请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
* ?& M% i, x* G. u. h% \& c v* cglobals9 k9 s+ ]0 M. A9 B4 L2 o' _
[
7 h: I* e7 z/ n# o6 b max-grain / B. z7 u0 F9 s8 O
, d: B# X& _$ h ?
]$ ?; C" `! e3 e+ E( b$ G# C: ?
1 a2 Q( Y* g+ O) qpatches-own
& d/ i3 d# T6 ^+ h% q! E[2 r! k, a8 k0 T5 |( o
grain-here - `/ K2 R" T' u0 G( t
max-grain-here 7 ]1 f9 E% S- T6 F! C' L
]
) W( O9 L0 h6 Y: f; K+ W" k- S5 c( i/ S- D# {# b
turtles-own3 S) u8 s5 W, k5 O& L
[( \9 I% K$ P" F8 F6 C; w
age
/ Y: I% Z0 z9 F3 g6 m, S wealth ( O. \/ Y+ A5 T6 A* f
life-expectancy , L; }' n0 D8 h+ h1 f. c
metabolism - C& q: N& w( y5 Y8 }7 T
vision
: r' \) d. Q3 a: E# a5 s2 d inherited - I; h- m. x( V8 \1 e: v3 C. S* n, T
]6 `+ Q6 [$ B( ?2 z
9 d: s% c* b" D+ s+ L
8 j1 N) C' Z. I4 n! @' Fto setup( I, k8 G( h% S6 S+ I- D; o% r
ca
6 f1 X, K3 a+ S- }8 N, f set max-grain 50, R/ f7 |2 v0 T/ o4 A% t0 ^
setup-patches
' N6 A" _4 r) Z; v7 {/ ?7 i1 V setup-turtles& w1 o; v$ M% y" U! J1 j8 h
setup-plots
+ Q/ X' U4 E! P$ W( N' h update-plots, m2 J; j) l- I8 r2 f7 c: V6 x
end
4 d5 S( ^4 f1 E M/ a1 ]to setup-patches
/ u6 V! c& c% p ask patches+ ^$ d% s% H+ j
[ set max-grain-here 0# y" p+ H& h1 X8 k9 U
if (random-float 100.0) <= percent-best-land
5 |2 M8 Q: ^& g' N; t7 G3 w) d [ set max-grain-here max-grain _7 R* Y1 k6 _, j/ S
set grain-here max-grain-here ] ]* M) P N! p/ g6 [1 Z* Y2 y
repeat 57 \* j3 w, {) A0 f5 |% n
[ ask patches with [max-grain-here != 0]
2 x* e5 A1 g3 l* c, z# q [ set grain-here max-grain-here ]
9 b( C1 k. r* v" ~. O% y diffuse grain-here 0.5 ]6 ~3 F, _0 p$ ?: Y$ |
repeat 10 {0 K& i" c5 @
[ diffuse grain-here 0.5] % Y8 \$ h- a" G8 {* N1 {
ask patches
% Z7 w! ?" C2 Y1 m+ i) @, v4 k N [ set grain-here floor grain-here
6 l! J% x- M; b0 q' x2 A; w set max-grain-here grain-here 2 S3 @) [' v; q% r: r7 P; q
recolor-patch ]6 Y ^( }, o/ m3 y
end' }+ r% O5 C4 I( Q$ f8 r
to recolor-patch 7 c: G1 N6 g, v, Y0 L
set pcolor scale-color sky grain-here 0 max-grain+ X, l& w9 \, u
end& k9 O+ {; {" _2 Q8 C6 E
to setup-turtles
( o3 l! c3 i& C; ` set-default-shape turtles "person"; D/ x5 w8 H- B
crt num-people: B3 P" [" u4 }5 \9 M* p* g
[ move-to one-of patches
[7 J! G& b+ J. O set size 1.5
+ S4 X4 H" J! X8 \! @ set-initial-turtle-vars-age
1 h8 R9 d5 P0 P% F set-initial-turtle-vars-wealth2 X, [/ y' f0 [
set age random life-expectancy ]) ?! n9 n$ T) u! M) z. `2 X
recolor-turtles7 K0 @% ]+ M' v ~: t
end
) a7 Z6 m/ N" k) k( E: R9 @( h; @% p) ?+ }% o4 c
to set-initial-turtle-vars-age) d2 d0 [% ^! ~6 t) k1 R$ ~. i
let max-wealth max [wealth] of turtles, s% G. u f2 k) n- Y# l1 {
5 Z: J4 D! b/ G5 B$ L+ D ifelse (wealth <= max-wealth / 3)
8 B$ `4 w3 {+ G) o% j* B& d2 o, q [ set color red
+ U( y0 v. t( G4 [ set age 0
( I2 Q" l, B6 j- B1 t2 a face one-of neighbors4
! {+ ?, x8 g3 P/ H5 t: l set life-expectancy life-expectancy-min +
" @/ D2 s, t: _ random life-expectancy-max / V7 z3 V S( |0 A& Q
set metabolism random 1 + metabolism-low8 u4 T7 Z; \* L
set wealth metabolism + random 30
* I, y' H& M; h2 h* |8 t set vision 1 + random max-vision& e$ q5 W2 e+ p$ T; o9 L* ~
set wealth wealth + Wealth-inherited-low ]
! t- ^0 |! G0 V& \2 @1 T) z [ ifelse (wealth <= (max-wealth * 2 / 3))
8 t2 V' B5 C/ E [ set color yellow * d$ Y( D5 T. a( |) U2 x0 c) t" G
set age 0
1 v8 ]! a Y9 F0 l face one-of neighbors4
. J) y8 h1 [, w# D# P W. D set life-expectancy life-expectancy-min +
* N Z# a& r) H6 p random life-expectancy-max + 1
7 f- H/ H6 Q6 | set metabolism 1 + random metabolism-mid& Q" W1 S/ z q5 l% \9 S
set wealth metabolism + random 30
8 a6 ?4 {& n# A# ~- |4 X( \ set vision 3 + random max-vision
1 H$ s' e5 r( ?& _2 N, }( S0 D set wealth wealth + Wealth-inherited-mid]
& X$ v$ }6 Y/ @8 D [ set color green
- I2 u6 Q% W& P set age 0
1 k1 [# G- }6 j$ R6 f! l/ t8 w face one-of neighbors4
; F# a8 H& [0 l# X set life-expectancy life-expectancy-min +! f5 F( o: Z( ~& D) f# e/ t
random life-expectancy-max + 2
3 {# {4 N3 }/ W. B5 V8 K set metabolism 2 + random metabolism-up
8 p3 }) T# E6 m; X+ k' O set wealth metabolism + random 30
1 M0 I* b- R, v4 h8 Q5 N set vision 3 + random max-vision
8 X- O8 e* @! a, J# O1 B5 u& H set wealth wealth + Wealth-inherited-up ] ] % {6 I. D& y% r
2 }3 ?. Y9 z4 b/ L9 S
end- u0 F- k& c* i" c, [# y2 W
to set-initial-turtle-vars-wealth
7 w8 q/ @+ t' D1 i; K$ ^ let max-wealth max [wealth] of turtles1 |& N3 B3 ^7 p A
set age 0
1 q; }( q, |' l6 d5 O1 {& n& K0 x face one-of neighbors4
2 X( _ l5 I( H6 G, r6 c; R set life-expectancy life-expectancy-min +# x, E; `* `. e N+ p
random life-expectancy-max
( _. U) t# E) P$ G( m set metabolism 1 + random metabolism-up" s% I' ]$ Q N
set wealth metabolism + random 30
$ ]" @0 [; Q. | \2 J* r set vision 1 + random max-vision 0 u& D- v% n% U# P5 G4 `
end
5 ~6 C6 u) d$ ?0 fto redistribution
, @* n6 u1 T8 u$ Elet max-wealth max [wealth] of turtles
2 `% @; j) m! U8 ylet min-wealth min [wealth] of turtles0 [" V1 P! @) Y9 z0 M& e4 `
if (wealth <= max-wealth / 3)
) o0 r: u: H+ j6 R. B6 M [set wealth wealth + Low-income-protection ]/ A L; f( U0 t3 u, S! O+ ~
end" b( X' l% K# v# y8 @, E4 K# }
8 E2 t' r, y8 @7 X! fto recolor-turtles
" Y: s' C( s9 Z: |% [3 M let max-wealth max [wealth] of turtles G( v8 V! D2 h+ z
ask turtles3 S, T' M4 f; v( a7 a
[ ifelse (wealth <= max-wealth / 3)
6 ]8 W- E8 g* C8 ?6 `( Z [ set color red ]
% l O& ? O# l1 ^/ s% V: k7 c% ? [ ifelse (wealth <= (max-wealth * 2 / 3))
( G% Z% _' S$ Z& i6 y+ T/ `' Y [ set color yellow ]
" V5 `# h. R: `* X! X9 n/ [ [ set color green ] ] ]$ C9 p8 s" w$ L3 c) y4 m
ask turtles [ifelse show-wealth?
2 Y/ [ J6 f3 `2 f: t1 |5 b' A [ set label wealth ]. }: m2 `7 }+ V
[ set label "" ]]! _& m$ T, H; \3 _2 F" Z
end4 \4 B5 |. ~; G1 P3 t& f- s
U' |) H8 O: C! o3 D0 B3 a' Q, o
to go. x1 S' Y2 }* k' I% G
ask turtles
6 I/ f( f3 ]8 {) D' C, j9 Z- s [ turn-towards-grain ] % r0 j/ b) H$ y
harvest* k+ n3 j) i8 F" E
ask turtles
8 o9 \7 w6 r, @8 r [ move-eat-age-die ]
! K/ D! x) v* Z+ ~! v; j1 \ recolor-turtles
! @& E9 [" ]" h if ticks mod grain-growth-interval = 0+ `$ g. G7 x( y
[ ask patches [ grow-grain ] ]
4 n& S/ A, u, y. x9 z7 e* l, S
; {" s3 j$ v/ O: J, \) R) ~1 m if ticks mod 11 = 0# ^6 Z9 M3 k& S+ B! I# S7 E
[ask turtles: F2 a4 u A+ j# B. |& j
[ redistribution ]]# C$ t8 C4 {9 j6 ^- V4 C3 O c) J
if ticks mod 5 = 03 r4 y$ m9 l, Q) c6 [1 _! ^
[ask turtles6 l2 ^( a1 M8 f( G+ K6 P
[ visions ]]) E! [% t$ X7 h& a; k7 Q8 D
tick8 Y8 S5 e) \) @% I4 P6 M2 }) p
update-plots
% S- k. j% `+ i- l9 P1 hend
6 D# J0 j/ _! S" p" vto visions
- S* f. _9 i' k7 O3 i* M set vision vision + 1
& _) N3 v* w! @# p* R( ~3 \end6 N7 R5 a9 c) i2 q5 D e
# \4 ~( S- N# F: D+ P
3 W \9 [1 ~& Z
( a5 {' X" T1 F, uto turn-towards-grain
( o0 p. P5 a: c set heading 0
7 Y* W) V; m1 Y! v$ Q( M let best-direction 05 ?( a' b/ A8 o- ^% l
let best-amount grain-ahead
! t# U$ ?( C7 ?. s) H! ?, ^1 |7 h set heading 90' v, D/ ?4 \' t) C& Q" ^5 Y& ~/ f: L
if (grain-ahead > best-amount)) g9 U, W) ^8 ?" b! e4 c% x
[ set best-direction 90* }0 H# m# f# a8 N, S2 s
set best-amount grain-ahead ]0 l$ z( \0 \" O* `0 t
set heading 180
1 g/ d& V* ~" j. o if (grain-ahead > best-amount)6 G! n) K1 U, Y" t# ~" k) v
[ set best-direction 180
& O6 n1 w, m$ b3 m2 p set best-amount grain-ahead ]6 u- R& Z. Z$ P
set heading 270
6 l; \( D; r* t9 n if (grain-ahead > best-amount), k* C1 a. d# ~1 z
[ set best-direction 2700 r# ^ a5 I( B% ?# E5 m. j
set best-amount grain-ahead ]
0 D9 ]1 `+ B+ P6 f$ _- P set heading best-direction+ f" R( e# w8 G2 _
end8 f, R9 l- S4 X7 ^8 T2 m
+ |$ h6 V* X& y8 q# d8 d' l+ v/ O p: K4 ?+ B: w% Z
to-report grain-ahead - n$ V2 K( n; {& z" \' c
let total 07 n; d. X" n* ~. h' }3 }( ~- N) `% u
let how-far 1
; u! i8 P' ^5 O! z( d( P6 O repeat vision
$ |) q* T0 P& i+ g, z Q [ set total total + [grain-here] of patch-ahead how-far
# D) N" K3 b) a8 i1 }* W8 X set how-far how-far + 1 ]
9 T5 L0 X3 S- Q! F report total$ X1 x# X. ?$ H$ U& N
end
0 R) b* ` C- s! d8 ]. R% {0 J7 g G. L+ `
to grow-grain
) \0 w5 }' g& ^' m0 y5 K if (grain-here < max-grain-here); p2 R2 r. E' N0 K& z
[ set grain-here grain-here + num-grain-grown
3 a+ j8 E. X8 }+ a3 N3 Q7 V if (grain-here > max-grain-here)
* W& w7 d7 Z1 _& v+ G* B2 [, v [ set grain-here max-grain-here ]$ c9 R* Q$ i8 d% r" Z
recolor-patch ]
: u1 ~8 i/ m6 U) m, n9 e4 j) W! _end k4 b6 K: V2 `0 Y8 y3 b2 U
to harvest8 N- t6 t0 t: ]$ L+ s: E
ask turtles
, a" @* M: @: s, U [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
# K) T/ c4 d, u& g( K6 Y ask turtles
' h/ |) S( o* H/ f, k [ set grain-here 0" s! b: |/ N+ U, P- e V2 S7 e
recolor-patch ]
% r& V# M/ ?% b) E. J
b: |4 }# ]2 y$ V7 Zend3 G6 L1 O9 j" b4 f6 S
4 \/ \7 X1 R# L& P+ _ o) [4 Nto move-eat-age-die 9 R; i( v4 |% g' B
fd 1
9 W5 U% P- E/ [% q! B- v' I- r4 O set wealth (wealth - metabolism)
) \% S1 ^2 t- J. U8 P3 l& P9 } set age (age + 1)
, S! U6 M6 L, v5 { l if (age >= life-expectancy)' n# Y. n$ Q+ X1 R9 j) m) c) G
[ set-initial-turtle-vars-age ]
- l% G8 R D( x2 E5 k9 V! v if (wealth < 0)4 ? P. S/ Q) O X, z+ h% K
[ set-initial-turtle-vars-wealth ]
. d6 Y$ O/ H/ L' y- K5 x0 e
3 N6 U& e# W0 w- N6 G7 {end+ H1 w" _0 ^* _
6 o2 l; }- H4 z6 F
3 J: I0 d7 r: k8 S
to setup-plots9 L- p- g9 P1 I
set-current-plot "Class Plot"2 F* b! Z ], N8 s% V O
set-plot-y-range 0 num-people
$ q8 Q1 N, l* R8 \# i& b set-current-plot "Class Histogram"4 a5 f9 u, ?6 ]- g0 i$ F+ r
set-plot-y-range 0 num-people, L5 O7 D6 t) q
end+ x7 k, }2 z A% Q0 \, h# Z
4 \1 v* j# X* P# V" t
to update-plots# E. Y' _: T, ?0 A) v! s1 U
update-class-plot
; I( ^: G) o; w o update-class-histogram
1 y, O& Q$ M6 X8 ] update-lorenz-and-gini-plots
! p$ [/ h! U% q9 M+ `end- [4 i6 n) A9 n8 w
/ e. h) t/ G- y+ E1 _# ~to update-class-plot+ A, N: M+ }2 F6 o/ E T
set-current-plot "Class Plot"
: S( ?( I# D# p l( F. q set-current-plot-pen "low"7 A. R `( t+ Z2 d7 s
plot count turtles with [color = red], ]/ Z3 t1 h0 {
set-current-plot-pen "mid"
6 o7 W" n! O1 x& j; [ plot count turtles with [color = yellow]
, o& l% L ` p set-current-plot-pen "up"8 s( [0 h4 z7 H" t+ V" d3 [
plot count turtles with [color = green]
- S: @( }" p! a+ P! i7 y) W9 xend$ r: E3 S7 f+ ]0 i8 P% G1 U
: o3 [- r/ H8 l' dto update-class-histogram
: [& Y& _! l' d* b) j: ] set-current-plot "Class Histogram"
+ V0 E5 J% r6 r5 O1 N* O. i plot-pen-reset; J7 y: p, _0 Q0 k
set-plot-pen-color red) n, E$ I- Y( V8 k) i7 o5 E
plot count turtles with [color = red]4 `) K6 o6 n1 n! R& Z" e' X
set-plot-pen-color yellow
2 T2 x) {0 j$ A/ V2 B# L; L plot count turtles with [color = yellow]3 L# `9 [2 B: c/ L L$ n
set-plot-pen-color green) U F w3 `$ o3 o
plot count turtles with [color = green]+ ~' N! d. x4 B0 T2 F1 K7 g
end
6 e1 V: Y( k, J7 a% \to update-lorenz-and-gini-plots0 a: ~; d: ?+ O4 u; L# J
set-current-plot "Lorenz Curve"
1 Z! l$ Y3 G6 \7 W9 d7 } clear-plot
& b% ^" y/ K$ N% W v* O- S
' z: `& Y s6 C, ?( p$ W set-current-plot-pen "equal"6 z- Z7 H1 Y" ^" c% j2 ?
plot 0$ r: I! f, t( _" Y8 F$ {3 a7 M
plot 100! P) e' m% }. B" O
6 \2 J. ]( }! ^$ U
set-current-plot-pen "lorenz"
9 g# T" n W/ s set-plot-pen-interval 100 / num-people( B9 R" P8 T, Y6 u& i
plot 0
5 s: v, j4 S- z& q/ F4 I! N3 t
; I( ^4 y" N% | let sorted-wealths sort [wealth] of turtles
# |; H. x/ b# }! y( ^ let total-wealth sum sorted-wealths- l, k5 Y/ V1 y% M% x+ U0 C
let wealth-sum-so-far 02 Y3 y: h a4 ?4 f: F
let index 0+ O5 g; q! M6 `
let gini-index-reserve 03 Q% m- T/ a9 \& p) j
m( [" j, [. K repeat num-people [
( |2 Q. D G) y5 d5 A set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
- `% }% ?9 m, r$ N: T U; F) f) ^5 k plot (wealth-sum-so-far / total-wealth) * 100" q3 X! E J9 O: A; j7 q$ P7 V
set index (index + 1)
( A8 {) ~( n) C4 `- w set gini-index-reserve7 S% R# c0 C! D
gini-index-reserve +
2 {. S6 h( x$ b' u4 \ m (index / num-people) -4 \1 G) \+ q. T8 [2 c
(wealth-sum-so-far / total-wealth)* ]" O) Y, N p* b9 l: N0 w
]( m0 n' Q! U; D
) u t- [6 J3 d9 c3 y
set-current-plot "Gini-Index v. Time"! {& Q' [" o+ O3 ?
plot (gini-index-reserve / num-people) / area-of-equality-triangle5 [9 r" Z2 o5 e( ]! D. F8 p4 Q
end7 s6 o( J _) d
to-report area-of-equality-triangle2 u. F$ V. l8 P8 a$ W: a. w/ @+ ~5 ^
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)$ _) z4 ~. k& j0 I9 I; v+ K
end |