请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
" l) R* Y' v% m8 e! w% bglobals
4 Z9 @$ ^9 t! h7 j8 K9 X* y8 t3 B[& Q i& `, s: |6 |( L
max-grain
7 C- N& A1 }$ ~9 t% R
% ]$ S' g; x& [& Z4 H9 C]" o P; z6 X4 k. Z* x3 i
9 ] N4 q3 h: v# a) w
patches-own6 S' E& T% L2 o/ Q
[
. _7 l- z- n- c: _) ^) | W4 G grain-here
, s7 `7 Y( a e0 b max-grain-here 7 M: c1 K! w: T" j; A4 F8 u, N% }
]" t. L! s2 y+ d0 f" o8 |) _1 V3 @& }
! S+ C% d& g4 H' q# z hturtles-own
/ Q( m( m3 }9 [. C5 }# a+ e' N$ p[
+ o2 J' a' q" ]) z age # B& e" L, K, L- ^
wealth
4 u& s) s( B, {- |" O life-expectancy
) O+ Q! T/ V9 n6 r' O metabolism ; r( g. @+ `: U* C# m
vision
& g# T; b1 G7 ~$ Z inherited ) J8 y& y& o/ o2 W( O6 s7 I6 a- O
]
9 H0 w _! `) `; y- k5 ]1 O2 y' ]5 _! _8 Y
+ D' V( t; k7 _/ ? f+ X# l3 A
to setup
6 h( W; p3 n, c @5 d ca W3 x- I! a& Q6 Z( n$ z8 c- t$ j
set max-grain 50
) L% E1 F' s T* L5 x setup-patches1 {' P$ k# f8 _
setup-turtles" k. {# R$ G" Z. l; M0 d3 b
setup-plots
' m+ \$ r: B6 C* l1 m update-plots0 h2 k( D$ n! Q0 A: m, `
end
$ \# }, [% C) q" \8 sto setup-patches8 Q3 t0 J+ ^+ ^6 o
ask patches; E! r& L r c' F. k8 Y
[ set max-grain-here 0
/ x/ _3 {5 o* Q7 R3 | if (random-float 100.0) <= percent-best-land
- q" J2 ~ f5 M9 B o' n4 Y; e [ set max-grain-here max-grain& j p0 a% t3 Q @4 s
set grain-here max-grain-here ] ]
: v/ s; T5 N( `8 _3 W$ D repeat 5. n6 e8 x' v4 w# r* w7 x5 T @
[ ask patches with [max-grain-here != 0]& q7 J0 q' M$ b& S9 |9 C8 u' _
[ set grain-here max-grain-here ]
) Q- {8 O `+ O& \* c" y; s9 j1 q diffuse grain-here 0.5 ]3 |7 Z, j) I6 ?& E) C! E
repeat 10
; b$ P: }) t1 D4 @5 }3 _ [ diffuse grain-here 0.5] 9 u; R' r7 w: [, @2 S I! ?
ask patches
7 u4 }' v* z) }' _: u [ set grain-here floor grain-here
! Y. B: d9 w! Y set max-grain-here grain-here
/ f- u' i0 V, u' z, t3 w! n+ x4 R5 P recolor-patch ]
+ v- u# S: {* b) d2 hend
! X! a3 h# O$ k8 \+ U5 sto recolor-patch
5 E( ?2 c% d) f) ^ set pcolor scale-color sky grain-here 0 max-grain) G6 w. s: L5 E8 U* w: N+ E
end; E& e( b& I) J- Z8 ]
to setup-turtles4 o1 W1 C" `& h4 z+ r: r( x
set-default-shape turtles "person"! [7 u/ ?# P3 f
crt num-people
- d4 M# f. Y }# D1 f5 y [ move-to one-of patches
P3 e% _; _" P7 _: |0 N set size 1.5
# a( e6 h' ~% n, I, n! I set-initial-turtle-vars-age
: {6 ^! \6 D+ n- N4 l set-initial-turtle-vars-wealth
1 X) j% B+ I' J! \ set age random life-expectancy ]2 e1 y' k1 v& {9 X2 j
recolor-turtles
8 {5 S5 e- |; N% V9 O3 ~end8 B! F0 b* T' r$ f* b# z# y
; {4 J/ \ `3 U+ v: t+ Zto set-initial-turtle-vars-age5 G, ~- ~" T% M' D# D
let max-wealth max [wealth] of turtles
2 h% B( X# I1 I% Y6 u
. V2 H8 J# Q- h- p/ w) a ifelse (wealth <= max-wealth / 3)
: G5 J! [3 S2 r [ set color red
6 q: ?2 z" @+ s0 k5 m: w6 S/ ^ set age 0
0 h$ C7 ]! \- ?! W2 ? face one-of neighbors4 + l2 E" k }% y, ~% X6 T
set life-expectancy life-expectancy-min +% S9 x$ Y$ Z+ i) \
random life-expectancy-max $ M' J( Y+ D' |7 d- O" c% ^8 ?
set metabolism random 1 + metabolism-low
* n6 R" O+ M7 b set wealth metabolism + random 30& Y1 j: h1 w& M' L5 ~ [3 G- n
set vision 1 + random max-vision q7 G! b1 B- K5 Z$ n
set wealth wealth + Wealth-inherited-low ]
# L8 a# V* Y: v4 F5 v) {8 y [ ifelse (wealth <= (max-wealth * 2 / 3))" b4 Q& M# a6 K1 o
[ set color yellow
; U D8 d! [9 \ set age 0
( k- p1 K" j5 q* F1 U2 S face one-of neighbors4 * m( e; X& A& \% o4 h
set life-expectancy life-expectancy-min +$ m* M6 M# _4 ]+ j7 Q0 Q* n
random life-expectancy-max + 1
! ]7 i0 b- [* y# C set metabolism 1 + random metabolism-mid3 @# x6 ]' f- F# r3 a5 ?
set wealth metabolism + random 30
% y' W% B7 k* O0 L set vision 3 + random max-vision
4 @9 O; f6 A/ A8 q' n; e set wealth wealth + Wealth-inherited-mid]/ o3 g! j- r: g8 Q
[ set color green
. K: v7 Y) s! H7 F) z0 B set age 0
6 N! n4 B- M- l2 _! T/ J" H face one-of neighbors4 8 g }* F0 T: j7 y$ u( B( }
set life-expectancy life-expectancy-min +# e- S. s. x' a1 u" K k( X
random life-expectancy-max + 27 ^1 W) t& W$ g) J# e
set metabolism 2 + random metabolism-up
, V9 p5 D9 e' }* C set wealth metabolism + random 30
& a: T1 F- I, Z set vision 3 + random max-vision
, J: o: d" x* b/ ?9 T; H set wealth wealth + Wealth-inherited-up ] ] % E# }' e8 h- q0 H' g8 u
; K2 g4 Z5 |1 Y
end+ x2 d& S6 m/ y8 u) A+ u
to set-initial-turtle-vars-wealth! i& y* ^- p: K& H* n
let max-wealth max [wealth] of turtles
: Q" M% x6 R g& D# B# Z5 w set age 0
- N; p; L6 f7 O face one-of neighbors4
) o! L# `1 }7 w9 K6 F3 } set life-expectancy life-expectancy-min +3 T& `" G1 E! j+ J/ D
random life-expectancy-max
1 f8 \, J+ k* j7 L/ H; |. U set metabolism 1 + random metabolism-up
4 i. @( y, ~0 W8 J% D5 n& o set wealth metabolism + random 30
0 W3 ~: v' B$ n a& P; q0 g ~ set vision 1 + random max-vision / Z3 u# n7 q3 J6 ^( k# A5 |
end
& K" B- D1 j6 I+ {5 Lto redistribution
. s. b, ]; |% W9 ulet max-wealth max [wealth] of turtles
5 z% w& K/ O5 ?# I0 Nlet min-wealth min [wealth] of turtles& P& O) i, j+ S. B4 X. o7 B
if (wealth <= max-wealth / 3)$ e h) m. O& o) e& R% J$ [, Z }8 D
[set wealth wealth + Low-income-protection ]
! X- f" {( S( V( C g/ Zend! j- t: g3 o' g3 X& p; t- r
o: R# K8 P' S8 q
to recolor-turtles
6 x! Y% j4 b5 o3 k+ _3 T let max-wealth max [wealth] of turtles
; D1 I! F# h! i7 A ask turtles7 H1 w7 _1 m3 j' I' ~+ s8 e- V! a1 ^
[ ifelse (wealth <= max-wealth / 3)
4 R6 @+ T6 E& ^. k9 @' K1 @/ Z0 M% M G [ set color red ]! y5 G4 {9 l+ V/ b5 e. X3 q
[ ifelse (wealth <= (max-wealth * 2 / 3))) w1 i. j0 I5 X% y
[ set color yellow ]
1 t) E1 `' g( I. B. O [ set color green ] ] ]9 @+ O) r4 j6 d
ask turtles [ifelse show-wealth?1 Z! Z6 k+ `- E! {& t+ h
[ set label wealth ]
# K S4 J7 x, _( r, X; J9 | [ set label "" ]]
+ o; C+ T m8 Y8 {1 _! {7 A" `end" p2 ]0 L2 O1 E3 M
$ g0 P# z2 Q- l# U, c# l U4 Q# L
to go
' q3 z& c% |2 u7 R( I" k ask turtles
" d4 }) F0 Z9 z3 n5 \7 H# c+ B [ turn-towards-grain ] , p1 z" S9 d8 G$ v( }
harvest8 l' C k, b7 c* ?8 G8 q# y
ask turtles3 p& r- Y' k: [
[ move-eat-age-die ]1 [" d# b# b4 h$ [$ B/ e
recolor-turtles7 i2 f9 _: L5 N0 A
if ticks mod grain-growth-interval = 0
' e( u: t6 J/ H& Q [ ask patches [ grow-grain ] ]
& {4 `$ I8 N2 ]6 `. O' P+ z0 F
- P$ w4 t0 i% W, T* w: B o0 m if ticks mod 11 = 04 `' O! ?4 S5 j L0 }$ D2 {2 @, [
[ask turtles, c/ j; u* b) _' O3 K9 ?& Z
[ redistribution ]]! p' V/ B! {8 R& b$ l
if ticks mod 5 = 0! {- |. f, [ r1 Y$ q+ K
[ask turtles# ?) H6 O( {% {8 r) T2 r$ ]
[ visions ]]
* \0 w7 Q5 K6 Z% b tick' P0 Q5 _! I: s5 }) g
update-plots
- g' I. n& _' W% }1 D; T) mend
6 Z! c) y) D N+ c* dto visions
/ [6 F6 P( L( ^8 `- n* ` set vision vision + 1 5 I0 n3 L/ D0 E% F* w
end
6 t% a5 E+ N$ ?! o: k9 `
& X, ?; l* v4 m$ }8 n4 p1 ~7 w* Y) g) K: j
3 j: r! F( w7 v1 |to turn-towards-grain 3 n6 D0 X6 H' z9 B$ Z$ C
set heading 0: H2 o5 N: {, z3 a X$ B# |' S
let best-direction 0
7 P! L7 Z* G# g j$ g1 s; C1 w let best-amount grain-ahead7 m$ ]0 J% Q: p% U% F
set heading 90' p5 o2 q3 }. Y* @+ o. T% R1 Q
if (grain-ahead > best-amount)
% c/ k, r& c6 j [ set best-direction 90
! H$ M0 ]; C2 N* H set best-amount grain-ahead ]
/ s5 R" r1 D* j set heading 180
) n$ u( T% y9 W2 k# P, p8 n if (grain-ahead > best-amount)
5 t$ e; K) o) h0 Z) R! _ [ set best-direction 180
, [- k& i/ ]- d+ K4 k1 E set best-amount grain-ahead ]7 ^7 X! d: _1 D% S$ O9 F: u# k }
set heading 270
! q4 L( x% D0 P3 K& A if (grain-ahead > best-amount)
* U+ v) Y. B# R: }7 @1 v A% W5 I [ set best-direction 270
3 H# V2 |' h! k' A# w set best-amount grain-ahead ]0 o: i& y4 \( N
set heading best-direction9 `6 [( E$ k- f+ @6 U L
end
8 ?# D3 J: a) e: ~8 d' z W U
+ S& I% m. y0 W, G" Z$ i b
5 b! X U) f* ~to-report grain-ahead 4 o8 p- Q) T D- A8 o/ s) M
let total 0
9 g9 P" _2 {% a, {2 b) a- t let how-far 1
5 i) r# ]9 P$ q- i repeat vision
$ A; w2 P O$ ] [ set total total + [grain-here] of patch-ahead how-far
) ] B2 U" K, b# |3 o, ~ set how-far how-far + 1 ]
, p1 X/ ?9 A( y8 _, Z* ^7 X report total/ \& U8 Z# T8 _1 l9 m
end% C1 r: \& u$ x$ @9 j5 Y
+ Y- l9 `& `' Y3 ], ato grow-grain , g/ E t8 S$ C
if (grain-here < max-grain-here). D( X2 C! }& ^0 J: ~+ E- ?/ K* N( o
[ set grain-here grain-here + num-grain-grown
. ~( ]9 Q) I9 O& J( e if (grain-here > max-grain-here) & f7 P2 x$ n- _2 ?: ]0 h( A' D
[ set grain-here max-grain-here ]) d! H' P4 Y g' d. f
recolor-patch ]
6 A t" K( d$ P; j# O% f' v( d; Kend
9 Y5 X. F2 u- S. Zto harvest
+ W( r+ v6 e& }$ D4 a" m/ X) \: K6 O0 j ask turtles' L0 J, s% W' `
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
. {; P; q1 @9 }+ ? ask turtles# }6 @ M$ R# P# x9 z; J
[ set grain-here 08 B/ u. x" \: E) f& V3 i, _$ }
recolor-patch ]
# S4 {1 ]( z6 u% }3 X& a8 Y " s& W9 t4 O- r9 r7 A* U: j
end8 o& e. f6 M' x, B' r4 S" M
3 r0 e7 Y) A" i' {to move-eat-age-die
1 a2 f$ {) k1 Z& B5 ^- H fd 1
7 o4 a2 b2 a% N0 I5 E set wealth (wealth - metabolism)
. u: w" r7 A8 g/ D9 ] set age (age + 1)
: c5 X, @7 z" |! H if (age >= life-expectancy)8 L3 s5 _3 x L3 c+ c
[ set-initial-turtle-vars-age ]! W- ^2 d+ l5 d" } t$ _
if (wealth < 0)
0 _$ F0 O; E( z* L [ set-initial-turtle-vars-wealth ]8 k( {5 G5 m q3 n! {
+ p$ w* Z \* I2 z5 kend8 E/ Z0 @5 u1 `# e: k: `* i- D
, M$ p: ~$ R6 {8 O1 R7 g3 S. {4 A
; w. L; N5 ?$ h6 O7 C+ Jto setup-plots- N% e8 U; _9 Q T/ t& E% d
set-current-plot "Class Plot"0 v$ Z; g( R$ i: |8 c/ m9 c# k" e7 V' I
set-plot-y-range 0 num-people% F+ v/ A% V5 o( ?# _
set-current-plot "Class Histogram"
V1 |' c7 d4 |* k& X) ] set-plot-y-range 0 num-people! y4 [, x" {& m: j
end- ^$ S6 c U* ^# {9 Q1 a2 P
+ S4 |0 W) e! O% ]% B4 W) b
to update-plots
! c+ D, x0 E& {% G }$ L+ x; a) j5 r update-class-plot
3 H, Q+ h& U7 O/ _' w update-class-histogram
, r6 i* O; c9 y: ~5 ]& A; V update-lorenz-and-gini-plots& [) [6 _8 K- }6 E
end/ K9 T" D0 Z5 f6 c! K6 S. W
$ r8 l/ [. v5 e+ ^- X, t: t
to update-class-plot
. Q2 ~7 p+ Y, U, z, y set-current-plot "Class Plot"% @/ N2 s: [ i, ^6 o# ~. S
set-current-plot-pen "low"0 a% P1 ?8 z7 s, m
plot count turtles with [color = red]
) x4 l: X% q, h; U7 B# T set-current-plot-pen "mid"! f6 @8 M2 o* o" h- K/ n( p9 Z
plot count turtles with [color = yellow]- E& Z0 }% |* e, q9 D, X! y
set-current-plot-pen "up"0 a& Q `0 P" h ?
plot count turtles with [color = green]
0 A+ \0 P8 j. u& x9 G7 Send0 o* n+ O9 A0 b" @
1 E6 w# ^" _2 }1 }
to update-class-histogram3 B" } @+ {" X9 n+ ]/ g" ]
set-current-plot "Class Histogram"
* x% p: G; f6 U) G9 O plot-pen-reset" m' F* K: L/ ]$ \ }9 J' B
set-plot-pen-color red
* B+ {2 I% y8 e1 ] plot count turtles with [color = red]
; ]1 x* t) |: J# D( K( c' v( } n set-plot-pen-color yellow) \! c, O$ r F( t0 j0 D# G; {! I
plot count turtles with [color = yellow]
! b% G# H, _0 ^& f. t6 a Y& S- j set-plot-pen-color green
0 Q' d- A: B# j plot count turtles with [color = green]
: y' F: t7 |! y6 l& d" @9 gend( v; R9 _! ?" u& w
to update-lorenz-and-gini-plots
% t- W. o# V+ N- w: g6 S3 ^ set-current-plot "Lorenz Curve"( E9 j, t# P* u N* I7 o
clear-plot
6 z3 s. e- w9 ^# p. i
4 ^7 q: z( N- J& d# I set-current-plot-pen "equal"
9 ^# m' J$ g/ l plot 0- T" p6 j( V) }1 M3 O
plot 100
7 I7 L3 c8 }/ {5 a8 M
" d/ T) e5 |9 @) V/ X) H) _ set-current-plot-pen "lorenz"
: Y) K, x, }: w$ L" h. N set-plot-pen-interval 100 / num-people5 q, X' G7 v% F+ L
plot 0
% ]' Q2 _4 _3 }" C7 n3 t( ?5 Q" \( m3 N/ [) i
let sorted-wealths sort [wealth] of turtles
& }2 h6 N: S( a! h8 _3 Q6 ? let total-wealth sum sorted-wealths
! r% x* d9 U% p' K+ g let wealth-sum-so-far 0
0 {9 F `! h7 k: r' d let index 0
$ ]1 q; n" _- W9 @6 g' Y. K let gini-index-reserve 09 h- @5 P" Z( s9 G
3 P! V0 [) e* U, ~ repeat num-people [
* T) w/ t" y# M set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
! ^. A9 @ n8 h+ U: d plot (wealth-sum-so-far / total-wealth) * 100! B9 O& ^6 y! [! W& b
set index (index + 1)
) i( m& [, `7 n$ p9 K! A set gini-index-reserve, t* w% ]0 D! s1 _! T1 M; e# M4 o6 q* J
gini-index-reserve +
$ |5 `" S3 U5 ^4 t (index / num-people) -4 V- L8 t: G U# U5 W, I+ n
(wealth-sum-so-far / total-wealth)2 K' \% y7 w7 q9 U0 h+ `
]! Q. i* ~% Z+ r
3 V+ H1 O+ I; D6 }
set-current-plot "Gini-Index v. Time"* r6 A( O# X& `8 a
plot (gini-index-reserve / num-people) / area-of-equality-triangle
^, g' R6 k* c Mend* M6 K: Z7 }! |2 }5 ^& r7 c8 A: |1 L
to-report area-of-equality-triangle( ?, y) t1 }# j
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
o6 @# I' ~/ z7 O0 K, Z2 dend |