本帖最后由 GJM 于 2009-12-5 21:43 编辑
1 e8 m9 ?( k3 f2 o( _; }1 S
v3 l/ _' v" \: ~. k) i* p3 L底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去" q+ F# Z4 K; O3 J4 {2 I5 s
' ^( R3 A9 X, c2 h2 o5 Z不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!. j! L6 u+ k! u! T. U0 N
, p' @2 {% ~$ p: N9 ~, _--------------------------------------------
2 v2 j: X3 b3 l, A$ Rbegin P_something arriving- Q6 o, _! J5 a5 I. ?/ j Y
move into Q_wait3 x1 L& F4 @% J" a( g. p1 B& h1 e1 Z
move into nextof(Q_mA,Q_mB,Q_mC)
5 h' s7 a2 O2 C6 n" N1 K5 r use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min' u# p. d8 T" @) q, P2 a, f h V
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)& K2 f# p! x; J# }
send to die
+ p' y, f; L% {2 k3 ^: f9 uend, w% _ \& f) m2 k8 R$ s& P
" v1 Z5 _2 R, W0 a# \
begin P_mA_down arriving
! @5 @1 n: I7 b p7 v" p while 1=1 do - ^- H0 T5 W/ c8 o2 N
begin
J! t4 ?/ U F: r wait for e 110 min0 n' ~4 c* y, I
take down R_mA
; F8 Q% Y' V' q: X8 z wait for e 5 min% {$ P8 P" v; {/ D6 |# w' Z
bring up R_mA g0 ~+ j$ z: e" u1 ~
end
: @4 {0 p7 }" N) E: rend
6 L8 \+ [& o4 G0 i; c ( T, `6 b0 H; c
begin P_mB_down arriving6 }6 Y+ A# }0 _% K. W
while 1=1 do- H( O$ B7 k; M c. H
begin- x, v2 z5 W, F% Q
wait for e 170 min/ m$ E1 k0 b' F: P. m/ E1 O, x
take down R_mB8 O2 G0 }: a2 q+ r! f- }$ A; |. g/ I
wait for e 10 min
! M. M8 R9 l2 y9 U& p! Z bring up R_mB
& F l! z$ C9 z7 w5 s$ z" t' ?) S end1 B+ s0 D+ d, I" e% g/ ^( F1 B
end; R. H: ~$ L3 u9 S
( b @7 {+ d$ G5 v
begin P_mC_down arriving
8 `! W+ E* ]5 C& Q( d6 N while 1=1 do * n1 o) |1 Q \$ F
begin
7 f' Q& E* ~& }* B wait for e 230 min# d( h+ E0 W$ b7 U3 Q
take down R_mC
M6 I1 y1 q6 Y0 o9 L wait for e 10 min' `: a6 Y8 F% z& u7 t4 y2 K S! n* w
bring up R_mC
3 U7 Z% |4 J4 o end" ~5 Q' n" s9 P2 r
end
3 h# t, H N, u, b' y, Y
* x) ?9 {, \/ m* y7 G! c& I( l* ~begin P_mA_clean arriving$ S- B( F- o$ m- i
while 1=1 do0 e$ I9 N3 [9 l9 B
begin: U8 E+ o# F3 p1 r
wait for 90 min
5 b0 w) {$ o$ T! J$ ^ take down R_mA0 L. w9 a r: e0 T2 K) ?1 k
wait for 5 min
# K4 x( c6 w$ B: [, d' e/ c' u" [ bring up R_mA, ]; s& x8 z& O6 s3 J$ P
end
3 M$ R3 }. J, U% w1 qend+ t! W3 L& W- k3 k, S/ j3 k
' L: x% N. ]) B: i/ xbegin P_mB_clean arriving- E8 \. K7 Y4 g& p
while 1=1 do. u6 f/ I2 p3 F2 B
begin) k+ w7 q" |: k- G' C& r; n
wait for 90 min8 M6 {" _2 P0 |3 ^. o6 W& I% _
take down R_mB
3 Z S* m0 k8 y0 G" P wait for 5 min5 J( @) A# J0 v* t1 V; k
bring up R_mB, S* r* R$ J1 b3 x0 o1 J: ~
end
) _' J! q4 W1 p7 {% ]end
! D% X' z) P$ a* Y 4 K( l" f4 B3 {" x; B0 E
begin P_mC_clean arriving! y5 e% N& @0 q6 E4 ~- V" V# h: @
while 1=1 do
- N M5 x5 g5 [- i begin2 v: v- k* n! S) S1 Y
wait for 90 min) {' B8 n$ y) z0 A: j; g% H! n
take down R_mC. P3 E+ d# y; K; M
wait for 10 min) \; Z1 h1 v. H0 s4 M
bring up R_mC$ [0 g' W. D2 G( N+ E' a
end9 U6 Y. l6 u- l8 T& x' I) y- G0 u
end
7 K# S4 I3 g/ \: x' |----------------------------------------+ d, z! q; d3 z( @) T/ ^
/ Q. l3 J1 s$ {9 F, }9 q$ bExercise 5.9
+ Q0 ~- a* Q( e& L/ j, B& K/ e" Y6 N" v6 w+ V& B9 E ^
4 t5 N% _6 @4 L/ D! ^0 ^0 MCreate a new model to simulate the following system:
9 |2 E4 A8 }. i# Z ]* ]" ]# W2 NLoads are created with an interarrival time that is exponentially
# [4 |/ i3 |. S8 S6 [9 Jdistributed with a mean of 20 minutes. Loads wait in an infinite-
! g5 P0 G+ N* f/ s Ocapacity queue to be processed by one of three single-capacity,
" S9 g' s5 j% |/ C9 q& K9 Uarrayed machines. Each machine has its own single-capacity queue 8 ~! w+ c2 | N. M
where loads are processed. Waiting loads move into one of the three
/ I2 D/ b' K3 jqueues in round-robin order. Each machine has a normally ; q0 P, o% o; P i: S% T8 \0 u
distributed processing time with a mean of 48 minutes and a standard 1 A, y" y$ ], _! X8 c
deviation of 5 minutes.! ^# d( K* K) [& I
The three machines were purchased at different times and have
# E+ y8 b0 `+ s3 [( V* Qdifferent failure rates. The failure and repair times are exponentially
& R3 T8 g2 q7 F( W6 I- gdistributed with means as shown in the following table: " U+ f+ P U" ^* d& [
Note The solution for this assignment is required to complete
- a- `) c& M7 T3 P# x' k& texercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
9 `/ p% F2 a& d* kyour model. 1 g: \5 ]: Y9 x) \% A) @2 P; g
' O w1 A8 D. l
MachineMean time to failMean time to repair& I9 [1 ]. k2 X/ R8 A E
A110 minutes 5 minutes
9 r+ K# d8 Y% g6 Q& H8 H& V1 UB 170 minutes 10 minutes6 t5 |* v3 @8 Y5 h% k# A" Z
C230 minutes 10 minutes& ^% M. j T" X7 m7 l% X% w4 T7 c
7 c5 }; T0 m. [7 vThe machines also must be cleaned according to the following M+ Q/ E( h: \. e( _. ~9 J
schedule. All times are constant: / n- j5 R2 h @) J/ m
6 K3 A, @$ \2 l$ z) s, |MachineTime between cleanings Time to clean
/ K% q, o o. O1 I& s. }* C6 pA90 minutes 5 minutes
6 y- ~! H5 A3 T9 o! b: a, s( DB 90 minutes 5 minutes
, f) C6 Q( F0 F4 t' y5 uC90 minutes 10 minutes
. A: C, ^4 _6 V% q$ u+ [# x. W- {! \# Z, v# C5 @: R
Place the graphics for the queues and the resources.
. b, [$ e o$ {Run the simulation for 100 days.
( ~& u. a \# EDefine all failure and cleaning times using logic (rather than resource
( `. ^/ {, J: b! ^0 ?cycles). Answer the following questions:
3 x$ o! H' h' k+ B0 M! I1 na.What was the average number of loads in the waiting queue?1 t4 x0 \ n0 R* _! K& C
b.What were the current and average number of loads in Space?
* A& e4 \' U( F* n8 e6 [# xHow do you explain these values?
9 [: Q5 p; ^& R% l |