e( y& V+ s8 U0 C9 x0 e, q inherited
6 L' C& ^7 K# x& Y% u* ]]: h: u+ B# S4 x: I& u0 @5 e# E' y7 O
6 H& }& k) k' b0 H1 t' Z7 [* X2 }/ e; {8 Z
to setup' P d8 v) `& D# J3 ~. C. J e2 l4 H
ca
4 d5 _( p! s. G! y2 R set max-grain 50
' W P+ u" J" o0 j" W setup-patches* P4 e m- ]& x! U. c
setup-turtles& P5 ^ w( u: |3 |: o) o# {. H
setup-plots1 U; ] J+ g1 E# P
update-plots. A3 }9 b; ~$ R
end
6 C* a3 s( C6 R% cto setup-patches) h; \0 B; R) H& [' H- A# x) l
ask patches U# K: O* [ N
[ set max-grain-here 0
3 y# f ^. ?( e: x& h- A4 B* Y if (random-float 100.0) <= percent-best-land
" N, U4 M3 p2 Z [ set max-grain-here max-grain& {, P- R5 Z; j6 f, ~
set grain-here max-grain-here ] ]- k1 ]8 S1 b3 G. I$ C0 j: v, Q: K
repeat 5+ g+ n" a, ]0 W0 @1 n
[ ask patches with [max-grain-here != 0]
7 K& |2 c. {% x. z. j3 O$ U% w [ set grain-here max-grain-here ]% N1 k4 U9 h( l- ^# f+ W8 ~+ N2 ]1 j
diffuse grain-here 0.5 ]
3 n' l5 ^ t5 H. a3 P repeat 10
/ B4 ]- C- U0 E) D [ diffuse grain-here 0.5] # O0 u+ @' @! ]
ask patches' K( o, _6 r- S" P" ^
[ set grain-here floor grain-here 0 p1 m& H$ C5 v$ f. ?" Z+ Y4 Z
set max-grain-here grain-here
" j% r: h: x+ f2 g; }) \0 e recolor-patch ]8 i# E( |- Z! {0 Z' R& y- w
end
* e) h# A# e# m+ Nto recolor-patch
6 |% u4 U5 k0 b6 ? set pcolor scale-color sky grain-here 0 max-grain
* w3 `" g$ Z% dend
- Z6 s9 v/ f h7 } G+ Gto setup-turtles0 d+ z6 Q6 [7 e2 i/ S( u
set-default-shape turtles "person"
E F. B0 ^# H) F( x crt num-people; C) w2 t$ Y" k7 Y
[ move-to one-of patches
0 s! K! b) m# R1 x6 T; F set size 1.5 ) P5 N& N& v' u( Q
set-initial-turtle-vars-age
& R$ u5 j6 Y% {8 u! _ set-initial-turtle-vars-wealth
3 C/ i, J6 r6 E, p' R; l set age random life-expectancy ]0 u1 _5 h3 M5 M: x, p0 n; i8 e
recolor-turtles
4 [. T2 l- |; m$ h# h+ x! bend" x, K3 K7 g! y1 ]
9 Q4 o% k4 a: V' ~
to set-initial-turtle-vars-age
; e7 s; ]) g. p- ^6 R' A. ` let max-wealth max [wealth] of turtles
. ]5 Q- b/ _4 k( } + s0 |2 I7 n0 w" R
ifelse (wealth <= max-wealth / 3), z- L$ b1 D. {0 i# D
[ set color red , U O3 e8 P; m3 K8 C" g
set age 0) f4 a/ o4 H% C' g; T! h) s) z" t
face one-of neighbors4 & r) d! E: b6 v
set life-expectancy life-expectancy-min +* k; O+ q, _& A+ c* I: L, Z4 F
random life-expectancy-max
. R- W, N9 ]- E, h* L* {, L set metabolism random 1 + metabolism-low6 ?0 C- E# _# R; s
set wealth metabolism + random 30
4 ?. L5 F: w' q9 y( G$ D6 @8 I. K set vision 1 + random max-vision
9 x2 b* _# W9 F% l( w- W% s set wealth wealth + Wealth-inherited-low ]
& w# c7 N# p6 [' e$ x z G [ ifelse (wealth <= (max-wealth * 2 / 3))
6 q$ j3 L5 \' u4 ^ [ set color yellow
+ v0 z" F( A# _7 C set age 0! b9 w* ^, ^# U+ Z2 w- h
face one-of neighbors4
( e- z- P6 C( L: A* Y9 u9 M set life-expectancy life-expectancy-min +* v6 X. o/ q" \) H
random life-expectancy-max + 1
# s" w6 V/ }# n# r- g set metabolism 1 + random metabolism-mid
8 B* r; j4 e9 Y set wealth metabolism + random 300 P E; z3 E7 z2 w' ^% R) l- a
set vision 3 + random max-vision
, i/ S6 M# Z! K5 Y2 \ set wealth wealth + Wealth-inherited-mid]( p1 j/ L6 t# ]5 c# u
[ set color green
. w, X/ W8 g q4 r0 s set age 0
' [4 |5 X) U2 P: s( L face one-of neighbors4
) F0 F6 J( P7 j) {( L" i# ` set life-expectancy life-expectancy-min +/ e F& d, d! O) x* w
random life-expectancy-max + 2
' g7 J: ?% N; D; a- m set metabolism 2 + random metabolism-up3 n- L! M( E0 x7 W
set wealth metabolism + random 305 z9 Y& |0 L. @6 g8 H6 Y+ f
set vision 3 + random max-vision
. i$ u1 o: e& h% y+ S0 w7 M/ Q set wealth wealth + Wealth-inherited-up ] ]
x4 U& K0 ?- M( r4 z4 B6 C 1 P- ~ c: l, j& x% n u2 w
end7 Y- Y' ^- N; m0 y
to set-initial-turtle-vars-wealth
; T; m2 A" ~# `7 U, v let max-wealth max [wealth] of turtles; R+ g$ C6 f8 [1 p8 U; q) L
set age 0
( M3 y; y6 |8 K0 g- ?9 V face one-of neighbors4
! t* }9 N! K7 Y, l9 E set life-expectancy life-expectancy-min +
& B: w! g8 l# I0 M random life-expectancy-max
7 R5 H+ v, M1 H6 p) S set metabolism 1 + random metabolism-up/ q3 o( _8 @6 B
set wealth metabolism + random 30
2 E- b( Q! A/ I- E& i& _ set vision 1 + random max-vision
! S/ S9 o& @; X1 \/ f% fend2 F; R. }% R8 ?5 D- M6 m0 L- @0 w
to redistribution6 F- X/ `% D: \& z3 P2 S
let max-wealth max [wealth] of turtles
* C8 U% f7 I: x' u2 k5 z. J1 Tlet min-wealth min [wealth] of turtles
: c& b) k/ L: t; v- gif (wealth <= max-wealth / 3)
/ T0 A: v1 z6 ~ J9 i [set wealth wealth + Low-income-protection ]/ v# {5 M, o: H
end
6 a5 c n! G! }6 \" A 0 Q6 v9 O& r5 u$ Q. t% O9 R! I# ?# N
to recolor-turtles
, p0 \# J: m, I$ e( A) _* \ let max-wealth max [wealth] of turtles5 E6 P5 l8 L) R- O- ?
ask turtles O. B1 p4 Y6 f7 k7 N
[ ifelse (wealth <= max-wealth / 3)
* C5 [3 g. k; k, v3 Y- d+ A [ set color red ]) i, _4 l+ c8 H5 x( ~2 }& g- d
[ ifelse (wealth <= (max-wealth * 2 / 3))' p/ V& F1 y* h9 i
[ set color yellow ]. \& u2 ?1 V: F) z# r6 i
[ set color green ] ] ]
( c& q( o- |$ ~ ask turtles [ifelse show-wealth?8 q4 Y7 ~( i Q2 m
[ set label wealth ]5 b6 k, C( I V5 m1 e8 T
[ set label "" ]]6 \9 @# ~9 d! L0 _& u( J
end/ _( n% p: d2 _; `2 L
) [ r/ N# F5 P& s3 O$ J! g6 X, k
to go/ c/ v2 G7 C _& e. B
ask turtles# W5 [( ]+ j1 `, h$ ^
[ turn-towards-grain ] # n0 s( m; b( ~2 @ X1 ~$ m$ U
harvest7 q4 T& W- S, | N& e: @8 D
ask turtles1 T0 h, W4 B! h5 a: r
[ move-eat-age-die ]
# [) \& Z* \& A1 A i9 F3 q3 y8 P recolor-turtles
. @# E! @/ _; f T) \ if ticks mod grain-growth-interval = 0! S) q4 _ m4 }8 V4 g
[ ask patches [ grow-grain ] ]2 Y6 T& `! C, D1 J S
/ k4 W1 N4 F4 O! \ if ticks mod 11 = 0
9 [% C$ v/ H! w+ z, q [ask turtles) r& `" G% t4 x) J2 ~& A
[ redistribution ]]/ A, N3 y) M0 c! V, G& a
if ticks mod 5 = 0& r/ q4 F6 K- E
[ask turtles8 {8 h' M3 I* W! Q
[ visions ]]' @# @6 d$ H7 n: q# m, G7 o
tick
* E$ N3 W* E. b4 s/ r- Q& v update-plots
0 ~6 ]/ K! d. A& lend
: g d4 ?5 E T% V* `# Q' }to visions9 Y9 @0 O3 L4 A% N( Z" s
set vision vision + 1 ' A3 E" _! _) Q* Y
end
' G2 m8 G- Q; |* o7 P
9 z/ [) u7 P3 L6 v1 h+ Z- j" }, f* C
2 B' q& ]& Y- o' }( G, t( ?' l! g+ y
to turn-towards-grain
" y& k7 C5 s$ K. I9 k7 x set heading 0: j7 {; r! j5 v9 n2 e H
let best-direction 0
; u" V. M0 f8 h6 I4 Y f( W* R( ? let best-amount grain-ahead
3 z$ A8 S0 Y3 V6 l% l- g set heading 90. p+ T* D: E9 Z9 e9 x3 L4 X- Q
if (grain-ahead > best-amount)6 }5 j$ z) M+ T
[ set best-direction 90
6 M' q6 {- o; Y4 }/ z set best-amount grain-ahead ]
& Q7 k. `6 B# Z set heading 180
6 W+ H! n* v1 L) k$ j N7 B }& B1 r if (grain-ahead > best-amount)
" x/ T4 ^( W. x7 x( f0 f0 I [ set best-direction 180: r! @" A: B ~) |
set best-amount grain-ahead ]
6 m( o% Y* U6 D& W4 \ set heading 270
+ h7 s/ e9 j/ h+ H) m if (grain-ahead > best-amount)% u( V' U- c/ R7 L4 R
[ set best-direction 270
1 I1 u+ v8 n8 [ set best-amount grain-ahead ]% ~" ~; {" q2 y0 C6 L, E# A! Y
set heading best-direction
3 b s0 ]9 k; e9 M9 m7 xend
: p! a/ x% |3 u+ s: u* ^4 F# Q/ u# V% D( b& w) ^; u- O0 J
& r% O$ T( o2 @to-report grain-ahead
" R7 m& \& k: k let total 0
3 ]( d/ z \. U" J let how-far 1
% ^0 I$ ]2 Q; u repeat vision# P2 r i& u5 |7 E- U6 ~/ |
[ set total total + [grain-here] of patch-ahead how-far
4 C3 Q7 G4 x' h& J' ]3 k* ?3 b7 C set how-far how-far + 1 ]
1 O* t% y1 X) T" \7 g2 q report total" N' h) U' a, Z1 M
end
% v, o1 m8 Q& w0 z) m$ B. {; x% Q& u
to grow-grain 9 j, A" b/ \4 d( A2 d$ f' z2 e
if (grain-here < max-grain-here)
, m. o! s- u" y) F; v [ set grain-here grain-here + num-grain-grown* l \, A/ n, N/ ~7 h/ P
if (grain-here > max-grain-here)
& e: ], b% ^$ {, @' ]( R% l% m [ set grain-here max-grain-here ]8 n8 o- x2 d( l; I' n3 m G$ g. j
recolor-patch ]
/ r- q: z7 O6 x, Rend, [- z$ {2 C( y$ m
to harvest
1 u! S" F" m8 ]2 c& k ask turtles' }' T, D4 V, c( g) v- S, v/ T7 s
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]4 H2 ?6 J( \' U B
ask turtles
* D' g5 T; d4 K1 X0 \ [ set grain-here 0
" W$ ? e# n! M" t2 ^ recolor-patch ] W- R$ ~: z- g0 k! P6 c$ |3 S- L
. p' }& |/ l/ F
end `/ ~2 c. n; O
9 n0 Q1 l+ Z2 D' ^; v* `: ?# b, h2 }to move-eat-age-die 3 W5 O: W6 y) T# N0 ]
fd 1# `8 C- I9 W" m2 `7 O& I
set wealth (wealth - metabolism)9 J s N# ?, y' p. m
set age (age + 1)
1 R$ g% d& g+ I& f! C1 `; F if (age >= life-expectancy)& L) q9 U" [* n5 g1 k4 ~- r. I/ e* K
[ set-initial-turtle-vars-age ]2 A/ H/ D* D& r0 |3 Y# e) R6 ?
if (wealth < 0)( ]% m+ r& g; Y% o$ G
[ set-initial-turtle-vars-wealth ]
4 Y/ o+ X; w. e8 U0 B
; o9 ?5 Q. z7 c# lend
$ s4 t, U1 Q) V! O+ `
' c7 w! D8 b, V) O& m
( x9 x6 V' c5 a9 d8 Ato setup-plots
/ ~4 m4 k, x) o3 S* t0 ~ set-current-plot "Class Plot"
& c0 H; ~- M) l( H set-plot-y-range 0 num-people4 q6 Y6 O. H! F3 Z* T
set-current-plot "Class Histogram"% S' Q1 I) K. P6 t
set-plot-y-range 0 num-people. }1 J' r" p) D! r2 r7 x
end) B0 C) V J; c
& C/ L6 h6 n7 d; G2 H% x
to update-plots
; ^2 T+ X% m7 j( [9 G update-class-plot2 _4 W0 v# t* T; _: C
update-class-histogram
; ]) }$ q2 l! ? ] update-lorenz-and-gini-plots
( f# M% C" x; o% V" a1 W+ j/ [end% |1 g$ R5 z' b2 }' ?; m; u
# Z7 T+ b& j/ f
to update-class-plot
& X) C" B& R# V9 \ set-current-plot "Class Plot"1 V B# z* [/ I6 |/ h
set-current-plot-pen "low"
% {& i1 J# S" y6 I# z- a plot count turtles with [color = red]4 n- d7 y9 A* |2 Z- L/ W; |; O
set-current-plot-pen "mid"+ d: _9 R* Q, z7 T" q5 ^/ G
plot count turtles with [color = yellow]1 y6 r3 q' h% K, q- @
set-current-plot-pen "up"
O/ s3 A2 u+ ~2 T, p% G7 T plot count turtles with [color = green]
. K4 ]7 }1 e" Eend
9 i& c+ ~' ?1 Z" j
( S& [8 L5 Y" Q3 S4 hto update-class-histogram
6 d% f1 a9 V* O. `+ Z) L3 ?3 N set-current-plot "Class Histogram"
' l2 s$ P# s% V* I- i* k9 A$ ~. z plot-pen-reset
# Y" W. ]% u- \' {! D% q) T, l set-plot-pen-color red* h8 {1 `1 }( r( M! D
plot count turtles with [color = red]" Z, p0 a3 {$ V; M+ ]
set-plot-pen-color yellow
/ t. |+ |5 S4 P plot count turtles with [color = yellow]8 r/ l( s, `; Y6 h
set-plot-pen-color green
! c5 W6 x: x3 d; J E4 O; W plot count turtles with [color = green]
+ a6 n: R- m. H0 U) Qend
1 g8 I& c( t8 u' \7 l! |4 ?) @to update-lorenz-and-gini-plots7 @9 ?! [! g" _7 X
set-current-plot "Lorenz Curve"
) w: t1 A2 @) n+ R2 i* j clear-plot
1 Z9 y. y+ x) Z; X( H) ^; m! B( w: z: D
set-current-plot-pen "equal") [# Y7 n0 E8 J/ e3 n# T) U! }# a2 D
plot 0) ?% P/ {. U! b- ?8 Z# V2 v4 i5 X5 e
plot 1009 y! }- {) j- g3 }
( A, H- E5 O6 L2 { set-current-plot-pen "lorenz"
: @& ^! ~& q" R6 g set-plot-pen-interval 100 / num-people" [1 o$ W2 q( _7 K. _
plot 0
4 ^0 I7 C0 {' H6 ?7 D2 O* o" B( N4 c
let sorted-wealths sort [wealth] of turtles8 ?6 y) h0 m& }1 P8 \5 {8 D
let total-wealth sum sorted-wealths
: d0 ~" p9 w: t; E; \" Y2 C$ f let wealth-sum-so-far 04 K2 w* t8 e" w; w$ P0 a, b$ X* [* ?
let index 0
% x" m$ M p2 U! p7 H+ D; B, ~ let gini-index-reserve 0! u3 k$ }0 A, ~: e7 o
2 Z4 L: \. ~/ ^ repeat num-people [
o# F l. L; y; X set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
, l! k% D/ [! A plot (wealth-sum-so-far / total-wealth) * 100
5 }2 |1 _/ G$ e- n1 m) ` set index (index + 1)3 T0 L4 g/ R3 {. W
set gini-index-reserve
2 @7 F) P; f8 o) t; e _ gini-index-reserve +% u4 ]! U) y5 H* o+ R" z/ W" P
(index / num-people) -; { Y- X- u* \2 b
(wealth-sum-so-far / total-wealth)6 f# J( p6 ?( X1 G; z: X
]
6 _0 s6 G5 A4 e) E7 d; C) [9 k% ]# }- Q- a% q9 k6 B7 w V
set-current-plot "Gini-Index v. Time"
* D; U9 z8 o& K: V1 c3 g F3 R plot (gini-index-reserve / num-people) / area-of-equality-triangle2 |* I! k5 g" \, [# c; v
end% G5 m. T, b2 G$ {
to-report area-of-equality-triangle- j. X1 X$ `7 o- O
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)& \ w- e8 \+ r2 f: b# Q/ `
end |