本帖最后由 GJM 于 2009-12-5 21:43 编辑 ' c2 ]1 j F' N$ O+ O) s0 I; `
3 `6 H" y$ d* T# `1 V# Z
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
: E2 V2 a. |8 j, k0 R" u j; ]8 G- S9 q
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
5 _. C7 T7 m* ?) B
0 y4 R3 d/ ~( A1 f: ~- U--------------------------------------------
$ Z; Q3 E' ?. \$ Mbegin P_something arriving$ g$ x& L) Z, X! }, I- Q
move into Q_wait
2 A& \/ S7 [0 q; c move into nextof(Q_mA,Q_mB,Q_mC)9 r8 z5 N/ V% p, v0 _ l7 n* P
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
; k1 u$ j; \; H" l V: i8 O2 Q# M( W send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
* B+ |3 g. t1 n) x send to die
0 ]9 Q7 d9 T; k. F' t S( C8 }* ?. _end
! o' c7 y5 D; q4 j; `, ~; X; q
, C r* E; Z9 m6 g6 y+ U4 V' q5 gbegin P_mA_down arriving( |& z9 u9 d1 X- A% J
while 1=1 do
( Q" z7 ^* A, ^0 r' _ begin
3 X: N9 U. a6 [ wait for e 110 min5 b: l; r! G; A; z( Q" {% S
take down R_mA+ J D) }8 f$ T: \
wait for e 5 min7 J6 J7 N: b [
bring up R_mA2 f( `6 y9 p1 P' ^* U8 j
end1 a# [+ m- {0 V2 s, E
end
0 o4 ?0 F+ y& q) e 6 L6 Q+ n/ X- b% ?: [$ s
begin P_mB_down arriving: s g+ k+ Q8 |. F! {# ]
while 1=1 do
9 u; V2 g: O# _4 X6 { begin0 q0 p' Z! y9 H6 v
wait for e 170 min
3 |' o- w( H: E( M T$ x take down R_mB
- e8 M' ~5 E4 x. \! @- W( ~ wait for e 10 min
# v0 Q5 v) P. \' ?$ Y, U bring up R_mB. P' p+ g, A2 ^& q5 ?$ a# x8 @4 S
end
* R {/ s: X9 q6 T" r Send2 [+ \7 n/ J/ P* D
* [9 a& G# E% i/ }& T0 R: {; e- Ybegin P_mC_down arriving& \, Q- K; v* N' S
while 1=1 do 6 P! x* |! q* J5 E$ J- z
begin
h& u/ G( X# F3 n( a# ^* S' | wait for e 230 min
+ ?# W3 T& o6 K4 R8 U( z6 ? take down R_mC, h) {1 J5 r# L7 g
wait for e 10 min
# e5 Q( J$ ` y6 q5 U bring up R_mC1 R; r( p' T6 F& d( J4 x. F
end, {' a9 ~% S4 v' [5 [+ v8 U8 k
end2 ^1 r( G! L; Q4 N8 i; g- ~
N2 [; x5 d E: r! @ p. A
begin P_mA_clean arriving/ t1 d3 Y4 E! X2 ~9 U7 S9 @! ^
while 1=1 do, n4 A6 {- Z$ N& X8 [
begin: I4 `- E- i* Q
wait for 90 min0 t6 d" k* A; W( e6 w
take down R_mA' r# G2 X+ W6 V
wait for 5 min
B2 i7 g: T" h+ J" J. m bring up R_mA2 Q2 p8 ^! ` a7 t" e6 `/ g
end
' f3 a( I( X3 Q; Q+ H" I; _end% }1 a m9 {+ K$ T+ O5 D
0 M- _0 Y1 z% x. x7 f* t& [( K
begin P_mB_clean arriving' Y2 j6 ^& L& [
while 1=1 do# F! x9 v+ y3 H
begin
0 l9 M. \& i( k wait for 90 min
2 A) A0 Q% Y. p* q& W8 l- W# ~ take down R_mB; ?, a( {. r* c* N
wait for 5 min
8 M2 }0 n0 K4 ~* P. H- A4 p bring up R_mB
8 v( |& s" @ x K9 ^! L q6 G/ {/ I end) b8 X- F" T! t& V' T7 g
end, @; @) w7 }* o! J3 l; u
! \9 b3 S* v0 k
begin P_mC_clean arriving
* [6 K$ G' l1 Y* r; s while 1=1 do
4 z* I, Y- L" _) n begin/ x: h' V g* Y. Y, K# R
wait for 90 min
9 ]$ y) b" t& E W- X, T! n* W' | take down R_mC
& q; Z; A- o6 ~1 y wait for 10 min# C X- t& F" s' d
bring up R_mC5 u6 g% @- V! P* ^9 F
end
* ?$ E9 O4 _+ u" `, s8 ^; y; s& Eend
% @( w( p, t% I2 @# X----------------------------------------
% m/ J# e3 Z! k6 i a
( k3 ~ v8 U0 Q! ^' VExercise 5.9
/ q: `" \7 M+ d; T* z5 Y W8 h0 @( y# K1 l1 P4 H( ?
2 a. s Q5 p! Q. n$ w4 z$ hCreate a new model to simulate the following system:! {. I5 i0 O z8 m- @: S
Loads are created with an interarrival time that is exponentially : U) U& B( L( |0 ^: c6 \
distributed with a mean of 20 minutes. Loads wait in an infinite-6 r* d+ y& i5 L0 S& O) I% R
capacity queue to be processed by one of three single-capacity,
* Z0 g( n1 f+ L. G+ ?' f. h8 Harrayed machines. Each machine has its own single-capacity queue
, o4 C* ]$ ?) }% Q9 N1 W: owhere loads are processed. Waiting loads move into one of the three 2 o# k2 }% n- P
queues in round-robin order. Each machine has a normally 9 e: K' @) @% O! n
distributed processing time with a mean of 48 minutes and a standard $ {& h5 R' e1 o( F: G. S
deviation of 5 minutes.8 a8 F% }, [0 w% K
The three machines were purchased at different times and have
8 _: u) _) W! G/ `7 tdifferent failure rates. The failure and repair times are exponentially
, k# C$ v$ ^; Z( p6 A$ Ndistributed with means as shown in the following table:
$ l! B" `7 H& s/ [; T5 W& gNote The solution for this assignment is required to complete ; o0 M- ^2 w: r6 o" F. X/ B
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ! C" }* p: r& C& H
your model.
! L: }" U- Z: w8 e6 ~
9 E" k6 Z0 Q4 N0 I1 u bMachineMean time to failMean time to repair
1 G* q u/ ~# D V# E4 z5 TA110 minutes 5 minutes
2 d& `0 V8 w8 {6 j& ], D' k7 n; p- tB 170 minutes 10 minutes
+ q; z' r5 c; p* n, yC230 minutes 10 minutes
' o9 n7 E1 ^6 x' h+ D. {, }
8 w" T1 O% E* I* c' y+ NThe machines also must be cleaned according to the following
5 R) O. |- ~$ _" F4 t2 R% [8 hschedule. All times are constant:
; Q1 t8 W. f# E8 [/ Z7 r1 [
' h' |" ]% d# |: pMachineTime between cleanings Time to clean. F. n9 w1 P) p3 Z* v8 v
A90 minutes 5 minutes
+ Z4 R# e$ K. _- ?- V9 BB 90 minutes 5 minutes
4 z% H& a# E" D1 _5 X% B6 N' a* UC90 minutes 10 minutes
" W0 y K+ F" B0 F5 t
' W7 i& _- D: ]. _ U0 UPlace the graphics for the queues and the resources.
+ [8 Z, O4 ?8 B# w7 lRun the simulation for 100 days. y2 b J" C0 P, i) S; U9 Q/ c; y
Define all failure and cleaning times using logic (rather than resource
2 O( \$ |; q% e) S7 X) U9 [6 Ycycles). Answer the following questions:
1 ]0 z! L% F7 B0 M) X! va.What was the average number of loads in the waiting queue?
5 i, X0 z/ v% P( \+ A; Ib.What were the current and average number of loads in Space?
1 m8 r4 f# U& b ]2 T4 j8 b8 hHow do you explain these values? 0 \2 a5 R$ V4 c
|