本帖最后由 GJM 于 2009-12-5 21:43 编辑 ) P- Q5 _* D, ]
0 p6 I( ?9 o3 M0 P8 h& B底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
# s$ s( C" d; y V2 f" l9 X* M1 C2 P- W; N% V1 i
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
! w" N8 i# V/ ^3 l% d- N- `- r: X( d- |- w( }
--------------------------------------------
4 @' D, g( L' C9 xbegin P_something arriving7 z' d9 [2 U& M
move into Q_wait
6 {% |) F! m8 \9 L3 x move into nextof(Q_mA,Q_mB,Q_mC)9 B' q* T% R: q& t
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
/ m5 e& p) T( }' @$ J0 Z3 q send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean) h: d/ r. h. {: k9 B
send to die
( d4 w) U2 I; U) dend
. \ V6 X9 I2 j* d2 V/ _" U: p
! ~2 Z9 u0 C! }4 b% [' i9 X& T# q1 Bbegin P_mA_down arriving0 h. a; A9 P. z% U
while 1=1 do 7 M; x- M) \3 d
begin) O7 | c8 I. }3 n4 N
wait for e 110 min
3 T4 f9 L5 P0 F: V/ P5 \ w6 Y take down R_mA
# {# D; i( H. C# W, i4 a" H- A& T" L& { wait for e 5 min& O4 e6 w% a. d" |% A+ D
bring up R_mA0 E0 ?" Z. f& Q- Y4 ?+ Z1 f
end
8 I* D, p8 l) e, D# Q# _ Yend
5 K: B9 \) i, h6 l( S ! b' b+ Q. ~" E5 C, [3 n, P9 ]
begin P_mB_down arriving
; l/ H i. v) [) g7 J: H0 K! Q' [ while 1=1 do
' E; G/ v4 G2 i' `- ` begin
! J( T5 |+ [0 }# \( ]: f. \ wait for e 170 min
+ Y; |; s z' o' E N5 Z$ W take down R_mB
' i8 e4 O. u f2 f wait for e 10 min- H# ^' L5 q# Q; S8 m1 X
bring up R_mB& O) |! I& u6 A. y0 l& }8 N
end# m+ P0 h/ d0 ]1 c `; G1 W( N
end
+ w) G4 T* C1 G8 u: t. J( J 0 M2 C. d& a' K8 i+ k1 N
begin P_mC_down arriving
) h7 W: H1 @) k, ` while 1=1 do
! O# b: \% C* m2 R* C begin
: [. k. G4 b& I: @( [+ X wait for e 230 min
6 r4 u; G1 i. \1 q& Y% v take down R_mC' h0 V; t3 @# J2 } i" `7 V
wait for e 10 min
" \1 P L* N* Q2 y3 c4 v bring up R_mC @0 q8 c7 e" f8 g( k/ {
end5 u) Z, [- v+ a
end, R; U3 ~. ^8 e( _/ \+ V8 e
& D! A+ L, H5 `6 R2 C) m- Z0 U- I3 f! kbegin P_mA_clean arriving
& v" a; a" L# O/ D; }5 |5 N A# [ while 1=1 do
8 \9 f; Y0 y2 U/ ]" J) H2 s0 ^ begin
. L! f0 z) S3 `, D wait for 90 min7 Q% N$ \$ y; ]/ k+ {
take down R_mA
% j2 q3 g: G/ d, g. l wait for 5 min
3 k+ G+ w% Q+ e1 D' I9 |' u* g' y bring up R_mA
$ g+ j% z m. f( _ end
( L7 F# k% E, r, K! K: h" Oend
( t) K2 H+ I% L# r& ~
- @: O6 H& y0 |- R$ Lbegin P_mB_clean arriving
. C! c, I0 ^0 M2 ]5 A while 1=1 do
2 Z) f4 n9 }& {8 |7 J J5 P begin/ }& b( X: P% w8 ]
wait for 90 min
$ z$ ^7 z- S1 M; v2 A take down R_mB- u. q3 W: q5 P8 k: g! O
wait for 5 min
* v2 G, Q; d1 J- K3 z/ H bring up R_mB$ E0 j* j# c [" T1 Q
end Y& n4 K/ ` m
end$ T0 X' P2 v& q$ x4 {* ^* z
4 ]! M& J0 a3 L. ^) T
begin P_mC_clean arriving
a1 `# M6 S1 L while 1=1 do
* R( z8 B! Q- Q; W begin
7 C5 Q2 u. d) s# B! q wait for 90 min0 j+ e# b# y8 a- b6 M+ x* ]
take down R_mC
6 N$ g( C) m% z. ^3 o: h" I" F wait for 10 min
0 A% \1 v4 B& P* f" L ?* f; W bring up R_mC
+ `9 Y: k- i/ P! q) ]/ ? end- B" Y2 _- q; e$ B6 b
end9 T% K9 S0 A0 A: x8 f
----------------------------------------' s+ u+ W, m% w3 e7 E9 y$ f" P: x
3 V5 C' }7 s* o. Q1 F
Exercise 5.9
/ I# w' ]0 h# _4 _+ L2 H8 m' i/ @/ T/ o
. i7 J% G* i6 P" A o3 F, n3 }3 V- |. O5 J% B6 I. {
Create a new model to simulate the following system:
' `. ]% [% U' P0 CLoads are created with an interarrival time that is exponentially ! U0 u* B2 S+ ]& @1 }
distributed with a mean of 20 minutes. Loads wait in an infinite-
3 r% S8 b. O7 |& w. L! U! }capacity queue to be processed by one of three single-capacity,
/ r# {" T* ~8 l- Marrayed machines. Each machine has its own single-capacity queue
7 \+ U; W: X& B( J+ @/ \, P" Uwhere loads are processed. Waiting loads move into one of the three
+ G" K/ @5 z" c; w# S& `queues in round-robin order. Each machine has a normally
+ }; L9 G E- Y* _6 cdistributed processing time with a mean of 48 minutes and a standard 8 d+ O% i2 e$ W7 a1 N) D
deviation of 5 minutes.
- U, a4 m! G( M: u5 WThe three machines were purchased at different times and have
& P* D8 }3 F& U0 X5 G0 ?: q$ Sdifferent failure rates. The failure and repair times are exponentially 0 G; J! G& {8 [9 B j- V3 ? J. _
distributed with means as shown in the following table: ( v/ O: `7 P7 [- f
Note The solution for this assignment is required to complete
. d5 m: p) y) j* }exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ! e- W" G( J) E3 @
your model. / ^ V7 `; o# Y( g) @0 @
& Y* s" I0 g- |: b7 vMachineMean time to failMean time to repair3 A& @: s# Z3 u6 \' y# |
A110 minutes 5 minutes
# {: q8 e. y+ C2 xB 170 minutes 10 minutes3 `! R8 K* y& S$ R0 z& _/ K
C230 minutes 10 minutes
, G: m$ |" f) v! }1 r) \- ?- ?: U) G8 E( ^! C6 @
The machines also must be cleaned according to the following 6 T/ |# R4 h W. G1 p: p* |
schedule. All times are constant:
; H$ w$ c# a2 f" q
5 z% G4 G/ I, D5 w5 n B; ?. RMachineTime between cleanings Time to clean/ j" }2 I2 w1 E( p# h# ^% _& v
A90 minutes 5 minutes
2 `" D4 a2 ~( V) l4 Q2 DB 90 minutes 5 minutes
( `4 v k: X! O' f+ e& Q; B+ DC90 minutes 10 minutes/ Y! f! }$ [% k M
7 i/ G/ ?1 I) v0 v* l) t
Place the graphics for the queues and the resources. , S1 }) r7 O! M9 g6 \5 t1 G$ G- E. l
Run the simulation for 100 days.5 r+ `" E+ Z! P2 H4 M+ z. j) s% p% o
Define all failure and cleaning times using logic (rather than resource 4 v- j* P& x! g- L( E' f$ Y) e
cycles). Answer the following questions:
5 F1 t8 R% l$ d2 Aa.What was the average number of loads in the waiting queue?, i1 B3 l& u+ d M* E* u: ]' p4 [% l
b.What were the current and average number of loads in Space?
8 c" F% U9 {1 v' V' s2 BHow do you explain these values? % V$ F$ U# r7 G0 l: ]/ G. j$ t
|