请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现1 L' S1 z% z, @& M2 {9 ~
globals: z6 Y$ g) B, t$ ]
[5 V* y. U3 ^4 j/ e$ d- M
max-grain
$ v1 K$ H. {$ W1 M$ G" q
7 i4 T4 g; W8 Z& {]7 `6 Y5 z7 n# O6 v9 `
$ @: M' M1 H, [4 X! kpatches-own
: @0 O# N' l6 c2 I[
+ c- m0 V& T8 ]* b, r$ Q grain-here
' ?( ~- G( ] ?) ~ max-grain-here $ z0 w9 P3 N8 s7 o; _2 J- Y
]: B9 c: U3 P$ S' q9 U
( k& D/ `0 [. H+ o( }4 T6 {turtles-own8 F( X" p0 P( c- e! n
[
' d; ~0 ?6 F2 F$ m @ age
8 f4 i# S1 S, k9 M1 K8 c wealth / ^, `; h* ~7 x3 t( x5 o
life-expectancy
0 N( G4 i2 i- x8 D" e2 Y metabolism
! l s8 r* Q L% n# O vision
8 n5 t1 K" i8 q8 d inherited
# ]0 f1 r3 D& z* k# L$ w3 {. D+ s k]2 f# f; {2 U: s+ s/ h0 |' w% ^
3 H7 y: p& l# N( s8 F
; G9 B/ \2 U% N3 |( zto setup: d9 H- [1 I7 ^8 H9 k% h6 g
ca
$ [, Q) R6 k, u/ Q set max-grain 50) n7 B% U) P% B) Y& u' W8 y
setup-patches
; H w3 c6 X) p0 j setup-turtles% A# i' x/ M0 N* a+ U
setup-plots
! g+ p5 ^# g) o- g; _# \) a( y update-plots1 v1 ?7 R0 p' ~- b
end
/ x# q; N! ~ ?1 K, kto setup-patches
1 M: m2 N3 W5 I; d% \- l ask patches8 }$ `9 J, |4 |- k }# q$ w, h
[ set max-grain-here 0. |+ i" H1 B8 F* L6 g% f7 ]
if (random-float 100.0) <= percent-best-land2 o! w9 E3 k8 q# F
[ set max-grain-here max-grain
* C( @, [ s! b* B; C set grain-here max-grain-here ] ]3 W; }: z' N! \ l5 N! ^4 Q6 N: |
repeat 5
1 R0 L; G4 V. W0 \' Z [ ask patches with [max-grain-here != 0]
* r+ ] O; S# k' L, J E; x) M; { [ set grain-here max-grain-here ]
4 r: |: W" w8 r9 |/ S' c! G diffuse grain-here 0.5 ]
- t2 H" Z# `9 O7 l' O( j' K9 i repeat 10, {' s0 D: I; O' M* o
[ diffuse grain-here 0.5]
1 v2 o: x4 ]* {" E9 F ask patches
: v% \+ R% R# q4 ]" x9 h; E b [ set grain-here floor grain-here
& B$ A/ o9 F f. L" W set max-grain-here grain-here 6 m' g# l2 @- ~8 `$ q0 Y: T
recolor-patch ]
$ h: N% U# F$ Uend: A, M8 z+ O9 u$ Y3 k
to recolor-patch
% y, X$ e: e y set pcolor scale-color sky grain-here 0 max-grain- F6 o% [' x! y* `+ P
end5 e2 D# _5 N7 B0 q
to setup-turtles5 u/ j, U- C7 ^" c+ j; q# T
set-default-shape turtles "person", A$ F$ c' ~- G: A8 L2 r
crt num-people
. L9 O1 C& ^0 Y+ W [ move-to one-of patches
5 f9 L* p% Q m' m% H set size 1.5 4 w8 C, D$ \, t4 d, G0 y
set-initial-turtle-vars-age
: O7 o! n$ y( \" n" P0 { set-initial-turtle-vars-wealth
A. j# r' [6 k* E1 ^2 V6 x+ u set age random life-expectancy ]
6 j) s* M* i9 o0 V) Y- e recolor-turtles
7 X+ ~# t5 v7 {' Z5 l; Kend, m7 i. G* f0 R% |& c% q) `
) z% {4 x" J6 K2 ?
to set-initial-turtle-vars-age! L0 _( y5 g8 a! e, Z7 p
let max-wealth max [wealth] of turtles
+ ?: B2 R, N: q! M4 c8 a9 ?. W6 ^ % i% F/ m# X u( R- X- L& b
ifelse (wealth <= max-wealth / 3); S( @- X5 z+ P
[ set color red & @( i9 T/ p/ D: Q @; u; z( g
set age 0
3 p8 g2 f3 F- Z5 s7 I% f5 S face one-of neighbors4
: t2 x( ]! `6 H set life-expectancy life-expectancy-min +
, e' T; m( h0 l random life-expectancy-max
, ~: c X* F- y w* r. o" { set metabolism random 1 + metabolism-low
4 O: U$ `6 D5 [ F. ?8 f set wealth metabolism + random 305 Y: r* e3 U/ T% M! N
set vision 1 + random max-vision0 B* y; d: D# I0 k7 `
set wealth wealth + Wealth-inherited-low ]
: Z2 r& L$ E! g [ ifelse (wealth <= (max-wealth * 2 / 3))( p, k/ J5 M1 x& s$ h
[ set color yellow ) ]( S0 W% l! r3 x6 [
set age 0
) ?' Z) N$ B! J e- P face one-of neighbors4 ( U5 v) t. N2 e: r6 |' `" @
set life-expectancy life-expectancy-min +5 n) E% R# I* f+ O- T
random life-expectancy-max + 1
9 c- T! w9 I5 d1 z set metabolism 1 + random metabolism-mid+ h" Q% X# C! g+ I
set wealth metabolism + random 30
: i( k% J) l0 k$ f5 F, a set vision 3 + random max-vision
" x) e2 z9 _: ^# [' c set wealth wealth + Wealth-inherited-mid]
0 S8 S/ l; Z$ `( p7 ]; ` [ set color green
' v5 J7 _1 u" x set age 0
; S6 b8 C: l# e+ n face one-of neighbors4 ' r6 f" [& {1 c! v
set life-expectancy life-expectancy-min +# [7 j4 S5 L) F) Y+ ]
random life-expectancy-max + 2
/ I7 a1 t: U' r2 o* i set metabolism 2 + random metabolism-up3 a1 u1 V1 x, j( O! t) g. x
set wealth metabolism + random 30' `2 S+ j& t7 b' a. O/ ]
set vision 3 + random max-vision7 q3 G. Q% I$ C; n% r- v
set wealth wealth + Wealth-inherited-up ] ] 5 i/ a0 m/ P) a: i- D; I$ T$ |
4 G2 j: T; _, M$ G K' m) u9 [- vend
/ v+ |2 I$ a& Uto set-initial-turtle-vars-wealth
0 @' {9 [% K% i; a2 O1 M let max-wealth max [wealth] of turtles4 F$ n1 q' _; H) ^5 X& ^
set age 0
2 q3 q: e/ O L; F G face one-of neighbors4
i3 I2 c2 N4 c4 G/ M, ^ set life-expectancy life-expectancy-min +
8 T) J4 w' [ o& k2 W$ w# g+ l random life-expectancy-max 5 D2 j5 |1 c9 j: h
set metabolism 1 + random metabolism-up
$ @& y4 ?; D0 u" b set wealth metabolism + random 30
! ~ S2 k: j$ H& M( n; |; ?/ F set vision 1 + random max-vision 5 o; p% f" @+ ~
end
! r K4 A& `$ |& v: U5 hto redistribution+ L0 J7 u5 Y1 c8 l4 ]
let max-wealth max [wealth] of turtles# ]! Z, i9 p" _, e
let min-wealth min [wealth] of turtles
3 R( R0 J G" `; Z& uif (wealth <= max-wealth / 3)- Z" t3 K D6 j
[set wealth wealth + Low-income-protection ]4 v: c" A$ D o) Q
end
3 }' y; }- a" U R: H o
5 N, H. M4 U5 B5 x6 v8 u) I7 Hto recolor-turtles
4 B; a+ a2 F: ?. z) L3 O6 G let max-wealth max [wealth] of turtles
; ]2 h0 f! o8 l ask turtles" Q0 R9 I( j" Q7 k: u+ M8 D, L% ]; G
[ ifelse (wealth <= max-wealth / 3). b2 |) h. k; S/ ?3 P
[ set color red ]
* a& n! w4 W3 N [ ifelse (wealth <= (max-wealth * 2 / 3))- ]2 n: [9 {+ \! R/ T! b
[ set color yellow ]% q- m S4 O( G# z' ^
[ set color green ] ] ]
4 l0 e4 }' z5 p( V ask turtles [ifelse show-wealth?& T- o. }4 R# @
[ set label wealth ]/ @( w4 Q! a$ F+ H# x I
[ set label "" ]]0 E9 D. w/ X6 f( L
end( |- @6 y+ p9 Y& z
8 s/ z/ A4 d: W5 C+ }
to go8 w7 E. L& W( E
ask turtles
- z7 _* Y+ s9 b8 T [ turn-towards-grain ] * U. P+ u2 s* D
harvest
3 H& U$ K1 E9 g, u- |9 U( Z ask turtles$ Z, p! f' y6 I, i( h
[ move-eat-age-die ]. K, K4 q# b: l) n* L6 Y
recolor-turtles
% T5 S- P/ m! _" p" {! [: y if ticks mod grain-growth-interval = 0+ C% [7 P6 t) ?$ G l0 u
[ ask patches [ grow-grain ] ]/ D6 b7 Z4 w8 g0 c) k2 s; E
/ ?5 x" |. F; g: O+ `" a# N8 d
if ticks mod 11 = 0( O/ C$ k2 p% V& y' j `5 S
[ask turtles
# J" X3 g/ j+ F1 o0 j- i' p [ redistribution ]]2 ?0 h$ k: n. ]& E
if ticks mod 5 = 0
. Y* ?$ {# C( \7 ^0 D' H [ask turtles
# r: @: D7 ^ T8 | [ visions ]]
4 j1 w( h# _3 k3 s+ o( A tick
3 m1 e, ?+ G- t ?! T; o update-plots: p( T; H8 ?* O* j
end% {6 s3 j' e% r; V2 `8 ]3 L; [
to visions! ^- I. w8 r: N8 X, X
set vision vision + 1
% D8 H6 i+ ~3 l1 a* u$ Rend
& K3 k1 t5 c3 E! b7 |. ~0 e6 q: i4 E' t& M
& W5 a. ^0 o/ {/ j# `/ j6 y3 W$ V' ]" F# m
to turn-towards-grain 7 z; e8 {& J. ]+ S
set heading 0% ]- u3 s+ N. s/ g# M
let best-direction 0. {, g& v! O8 g
let best-amount grain-ahead- h8 F9 d6 I3 x4 t
set heading 90
8 V- k- q# X6 e$ f; f6 }9 g; V* l if (grain-ahead > best-amount)
* L3 b5 O3 |, m8 n) O [ set best-direction 90
- g1 |: n9 ^; u set best-amount grain-ahead ]
4 l; X7 d' F0 |$ B7 q2 U( p/ p" w { set heading 180
$ V* H! u; ^0 O* C# s; _ if (grain-ahead > best-amount)( Z5 ^5 e5 i- y9 n5 p5 n
[ set best-direction 180
1 Y4 L: x* W6 b set best-amount grain-ahead ]
& ?4 f4 v( Z; J1 a3 g set heading 270
8 r) a6 g) c7 r7 W% w! I# ^ if (grain-ahead > best-amount)
2 `3 _# I, r+ g3 o- G/ A [ set best-direction 270
( ?$ l9 }# T& j* I# a set best-amount grain-ahead ]
- J! ~* o, e* b: T6 r: p5 _ set heading best-direction; A9 K1 m4 {+ s2 ~
end: p* e [$ p7 A; x$ f% I
, [+ {4 N8 g4 d8 S: Q) K
. Z1 R6 P+ J6 r* z- eto-report grain-ahead + _- q9 w$ a l, c
let total 03 _- S& F2 [/ a
let how-far 1
3 |' v1 z8 m' e o repeat vision4 A9 I5 `/ g: b' q! s* v8 f
[ set total total + [grain-here] of patch-ahead how-far+ T& l" p/ Y) m+ n; {: F
set how-far how-far + 1 ]
. c6 [+ U& U' \- V report total4 I; q/ W6 U' {2 E# j. o" X8 }
end+ U) y. {: W: b1 p
" ~ \; y# K) ?! F
to grow-grain + W& U: j2 q3 a* P2 J' M: ?
if (grain-here < max-grain-here)
9 e' o/ W t" g6 } ?* G" v [ set grain-here grain-here + num-grain-grown& |6 E8 P: F* y. \8 @
if (grain-here > max-grain-here)
- q) f5 v3 A/ w: a [ set grain-here max-grain-here ]+ ~8 i' M3 ^; j
recolor-patch ]
, E! {2 S4 c7 A6 R3 z# Iend+ ^: b. R$ u8 X
to harvest
( R5 i. j0 B& w8 ^ ask turtles* T9 j# q' a7 k6 Y8 V
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]/ t5 w, z: p: ~# ~3 t) \3 Q( G
ask turtles- A) C$ _ G- K8 v
[ set grain-here 07 S4 N$ r7 V( o2 k) _
recolor-patch ]
1 U5 L; l( w( e2 D
m$ M- ^+ u$ H, R; p/ V* s8 Zend% l; X$ k5 N# N2 a1 t& o
1 x' z& r8 F5 c2 L- A: ~to move-eat-age-die
, D* @1 \+ I( `; o8 t0 |; t0 p fd 1
$ x: g. |: i; M+ D$ I set wealth (wealth - metabolism)
" K1 f8 h) L& f" t/ H& G/ m set age (age + 1)7 v n" P! u6 E' d4 K& }" ?
if (age >= life-expectancy)
% _. r0 M$ B. P6 t8 w- M [ set-initial-turtle-vars-age ]
" @ \( m3 C. ^ if (wealth < 0)
% R+ N0 E6 I0 ?2 |4 A9 ?( O [ set-initial-turtle-vars-wealth ]; g- B* e4 F" O8 ?( W( x' T$ v
* I6 ^& i5 P6 @% D- M2 ~9 j- q! \end
\3 q3 }& i9 N7 y7 C4 {% E! f o" \% [& k
4 A# A, h2 @* Q" y0 A% P
to setup-plots- l& c# [9 d" a0 D' V, x3 i7 `
set-current-plot "Class Plot") i5 c6 Z r, l/ Q, d, o" f
set-plot-y-range 0 num-people
/ ?% w( b4 ?) _, C set-current-plot "Class Histogram"! |$ O( V, \3 }$ A
set-plot-y-range 0 num-people
$ n4 g V! J+ Jend' x9 J2 D, s0 Z* N' _/ w
4 N( w: | p1 }% k$ S# g
to update-plots3 j: Q5 g8 K7 J! p- P9 {4 c; Z
update-class-plot) S/ S* H. R' y/ ]# u
update-class-histogram: s! \" u5 |' |
update-lorenz-and-gini-plots
+ h6 O, T+ `# w5 P' \end" |; R7 w1 }6 J8 X% [: P! Z- g) f) Y
& d+ o) P+ Z- z# ]' b. g* Jto update-class-plot; d( S: ^& s, k" ^9 q
set-current-plot "Class Plot"
; T/ u. U: S% v$ h0 b set-current-plot-pen "low"2 ~5 @0 ~+ i/ k# f. p7 i
plot count turtles with [color = red]
! s! C; b$ X: u: f set-current-plot-pen "mid"
" C7 W! f+ e4 t# f, g8 N plot count turtles with [color = yellow]5 `% [# s% c; q @
set-current-plot-pen "up") w! E3 ^, n% i$ H4 n3 n$ k
plot count turtles with [color = green]' t5 ?# @; r: c+ H) J" O/ Z$ Z
end8 Y: O. v! Q8 q
9 X( q" ^' T: Y( C! b7 Q
to update-class-histogram: i9 {! X4 e c5 Z
set-current-plot "Class Histogram"
- B8 |: h5 ]. a* z- e5 O4 k; r) _ plot-pen-reset2 W' S$ ]! V0 @- z
set-plot-pen-color red
' h" @( j. K5 O1 g- J plot count turtles with [color = red]* S' u. Q7 P8 i
set-plot-pen-color yellow- a" e, f" Z* \
plot count turtles with [color = yellow]
: V+ c: g6 Q) a( n) U set-plot-pen-color green
: s4 I8 c2 `! v' X. A* T plot count turtles with [color = green]
( f0 e T4 ^; t' j$ Xend6 E0 Q- K6 G( [& t, T7 Q0 W
to update-lorenz-and-gini-plots
\, i7 H* ]# s* K2 f2 o. | set-current-plot "Lorenz Curve"9 e' b" p( n! U( H
clear-plot
( Y" n- ` ]* |2 u+ Z/ T" T+ u3 k. n8 }" g
set-current-plot-pen "equal"
. B7 f; `: J; z" n$ O plot 0 f; M4 i" k* k+ o
plot 100
6 x7 k/ o4 J( h/ G% w0 m
6 y. c! K" p! C% b) U& q set-current-plot-pen "lorenz"6 F1 H( T) e: W; _! k# o
set-plot-pen-interval 100 / num-people% c/ }6 B2 L& R. P9 ]' a$ m k% j
plot 0
3 L! ^! [, v6 V) L$ Z- T# S) O C! ]/ @) T( b! e7 j. H E; }
let sorted-wealths sort [wealth] of turtles
$ i2 M# N( b+ a# [0 B5 x let total-wealth sum sorted-wealths8 m) T8 |; ?6 k/ g7 G* R$ d# g
let wealth-sum-so-far 0( Z" ^: {' i9 y. W8 @
let index 0. @2 `) n( p, c$ R; @5 G
let gini-index-reserve 0
; C- w2 h2 `- L w# v7 l
6 \2 a' C0 H! V repeat num-people [
& D! _" V6 H! u1 s/ G: S set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)+ Y5 {: f) n3 _& A, o; c
plot (wealth-sum-so-far / total-wealth) * 100, C6 n- R3 _% ~* p$ w
set index (index + 1)- L# ]# d- a! z) ?2 f7 |3 ]
set gini-index-reserve) ]( ~ r4 `) f$ q/ p; l a8 U$ T# D
gini-index-reserve ++ b8 [6 Z# p- V" Y1 W3 Q3 {5 r- M# B
(index / num-people) -
, ^/ E% s6 k( x: ` (wealth-sum-so-far / total-wealth)
* V; G+ p+ d! }* x8 p0 s4 R ]
0 r+ z1 f8 B8 E* M* Q: N& c; r6 \ b
set-current-plot "Gini-Index v. Time"; p# l* t [# ^% z$ O. p: q
plot (gini-index-reserve / num-people) / area-of-equality-triangle1 V7 Q- y: O. Q1 }
end
* H% W" K2 o- I2 X+ Z, R& L Fto-report area-of-equality-triangle
\1 [' I0 ?2 e% i report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
$ O. T/ Z3 ^! O/ _ qend |