本帖最后由 GJM 于 2009-12-5 21:43 编辑 : W* I! B- ^- ^% z" |& v
6 x1 j% @) `5 `$ @* r2 T" [底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去! k8 {7 J) G) n# Y& d# ~' j
: B( q* z2 U& t( e4 J( {; A
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
3 x. r& ^% t' O Y& k6 E: F# K& o/ x2 W3 j$ Q
--------------------------------------------
k, X2 `! w+ @9 r5 d1 E1 kbegin P_something arriving& C- U3 x: f' K8 s \: t: L8 G
move into Q_wait
+ O8 j* `# r b move into nextof(Q_mA,Q_mB,Q_mC)
" [; K& ^9 k; t* b3 c% c use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
3 z4 o9 ~+ x& {% {# A# S5 V$ Z send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)3 e `( z2 [1 `5 `! i- W
send to die
7 M* L2 o. S+ x; O- G( H4 @" i! Eend+ F6 W3 v7 ]% T
! V! G% C6 x+ d9 d
begin P_mA_down arriving
~* C0 k6 |5 W5 C5 M% E while 1=1 do 2 N+ O3 j. Z4 g" _
begin1 O+ `) s2 X) ?% W1 P( g. ?
wait for e 110 min' B0 B' q" o% Q% U
take down R_mA* G5 I1 c# F. h; N& X9 e: p: z* Y4 h* ~
wait for e 5 min( k) e& j) i" s9 j3 L7 T5 |
bring up R_mA
% |3 e7 l* E0 j$ I end$ _# Z5 g+ n/ t/ ?; Q; O7 w, I
end
1 N$ J& q0 ?% y! }' Y
( D% v2 T( F% ]% M4 `/ d4 H$ m0 tbegin P_mB_down arriving$ \8 o8 Q; Q" N" i) R" E) Z1 `6 s8 O
while 1=1 do5 B d y I2 ~8 O4 A% Z7 [
begin) O& C+ _# f0 A; m c8 @" Y$ u
wait for e 170 min
- J4 N" q* A) U take down R_mB. d6 M; I1 {6 k/ a% t
wait for e 10 min
* `) X: ~1 r7 b bring up R_mB
% W! y7 K0 G, `2 ~# j& i' ~ end
- |1 c% Q& ^+ z n T- _end: a- r" b3 \1 f9 r1 s4 ]: v
5 r2 V1 A8 A9 i: `
begin P_mC_down arriving
, z/ k! Z5 M. [ }0 b+ c while 1=1 do
! V8 H( k8 y$ U' r0 r7 `9 |7 W begin# K( J$ F" N4 H0 {
wait for e 230 min# U4 d; E) d$ }5 D) K
take down R_mC
9 l: ^; i5 {9 I8 O wait for e 10 min
7 b( ~! N; b8 ?7 a I& R bring up R_mC
+ N9 I: C" n j& R end
; D( q' A+ i F% _. t& H# aend
5 n$ a2 z* k* c+ |+ R$ w8 } ( _! T% }7 q- P
begin P_mA_clean arriving& c8 z- j: u5 k6 o6 r
while 1=1 do
' I. D# N; b, y& p& H begin& Y. g- J' W/ U" ~3 q( r( A
wait for 90 min q. S0 I# L* I! t
take down R_mA
& M& B. c: y1 }/ E- j! m wait for 5 min
- \: w- `3 x" Q+ U bring up R_mA
: h5 w" M3 F+ D! \ l0 I end
/ V! G1 N! d1 q6 c8 v6 h+ t% |end
# _: x. X9 Q# P+ Z* g: b" h
4 X. K6 Y# ?* ^: J$ d8 \6 {/ ubegin P_mB_clean arriving/ q4 J5 U! k2 ]6 \
while 1=1 do, n9 @0 t* z! `6 L
begin
/ K- X3 @! W$ w5 G, J$ q wait for 90 min
+ ~, T: }1 T* w5 f take down R_mB
& @3 A; N& p" f" ]. W wait for 5 min
; n4 o; D3 l0 V" p! v) ~ bring up R_mB1 J, f$ F' ^: I( q
end
, c% y: J# u- H& n/ M% ]7 Dend' N; H' k1 p) F8 u3 }. t
9 N I& v8 w0 @" B$ pbegin P_mC_clean arriving# c! g/ W# Z& d
while 1=1 do# [8 b7 s/ z! \ @0 d# g/ {
begin
0 J# F) Y8 ^% b2 o wait for 90 min" o0 ?$ u. i( ?* h
take down R_mC
$ o1 I3 h2 L/ m% X! Q wait for 10 min
1 _! e+ R6 m$ a" ]% T4 Z bring up R_mC: n5 ~) F8 H2 g% t0 K
end
8 g* `* A ^$ h% |: Y, A9 Q- Jend
. t% U7 o g0 g8 c% p----------------------------------------9 S; m$ T# l9 r( S' D$ V6 V
8 u( j( }. {, E- lExercise 5.9
5 l' T3 S. y+ w& H# c Q$ p6 F
1 D; U: o3 w, Z) a
& K* z5 Z8 C: ~2 Q! ?Create a new model to simulate the following system:: g7 x, k7 f U) K# x1 X
Loads are created with an interarrival time that is exponentially . G t1 I0 C2 i& m" v
distributed with a mean of 20 minutes. Loads wait in an infinite-3 N" i" @$ _$ v- n2 d* a2 i/ s6 Q" J; D
capacity queue to be processed by one of three single-capacity, $ B! j1 a2 Y4 `4 |5 v5 |3 E& C
arrayed machines. Each machine has its own single-capacity queue
3 v7 S( O3 k) @4 `5 t/ a0 @0 owhere loads are processed. Waiting loads move into one of the three * d; v) |8 p7 q( S* t
queues in round-robin order. Each machine has a normally
! ?& x! H6 R( r" E: |1 |distributed processing time with a mean of 48 minutes and a standard
" V2 ?, V- A; d" i# U8 Udeviation of 5 minutes.
: m9 u' c% r3 z- G; sThe three machines were purchased at different times and have ) y9 J/ ~- g4 T$ d6 ~
different failure rates. The failure and repair times are exponentially : _8 Z$ N% ]% w; ]* m X
distributed with means as shown in the following table: * g8 U! X9 E( L8 `4 |6 H3 F' I
Note The solution for this assignment is required to complete
1 N% r! w3 v# hexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of + c# l' M2 h" p" F) k# _
your model. + C7 n1 k) O# J& ]8 ]0 x
: P* @; T, H* l: Z3 d) L
MachineMean time to failMean time to repair
k6 Y5 H$ f! n+ v! Q0 [ pA110 minutes 5 minutes4 t2 C0 }7 M3 M; _
B 170 minutes 10 minutes5 i( o5 y! A4 K( W4 @. y5 a
C230 minutes 10 minutes; w* z2 w3 l" m- T9 ~2 ^& o
- r/ [- G. R5 [' \5 g5 KThe machines also must be cleaned according to the following
4 P: V& T' @/ s, U) T k- i( d/ j; l- aschedule. All times are constant:
8 G7 F3 q' Z) B- _1 ]
" {& d% Z8 d/ q4 y2 q# q' AMachineTime between cleanings Time to clean$ x5 j7 k8 m, u7 v/ q' E
A90 minutes 5 minutes% |6 l. s# F+ X; {% b
B 90 minutes 5 minutes
( [ `% x: h8 pC90 minutes 10 minutes
( n: H) i' ~7 Z
- D- W1 I6 R: A' o3 o) @- K5 RPlace the graphics for the queues and the resources. ' ?% q! A0 R4 p5 ]0 D
Run the simulation for 100 days.
: g- ]. l5 I5 ] e' s) f5 G9 U, UDefine all failure and cleaning times using logic (rather than resource ^4 M/ `: _5 k) G. f
cycles). Answer the following questions:
, y V: B! x6 w/ U8 Va.What was the average number of loads in the waiting queue?0 {/ D( {! o2 a
b.What were the current and average number of loads in Space? 0 `* F0 o$ H& m: Z- u3 }& ~; S+ }; d
How do you explain these values? * n- O4 r7 ]5 Z4 g" O: e& T' |
|