请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
( v" x: X. z/ ~7 gglobals
, d' J7 H, H7 z; @[
5 X! H' L3 ]; b# y2 J max-grain ' W& Y" M$ i* k* c6 Z- E' ?
* v- K- H" H% s+ c2 u
]% W" h* k1 l8 ?/ b( d- g; ~2 A8 b) [
3 E; T! _( R4 O
patches-own
/ o; \* J" r F) k& V3 A[7 n6 d; T% r8 Y* a
grain-here . g/ r9 \# A/ c' e/ f% g
max-grain-here # D7 U9 k# m1 F2 a3 z
]9 d' L/ Z/ c% J5 @# O
$ p: V- _% Q" w# X8 Yturtles-own
/ r; I4 K7 {7 l% h+ ?* f[: L4 y3 d4 j' A Y9 t
age
8 W5 p8 e0 \- n7 H2 ] wealth
8 N+ A7 G1 o2 o. j life-expectancy
% c, H2 ?1 p7 D- |1 }- Q metabolism 6 Q5 \( {; W# J. Z" ?
vision; q0 U! G6 p# l7 @ h6 w/ O2 e- {. b: Q
inherited 4 U% r- J) g# ^
]/ M4 y- `+ }# }$ [! n) t2 e. F3 G
( ?/ p9 x7 Z9 ~+ v: A! B3 d
* V' b6 v7 I5 m" U$ fto setup
9 C7 |; K7 m1 k ca
1 H5 ` }! ]8 H) e! Q set max-grain 50
( {0 c/ [) A/ h setup-patches
" A* u! A( U5 y" P/ H8 J setup-turtles( p' }! y9 }" D' E# S
setup-plots
! @9 j, w: W5 n! g# `) y0 ~ update-plots
! o0 X- ^1 F( D; |end
7 `" ]/ z v$ m1 Mto setup-patches
8 W1 n6 {! v9 Q6 x' @# S. ? ask patches7 }: F$ ]* m: S" X
[ set max-grain-here 0& D4 |. x$ w" f! L3 T9 @& K
if (random-float 100.0) <= percent-best-land% N; o, F7 {: [& N8 Y6 F1 V
[ set max-grain-here max-grain
9 ]0 b4 P( C% o- [- i5 u( ~/ U set grain-here max-grain-here ] ]
; m/ o8 V% A( d& N repeat 5; p! I7 W* e$ H% ~" c! Y5 a3 J% ^" ]
[ ask patches with [max-grain-here != 0]
, n+ ]+ Q1 R6 l [ set grain-here max-grain-here ]
: c& L+ Y9 P! ?3 p3 n" G3 f diffuse grain-here 0.5 ]1 F' a; s5 x4 @- j3 A$ N5 H: J" d
repeat 10
' F6 n, o' g* y9 y" ]8 F- j1 L [ diffuse grain-here 0.5] 2 N6 z. n# @- v& a% e
ask patches. f+ E4 s7 {0 t& K8 I
[ set grain-here floor grain-here & L0 d) R' C2 ?- r [. h/ O
set max-grain-here grain-here
& b8 \, P: e( `2 g7 c recolor-patch ]; L$ Z6 G! ?& U/ S
end# a P2 j# j7 y! G
to recolor-patch
8 C, |. Y0 Z0 q1 E2 }( o; W6 e set pcolor scale-color sky grain-here 0 max-grain
1 t3 l- `8 Y% j$ w/ Bend
n' ~6 O2 P# Nto setup-turtles7 R; _+ R& b; q" G
set-default-shape turtles "person"
9 P! s- ]$ ^/ `1 e6 S" b) w crt num-people
# M- t `5 h4 V- Y; F! \- X [ move-to one-of patches ' v* F3 W6 J7 |3 `
set size 1.5
2 N1 x& p% h2 o) X" f set-initial-turtle-vars-age2 S0 u* J" ~) X, b& q n
set-initial-turtle-vars-wealth) g& e& d8 u3 Y+ V% a4 ]$ G
set age random life-expectancy ]" Z& h. U# O) P% S) z9 ?
recolor-turtles
: f8 M) `3 z M# }. E5 `end' ~ k( Z) O Z& O
0 W7 b) y& x+ y6 ?! Fto set-initial-turtle-vars-age' u4 E* i U. N3 ~6 O" q, |3 a
let max-wealth max [wealth] of turtles: A1 u7 _3 d6 e. W
! Q1 h6 l* b5 {# u; g) M8 z8 R! w
ifelse (wealth <= max-wealth / 3)0 J, g$ Q. O" N Q I# ~
[ set color red
' H3 p& {9 H: m& _- R3 ]! |* K set age 0
( L! ]' m8 s+ c* J! U face one-of neighbors4
, }, F9 w p& X: e: u. P# r set life-expectancy life-expectancy-min +
" p1 ~) [# T5 m4 l& E2 x- Z! \ random life-expectancy-max 5 Y/ @* u- V" ], T! ^
set metabolism random 1 + metabolism-low: }% J& i9 J+ L8 x
set wealth metabolism + random 30& M7 w/ R2 x0 G9 ~6 B* s
set vision 1 + random max-vision
0 Z( r O/ @7 w* c; X4 y* f set wealth wealth + Wealth-inherited-low ]6 V* X) N0 k4 |$ z# ]+ a q4 x
[ ifelse (wealth <= (max-wealth * 2 / 3))
1 h3 I1 d" n4 j5 I [ set color yellow % z& V. ]. X0 T* L: d7 X
set age 0
) P% T% n4 N4 s: \& d face one-of neighbors4 $ A8 [% L; }4 J+ y* |
set life-expectancy life-expectancy-min +
V% S' _% B; }3 a0 z) F$ G random life-expectancy-max + 1
# i) _8 V g2 e& N set metabolism 1 + random metabolism-mid
8 c4 Z3 } V" M set wealth metabolism + random 305 D* _0 d* H( W% b
set vision 3 + random max-vision
: ^1 q5 |# d! x q' n- L- K set wealth wealth + Wealth-inherited-mid]
, _1 E/ d5 ~; a. q% s [ set color green + [) ~& H4 p0 _" j4 t
set age 0
9 H$ f, L- A1 S: m" p9 h face one-of neighbors4 " J- g9 r% }- X1 t. ^ ~' l
set life-expectancy life-expectancy-min +
5 k( Y( F9 m: P- e& [1 g+ A( P, [, l random life-expectancy-max + 2
' p* b6 B& i( p+ z3 t. r( r% ^ set metabolism 2 + random metabolism-up
& Q, v) M6 Z2 \$ r' i/ ]: e$ | set wealth metabolism + random 30& F* q* O: t1 l1 C4 a2 g
set vision 3 + random max-vision. {4 R* y" N: [1 J- B
set wealth wealth + Wealth-inherited-up ] ]
5 g, r5 Z9 s6 m$ R. ?& a8 F& |4 k8 q
. g" s) d6 O6 l* ?end2 M2 V* [' h$ z' {% g* R7 S7 L) E, }
to set-initial-turtle-vars-wealth
, ~2 H9 U, t0 ?% c4 L/ S' ^ let max-wealth max [wealth] of turtles# r$ Q( K! ]) u: Y' Z
set age 0
8 N9 x/ t! E* q+ \8 m& d face one-of neighbors4 # c, c5 p# R5 S6 w5 |; B
set life-expectancy life-expectancy-min +
! e; d( [0 C- T! G random life-expectancy-max
7 i# Z0 |+ P3 W j- A* k set metabolism 1 + random metabolism-up
6 O) f: i! }7 O# u- V' @ set wealth metabolism + random 30
# N3 \( Y5 v( f! T: c! O set vision 1 + random max-vision
( b% W- {# g: G* M& xend
: o& n; |: S$ [; W9 \' f' m5 lto redistribution
1 U, L' i: y% l; {let max-wealth max [wealth] of turtles
" M, t: Z0 f# u0 a ~2 t* qlet min-wealth min [wealth] of turtles1 P h5 v& h* n
if (wealth <= max-wealth / 3)9 p: D6 I9 d. c0 Z) I- V
[set wealth wealth + Low-income-protection ]
& Z* O7 y# b1 send
4 R3 k! o/ n7 a: p2 ^ " f7 P. Q! ]( D" @" I* [0 A7 ~
to recolor-turtles
0 |9 r& j* j0 W' _. L let max-wealth max [wealth] of turtles2 ]* R0 ]9 r- A0 r9 _1 Z- K
ask turtles$ C/ q1 f$ _# y) C
[ ifelse (wealth <= max-wealth / 3)6 p7 ?/ O! _+ L. J E
[ set color red ]
# G$ i" R4 u" z1 n& E [ ifelse (wealth <= (max-wealth * 2 / 3))' i% V4 Y3 D$ X- O
[ set color yellow ]' I1 Y8 I# W) D# e
[ set color green ] ] ]& W2 {5 v5 R* ^. u, A
ask turtles [ifelse show-wealth?2 r' u3 I, a/ n7 N( B/ E
[ set label wealth ]
! ?* I: j+ K9 k4 b' G [ set label "" ]]
% r7 w: N' l% Y. H- [8 \end
6 r" b' @0 c; `1 u- g9 m
) E; H2 d, I: j3 ~8 Q( w6 ito go6 [% _( S$ n$ i: K) a f! O
ask turtles
2 F" h' w4 U$ Y4 [$ O' Y7 X1 H [ turn-towards-grain ] 7 B% U8 c6 q8 |. T; x8 `0 L! b
harvest
# a: `+ \8 z1 ~( Y2 i; G! c ask turtles& F$ G1 v3 [; Z5 @6 A
[ move-eat-age-die ]
# S0 M P3 I, T! s recolor-turtles
x; C0 G# Q/ K4 g1 K0 | if ticks mod grain-growth-interval = 0
6 z2 k* N* {- G7 @3 s" V$ A# x* W* R [ ask patches [ grow-grain ] ]% t. }* l5 Y% E7 g, K" {8 m
9 K- J/ A0 l ]5 l1 y if ticks mod 11 = 0
2 [2 P* ~& E6 U S [ask turtles# h; H. H- z% W F: [0 z
[ redistribution ]]
& t: @+ s' c% ]% y7 s4 h if ticks mod 5 = 04 s! t+ l a- M: d5 Y: P
[ask turtles
. l" C$ Z( q O, R [ visions ]]2 e, @7 w5 |1 s* h9 x
tick4 {& D, q. h+ E; }
update-plots
+ v2 K' @0 y# w6 ~end
% }4 l; r% ~ i, c7 H# t- J6 \to visions& E, o4 q/ k1 q
set vision vision + 1 " q3 m' v; @$ D9 K, @3 e7 G
end
% F6 V, M }5 V; ^
; a2 V) l, w, l8 m3 W
# j6 r( k! G% y" K) j, e N* U& U: T" O- b. _, ]6 u1 J
to turn-towards-grain ! N& A# |7 Z2 W) A2 \
set heading 0
) X. Z1 a9 ^1 y7 t2 ^ Q let best-direction 0
) n8 t4 T& K) O6 G: n4 C) ` let best-amount grain-ahead" `' L9 Y# l& Y q
set heading 90' N0 S& D5 T& {' C& T O6 f
if (grain-ahead > best-amount)7 L/ k& m3 K0 p8 b; E
[ set best-direction 904 |, ?# O" j9 u& k/ P# }1 u0 |
set best-amount grain-ahead ]
" Z8 A1 I) L0 i4 r- ]5 W, i7 J set heading 180
; E1 c: r$ }" K if (grain-ahead > best-amount)' _0 y- `! C7 y+ K' W
[ set best-direction 180
& O% A7 I; E) I+ H$ l" q set best-amount grain-ahead ]; \2 D1 Z9 i3 F b
set heading 270' M5 q' k; ^) m( X0 U/ T5 [
if (grain-ahead > best-amount)
7 s$ U$ K) t- v6 b8 X# V$ X- L [ set best-direction 270" o) [1 l8 f" m8 c( a; J3 i
set best-amount grain-ahead ]& Y6 w9 R( o! e
set heading best-direction# W: H) F, H+ p$ x* n
end/ M, z ~, x# l( x& a) M
: D7 F5 w6 c( ]$ c
& m2 G- u+ f" d0 A1 l h' Z+ Y
to-report grain-ahead
: ~' G3 W( m1 x I* S' o let total 0' } d* s3 k$ n. q" K6 `+ w
let how-far 1# ?7 e0 c( B( m, r0 n7 g* h
repeat vision, [+ M I& c; f/ ^( C: Z* b r! `4 X
[ set total total + [grain-here] of patch-ahead how-far
Q+ Y2 a r# w# c: U0 Z1 o0 o set how-far how-far + 1 ]
( Y+ @5 C8 V' Y report total
0 A" D# G. ?) Z* l; L' wend
! @; \& W6 X* e! h3 g" l/ i6 ?) u- O
to grow-grain 8 k! B) Q; T( H) p6 p" N9 {4 i0 a, _
if (grain-here < max-grain-here)+ F+ s/ H' P3 t- [- |
[ set grain-here grain-here + num-grain-grown
4 J/ \( p0 p8 |/ w( n& u. u if (grain-here > max-grain-here) 0 g5 i8 a7 M0 q! s1 [" e
[ set grain-here max-grain-here ]6 l) o* W0 M( t( d! O
recolor-patch ]3 r" H, y- K! [1 m
end @7 Q6 L' e0 i# z- t8 \
to harvest0 y5 t6 W. o5 `0 I! }
ask turtles
' v! Z! K( `; V2 N& I( x3 B [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
& _1 Y% S/ N* W: b z$ { ask turtles/ d0 @5 Q9 m% ]& e) s; Q: @; x
[ set grain-here 0. T; o1 { F" F4 T6 G! W. ~
recolor-patch ]
, E% i& B- c, \& U. b( Q/ Y# J 9 @& ~: Z! t* x8 j- S; Y
end4 U" w L; u7 K, L) J% U! r; \$ X
0 L; i X6 X4 B5 k9 o( z- F
to move-eat-age-die
+ f' r% j2 q5 d n5 b, X& h fd 1! E& J$ m) P0 \0 G- `6 `6 W- x
set wealth (wealth - metabolism)& Y) k. V% o B* E" d: N
set age (age + 1)$ o1 Y" x) o4 a# k+ `; C( c7 a
if (age >= life-expectancy)
+ W! {* Q: s' Z4 w) B- `3 r$ v [ set-initial-turtle-vars-age ]
; \6 A0 p/ B$ s if (wealth < 0)1 c9 N) j( I; `7 L4 t
[ set-initial-turtle-vars-wealth ]/ P1 X( A6 ^# a9 s
/ C% z, w, A' L3 oend6 S, i/ X) X4 n& Z
( x4 q' m* F& F! I/ Q
l' `8 P3 x: Bto setup-plots
; [7 }% d5 @9 m( x" B' ?2 N set-current-plot "Class Plot"
0 Q; e' ^1 `- ~3 \4 Q: W set-plot-y-range 0 num-people" i* {7 D: D5 c
set-current-plot "Class Histogram"
0 a0 [5 i# P* n% q7 a- M set-plot-y-range 0 num-people; D( j. {: G& p0 b
end
1 p/ G: D+ r3 ?) Y" q- Y
7 n( c/ Q I+ ?: t3 gto update-plots' C3 O7 n. [6 `5 m" Y; b
update-class-plot- m0 K0 m8 n$ L7 Q+ ^8 d
update-class-histogram: Z& U4 f X4 u' T
update-lorenz-and-gini-plots5 K& A- X5 D% R
end
+ o9 ~% |" t& y B
0 W) J, s; Q5 k6 |" Q% O. ?8 X3 f# ato update-class-plot
6 J R% P# Z& G; ]; A0 H! t7 k2 I7 Y set-current-plot "Class Plot"# }* c* Y6 Q+ @$ X! x+ n4 M
set-current-plot-pen "low"
3 B4 P" Z! N5 P% p5 k8 W plot count turtles with [color = red]
9 e6 k, p Y C1 k* @ set-current-plot-pen "mid"
& x% W) L% _9 u% e2 ` plot count turtles with [color = yellow]3 J) ]# G% k. y# m ]' j# A
set-current-plot-pen "up"3 ?. c9 n D: A- B
plot count turtles with [color = green]
3 N% e$ B5 O. n( \end1 w$ w# ~' o! e- s! s
" z; s2 r$ G8 m" T* [6 F5 @* K
to update-class-histogram2 l3 {& ^& c* I0 B+ y" a) h
set-current-plot "Class Histogram"
. c% {+ U/ [+ Z) V9 Y- X, o7 e plot-pen-reset
9 S) a4 x- S; u) @ set-plot-pen-color red$ N: L3 G- ]- E0 t
plot count turtles with [color = red]
0 t/ p- f- d: U set-plot-pen-color yellow
+ a+ u8 K7 R5 L5 G3 Z plot count turtles with [color = yellow]0 I5 s* m4 K; b9 S
set-plot-pen-color green
9 E% w9 ~7 u* u! R+ w3 P' ~ plot count turtles with [color = green]
# o( r9 p4 V8 A3 J" nend& ^# t. `0 Z3 m: g2 D% A
to update-lorenz-and-gini-plots% |6 ~ e* O) U& S
set-current-plot "Lorenz Curve"
; ~- d. Z, g& H3 I, C4 O clear-plot' I g6 {1 b2 x# Y
& y6 X: s7 H+ n1 @# h9 o1 d set-current-plot-pen "equal"8 K4 \9 K0 r9 Z) ^4 f! W6 z% S
plot 0* l+ {7 Q( u( A! s1 \
plot 100+ u# _0 ~& Y! ?# Z& _
8 _( }/ v, j/ Z# l) R: c
set-current-plot-pen "lorenz"6 s" n7 x( m G6 H! T4 X* V
set-plot-pen-interval 100 / num-people
- N# u: f+ C) ^6 d( y9 @ plot 05 ~# h Q3 p# K9 Q
* S {/ S& u! l+ D, n& g# z let sorted-wealths sort [wealth] of turtles
2 s1 R. O$ Y2 H( H let total-wealth sum sorted-wealths" O* ?8 |* ]: Y7 H3 E
let wealth-sum-so-far 0
+ }, ]9 c% s+ y- u# T; Q4 Z# _ let index 0$ W+ ?1 o* j K; O/ w+ B) Z
let gini-index-reserve 0
5 ?2 S p5 Y/ {4 z- e5 A7 w
6 B1 B2 S7 T' ? repeat num-people [. a- y3 @+ I$ D! l" B; V5 G9 D
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
1 ~2 D* j8 _6 _; S3 k' e plot (wealth-sum-so-far / total-wealth) * 100! O( L+ b3 Q% N. ]# e/ D
set index (index + 1)5 t: D/ r; g! @
set gini-index-reserve2 i$ n) b+ |# B8 o" Q N ]2 V
gini-index-reserve +
; S6 V: z0 r; u N (index / num-people) -
^- L( S7 W# A! u1 {( v0 a7 X6 T (wealth-sum-so-far / total-wealth) R7 _2 H( B' ?& N' ?
]
, J( K. U9 ]% x! r
" I+ w' m, [0 ?" N set-current-plot "Gini-Index v. Time"
; k/ M0 t( R& w% m( X+ y plot (gini-index-reserve / num-people) / area-of-equality-triangle
% C! m" |, z( dend% S" B! I+ O! d. q" T1 g# O: H4 k4 U
to-report area-of-equality-triangle; ]% C% N2 }' `* f1 X3 V
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)) v" E: x6 _6 z4 x* {# i
end |