请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现5 e8 _1 Y8 a2 J
globals' A9 c2 z/ h0 E) V3 ?7 ?
[
. C& t: e# G& x2 |$ {/ o max-grain
2 a! G# v# i" F% ~5 v. q* J: f2 Q* T0 |* z6 M3 w3 J& N
]
* b) x5 v! O/ O6 u5 Y: H# h5 ^! c5 v' z$ n5 b1 d5 z. q
patches-own) M# Q# K( {; R
[
. ^5 F7 B3 D' V+ M% K grain-here : ]5 {- s: r( ^
max-grain-here ) V- ?5 G+ K) ~8 k& D
]0 ?0 [' \9 m W8 ?) s8 _/ w
/ c4 i. E3 h) s0 g% B4 U2 I Z
turtles-own' k' @* q! C8 h0 S; F0 k2 _/ n7 Q3 Q8 h
[8 ~. v( x: j) ]
age 4 p+ k, Q; U! L6 z* M$ D0 Q# `
wealth
& v2 r g r/ O, T1 { life-expectancy * k" M) T7 D% `1 q9 s
metabolism
1 d5 B6 F$ F! t8 Q vision- u7 c, E S+ i% V+ f4 p' M. s4 a. \
inherited 4 W {2 ^5 O: @: r2 k3 W; W
]& K; B1 i' `# ]! T0 S0 Y
1 n' f) f0 o1 ~4 a- D7 m& H
z0 N' F$ W% }
to setup# Z( P) ~& D( I8 t; s
ca G: @1 O4 ]) {# B8 ~: X9 u O& C
set max-grain 50* N2 j4 [* x M' E6 |7 w. c
setup-patches
: m$ Q- Z3 k$ b$ |7 R# e setup-turtles2 ]! J; m& ^0 X0 N8 X; `, U6 V: Z
setup-plots" v e7 }* ?: T, H( |+ D& C
update-plots6 L" n7 b4 Q# h5 d! E& |
end$ f4 ^% D( l! h: H; ?8 s
to setup-patches* r0 z7 e9 U! x3 c
ask patches
4 ~4 Y3 C: B$ h8 _5 w9 [ [ set max-grain-here 0
4 g7 d J3 w) w if (random-float 100.0) <= percent-best-land( ~1 n0 q+ q2 w) Y. |# v
[ set max-grain-here max-grain3 ?. ^: ~2 S4 x( y. i$ D/ z
set grain-here max-grain-here ] ]6 f% u2 }' F* S' b& e% r
repeat 53 Q- l# ?4 |7 e: M
[ ask patches with [max-grain-here != 0]
6 K+ v x T5 ]% r [ set grain-here max-grain-here ]
- b9 B- \( q: V/ V0 p diffuse grain-here 0.5 ]
" h. `+ G: h- G# C p repeat 10
# M. _0 S5 V0 t [ diffuse grain-here 0.5]
8 A! I% l+ U- O1 \2 \" k3 j9 R+ x ask patches
9 A' o9 q( F3 ^0 x/ D2 T+ r [ set grain-here floor grain-here 4 B$ V+ Q: y: b0 N1 ^9 _( u p4 u& o
set max-grain-here grain-here $ w' N( ~7 _0 v
recolor-patch ]" E" a% B4 r3 N$ ?
end: \0 {0 B% w9 D9 Y+ k; z* K
to recolor-patch
& g3 j+ z1 R2 L! p0 ^5 l set pcolor scale-color sky grain-here 0 max-grain% b4 `* ]8 V9 M5 }, _( [0 N6 N) q( K
end
' ^5 k% Z/ ?9 B# h% A. r, r0 ~1 Kto setup-turtles
) P+ s! E" \8 T3 D3 j. L set-default-shape turtles "person"- j+ \6 M* E* t+ L5 G
crt num-people* z% W! _8 Y. z3 G+ ~* @0 X* N3 w
[ move-to one-of patches
* F% Q f& R1 _. i( R set size 1.5 8 _3 P/ h2 R2 L1 j
set-initial-turtle-vars-age
) @' h6 F! x5 V3 O' _ set-initial-turtle-vars-wealth
7 T: |- X b" j set age random life-expectancy ]! F8 P' A- u/ \& E1 g' r& b
recolor-turtles9 ?2 A% a# s1 k2 D' s9 U; s J
end
4 z; G2 j \1 ^: {& k# A# T2 c% M7 G9 c$ S, V" i$ m; R5 X7 N& o
to set-initial-turtle-vars-age3 `% c2 w; M( A: u* \7 h0 {* b
let max-wealth max [wealth] of turtles# N% J- s/ P0 R! K6 e/ K' b
0 x ^. X5 k4 c
ifelse (wealth <= max-wealth / 3)
- \/ `* b0 E8 G2 _ [ set color red
' |9 I% Z$ F, P. X5 @( Y- n7 D set age 0
8 |7 T& e* g; |# A" |, l face one-of neighbors4
* m0 Q6 V) z, j7 w( g set life-expectancy life-expectancy-min +5 p; j; r# I9 t/ M
random life-expectancy-max 8 [+ k3 O) j* c; |3 J3 \
set metabolism random 1 + metabolism-low
6 z" D" t( V* q- E1 b R set wealth metabolism + random 30 {( S4 z9 S6 w$ j/ s
set vision 1 + random max-vision6 E" G5 [& s% j! j' a
set wealth wealth + Wealth-inherited-low ]
( I% {! I: k1 y# P- v, t [ ifelse (wealth <= (max-wealth * 2 / 3))# p/ P$ i) e3 P2 t
[ set color yellow
7 m% z0 H" W# k' W/ }) d5 Q set age 0
* t2 G7 S) S2 Z) A2 B5 I face one-of neighbors4 / p% t3 k {) q1 ^8 L# T
set life-expectancy life-expectancy-min +' y7 C/ J/ t I! v) W4 @0 M
random life-expectancy-max + 1
5 I) X" i8 P2 i. A% l+ } set metabolism 1 + random metabolism-mid0 \( U1 D1 ^* f) C; { ?# e8 d1 a
set wealth metabolism + random 30
5 K% Y0 c- q, n `8 K set vision 3 + random max-vision; F1 |! W; z1 [( g
set wealth wealth + Wealth-inherited-mid]
8 r3 I. E8 e4 ]9 k) x( K; f( Z6 C [ set color green
/ E9 @9 H2 i0 {& d set age 0% W+ R9 T: [8 {
face one-of neighbors4
! W& B) X4 t- u" m set life-expectancy life-expectancy-min +
7 U _1 g% b/ T" R9 L2 W random life-expectancy-max + 2
9 e' K( s7 V" s% h set metabolism 2 + random metabolism-up
) f' L, P' z, N" [( t4 T set wealth metabolism + random 30. x+ f+ o! w# C/ q3 `
set vision 3 + random max-vision
e5 K' @1 s. S/ a! F set wealth wealth + Wealth-inherited-up ] ]
- H% [+ o0 {" f8 X: p+ r5 b+ x $ ~/ ^" S0 L( w9 m& b2 y& j* \3 h* [
end; i! H* ~1 T. r* \; F8 w& ]2 k6 Z
to set-initial-turtle-vars-wealth N% C3 `0 ~$ s( `) \$ z$ C
let max-wealth max [wealth] of turtles/ f7 h" a- q- m8 B$ y
set age 0- m T, U) U, i- W4 J) N9 R
face one-of neighbors4
% |: B" _$ W0 h( c, ~. E* W/ o( ^ set life-expectancy life-expectancy-min +
$ m! m* ^4 F. W9 z/ `) ^9 p0 I: Y1 l random life-expectancy-max
# T* C9 G; M" D% r8 q set metabolism 1 + random metabolism-up( `6 J1 z+ M3 d% y; p) ^2 f8 J
set wealth metabolism + random 30) x9 U8 d/ j) c9 g
set vision 1 + random max-vision 5 Y( |! f) z1 B7 |' T; p
end. L' _3 q6 R1 f( L2 D, j
to redistribution
* L# u6 v3 Q, P, k" I( @let max-wealth max [wealth] of turtles- k, X7 p* Z6 L% s, x Q6 q$ Z
let min-wealth min [wealth] of turtles
. a- x, w: z/ aif (wealth <= max-wealth / 3)1 t( d" W' l# A- v
[set wealth wealth + Low-income-protection ]6 }0 h9 G% k, P7 M
end0 e8 T3 q" x: u6 [
# H( b5 r! I$ \* c% t; a- N
to recolor-turtles6 v) w( G1 R" O X" k: o& @
let max-wealth max [wealth] of turtles
3 A+ }' x0 n! h6 D( H# [5 u E& K7 J1 B" N( t ask turtles( u6 z+ D7 Z( V# h) Q3 f- p4 e
[ ifelse (wealth <= max-wealth / 3)
0 T) ` g* G/ v+ K" z& H8 P) H [ set color red ]
1 `2 O; R/ k% X, E$ z7 T [ ifelse (wealth <= (max-wealth * 2 / 3))
: P% p/ r$ |% N+ H+ H [ set color yellow ]
M) w& x9 Q. ]& d! d" h [ set color green ] ] ]1 Z6 ~% a, m) U" I4 z2 k* v: h
ask turtles [ifelse show-wealth? `& |1 ^/ J& o
[ set label wealth ]
- M/ i. H- `+ X7 h2 p2 W" P! I [ set label "" ]]
J1 t3 T% J1 S) P2 Pend" l4 Z: \* i6 E, q
& K4 f! u4 Q) I, W$ }3 d5 A
to go! O/ P) o0 g0 g
ask turtles: C. ], p, e; }, N/ k: k, |
[ turn-towards-grain ] % [9 L- J5 m9 }0 ?
harvest! } c9 e1 S% P% {
ask turtles& w3 Z, s9 V: m9 [3 t
[ move-eat-age-die ]
2 v) P5 s+ W1 X* x8 J recolor-turtles- a I: a" N1 f* X! `1 v v; q+ F
if ticks mod grain-growth-interval = 02 @0 C: J) x5 [ C( T
[ ask patches [ grow-grain ] ]
( O ~8 h$ Q3 i+ }0 R: G2 U& H
: n* a9 X" S% r if ticks mod 11 = 0
9 }2 l; R9 j* u; v; E [ask turtles4 Q# d% _# v7 `% B3 Y. j$ r$ y
[ redistribution ]]& D3 D( [1 W9 ~# I8 }8 a
if ticks mod 5 = 0
( x0 f6 R# t) v9 \* c [ask turtles
; R# L* \0 E, k* p+ ]# |$ Q+ D; U [ visions ]]
; m7 y) }6 l! } tick" D& e& J) w3 g+ D/ \
update-plots$ c' Y( h1 g9 I; s) e
end
9 v7 W8 O! i8 h& S* j5 w9 lto visions
# `4 M; o& q% s" ?; v set vision vision + 1
* ~# P* K; Q' }/ w1 Z0 @$ Y/ N1 wend
' r, Y5 P) y& s0 }& \
2 q# h, C" u5 f5 |* P& I) \& D' e% X; V8 U- b) k/ k9 {" z
/ S% W; y$ K7 C$ j
to turn-towards-grain . |7 d! s$ o! q5 `, D
set heading 0, y g9 @; T, b% q
let best-direction 0
3 h8 ~- m( }! }; h, z/ M let best-amount grain-ahead
0 f9 b, F: @/ I+ E: {1 t& I set heading 90
) e# Z& L: j' E& I+ Y0 j# F6 x if (grain-ahead > best-amount)& g" H1 O3 ^4 W: b6 n# i/ T
[ set best-direction 90
, i4 A3 m. s) j set best-amount grain-ahead ]
9 N2 U6 {' v m/ G& } set heading 180! Q8 o; g" c; V8 Q3 r3 k$ |; y
if (grain-ahead > best-amount)
; \4 W! l, H% b! B7 O [ set best-direction 180
% R; Y/ b% U6 t, [2 l set best-amount grain-ahead ]4 P. H" j( A# N# u
set heading 270
8 C0 o8 x! n- L9 X! Y" d if (grain-ahead > best-amount): t$ B% P: W: s$ t1 j7 A
[ set best-direction 2700 K+ p9 @* S' ^& u( ^/ H
set best-amount grain-ahead ]- ^+ G, ]2 w8 w- I$ U- S0 L' n
set heading best-direction: D9 l- V/ G) v, q
end
# i; P1 ^$ _1 d" z% I5 K! P) b/ \% Y" @ n
6 s& Y1 o. M( {9 e5 h4 ?
to-report grain-ahead
% @9 }, s) P: _+ T% V7 @ let total 0
$ k5 [: h' b' O let how-far 19 _+ x- N" s( w
repeat vision
* W4 {4 a& _% |3 S' A6 A [ set total total + [grain-here] of patch-ahead how-far
3 x6 e6 [4 b8 p" y3 r! { set how-far how-far + 1 ]9 r: K& ], `, |) c
report total
/ n* s/ C& Y0 ]+ J: d( L; uend* `5 q- K6 t9 _" i
8 I- ~6 P1 _4 Ato grow-grain 1 H8 w0 X# h! W. k( v' J! K
if (grain-here < max-grain-here)
* d9 e1 U: {% j1 ]& q) r3 Y [ set grain-here grain-here + num-grain-grown" t+ C: z3 ?6 t |
if (grain-here > max-grain-here)
* A- m7 ^& e$ h: Q5 q1 V2 Y [ set grain-here max-grain-here ]
5 R' U. f. C% F( L5 X recolor-patch ]
1 j' f0 b8 c$ f& Eend
7 q5 d2 t: X O4 m* y1 Yto harvest# f; E4 Y8 d" V9 F1 T; ]- k
ask turtles7 D, {' W* }$ j: k# z
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]+ l6 \, D7 _! X7 r* P4 l8 s
ask turtles6 o4 G5 @3 k% D1 G
[ set grain-here 0
% X: I$ F# F: M recolor-patch ]
7 T* J5 S6 v- q- _$ U 5 J9 ^/ W! w, i7 Q
end
3 H% b) G, M* Q5 ^- U8 Y* g! S$ p$ f0 O/ R6 r( p9 q& P6 Z+ Z
to move-eat-age-die
" d* N0 X4 t; `8 p- T fd 1
& t8 J6 C' j( v* j, N( W0 F set wealth (wealth - metabolism)1 i. f8 N5 a3 B) b
set age (age + 1)" _" V; b! X# A
if (age >= life-expectancy)6 [# @6 Y$ m! S, M. X! a% X
[ set-initial-turtle-vars-age ]
# d4 D" p) ?7 [9 q% m if (wealth < 0)& n' w- M$ i0 s& Z& Z0 \' ] S
[ set-initial-turtle-vars-wealth ]
" k3 G, Q$ t3 D6 M: n7 ]: O a# v 7 _# j2 |3 Q) G
end
A. }/ |! z! k% C4 q1 {3 d' `3 s# T! s# R) B* p, ^/ W/ a/ j
/ Q7 H7 v$ U A) U( ato setup-plots5 P2 |- [: y4 o( O
set-current-plot "Class Plot"$ {" I4 B% j& u
set-plot-y-range 0 num-people+ Y( h2 H* e6 d6 J9 g' p8 }, N- J+ Y
set-current-plot "Class Histogram"" A6 |# E) s, [9 c2 }5 H3 l m# \9 ?
set-plot-y-range 0 num-people
; L4 U: w7 c( Mend. ^* _1 X v6 w! Z; P
8 W& W/ B! V& {" Ito update-plots- S. \0 p) y7 i( M, z& T/ ?
update-class-plot, P; X; K& T) l, g
update-class-histogram
( S1 ]1 @5 p+ Z( \" o update-lorenz-and-gini-plots. K4 c" i* I- q8 u! f0 O: o8 j3 y
end3 [4 H+ P( P1 z. V
4 b5 l {. \& D3 P6 f: C* r
to update-class-plot" f$ L: G; `9 d4 K
set-current-plot "Class Plot"
* Z3 w" m2 v" A) t set-current-plot-pen "low"
+ P/ U# Q! {2 ?' P* J/ X9 ^- s plot count turtles with [color = red]0 c% i9 K* r5 O. G
set-current-plot-pen "mid"3 i, N/ t, [0 Z! l
plot count turtles with [color = yellow]8 O9 @; r8 N! D. A2 h( o
set-current-plot-pen "up"
, L1 f3 |; K) i: d. ]6 p plot count turtles with [color = green]' \0 q; E) }! W) H9 C
end
' [3 j* W7 M% P$ Z
4 f& _' q& n% I3 uto update-class-histogram4 E+ ]2 f. v) V' @' z5 D
set-current-plot "Class Histogram"3 {$ D. Z0 A) L: G# w( V7 g
plot-pen-reset% A& p K2 l( {; E
set-plot-pen-color red
[& ^" B) J# k' Y9 _- A4 l plot count turtles with [color = red]
1 g" L+ |7 f- y5 [1 L set-plot-pen-color yellow1 b# H! |& h' X" Z% l
plot count turtles with [color = yellow]
+ |1 d( g! l/ p" R( Z S6 I9 \ set-plot-pen-color green
5 b9 q* J( {" I4 h1 V) I3 O F plot count turtles with [color = green]; _7 x$ Q' Y8 u; e5 T8 ?
end) m, Z$ O% @0 X1 P! P3 q
to update-lorenz-and-gini-plots
+ W7 q0 s# W' k set-current-plot "Lorenz Curve"
4 N) B- w, j( M' l, I9 J$ r clear-plot
0 {& j! `3 [- M/ g0 H7 V- W) v6 a( B$ I) R- s! |
set-current-plot-pen "equal"! q+ K8 V/ `, y; \/ `
plot 0
$ _- |2 j! U' f7 b' x plot 1004 Z8 ]# l& ]) O0 c- X4 d0 `
8 x/ `% l% v o$ r set-current-plot-pen "lorenz"
% M& w$ p4 f: H set-plot-pen-interval 100 / num-people- s8 N$ @) @2 |) }7 L$ r1 U
plot 0$ d6 D, F D ]4 E, C/ @: D/ B1 F
7 Q5 P, V- W* W6 f
let sorted-wealths sort [wealth] of turtles8 v8 ]4 Q Z$ J0 h7 ?
let total-wealth sum sorted-wealths0 i; M! [" [: H
let wealth-sum-so-far 0
' [! n# @; b: y% q0 X0 s let index 0
/ P/ @/ h2 ]( m) Z let gini-index-reserve 0
% c8 _9 n4 ~+ J
( R6 `& R8 C5 s* P( O: `" H repeat num-people [; D+ H- H: t2 m, Z
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
( `+ x$ z( h# g plot (wealth-sum-so-far / total-wealth) * 100( @+ I' T# t. |, H9 g
set index (index + 1)6 L. P6 N" E. v0 F2 }
set gini-index-reserve
8 p. L# v; a3 }; n- @ V2 I: t gini-index-reserve +: I" ^$ o# S A' W! B: b
(index / num-people) -8 M7 r3 i K$ c Z7 W2 b
(wealth-sum-so-far / total-wealth)
, `* U6 U _; p! |: ]7 c$ S ]! d6 C+ e& {: P9 D6 P
( K! {/ Q* T4 g$ Z/ h3 \. p set-current-plot "Gini-Index v. Time"
5 c4 E# R; p+ G F! F plot (gini-index-reserve / num-people) / area-of-equality-triangle" t) e m' O& E$ `; b0 {- C! S
end
0 u+ V) c5 C7 ^* rto-report area-of-equality-triangle% e! Y; w5 Z: @" d0 ?1 T
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
^* h* Y9 ]3 r: t& Eend |