本帖最后由 GJM 于 2009-12-5 21:43 编辑
/ d! T! b! ^- O. d0 {
$ `/ L8 R1 w5 ?底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
* d: c0 O1 I3 `' G4 t) j1 @
- g+ D0 P" `+ J0 s不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!2 h H4 }- g- K" h7 G0 Q
, t# D" s E! v3 f
--------------------------------------------! k* K& W, _( F( m1 z3 d" g+ L
begin P_something arriving' { _# e$ y" r4 a$ y9 R
move into Q_wait
1 n( S+ G: W$ R; Z move into nextof(Q_mA,Q_mB,Q_mC)( }( C/ |7 F+ q; C6 \" u. d$ l
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min9 k6 K& n: M- R; D) Q* J( u
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean); q- X- k2 W' C. A, `" K1 }3 y' X
send to die
+ m* |! D; X' i( K. M$ mend
$ U: V0 v; _1 C% ~, _
& ?! N! o8 h4 L1 M5 v# Fbegin P_mA_down arriving
[0 Y0 i- L7 n* \1 p7 \ while 1=1 do
5 x5 n0 F' \; j% C, ]" D begin
+ E, J! B' ?( H: d1 a wait for e 110 min* n) [6 l. j4 c0 [; ]. @
take down R_mA+ |* N. v6 r$ V2 e/ O/ s. u, `
wait for e 5 min6 z" W6 `9 U. b" ]
bring up R_mA- @: }6 T, M8 C: _) i4 n; l) H
end- u5 X2 G; y5 [+ Y. z: t
end
, D" N5 m" n3 q$ o/ x7 b% w 5 a4 M9 x8 C3 _3 P7 J, ]4 ]
begin P_mB_down arriving
0 j; o1 {( w/ s1 A0 D: p% {8 M% n while 1=1 do4 I0 o# c+ u9 B+ q' N
begin8 D& n8 q$ Q% P
wait for e 170 min
6 V' L) h, v$ h# y! I- X take down R_mB
' h7 W8 w" V- I; Q( c- ? wait for e 10 min; Z- L5 {; B. L- O
bring up R_mB2 r+ B# V0 {* V# G
end
8 o$ o& u* ]# m# uend8 b0 W7 J* S; a/ i, L5 D/ Q
- ]3 \, i: r6 G+ z! K, g7 @
begin P_mC_down arriving: o! c4 J3 |7 z. K. N
while 1=1 do - r) h" ^% Z. f0 T6 R0 t7 d
begin7 a# f, G# C- A2 c5 M" }7 i
wait for e 230 min
4 T$ I0 O6 c& o/ F0 W4 R take down R_mC8 ]2 w- Q+ v4 A
wait for e 10 min# }; [, p3 J6 I$ }1 R4 B, h1 c6 o
bring up R_mC
% S5 s; w2 J* K end) [3 @* n, l" v7 v
end0 }9 [9 K7 y3 G) O
( |: r* A% y6 F, ]2 ?! Dbegin P_mA_clean arriving
9 r7 E6 \; M# Z$ ?% k* ]1 d: B/ d while 1=1 do
$ N. u2 m7 Z$ ^, a/ J) j5 r% p" Y begin
5 O1 g E: }( w" i wait for 90 min1 y0 Y8 L. ^2 Y& g) G
take down R_mA1 {! W$ ~! P% {
wait for 5 min
& m, Y1 k% g: f7 p bring up R_mA* s" A: ]* u. f% [/ |3 [
end& X% A4 d4 d# b2 l1 z
end
8 }7 @( `4 ] Y
; `: O1 I. V1 l) q c" s# Mbegin P_mB_clean arriving
1 `4 G1 e) t, W' ]8 _ while 1=1 do" }' V4 |% v) N. k, K& p! T
begin8 r$ k, H( l4 ]. l% e
wait for 90 min/ W+ ? d) g/ W7 {" `+ U, M
take down R_mB; |! T# i* m0 h7 c" j
wait for 5 min* o7 h- J r( F0 U6 q
bring up R_mB/ F h5 `/ B# U4 g
end* |6 s5 f! S, X
end; {8 x1 Z; z+ F# v3 e. Y9 Y
. `+ K, B8 W1 R, X& a
begin P_mC_clean arriving1 G) s9 Z, r8 L+ G$ i' Y
while 1=1 do! G( }! t. x! P1 F9 ?( V4 ]( F
begin
3 z* z) p. e$ n) k5 Y4 r& D2 J wait for 90 min$ i# Y/ ^: s! S* J- c
take down R_mC1 n- V, a0 i- H. O. c: ?# ^
wait for 10 min
( E) _5 Z5 C* Z7 h) A/ a bring up R_mC
6 n8 K& {1 O/ h/ V end
" V' s' v3 r U. S: \; Nend
& \0 R G6 v) U# A7 }( R! N8 D, j----------------------------------------
: Z8 Y5 a# K8 p( c
4 o: |. @+ Y1 @8 ~+ k4 e5 TExercise 5.9
/ ~" ^3 Y5 P4 Y) f% j8 ?
/ h; E, E/ [) M7 M: S5 u* _9 o
& F, s" M- S; u( SCreate a new model to simulate the following system:
: x' H" f( Z* bLoads are created with an interarrival time that is exponentially
) _* W* c8 }2 Wdistributed with a mean of 20 minutes. Loads wait in an infinite-
% F- w% x1 f9 ?2 q, Q2 ocapacity queue to be processed by one of three single-capacity,
! g# T' A+ }) R( n: d& M8 Xarrayed machines. Each machine has its own single-capacity queue 5 D4 V$ Y' ]- ~% M6 W; n' o
where loads are processed. Waiting loads move into one of the three
7 v4 }5 Q; q* |' N# Squeues in round-robin order. Each machine has a normally
# a) P1 q2 s1 c# I$ ]# idistributed processing time with a mean of 48 minutes and a standard ! O: j h, s7 p% a$ p
deviation of 5 minutes.- b2 f& E! Y) U; a( r* r& c
The three machines were purchased at different times and have - f& V2 w1 U* d( H4 V
different failure rates. The failure and repair times are exponentially 2 j9 R# [" v6 O, o1 c
distributed with means as shown in the following table: " n2 z3 y- {0 {& V, E$ Q2 ]% a" N
Note The solution for this assignment is required to complete # v& \5 z3 x# p* P2 T) {
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of g% l. @: s! ^9 Q- r
your model.
5 s; b8 L& K3 t# z# h- |
& W7 R' I' e' y% D3 q% |MachineMean time to failMean time to repair
. G3 \, h) G, ~. C! ~A110 minutes 5 minutes: w9 M- g4 b7 m B
B 170 minutes 10 minutes% ^- z- H/ W* c" S
C230 minutes 10 minutes% W% N* E$ f. o; B1 r; q' L
6 E: e: b% l3 w' k( UThe machines also must be cleaned according to the following / { i5 J% \/ `8 E3 Q3 Q7 U
schedule. All times are constant:
% O2 o& k' Q' ]& ]. J \7 }, g% t# Z8 R z
MachineTime between cleanings Time to clean
( r) g1 X0 E" m3 P& IA90 minutes 5 minutes% ?# ~& j5 k1 y- S. O3 W2 h
B 90 minutes 5 minutes5 r% L5 ~( e4 m* }: _; _; |
C90 minutes 10 minutes
: r3 f7 a2 r1 o. v4 j. L
! J. v+ K. x5 j0 ^. Z( V( UPlace the graphics for the queues and the resources.
6 W, g; _: s* J7 S7 URun the simulation for 100 days.
) f! p% G8 W% W( q8 N5 x q# RDefine all failure and cleaning times using logic (rather than resource
}6 u5 q2 g8 E+ t/ Dcycles). Answer the following questions:- {# R' h2 v/ j0 v! k
a.What was the average number of loads in the waiting queue?
, p C- Z! g5 w* |+ Rb.What were the current and average number of loads in Space?
5 |3 A' c' I$ Y4 }# c9 `2 AHow do you explain these values? 1 l1 V. V% Z- i
|