请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
# Y- G6 t9 ^4 x. b+ C) Oglobals& j8 l1 B8 S5 o N1 C8 w
[7 C0 o9 b% z* J9 |8 b
max-grain
2 o9 I, h& j1 K, h7 P. ]8 v" u9 E0 M$ }; L, k# `
]. O8 ?( a! I/ Z: X5 Q
& {6 C! d7 Q# F* C! U8 _: H. w
patches-own
?" r0 y0 @ B: B0 ~ ~+ P7 ^[
! D0 F* J, S: a" m$ p' B grain-here
$ h7 t- q8 |# c/ v max-grain-here ) M+ r$ g# C! c. \ d# ?
]
! j- p7 X# ?" \* h# D! h, |2 Z: v( z9 b% g) Y+ `3 y
turtles-own* Q* Z8 { w; N$ I% }
[
# k# o0 V* S! `8 r5 C* v# f' m/ f2 G age & b+ `+ {1 d9 V0 F0 ]" x) {
wealth
! \5 R/ L* O; E$ ~+ W; g life-expectancy % W6 g2 e$ |9 r3 j2 n. K, _) C
metabolism
9 p( ]; {! ?" T' w vision3 D" V+ F" x9 a2 ]0 s/ N
inherited
3 f9 |; a1 h# o2 N/ i2 R; t: ?]1 ?# k4 F6 {7 i: D. @
- V R9 e* S* x' M( ~. Y+ U2 P1 E9 X( S
4 o* { r" g+ Dto setup
0 d' H9 P" A, [* m+ U+ J8 Y1 b ca# G" M3 `: P, u
set max-grain 503 w, ~% ~( X* \* o1 d
setup-patches" u/ q5 {+ P* `. a
setup-turtles/ o( q4 u! f8 ? S- d' D0 X! T
setup-plots
1 u1 x O8 w" l5 S- W update-plots
0 @4 r! ~% x0 G; r8 m/ K& bend& R/ I4 Y+ P, l
to setup-patches8 T' O, X# b* v7 r2 [/ t
ask patches
: h4 {) r" U. X _4 S [ set max-grain-here 0" b/ S8 f; j- \
if (random-float 100.0) <= percent-best-land9 V; y( s" G) B# Q( j$ H1 I& L
[ set max-grain-here max-grain$ h4 l3 V, b8 ]; G! W
set grain-here max-grain-here ] ]
' L. o) s7 P4 e repeat 5" p2 e" H/ n+ p& i
[ ask patches with [max-grain-here != 0]
2 G. t( d# ^0 X% H8 y2 _6 z8 J [ set grain-here max-grain-here ]
5 U! e u+ p- O- V5 X, k% b" M diffuse grain-here 0.5 ]
; i7 y, v0 X, b7 ?6 M! Z8 R; \' i repeat 104 Y4 N. s2 {& H0 v! {: r) C
[ diffuse grain-here 0.5] " W) |5 W! T" ~, S3 g7 j
ask patches
0 B4 b( H$ ]' l* [* d [ set grain-here floor grain-here
& L! w) T' T9 l# A' R set max-grain-here grain-here 6 ?. N; g$ Y1 j# o" T+ k
recolor-patch ]* W, @* K! f( f/ e* T& S/ h% c% J
end
: P9 n) C) O ^% D# W Kto recolor-patch ) m/ Q* J$ S6 o4 S" c
set pcolor scale-color sky grain-here 0 max-grain3 S8 h' I" r4 m2 M. r A4 j% t5 Q
end% S D$ `) F+ O" f4 R( `7 A
to setup-turtles+ ?! ~& B* P/ T' Y& Y) f/ H
set-default-shape turtles "person"6 z- ^" L' v9 m, Y/ _7 M& E
crt num-people+ _1 V Z+ y" S& E; }! T! L, E' [ h3 C
[ move-to one-of patches $ N; u. U$ I) U( P) K5 g6 W4 B
set size 1.5 ) V* P0 F/ y/ X4 H
set-initial-turtle-vars-age
' d" I3 D; r3 Z& R' g set-initial-turtle-vars-wealth; I' i" w$ c1 ^, d/ g9 n) K3 h
set age random life-expectancy ]5 z& t! ^8 L1 B1 x
recolor-turtles
0 y/ d/ m2 a, zend
% A' l1 P+ g# a4 H0 E6 Q4 d! @# b t. Q
to set-initial-turtle-vars-age
- f% R" _/ k6 N0 F/ k let max-wealth max [wealth] of turtles
, h' i- D' b! T% [- ~ ) D3 \% e( i* R' e
ifelse (wealth <= max-wealth / 3)
5 ?8 ] w7 |: v/ Y& A: b [ set color red
0 J, `, D1 {3 f8 d9 V set age 0
( s3 ]) R+ l1 ^+ `" d( P face one-of neighbors4
6 i0 G8 B$ i6 g5 ? set life-expectancy life-expectancy-min +1 G% O- c5 _- z3 S9 X
random life-expectancy-max 9 X/ ]7 |( d9 Q0 Y* u
set metabolism random 1 + metabolism-low2 S3 t' A3 A9 [' ^5 D
set wealth metabolism + random 30: |' K4 r1 z7 [/ z
set vision 1 + random max-vision
9 f" V( ^2 N2 {( K, s0 S5 q set wealth wealth + Wealth-inherited-low ]: d; ^, J0 h H* s
[ ifelse (wealth <= (max-wealth * 2 / 3))
& \! y3 R9 w1 A& I! U) z [ set color yellow
9 x# L' B0 }! \! ?, q* I set age 0( T2 Q% g+ p. j6 v
face one-of neighbors4
6 \4 p7 w) h$ R. Z4 o% h$ Q set life-expectancy life-expectancy-min +. `5 h! |+ |; D( w8 }5 b% r
random life-expectancy-max + 1
+ ?9 z4 v y" b, T" d* v9 t3 i set metabolism 1 + random metabolism-mid9 u1 U3 K5 ?! m0 k6 K6 `& X% V
set wealth metabolism + random 30( a; \1 v7 O+ J$ O; h1 r/ t9 k Q
set vision 3 + random max-vision$ ~3 r: R) [ b, I8 z( p9 U0 R
set wealth wealth + Wealth-inherited-mid]2 F. O, e* A; }! l4 x4 t$ i
[ set color green , I" S9 o k/ T8 w2 j. K
set age 02 E) e) d* U. o$ I4 ~
face one-of neighbors4
6 Y0 @+ Y6 \4 q- t9 r# T- _( G set life-expectancy life-expectancy-min +
- l, u6 \$ O1 E, {# l f random life-expectancy-max + 2
7 I3 Y9 P: l, J set metabolism 2 + random metabolism-up
; G, {$ x. a" ^. n. L3 f set wealth metabolism + random 30
+ w6 M* S8 q9 b. r/ I" P, c- m set vision 3 + random max-vision' A6 K2 P4 U+ Q8 o% N5 |4 y* J I
set wealth wealth + Wealth-inherited-up ] ]
% v8 V* p6 S5 F8 Z0 r8 W# T
6 |" B( Y; Y. \end
) b+ d9 b0 D" q. _# eto set-initial-turtle-vars-wealth* `! _& {* d4 M, ~5 Q
let max-wealth max [wealth] of turtles
# M4 E! X) D* O) {8 Y set age 0
" M5 F1 _" t o0 M face one-of neighbors4
' @# [ V4 P8 u v; g( X set life-expectancy life-expectancy-min +4 m% E" M) r$ }
random life-expectancy-max
/ c& ], R1 v+ d: t, T* I; L( Q set metabolism 1 + random metabolism-up9 j8 g0 v: i- g$ |5 E
set wealth metabolism + random 308 k1 o9 t: j7 L9 Z6 C: f
set vision 1 + random max-vision $ H3 ~; M3 B6 d: m4 L I/ H
end* |& V9 J4 n3 r8 k; F8 s* Z; w
to redistribution3 ]! Q' s$ f' t" O9 ]
let max-wealth max [wealth] of turtles
5 k: n" B# @% Y- i, [& G" F+ vlet min-wealth min [wealth] of turtles! g8 z) B: x$ G2 f$ i9 ^& {
if (wealth <= max-wealth / 3)
* m/ B9 ]$ \* `# ]) B- J% p- ?9 U [set wealth wealth + Low-income-protection ]
) x7 J/ L& v. O9 _, J5 z0 Cend$ a) M" p6 r; a9 f
; U4 a2 ?, y: u. i7 G& J& Xto recolor-turtles" _4 a5 z E# O% E! g+ m
let max-wealth max [wealth] of turtles
" y2 E$ t4 `" D+ F, P ask turtles0 K3 A$ d0 v2 [- D5 m( @
[ ifelse (wealth <= max-wealth / 3)6 B2 H( r. Y8 k) K5 }, p5 T
[ set color red ]9 [3 V- v5 |* w- n# h
[ ifelse (wealth <= (max-wealth * 2 / 3))5 O, t/ l. b# h9 l
[ set color yellow ]3 ?" u. B: C& H- N
[ set color green ] ] ]
8 C" {. ]5 {# |' R, B ask turtles [ifelse show-wealth?4 J. G4 z0 o ~4 N% }7 A) H1 c
[ set label wealth ]0 d$ U. d- o0 ]( o+ S& Z/ o: B& u
[ set label "" ]]
3 Z) l O* l+ C7 g d- Mend! ~. @8 R7 N7 x# S/ V; a' D
7 N) x9 b2 h& a. O0 M3 g
to go
8 n& d" q7 F: i% z' R. V7 C ask turtles
9 [: k3 X. k/ ]/ `. x2 Y [ turn-towards-grain ] : s. j( }3 i+ B' u) v- ` \" {- `
harvest
# C" }1 l6 h- f4 d6 Z ask turtles
& R( }$ |7 f1 R0 u" f7 g$ E [ move-eat-age-die ]
& F0 i: u( ]4 J recolor-turtles4 L- O. v6 _& f( b/ @5 @
if ticks mod grain-growth-interval = 00 w u' i% H6 z* N' |
[ ask patches [ grow-grain ] ]3 n7 e# m0 W" C3 i
+ _8 S* H! q p/ i! e' l: `* a( b, P if ticks mod 11 = 0
( J0 F2 N0 m1 I4 s8 } [ask turtles# H- Q9 ^0 J3 s
[ redistribution ]]
4 g) W8 S' g5 b, h+ J if ticks mod 5 = 01 R7 T/ a1 m5 V6 ?( Q, w* W
[ask turtles
* O& g: R! Z/ s5 F8 D& z! a' B [ visions ]]3 ~# ~& W# Q/ A. J% z+ D
tick
* m! ]5 W0 @5 e update-plots
# o! }9 N4 J/ n$ Aend& i/ R( O+ J( u- X
to visions
' s, n J9 A" v! e q3 A set vision vision + 1
9 W0 v, j& Z- e1 A& ~end. D; _0 I. e+ k. {; Q) U# q
9 u, L) z; C' o0 N2 S( D9 s
! b( c3 V) w+ |1 V
# I" h! |0 o" O$ C! bto turn-towards-grain
8 o0 M2 z/ _* @" K) Q3 O set heading 0
. U t8 X' R" U% v* h let best-direction 0
, H* ?1 m' M- n$ ^# i. x3 J let best-amount grain-ahead5 q* R6 l, ?' [- U6 K" W
set heading 907 ?0 M) W! [+ |3 M' b) \
if (grain-ahead > best-amount)
9 [3 `) `" r2 w7 F. ~. F: d- r [ set best-direction 90
' P+ z1 f5 h9 J! f0 I8 ] set best-amount grain-ahead ]
" {" L* @3 | K+ e/ { set heading 180
$ E% |: H4 M) V. z1 W0 C if (grain-ahead > best-amount)
+ { X, Z3 k* T: k [ set best-direction 180' s: j+ n6 K9 A+ w. a8 U) ~' p
set best-amount grain-ahead ]" N1 ]# W7 c; h
set heading 270
5 f2 [0 E( k( U( H/ U if (grain-ahead > best-amount)
" k' D% h( I2 |8 |, | [ set best-direction 270
! r* C; V' A2 y) m set best-amount grain-ahead ]
, M7 F- x, J* r% M0 M5 { set heading best-direction2 L4 S3 d4 b3 ?+ h7 H6 B
end
* w% N6 o' K* L+ ~0 S4 U# E7 R8 m& e
. E( {, d1 V$ s; \3 a. Uto-report grain-ahead " a8 L- n3 d$ r: E1 n7 g+ c
let total 0, q6 c8 `: q& e6 L/ b/ q" h1 z
let how-far 1* l( x! Z# v+ W/ I {& \- B
repeat vision
- W; |0 K4 Z4 { J [ set total total + [grain-here] of patch-ahead how-far$ W: m$ I3 E0 E
set how-far how-far + 1 ]
6 F8 |: C+ `2 Q8 F6 F( z6 i) c- S report total
, {% B# D% _& `0 N' Eend" w4 a9 T1 `0 N& H, W$ |
% @0 g5 k2 y8 o! t& c) j
to grow-grain ( \% H. X$ r1 }; l$ u; } J. t6 e1 n: s
if (grain-here < max-grain-here)& K" v2 [) x q% H9 Q
[ set grain-here grain-here + num-grain-grown
" ^/ |& _% w. C- q if (grain-here > max-grain-here) % W b. d" g) I1 ]. W% u3 ~$ p9 D: d
[ set grain-here max-grain-here ]+ j( o$ w- ^0 J. d/ j: f: B
recolor-patch ]; V9 n; ^' {3 R
end
. b2 H x% ?* N' J. Q8 G. ^) Wto harvest4 L% X$ N% h) F) q3 Z
ask turtles% H6 ~& p- Z" P& h) Z
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]. W8 N5 S6 [- g# {* j2 s, x# L8 k5 I$ i
ask turtles3 q/ i- w' Q7 w
[ set grain-here 0# l D1 w, w& e5 N
recolor-patch ]
) c) P. H% U( {# e
! e3 n. P; b- ^7 U- uend
. z( [" q n9 P
" Q: R3 J3 N" s) L4 Zto move-eat-age-die 8 G* J. O! y/ I+ l9 e+ K% ^
fd 1 V' {- \. i" l
set wealth (wealth - metabolism)
) x4 g9 Z* l& O D set age (age + 1)
$ t; @3 B0 g3 O5 J% {- k if (age >= life-expectancy)5 s2 \# F* |* d$ L- V
[ set-initial-turtle-vars-age ]
, W S9 `8 z6 w3 C if (wealth < 0)
O. b; i& k7 X( s: x, p [ set-initial-turtle-vars-wealth ]
' u" j! r8 f( T
+ J6 _/ v9 Q8 N6 w2 w8 ]5 tend/ P# ^' c; D/ m2 g+ U3 O
, g. j7 F; N# ], _2 Q; ~, `
. {8 Y# M, w, ~) E6 gto setup-plots n$ \! Z3 P) _1 L) _
set-current-plot "Class Plot"
8 I, N$ J, y$ A1 Z! i9 l) Z1 G$ \ set-plot-y-range 0 num-people
% ?5 A# K- E, x set-current-plot "Class Histogram"* P3 H% P' V+ o/ T x7 ]3 c
set-plot-y-range 0 num-people
1 b) h1 P( \; _4 R# ~end
* Y& F" w: o. X! \, C7 B( [. K- }- w3 @5 a) }$ c
to update-plots
# c4 r' b' J, t; O g6 v2 m7 C update-class-plot5 R& P' {0 z3 D! o+ N! Q) `- [
update-class-histogram
- }# r5 z8 u" |( Y7 z# |! f$ m update-lorenz-and-gini-plots6 `% A7 f& ?/ }; W
end
; u4 i" H' n9 {0 c: u/ e6 P0 m9 }
( K9 F! T- w$ D# Hto update-class-plot i6 Q+ Z' N' C! k+ O$ Z
set-current-plot "Class Plot" T+ d* T. b* \$ J ^$ k' m
set-current-plot-pen "low"
0 N, w7 v+ i. ]2 ]% X plot count turtles with [color = red]- M7 Y0 v9 w' e* |4 T
set-current-plot-pen "mid"
# A/ `7 X0 X* k1 N& l3 V plot count turtles with [color = yellow]
. c4 B$ B' A: | set-current-plot-pen "up"
1 }7 e" j+ ]+ i+ N' a plot count turtles with [color = green]) _) A4 @0 `2 J; I- c+ |% y ~
end8 ~& V' i2 R3 M
: \. j% [+ [( oto update-class-histogram
8 {3 b9 P, l( a6 l0 N set-current-plot "Class Histogram"% }4 ]' t; k+ R, w! z
plot-pen-reset0 O3 v8 L) F7 }: K: \
set-plot-pen-color red0 m' d* X- G1 g2 q
plot count turtles with [color = red]% A I- L7 d+ O3 n6 Z( t4 L( q
set-plot-pen-color yellow' }$ U9 ^4 h% V* u4 T% F$ N
plot count turtles with [color = yellow]0 Z9 J$ `, x) P$ H
set-plot-pen-color green1 m6 i- k/ W0 v* A3 J- V8 B7 n/ O
plot count turtles with [color = green]) c, m+ n7 F% r8 O8 W8 M! P
end8 d9 E2 f, {4 K/ _
to update-lorenz-and-gini-plots M9 i0 {) f) c! z$ n0 v) ]/ O, O. _
set-current-plot "Lorenz Curve"
4 r7 p5 I7 C% w! g7 _ clear-plot
" J* C/ \; H, u$ c! u
) G0 Y1 v" L8 B. a, v/ J+ Q$ z9 i set-current-plot-pen "equal"
: f- y; z9 f- I; O2 \; V( p l plot 0) Z6 m3 D0 H5 V- y7 F' r' q+ b
plot 100
" @& w$ u% M; T |/ f5 S. e
' z% A% S& o: \4 p$ t$ G set-current-plot-pen "lorenz"/ @, T+ M3 Y' ], b; a5 X
set-plot-pen-interval 100 / num-people2 G2 M# O9 Z! t5 V
plot 0
/ Q$ m( u) h& f1 p3 h
- \0 }9 a5 Y/ w S/ j* ` let sorted-wealths sort [wealth] of turtles! f9 k* v' ]' V F) H: P7 w
let total-wealth sum sorted-wealths4 s/ s- h! U5 i3 r
let wealth-sum-so-far 0
9 _! D" i% ^2 \/ ^( |7 d let index 0: @" r1 a: _, s8 K9 n K
let gini-index-reserve 0, g# X8 r [- q
0 ~# ~0 f' N* l1 u @. h repeat num-people [
2 k1 F' N C- Q F5 ]8 B: w+ g& | set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)1 h9 n4 x. x/ N
plot (wealth-sum-so-far / total-wealth) * 1007 C3 T) I4 o5 J! v" e4 K6 p
set index (index + 1)) N7 ~. v2 V2 T8 Y, U1 g" e
set gini-index-reserve
9 v& u5 R2 E: Y. t4 R4 c9 ~ gini-index-reserve +% I) O6 H6 D0 {0 c
(index / num-people) -0 c+ Q9 K j; Q- F
(wealth-sum-so-far / total-wealth)- k4 p, ~$ p" Z, }& Y
]
2 Z' G( T# }8 O2 L: h/ j
6 j% \! Q, \+ L, b0 ? set-current-plot "Gini-Index v. Time"! _5 Z( P5 T+ _$ P% f: X
plot (gini-index-reserve / num-people) / area-of-equality-triangle
7 d: X. O6 E [' y: xend
' h9 b% }3 D* J- Q5 gto-report area-of-equality-triangle" W" Y1 J% X0 e( j
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)- g; S0 J! q# G+ C1 [
end |