本帖最后由 GJM 于 2009-12-5 21:43 编辑
+ T _+ U( O# m/ J3 y$ a2 \! j
- ?" S3 q' g# _( T( U底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
# f. ?+ h$ ?( E+ m$ h6 R C' s
& c+ y9 e" t) O+ O( @) E2 B不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!4 a4 F+ D3 s1 f- E E1 L+ e& Z
/ i/ C! ]3 c, p2 _% L& H--------------------------------------------( M, v% b% O9 X" T' y
begin P_something arriving
! l7 W8 d1 H8 c move into Q_wait; @; g! r: S. Z1 o! `# [5 p
move into nextof(Q_mA,Q_mB,Q_mC)
9 c3 b8 E( t7 P, j- J1 B use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
" E M9 _- V# q7 l; C) T! X7 A" k send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)' B# w/ X+ S% W- ]
send to die
( W0 x. V& I: O) z9 Jend6 Y& n, W' j, S$ ~! J( }' E$ a$ Z3 `
5 c4 o2 _7 {; z% nbegin P_mA_down arriving
9 V1 I% t* p* P; R. d6 \# p. J while 1=1 do
1 ` y2 Z# _5 t& H: _9 W7 x5 s begin
2 `0 ? C( r" j5 { wait for e 110 min y( P$ T( u: |6 E: G, D
take down R_mA8 }6 z, m' A. @4 {
wait for e 5 min
* H# }/ K, A8 o( ]& u/ D; o bring up R_mA
1 j/ D7 U4 ^& m end0 }+ ^* H1 k/ p, e' b+ A. d
end
2 v/ x4 w7 a4 {7 u/ f2 \& i9 ?. F ' C* s8 j+ n9 \3 x9 p4 S. e, W( s
begin P_mB_down arriving
$ ~" |& M4 R$ c. \" W' }3 a6 ?- N! n while 1=1 do
" d0 R4 e, U1 r+ Q, D3 l; A begin
* ^+ O6 h5 Q2 w4 S wait for e 170 min$ ~# H3 R! T. ^2 [: w( ]" b) U
take down R_mB
. \0 }0 P; I, _1 X: [! q$ L; F wait for e 10 min y5 \) X' s: k
bring up R_mB% e% Q% n) ?1 }
end! z' U, Z9 `3 S
end4 l" a3 T* ]' n& e* |# a& n
7 |3 M/ d5 ~1 B7 Bbegin P_mC_down arriving
2 D: {+ \$ @, X' E" U0 f2 W while 1=1 do
! k) o% i: Y5 K! \' d7 K begin
: ~" ^! m3 n( x6 F3 K! s9 J wait for e 230 min' y! F L3 o. r v& O- m( G) `$ [
take down R_mC
( |! [( Q- c1 `, {0 G* z' x3 [ wait for e 10 min
_! G5 }8 T8 T* I0 H- W+ ? bring up R_mC) r! a7 D% o, c3 J& X8 p
end
0 g: k/ m9 E2 f/ ~% Iend6 f5 Y% S8 M! w% s, R" L6 ~
: N5 D* a ~/ fbegin P_mA_clean arriving, a, {# J8 g2 j# O4 t
while 1=1 do; g N9 k' h" s( u Q
begin
# v( L- a# K9 | e* M wait for 90 min! W G8 M) z! S9 z8 w
take down R_mA! D+ E% ?- ]7 K/ W$ o$ `) {
wait for 5 min- v: M0 Y+ {& F9 i8 X( l, Z
bring up R_mA0 q1 @4 N0 u3 \" e/ F+ J
end+ E7 ]% J3 N* p% n
end. D9 p+ K& Q/ L' e5 R1 p
% A: j, M" t! `- Z7 n
begin P_mB_clean arriving$ G- s E, I& w
while 1=1 do7 s; X1 l( k! R; j& Q8 d7 o
begin* o6 I9 x" m$ t2 i3 P
wait for 90 min4 L& C$ u6 f6 e% q/ n
take down R_mB
4 S" s8 T, l5 r: T( e) Q6 f wait for 5 min
' F( S2 {4 V3 e$ \+ O bring up R_mB" s2 @9 _# K7 {$ g! C- g8 \
end
, p+ N3 J/ W6 v0 @4 U, qend* |& v/ X% k/ t- p! `) b0 f
: w& R- z2 N- i9 z0 d5 T2 \
begin P_mC_clean arriving
0 B3 e. l: s. q6 c9 m while 1=1 do# J. \/ n: b& c/ ~+ l
begin( m: }1 `% @' @0 D8 S* Q; C6 ?5 K
wait for 90 min
( ^. u+ h2 N3 ~; O0 L' I! i3 p take down R_mC
4 U+ A2 k6 M$ S7 m( M wait for 10 min3 H/ u8 i3 }" l/ p b3 g/ a" z
bring up R_mC5 F5 J, R+ V# }% o. ~3 T* \9 O
end, p" C9 X, K8 C% C! S
end
, x0 ~- H2 c1 ~* C+ w. O----------------------------------------- W3 Q( u* i @. `
6 D2 x* a [3 [& [' V3 K$ p
Exercise 5.9# b' o; @- m |) ?6 W
# F3 g% X, J9 f0 @1 [; a$ Z" U- T7 m& J' k
Create a new model to simulate the following system:
; Q1 d9 t0 d0 BLoads are created with an interarrival time that is exponentially " H. }) M- j! A
distributed with a mean of 20 minutes. Loads wait in an infinite-+ C/ z. i. [3 y+ t3 E2 S
capacity queue to be processed by one of three single-capacity, 7 t7 B8 T+ G y) t5 J
arrayed machines. Each machine has its own single-capacity queue ( |* j! B# ?3 }1 I' A# L6 F1 `( W
where loads are processed. Waiting loads move into one of the three + a3 }& l* S8 v* J+ P% Z* U
queues in round-robin order. Each machine has a normally
* z) e3 z& C$ cdistributed processing time with a mean of 48 minutes and a standard % U$ j; S+ ~& N0 ]
deviation of 5 minutes.3 a0 c2 l6 l) V+ i# r$ v
The three machines were purchased at different times and have ) @/ }) {% j' q# y5 F3 w
different failure rates. The failure and repair times are exponentially : {* j* T" X/ Z9 _% c: s5 c
distributed with means as shown in the following table:
$ m* S( Y! Q% O7 \( r8 ONote The solution for this assignment is required to complete
|0 M; o6 a0 q' A: |( g3 ^exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
% J9 J7 _$ j" C3 W' F/ ~your model.
# r r! Q0 c; _ |9 c9 w4 T' l9 M$ B. n( k) G
MachineMean time to failMean time to repair
. r7 d1 u% A: }, f% Q, HA110 minutes 5 minutes3 ?3 O1 \8 A* T, n6 _
B 170 minutes 10 minutes
, i3 E7 _! Z! h# v+ C- _7 ]C230 minutes 10 minutes
1 G) B' C; i, r9 q, P9 y6 v- o, q& g6 T, H0 o
The machines also must be cleaned according to the following
4 U! } P1 B$ g9 fschedule. All times are constant: ' i* J6 r# {" ?/ G
5 _) B" _ A7 z0 {; F! C, ^6 J
MachineTime between cleanings Time to clean
& i# [4 X) P7 {A90 minutes 5 minutes
. y/ d! t/ Y, c, E" TB 90 minutes 5 minutes
9 {5 ^% j2 s% t# sC90 minutes 10 minutes
' q5 k/ K5 e* r
' ?% \9 d; F! R, O- b7 _; ZPlace the graphics for the queues and the resources.
F9 `* A. A" E2 PRun the simulation for 100 days.
( v# n9 o" E' T: N! e- t" F2 j- V& xDefine all failure and cleaning times using logic (rather than resource
% |- P- \$ n* ]. H4 scycles). Answer the following questions:
' D. q/ T+ z. X9 Y- Ma.What was the average number of loads in the waiting queue?
3 h [7 F$ _9 vb.What were the current and average number of loads in Space? $ l; [ b1 j8 j
How do you explain these values?
. j. C: r- e1 |+ _$ M/ X |