设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6211|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
+ \5 Y7 a$ l6 q3 h5 u9 P; Xglobals  y2 T% S( R) z9 w6 K  _3 t; j
[
$ g; n* Y* J( p$ o4 U6 X' u  max-grain    & z+ W4 W9 E6 p& }

% ?1 t: K* i3 ^5 L5 }8 I2 m/ t]3 j$ J# M* Q1 \" f# o( g
4 A# ?3 L* u! b& u9 o. v
patches-own
1 I/ w/ L/ Z3 [  }[
9 \* V5 w- e& k) o$ Z9 d  grain-here      
  u6 d+ @% }- \) Q6 p+ @4 h  max-grain-here  : k- e( E5 b$ g0 Y* |. Z
]
7 k! S& F4 E$ t- [3 T+ G6 W! }( w( o+ f, M* D2 K
turtles-own' d2 |5 _% g$ P2 E! e
[' M, X: [. _- J
  age              / {  ?; {; Z5 R- n, _( ~0 B0 g  t: E
  wealth         
0 ^9 z* W9 ]: H  life-expectancy  0 q1 Z2 c/ {( p! r0 |
  metabolism      
9 D; \! \3 c3 D$ Y3 \  vision
0 m$ ~% K% h) N! a) Y) y  e# N  inherited         
' g6 B; f, w3 x* m8 j]: e6 F" H" F9 K: ^

1 o  q, ^( k% `9 F' s$ S- v1 q; i" V
$ }0 P* ~3 @: K  ~to setup
0 x5 a+ f; H; u! T( ^' {  B7 m9 ~  ca/ E+ S! h+ S/ X" Z( H* \
  set max-grain 50% R8 B# S6 @* M  U
  setup-patches
- r! e" ^0 i: e$ ^4 J8 ~  setup-turtles0 E9 p/ k& J1 B! }" E
  setup-plots
& i2 z: L" w" m9 i  update-plots8 x9 z$ G4 r- P6 n0 U# g
end% Y' P  t# F9 k5 F
to setup-patches  }4 d5 R' |* E9 h: B
  ask patches
; Z9 I3 m" Y% _: @0 j    [ set max-grain-here 0* _1 c/ M) U4 i* @
      if (random-float 100.0) <= percent-best-land
$ [8 j* z+ Z  C3 q* L4 ^8 V- ]; A        [ set max-grain-here max-grain: @/ z9 _' n- ?  b. O& f3 j
          set grain-here max-grain-here ] ]
- t. Q, \3 N; [- k, C  repeat 51 S" {( a6 V# Y* y2 K, n, o
    [ ask patches with [max-grain-here != 0]
2 r6 s: S5 q' w6 S( {% b' c        [ set grain-here max-grain-here ]
. j: y) u% Q2 K7 b* y1 K' f% R      diffuse grain-here 0.5 ]% f1 ^" g: h6 E! w! P
  repeat 10
$ ~; Q. G: l4 l& x; ?8 }/ g* c2 C    [ diffuse grain-here 0.5]         
# v2 x/ ?) P5 ?. z8 O( m$ z* \  ask patches8 m1 x2 c4 H* }- Z! Z2 L+ R) q" X
    [ set grain-here floor grain-here   
1 p% T4 u, {" ]      set max-grain-here grain-here      ! s& \2 q; c5 w4 |* e
      recolor-patch ]0 E+ H6 p7 i, S9 y
end
8 P2 K0 i- i8 Q0 K) }to recolor-patch  
" C9 ^3 u- ]# K3 B3 q  set pcolor scale-color sky grain-here 0 max-grain
" i: o' p  x* j$ c% Cend
( T( A2 y. Q4 {- ]2 G8 {to setup-turtles
" |7 F7 ~. @" l8 y$ L3 U  set-default-shape turtles "person"
1 P$ e$ R4 v& w' E: G+ @: e  crt num-people
9 ]  `  M5 {% H1 v/ Y+ h    [ move-to one-of patches  / K- w' C0 l! a# K) v$ ~8 T  A
      set size 1.5  
2 b( N3 L  u- a      set-initial-turtle-vars-age
) ]/ Z& G# }' X      set-initial-turtle-vars-wealth
  M, w4 K) H  o: S6 c: A      set age random life-expectancy ]& v- M3 t: t8 I3 B/ I
  recolor-turtles% c/ D9 H: X+ f9 \
end
0 t! t/ I  [$ e; J1 L/ X1 S
7 h/ y7 |1 P# U. z$ S4 [9 N6 Wto set-initial-turtle-vars-age
0 L. \9 ]7 P0 k6 e8 n let max-wealth max [wealth] of turtles
9 m( {! `/ {6 V2 X/ h% a    ) i6 o7 h7 T' \
     ifelse (wealth <= max-wealth / 3)
+ u9 w* O- e- w0 X6 T% v0 G/ z        [ set color red 4 T" }/ G/ W( P  E) e3 h6 J
          set age 0
- Y! u, Z7 H- V9 f' ?1 x          face one-of neighbors4 / O1 @0 `& V! B# i
          set life-expectancy life-expectancy-min +
, Z7 c6 _& ~7 `                        random life-expectancy-max % W" l# d: D( Y6 Q  K- E  e8 y
          set metabolism random 1 + metabolism-low
, \0 b7 G, ?7 L' m% K+ g! d          set wealth metabolism + random 30% |. S/ g7 w# G7 D. F
          set vision 1 + random max-vision: B2 |( g5 S. R* ?
             set wealth  wealth +  Wealth-inherited-low ]
1 H6 R6 ]+ h- H! j2 v        [ ifelse (wealth <= (max-wealth * 2 / 3))5 r4 U6 z- S9 F7 C2 n' L) E
            [ set color yellow
3 u0 ]7 w; M( A( a5 K5 v              set age 0( v0 ^9 A% j6 G% Y% y
              face one-of neighbors4
  c1 a$ d# S: O. _0 v9 A+ Y8 A              set life-expectancy life-expectancy-min +/ l! o- [4 {) Y7 H) B, D( P
                        random life-expectancy-max + 1- {5 @& F# @. D+ v/ Y0 K1 h# m9 N
              set metabolism  1 + random metabolism-mid
# b' Z7 n. e) H' g+ {" f, K              set wealth metabolism + random 300 `9 ?  B! T% |, O0 u$ P7 R8 e
              set vision 3 + random max-vision1 N1 K& E, c8 |# v
                set wealth  wealth + Wealth-inherited-mid]* ?5 A  j1 D7 T/ v
            [ set color green & @: J/ m+ y3 c  K
              set age 0
. ]- I4 _$ X$ r$ U1 Q              face one-of neighbors4 7 d# U  v6 G% Q
              set life-expectancy life-expectancy-min +
6 N% i$ o1 I! m' O9 p: l                        random life-expectancy-max  + 2
. u4 x4 C& |2 ?2 q              set metabolism 2 + random metabolism-up
2 z2 f3 t+ {  p( O              set wealth metabolism + random 30
# S0 I" P- [2 d6 _. E              set vision 3 + random max-vision
7 o9 R, I4 y# y$ W/ i              set wealth  wealth + Wealth-inherited-up ] ]
* Z( D+ ]' ~7 X& x- H* L0 E
6 F/ r0 z- \6 I8 n! _1 Y' U6 hend4 X3 V1 U; K) Z2 m0 d
to set-initial-turtle-vars-wealth5 ~- J* w( D2 Y& W: `, C2 b
let max-wealth max [wealth] of turtles1 h8 q: i7 X0 e* i! q$ ~
          set age 0. V1 V1 u! F) v. B5 T
          face one-of neighbors4 7 i2 R4 V7 J  @, ^; N1 V
          set life-expectancy life-expectancy-min +
% u  C5 _5 }! l                        random life-expectancy-max 6 I1 ~& k2 ]% ?7 t1 \" ]2 x
          set metabolism 1 + random metabolism-up
# U0 o+ i' O! K4 x$ d          set wealth metabolism + random 30# p9 Y5 x( b5 k. |
          set vision 1 + random max-vision   P$ m( u" _0 H5 c
end; O) s- N5 ~- |8 y8 ?
to redistribution
+ e  K5 u6 T* g4 M( C/ Rlet max-wealth max [wealth] of turtles7 `8 d0 Y& t  l0 N, q
let min-wealth min [wealth] of turtles
% ^2 @' W; p! L9 h8 }if (wealth <= max-wealth / 3)6 H+ Q, I& r$ l8 r9 p" B
[set wealth  wealth + Low-income-protection ]$ y/ Q2 j8 w: f, ^
end! x" e# a: Z1 h, f6 L1 S
          5 _9 S4 o( x6 c% d' |( l
to recolor-turtles
6 H' ~- v: {  y3 [& G: T3 n' W+ E" b  let max-wealth max [wealth] of turtles8 w1 z! f  d# _0 V1 J5 I+ N, V
  ask turtles
  X5 F7 |1 \* y) ], R   [ ifelse (wealth <= max-wealth / 3)* _( f- A& e8 }7 @9 L5 W  c
        [ set color red ]* r. C* F4 p! s* I4 x
        [ ifelse (wealth <= (max-wealth * 2 / 3))* l2 _5 U2 g9 g( ^" T- M% P
            [ set color yellow ]
' F; g8 ]: v/ u% W8 t' `. Y            [ set color green ] ] ]
2 X6 C' |& M- B; ?/ B7 ^ ask turtles [ifelse show-wealth?
' k3 `* U5 b3 ^( d4 }! A    [ set label wealth ]
+ ]2 P& H% I( o- m    [ set label "" ]]% \1 o) M: T3 k: b+ W& s, M, A
end! ?9 k+ O" |2 F# {* Y7 }. b
1 e. g* {; r! l/ J; U
to go0 g  s/ O/ d' p$ r, V
  ask turtles- x4 b7 T# \& I
    [ turn-towards-grain ]  - e) w) X# h; n' e  X
  harvest: M4 v0 z0 e% L9 s% V% n: P9 E
  ask turtles" k# x! @9 t0 w- y+ z
    [ move-eat-age-die ]
! O5 q# b* a" N" i. i9 ~  recolor-turtles- _* q( r' @9 @. v7 ?# k/ @: P" [
  if ticks mod grain-growth-interval = 0
6 U$ `2 W* E: T/ J9 _# l) u: L6 g    [ ask patches [ grow-grain ] ]
/ \9 F' ^" t0 m  e2 g' k   $ h( H8 A5 g5 d; Z8 B- `
  if ticks mod 11 = 0  K+ j8 a( C) f7 c
  [ask turtles
$ `- D% ]( }1 J: Z$ v2 X5 W1 B/ V  [ redistribution ]]
0 S& T' ?( X" a0 L. h  if ticks mod 5 = 0
9 a7 p2 T0 }0 N   [ask turtles  ^0 p0 b6 k9 [0 K0 {  a
  [ visions ]]' h% y4 x" o9 ]6 l4 Y2 T& c8 ?
  tick# {/ C- t% K9 v2 d: x8 ?' R# \' _
  update-plots
' P# V5 s3 Y5 X! V& A) U7 w) h' Gend( v7 `* Y; D) |- z  i4 U. Z
to visions1 ^- A( n# O* N# j2 E4 G
set vision vision + 1 ) J9 H2 U) J% g) r' }" j
end) S0 Z6 \4 W+ W6 j6 j

# J  a% Z) N; [. w! R& V4 c7 d' E( ^0 J3 g- t

. V- F6 h/ [  r0 e4 ?to turn-towards-grain  + v& Y  q- X3 y9 ?  P% Z
  set heading 03 E9 s9 h! p; s
  let best-direction 0
* y" R1 |" S) b. n5 d# q2 u, E2 b  let best-amount grain-ahead
6 ]. b( b' i* s2 w' E8 P& s  set heading 90* K6 U. e9 O) }+ z  J1 i3 f
  if (grain-ahead > best-amount)
- k2 Y+ M! M" v; n+ z    [ set best-direction 90
6 ?2 N  \) Y7 E4 V      set best-amount grain-ahead ]
; Y( [$ S5 _  ]; [+ `# ?  set heading 1809 a  ]5 A' A6 e, t. i
  if (grain-ahead > best-amount)
$ ^' Q' E7 y! ^; X    [ set best-direction 180
8 q* B* O1 ?) [" B7 B$ D3 u      set best-amount grain-ahead ]
4 g1 i& W# L1 c3 w  set heading 270
4 r# Z  o/ S: }) c, U1 t; y  if (grain-ahead > best-amount)
. }  T0 k4 M4 |- F8 Z3 f    [ set best-direction 2705 b2 k% Z; }, _8 i4 U) q
      set best-amount grain-ahead ]6 d! o3 y& F" ~0 V6 w  A" ]( V$ B
  set heading best-direction
8 |% z7 R; }3 eend/ l3 E4 Y, G3 @& ]) u, W' ^

" O& f9 i) K# g& I" R2 K0 ^: @8 b. ^5 i  k* T, A
to-report grain-ahead  - M& W) q8 m& I4 D
  let total 0: R: C2 i" P. [# Z4 \
  let how-far 1
: I% J' U( g' j  repeat vision
6 {2 q, o' e' _2 X0 Z$ g. ]    [ set total total + [grain-here] of patch-ahead how-far
" O0 \) z6 [. X& a( Y2 S5 k      set how-far how-far + 1 ]
, N7 {: q+ c4 Q8 V$ F0 ^$ X2 D  report total) M  Y& a- X: j
end
1 P0 p: w9 Z6 i8 K  x% \  u9 N/ n: C6 w4 \2 g$ O. q" Y0 r* d
to grow-grain ) j5 A, [" [0 L; ^
  if (grain-here < max-grain-here)
8 U( @; b7 F7 K, P  H; R% O$ Q    [ set grain-here grain-here + num-grain-grown5 j" n0 c' D$ a- f( e! q( b
      if (grain-here > max-grain-here) ) e  c6 e7 T5 a
        [ set grain-here max-grain-here ]
$ a. t1 V$ K6 L1 c  P$ z) G3 [      recolor-patch ]
; z4 L: x0 W; k' Vend+ r) L5 t2 H1 J0 k5 a+ w
to harvest9 z3 l0 H" u; C( h
  ask turtles
! X  ?2 ~: _$ W7 k" L# s    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
# s- _( n5 \/ [* C  ask turtles$ c# G" b: [6 c$ {3 I
    [ set grain-here 0$ l6 Z$ s4 N8 ~4 S' c
      recolor-patch ]/ x" S8 @1 r( D' k+ P- h4 D
    a0 g! ~# F: c4 m  X& Y
end  k5 g) G+ d/ m2 O: \: J" q

* F) f( S3 [& I! A; g4 [# Kto move-eat-age-die  
: i- B! z% B8 P" h$ C8 }  fd 11 h7 p' Q+ \6 t4 e! t+ e
  set wealth (wealth - metabolism)) q5 J% H+ {4 ~3 M3 Y0 ]& h
    set age (age + 1)" C- ^* d/ t) a$ z5 L  J- @
  if (age >= life-expectancy)
/ ~% a1 S( G; E    [ set-initial-turtle-vars-age ]5 L$ @" Y- T; e1 s2 a
  if (wealth < 0)
, h1 B% O. w1 O6 F    [ set-initial-turtle-vars-wealth ]8 ?  g& c2 T( f3 R1 X+ D
   
- S+ b+ U4 l# |, X, wend
; c9 J3 K; w5 T% v0 U/ h: l# t, {+ Z. d, z3 G* |$ w: N

; Z; P/ I; F" F- Ato setup-plots
% j. n, b  j: E! m- E" s: |4 F6 G  set-current-plot "Class Plot"# t5 ~8 L: E7 h2 ^( e. x' \
  set-plot-y-range 0 num-people1 U9 e5 g6 \2 x& a! c$ A' Q
  set-current-plot "Class Histogram"
  b6 a0 }% D9 r  K) B  set-plot-y-range 0 num-people
4 X) T1 B, U8 v  d. h  }* L7 s0 ]end
# |2 A! {" F* _+ A) o; V
( t& N$ }8 z% e4 f" Y: J3 nto update-plots5 N, q  K* J1 M" {# ^) a  A
  update-class-plot2 _2 r8 K! _% z: h: h
  update-class-histogram0 y, G7 a) j9 ^
  update-lorenz-and-gini-plots) t: r9 u, o/ p! t6 \; w5 X, t
end
" Q# W5 Z: d! v  m+ s4 X1 G- F* Y  t0 G. J9 K) \
to update-class-plot  |9 `3 i, J- I# A
  set-current-plot "Class Plot", h/ F+ a& W, R( k& c
  set-current-plot-pen "low"" e7 l1 e0 v9 G# M, }
  plot count turtles with [color = red]5 u3 [, N( w' ?, q4 K
  set-current-plot-pen "mid"6 @3 h, [( S6 G! H" k8 V: G5 u
  plot count turtles with [color = yellow]
& Y, }: ^- @# p: D  O- Q  set-current-plot-pen "up"! G- f. w' O' P3 Y) U9 }6 F1 |; J
  plot count turtles with [color = green]
, `( _' U* d; }* j4 Y6 U$ s' `end' S2 q* L" g1 ~$ H7 j& g

% b# f# H' X$ D$ `2 bto update-class-histogram
8 t+ {" N( U9 u% z. N  set-current-plot "Class Histogram"
) n) k% q' I3 z/ R. \  plot-pen-reset
3 }) K& |' K* R* {6 z- l; I  set-plot-pen-color red" @$ N* h# m6 d. g# B
  plot count turtles with [color = red]$ \0 H" n1 Q% m
  set-plot-pen-color yellow
9 J' L3 Z. U( y0 ?) M+ u' C6 M/ Q8 Y  plot count turtles with [color = yellow]* t- m# H, k2 L) i
  set-plot-pen-color green
+ k2 m, i% s5 c9 B/ Q  plot count turtles with [color = green]
4 H+ [, Q4 g$ P5 J5 u% [- [end
7 L5 l) O) @; Pto update-lorenz-and-gini-plots' J3 A) V3 D0 D) b
  set-current-plot "Lorenz Curve"
( L9 c6 H% I: `! [  clear-plot
" C' k: k8 o1 F( W
# Q: }4 p+ w7 l/ N5 B) a& V( G  set-current-plot-pen "equal"
1 h) X# K1 g4 ]  plot 01 L9 P7 o4 a/ S/ O( ?5 `
  plot 1000 |3 A  W3 c- N+ h

' ?' j* j4 g# e6 l3 d7 T9 `- B3 ?  set-current-plot-pen "lorenz"
& p! y4 r' |) y) B5 r! X  set-plot-pen-interval 100 / num-people
4 Q; M% h* U- [% l9 z. R' j  plot 01 [8 ?* u$ d' M1 k

+ ~! J: |7 h3 u) q- Z4 e. U  let sorted-wealths sort [wealth] of turtles0 q% c4 c9 u. y+ k7 t7 s; _( q! P
  let total-wealth sum sorted-wealths
! P5 G2 [1 f, h, @  let wealth-sum-so-far 0
' G( ?: Z# E8 i2 J, Y! a4 f  let index 0( _# [1 U8 ]& k7 n
  let gini-index-reserve 0
8 `) H: x: V9 F" p$ {2 R. c3 c, l
% g" t" q' z7 d  repeat num-people [  o. u6 {7 W7 V* y' y
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)4 d6 R5 {9 s8 w9 U0 Y% {$ I
    plot (wealth-sum-so-far / total-wealth) * 100% ^& i$ V4 \+ r' W( F
    set index (index + 1)6 t( d6 K5 Y8 x; e
    set gini-index-reserve
% k1 z& R$ S' ~4 b" D# D- ]6 V      gini-index-reserve +
0 f: o) c1 R) ~) b: D$ y0 Y/ K! N# I      (index / num-people) -8 N0 Z* L! p) O0 }6 n- T$ Z& \: y4 J* \
      (wealth-sum-so-far / total-wealth)
- t4 H# m8 u, s/ h9 A- i0 `  ]$ L4 o$ ]; w* ~( }! p0 T7 z0 t
- G7 t, v8 }- c. K# F6 S* z1 M
  set-current-plot "Gini-Index v. Time"
& O* A# H0 z7 h  plot (gini-index-reserve / num-people) / area-of-equality-triangle% h+ T5 p1 c+ A6 @0 Z' y
end5 _0 p! n5 @3 k; Y
to-report area-of-equality-triangle
( c( `8 y/ D  R+ m5 G4 ?  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)# C; d7 t% I0 G# ^
end
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-6-30 10:29 , Processed in 0.014191 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表