请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现" i$ `" q5 [# V& k. T- [
globals
- m! n3 x( O- g$ U% @[8 B* z" _3 G- m" [
max-grain 2 r2 d X' L* j1 d k1 O" n9 W
' `. I$ e9 y! O% G. K* C) B( s. Q]2 l, g+ ]! }* s# `" ^# P, l( Y
- e# q- {! i/ p
patches-own8 x, P: t& R9 I% h% C5 X
[
D+ ^5 Y2 Q s6 @ O grain-here # @0 u+ ], @# t& B# @# u. o
max-grain-here \( u% W# N* d+ Q! z
]
7 L" T# \6 | n4 E& y: F" Y
% C( ]5 f" W* S, x* Fturtles-own
/ ~( I7 H% y& \2 w6 u5 D" V4 B[2 y- V# m' z3 o
age
2 O/ m% I% v" E4 }, h H wealth ) t1 @* v! m, u9 \0 A% D
life-expectancy 8 |9 M3 ^& F* ~6 A! T) A3 J
metabolism - c' D: D0 r8 ~" L
vision
9 g& \7 C) l! ~2 [2 v! v6 B. k# ` inherited
( y& A4 ?* O$ e; e0 q P+ l" j" C @]
# b& Z2 q9 a8 H ]7 z9 O8 t3 @* U
3 h# a( r. `5 ?1 [# ?
7 D% {% q& o |. R/ X/ K: mto setup: Q7 _% U3 |' ?6 y% \: q9 b" P2 h
ca: C9 B8 T# a w# ]- B$ p& K
set max-grain 50
5 F+ [6 D( O5 z+ u0 u2 u, | setup-patches
# Z) i, a. ~ C setup-turtles2 n! v& }1 M: C1 V2 r$ d, X
setup-plots
; C9 c, g/ ~, f9 K, t: t! @ update-plots6 Z4 N! P9 U+ Z1 g" }
end
" J/ [3 L& G! b( A; p4 ?to setup-patches
6 x& F0 ~7 Z7 y' Y* b, b" g& A ask patches
! F3 c2 a* |8 R [ set max-grain-here 04 V! R7 [: ]4 P3 [. H# t
if (random-float 100.0) <= percent-best-land
' v* m% N% H+ M3 f [ set max-grain-here max-grain
7 E- f3 r9 x$ n' | set grain-here max-grain-here ] ]* B0 Q$ T) y7 X% O
repeat 5, [3 L+ a! j# f
[ ask patches with [max-grain-here != 0]
7 ]0 o& {% {: [5 c [ set grain-here max-grain-here ]: k! Q- Z' m% b+ O; [
diffuse grain-here 0.5 ]
/ w3 ^6 w7 m9 ~ repeat 10" T' L& p" H& a
[ diffuse grain-here 0.5] ( K# w. d; |- s& L A1 s
ask patches
/ d$ X3 w9 }; ]) ]% t [ set grain-here floor grain-here % T$ Y; Y! j5 p7 j
set max-grain-here grain-here 0 Y8 u1 S7 O& U+ C3 y6 w2 J
recolor-patch ]
% M3 R6 U; F/ ^6 P' {% K3 Uend3 o6 W% ]. G% ]' |
to recolor-patch
/ L! T! \7 M& J$ A set pcolor scale-color sky grain-here 0 max-grain& u( e1 H0 `4 J, I) S D5 Z
end8 i0 p$ L$ S+ i5 {
to setup-turtles
* m- ^. ]8 {1 t6 L. D, {) }" S set-default-shape turtles "person"
$ s4 G1 a- \+ q$ o' }5 Y crt num-people
+ N# Q3 L u9 S) G [ move-to one-of patches 5 N- q1 \7 |4 R1 h% [$ a! F
set size 1.5
+ e$ X) a) T& g) C. M set-initial-turtle-vars-age
( J" c, U" c9 c% |( I) ~" s set-initial-turtle-vars-wealth1 |; k% `2 B: K* R
set age random life-expectancy ]
, A; V* Y" D+ z, ~$ D, ~8 w8 B recolor-turtles
7 y' I: k, W L7 T. j% Mend
) x6 g! k( |, n8 |$ e; I, ~' x* A- ]3 q- t/ U( z2 J3 a
to set-initial-turtle-vars-age( o3 W1 v5 A5 z# |
let max-wealth max [wealth] of turtles" e3 Y9 Z3 K9 C$ X* b0 q
: @" K( {/ I; j) x6 Q* ]' | ifelse (wealth <= max-wealth / 3)
0 @# b+ [; W: t [ set color red
3 a1 b4 N1 K* I! R! j set age 0- Y1 D* g0 V. j; n' p
face one-of neighbors4
' B/ N8 m5 C- V! \6 R* h set life-expectancy life-expectancy-min +( c5 |* h/ u4 r. T& G/ R
random life-expectancy-max + i0 `: r/ R( S- X' ]- |
set metabolism random 1 + metabolism-low% D9 P5 g" v1 }4 y6 k# }+ w
set wealth metabolism + random 301 V: ^2 V8 t, |2 w6 k
set vision 1 + random max-vision
6 Z% h, P% O8 S4 a* o set wealth wealth + Wealth-inherited-low ]
- G5 R% S2 R9 U2 j- x [ ifelse (wealth <= (max-wealth * 2 / 3))( F$ q: H- {' D/ G) P; L
[ set color yellow 3 ~; H5 k8 n. [( {8 q2 o3 O, V
set age 0
" `) ?( _( c F+ l. `8 }. ] M' H( F face one-of neighbors4
8 r3 M, i S& g' P1 d set life-expectancy life-expectancy-min +. V6 l) v5 y. Y0 t" Q6 ^7 X. d
random life-expectancy-max + 1* U1 G- I H: Y' B
set metabolism 1 + random metabolism-mid
% o7 w* N# T. G* j set wealth metabolism + random 30 j( g s9 K3 c# _2 H
set vision 3 + random max-vision
! K. U- B3 S7 [0 S0 M set wealth wealth + Wealth-inherited-mid], w4 [7 \% E4 Q- c- {& n9 v. Q3 \
[ set color green
8 H3 a+ T* F% F( M set age 08 \/ p% L, m7 ~9 x
face one-of neighbors4 $ r3 P1 n" }' N. v
set life-expectancy life-expectancy-min +
9 B6 x0 K: t) \% x$ n0 |- E random life-expectancy-max + 20 d! A9 X7 A3 f) Z/ O+ j9 \
set metabolism 2 + random metabolism-up! M; v! B* {1 F
set wealth metabolism + random 30& r2 k' C2 X& j( K* L9 `
set vision 3 + random max-vision) Q' I% a" C. h2 B
set wealth wealth + Wealth-inherited-up ] ] $ p! X5 [' n2 Y: [" H: \& |
! P; R0 k7 P7 o3 \! l
end9 O$ P( D' u8 y( y
to set-initial-turtle-vars-wealth* u( m& @9 }5 C9 A$ f. y
let max-wealth max [wealth] of turtles
2 l* @4 ]4 \" k set age 0
; E' d# Y& O4 T W" V4 a face one-of neighbors4 ! S8 N$ f" |2 U3 Q, |# o$ P
set life-expectancy life-expectancy-min +
' n2 H H4 E! ~1 X& F random life-expectancy-max
0 y2 Z* B1 s [" h0 [0 ] set metabolism 1 + random metabolism-up8 J3 o" d" }; S8 V6 t9 u
set wealth metabolism + random 30
5 j1 {' m7 E2 ~1 M0 N" j set vision 1 + random max-vision
' k, s% d- Y! J9 J- Aend
8 @" O- J: H/ } nto redistribution
6 A* r6 s; i" Q9 l! W! c: Zlet max-wealth max [wealth] of turtles
# ]% J# r+ R) ^; A+ ?6 [let min-wealth min [wealth] of turtles
$ X: b; d% d$ Y* @ A. L! nif (wealth <= max-wealth / 3)
7 `. k% N" W* \* z [set wealth wealth + Low-income-protection ]
+ \7 v% L+ B8 P+ X Lend: }5 {+ v: }8 q/ s( Q6 ~
4 J S) l6 i& B4 r; Uto recolor-turtles7 q, C. w. n# l# [: O' u
let max-wealth max [wealth] of turtles
. Q3 w+ C) `. n! d- i j& O6 ]% X6 z) h ask turtles
; f& O' F. B$ r8 r0 Q# A [ ifelse (wealth <= max-wealth / 3)
1 ]8 k! p7 s5 k# [/ p' t# T [ set color red ]- h( ^2 q- w0 W( ?8 \# X6 C
[ ifelse (wealth <= (max-wealth * 2 / 3))
7 z1 B4 S$ Y3 r7 \ [ set color yellow ]8 j5 s- S! e- E8 f" v
[ set color green ] ] ], w. v- O' E: y2 k- m- a) [. m! Z
ask turtles [ifelse show-wealth?6 j" d; ]/ I: p. C0 Z( j
[ set label wealth ]% n! f) k v$ o" L8 I, _
[ set label "" ]]1 g; D" ~5 w9 f
end# l% S& } ]) B" B5 \8 D; ^
7 I( |. M3 V/ Fto go! x3 a; K( U7 o; E( Y
ask turtles
! l3 b4 O3 k. j/ m! d# C [ turn-towards-grain ]
& z0 R5 m$ k, L! p4 ]5 D ^. W5 v harvest
+ r; j* F& L# K5 J! X2 { ask turtles3 p) c2 X$ A* W1 u" {$ w6 r* S
[ move-eat-age-die ]# p: ^2 F, k6 `
recolor-turtles
; d( c& V8 c R! q if ticks mod grain-growth-interval = 0& J4 ^& J; {9 Q _# p# ^
[ ask patches [ grow-grain ] ]
) V% Z, a w2 `+ u
8 f( W1 Y" S9 V" [! w if ticks mod 11 = 0
% t. [7 Y) i* u' F [ask turtles
" \. h/ r3 F5 N( I [ redistribution ]]
6 i3 Z" S4 D# d1 x( l4 v if ticks mod 5 = 03 V* z8 [/ q. `0 D ]7 L7 X
[ask turtles
0 u4 Y* b8 ~) V* k+ m [ visions ]]/ `# \: J) }; Q8 W
tick
7 N+ V# V' K" |" @ N0 v \ update-plots2 j5 V# Y$ w1 P1 j, R
end
- }1 p# [4 M, Fto visions
, B* r* c) z) d# z set vision vision + 1
/ P0 D4 Y, T* H7 @0 J% z1 cend/ c+ y# {) V8 g% W8 g
0 r1 S S. Q) \9 E& `6 ^- U
+ S6 z& N) C) w: `* a+ H0 R+ r# X1 X
/ W: j: }0 H" ~/ u
to turn-towards-grain
/ p+ c' h# c5 N2 n set heading 05 ?2 Y( p9 A8 D5 g; s
let best-direction 0
, C" U! O( n1 a) C0 v( d let best-amount grain-ahead
& O9 ^1 o0 n) b# i7 m set heading 90/ U6 P& B7 S: w5 m3 L8 r9 E! v
if (grain-ahead > best-amount)8 b: C* n- c, a) D
[ set best-direction 909 Z I% `2 o8 h
set best-amount grain-ahead ] h2 [3 N; F. m
set heading 180
7 B6 {) g/ T t, f if (grain-ahead > best-amount)
" @3 V0 g' D4 {1 X0 ^) a) N [ set best-direction 180: z+ F( ?, K) a! E7 @+ O V
set best-amount grain-ahead ]
# Y0 t" W: M* z1 ~5 k. k& m9 }) @ set heading 270' B; \; h* v2 B) I/ f
if (grain-ahead > best-amount)
6 G+ Y) V! C% u8 K' h) ?4 p [ set best-direction 2708 v" w; @7 I) V) g; ^- ]3 C
set best-amount grain-ahead ]
, @* C3 g% @& c0 W' m0 A set heading best-direction/ [1 _' \/ V( C/ B6 y s9 v, x- G
end4 i8 ?8 G& `( I2 E5 C
/ Y( h1 K& s; z% R
; x" o: J" q! H- }$ nto-report grain-ahead ! t! r9 H7 n$ P
let total 0
5 U! O# [& r# Y let how-far 1
5 d& s1 W4 H" I' J( r% l3 t# j Q6 X repeat vision5 T# ]7 O2 @3 i: Y, o( \! S
[ set total total + [grain-here] of patch-ahead how-far. c0 }! `/ l6 _3 L
set how-far how-far + 1 ]
" ^) g( N6 O0 F0 u/ |2 K report total
" K1 U2 E! G& O; { J7 {$ }% s% H9 Gend
( ?. Y9 o& ]' _' @7 E/ a
5 z& v) a0 I, b y% a& x4 xto grow-grain
7 {5 `3 L) M- p if (grain-here < max-grain-here)
- U/ N8 b! c+ D8 T8 _ [ set grain-here grain-here + num-grain-grown+ v8 H/ [ S. n# z( u
if (grain-here > max-grain-here)
3 {5 t& F2 D, m8 c; L! ] [ set grain-here max-grain-here ]
, e/ `- ?0 y) s8 q' b recolor-patch ]
& \8 ]' }$ a+ N7 N. o9 [/ [end
7 E. L; }4 f0 B8 E9 P8 Tto harvest7 h" I, |; `* {' C% G
ask turtles
n2 y* x G6 S) M [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]( a/ D$ l7 h0 e: b% c3 @7 P% ^
ask turtles
4 I5 G4 I ^: J2 S# G# H3 p* V' q4 L [ set grain-here 0
% }" W- H3 H: t& K: @) k* }( u recolor-patch ]
X5 e! W/ {2 @+ a2 p: [: \$ r % }$ Y: }( f, P6 [: c
end# _ S9 I1 a( z' J$ Y# \
. P" P! g" X9 }. J# B/ D
to move-eat-age-die
' ~: m, ~4 p+ B6 W, m0 o" Y$ n9 L fd 1
4 g$ w! m& p5 }; S1 o) m$ g set wealth (wealth - metabolism)
6 l7 G& z* V6 b9 Q set age (age + 1)
; E5 x$ Q4 M# a6 ?- {* Q b4 [9 W8 h if (age >= life-expectancy)
4 o7 c" g. G5 Y5 b [ set-initial-turtle-vars-age ]+ E! p( x: x% @! H3 G
if (wealth < 0) `4 |4 \- K9 v+ G
[ set-initial-turtle-vars-wealth ]
( B& `! f* D# G! X
- Q3 v" y! P0 W% K: m" bend
# u7 u6 L7 @% a& F8 p% }' E I* k5 _
/ r Y7 \3 M: e* R0 sto setup-plots
+ W2 R2 I7 I6 E: q/ w# ]- n set-current-plot "Class Plot") A* J5 u3 d- l8 }
set-plot-y-range 0 num-people
& h; i) J4 j: b5 b4 a+ u# w7 k set-current-plot "Class Histogram"6 Y+ U" o# O9 V" l
set-plot-y-range 0 num-people0 u9 M: ]4 Z; e) J6 ]
end
& D2 u" D( J8 S
( T" w+ \7 w, j Uto update-plots
6 [) u9 `8 l6 S: Q! u update-class-plot, q- Z) K, P: n" _! x0 `
update-class-histogram
. E* ] C& |. d: v$ m( _, f update-lorenz-and-gini-plots
/ f& j; W# l" b+ S* r1 R6 g" xend
9 u/ D; M) Y m: t' ?# u8 e T5 |# k3 Y3 o
to update-class-plot: F# h- J# g; f0 S% Z
set-current-plot "Class Plot"
- Y j2 S( c% J7 o/ F D) @2 @ set-current-plot-pen "low"
; i; n+ F; N( J plot count turtles with [color = red]/ f4 R1 I% g' ^* F
set-current-plot-pen "mid"# Z: F2 `6 x: a3 _
plot count turtles with [color = yellow]6 _+ `3 P7 o+ Z+ H5 Y+ v! [
set-current-plot-pen "up"4 i/ L3 l$ F# X" e% X
plot count turtles with [color = green]/ \( D: i$ R) s+ _
end" r8 C+ G3 e/ D' v3 `) g
2 S- ^6 ~3 x: l+ V7 e& Z
to update-class-histogram
7 j% k/ R1 \- {: ] set-current-plot "Class Histogram"
( n+ J: G, n, F5 G plot-pen-reset3 s+ h9 g' h/ F' l- K; P9 }
set-plot-pen-color red! x3 x+ \5 H" b0 A8 T# h
plot count turtles with [color = red]
% Y `. w- Z4 `' W' W set-plot-pen-color yellow6 G3 y( q+ C! l5 d/ J1 q
plot count turtles with [color = yellow]
1 r* M' m( O i2 e' y set-plot-pen-color green4 p9 e7 S* ^6 O0 x% [' Z" }4 J
plot count turtles with [color = green]
/ `0 o+ v8 H& j4 x# Q. _end
! B a1 I: W1 _5 H) ^$ D- Wto update-lorenz-and-gini-plots" H9 e+ v# Y8 a/ E+ c7 n2 Z I
set-current-plot "Lorenz Curve"
$ Q& |1 p A' N# e: p) M7 ^$ l clear-plot1 w' R6 b; a9 r& I! \: @8 \
& i2 A- _. ~6 [, v9 I) r. `
set-current-plot-pen "equal"* u+ D0 ^$ t4 Q% p0 |- t; s, G8 X2 X" w+ c( P
plot 0/ Y& M2 ~8 p' x3 D) Y
plot 1004 j, } X0 J5 A3 d8 X- W4 ~
q" ], n4 k2 M8 N; v5 k
set-current-plot-pen "lorenz"& a$ s3 q" ^% X$ c" T0 H( o0 S, _
set-plot-pen-interval 100 / num-people* `: b o6 J) h8 u% ?
plot 0" ^! j" L5 a# @- q" \8 \6 `
4 [/ X) n' e) [ let sorted-wealths sort [wealth] of turtles* X. [* w+ q. G- [8 O/ }1 h
let total-wealth sum sorted-wealths% L* H3 a: [: n" E- s. L
let wealth-sum-so-far 0
$ T5 J& K3 ^% `- i2 ^* w) n1 A let index 0
# t5 k- B; g) ?# P2 Q2 A let gini-index-reserve 0& m- Y: M0 p; D
Q; `. d5 I3 ]; E+ f repeat num-people [" ?- F+ X. m3 F) u. a7 N: C
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)6 W- n" t2 e$ W3 O
plot (wealth-sum-so-far / total-wealth) * 100' }" i p& j# S9 ~4 `- {6 O
set index (index + 1)
' Q* m5 b0 |" y3 Z+ p# n set gini-index-reserve3 i& g0 _ l5 s3 c8 S. I& f: E9 p
gini-index-reserve +' a6 H3 T0 S9 R$ M- a: p
(index / num-people) -, j8 T# ]* i7 Y- c; A. t
(wealth-sum-so-far / total-wealth)
$ Q% n# A, L/ K) F6 t. M! K2 m- t ]
: V# o8 D4 Q i. l. e! [+ m+ s" c3 i8 r5 ^/ n
set-current-plot "Gini-Index v. Time"
# v! w, G$ i a( u- V plot (gini-index-reserve / num-people) / area-of-equality-triangle
( z6 _$ F, g; ?+ b0 Fend2 L4 ?7 p' c7 t' \3 C7 x v
to-report area-of-equality-triangle" N+ k" V+ |' T2 K# c7 {1 j# ^6 J
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
3 ]. h ~5 l: X$ X/ Cend |