本帖最后由 GJM 于 2009-12-5 21:43 编辑 ) C% E- @. @$ n4 t5 v* |0 X
( f; _, f' I0 J
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
7 P0 N+ I% R# i( s- @) I4 U6 c" R- w/ Z" ]; N
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
, Y6 m1 T% E4 B( U
1 B3 \1 H4 @1 A" {5 O! i. p--------------------------------------------; R2 y6 t q$ G! e h8 m
begin P_something arriving* O% v) E8 {% K8 Y S7 x3 I8 n. E
move into Q_wait5 [1 g4 L; E& }4 k9 m+ f7 [9 _
move into nextof(Q_mA,Q_mB,Q_mC)
4 U* n6 @( ^/ d& O! ~# r" x6 {9 s use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min) \* q; M3 I6 Z. v( Y0 |
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)* ?) l9 @1 ?6 d$ |& _
send to die6 Z% t. l" o6 N( E% c2 r( h% i% ~
end
; h# \/ l M3 ~# k! K* h+ [ " e/ g5 d, E2 E. ]9 k s
begin P_mA_down arriving
+ X3 L2 g$ |: v0 O S, H9 u! g3 b while 1=1 do
9 {( p8 y- }4 x k) m) F7 W begin2 _) z' q5 K& i( @, l$ q5 _
wait for e 110 min$ k2 |) q- V0 l9 D" ~& O6 W) p: j
take down R_mA/ u1 ]& P O' E+ m& s1 Z
wait for e 5 min* ?/ F/ o* w, f$ p
bring up R_mA
, ^& y; [$ c5 H3 n1 Y: | end
0 V9 O6 U$ g; c7 [end, l. T: |7 V" Q1 h* l E/ A+ g7 b
) k" d: y9 W/ O, a' ]$ H4 hbegin P_mB_down arriving
3 Z5 w* n5 e# g5 i/ ]. F3 z while 1=1 do
: F$ }7 U. n5 }( I D. X begin3 E5 ]9 {" J+ W
wait for e 170 min; l. z; ~, w# n4 g; V9 ?5 T$ i
take down R_mB
9 k' t" n. I- E* f. P6 o0 W wait for e 10 min
: e- d; Q2 \: h; \- U6 q5 I bring up R_mB0 V( G: Z/ S9 M, Q1 A; j
end
8 V! I0 V* Y4 |end
$ o' n: l# c' `7 W! Y
/ r `& C( ^, `" p0 |4 ^begin P_mC_down arriving) [8 B8 J/ i8 Q5 u Y
while 1=1 do
' p) ~. @. E3 U* T8 c begin
0 u3 H( Q( I" r7 f wait for e 230 min
& i y1 d) G9 F take down R_mC' p7 d* s- L/ Z. @, ^5 O" q9 J7 {" P
wait for e 10 min
& j- o6 R; n& C" }6 t bring up R_mC
, f3 P# X: k9 z$ | end
* S' ]( |7 t+ g$ a+ ~end% c% U% y3 C# \ s0 G1 t8 k6 h I
2 P D4 p1 T5 C1 U5 O
begin P_mA_clean arriving
# U. N; N& m! \( o, S while 1=1 do
8 L3 \( i8 Z/ o begin7 a$ H6 Y1 v: C# a. {" \
wait for 90 min2 b3 p, Z& T# r% ]* T
take down R_mA2 L7 `5 T% x; ~ Z- A
wait for 5 min# z* W Q* B+ ~7 k5 B z
bring up R_mA, L9 n% T) F8 ^/ P0 N5 e7 O& q* m
end* Z6 S. b/ \; n8 p+ Z3 ~2 Q
end
3 e j( i/ p$ k5 A4 I$ J
8 y# i* e- E/ k, T6 c tbegin P_mB_clean arriving
" O1 L1 K5 `/ E; V& { while 1=1 do
" L C3 C# s1 @8 Q6 u, d+ ^# L begin0 t, h% \+ S% Q4 d" U3 g
wait for 90 min
7 m2 J- L8 n% i" L$ w, d- [+ S take down R_mB. {8 f$ M- _ M: B
wait for 5 min
% P( `6 |% i. ]; l# u8 l bring up R_mB8 c$ a/ z5 ?) ^5 `; i
end
# Z' E9 f: n' v4 Y( m6 C1 m3 Kend
/ N9 g2 X! x1 T$ _) P+ | 2 t2 S% L+ d9 F2 G
begin P_mC_clean arriving
/ G0 ]# y, h3 U# J while 1=1 do' W* x4 i$ A o( C
begin
& W% ^/ \* s2 Y# c' [ wait for 90 min
, @/ u: r6 t/ r1 `3 X! o: F$ \4 K take down R_mC
) X. T6 [: x* w+ u- K7 \" t6 ? wait for 10 min
7 H8 y. G2 d8 _: I* A bring up R_mC
% T6 q' {& B. w end- u2 x" K; @6 Q: Q; q
end
" c" i/ l$ n+ s----------------------------------------, X6 H) E- O" g" v
5 S+ P# O: G/ x& `, pExercise 5.98 W7 @6 C9 K/ ?1 W0 }- W9 g
! z l6 K# U. r' `8 x: h' j, a! B+ d
9 a5 L! a5 _! `8 n) l. j; V
Create a new model to simulate the following system:
1 S6 x% ] ^% G! U4 U% X& w9 XLoads are created with an interarrival time that is exponentially
5 h/ Z. a0 I6 e+ d idistributed with a mean of 20 minutes. Loads wait in an infinite-
# i+ o! I& x$ `7 W8 p: j$ Jcapacity queue to be processed by one of three single-capacity, / {$ i1 N2 ~9 h6 h% D4 `( \/ G
arrayed machines. Each machine has its own single-capacity queue 6 X2 u. g3 j$ t: \
where loads are processed. Waiting loads move into one of the three 0 Z! E- X& ^4 I# `2 n; t
queues in round-robin order. Each machine has a normally
/ Y) D. j) X" h0 E1 q9 ?! S8 c$ ydistributed processing time with a mean of 48 minutes and a standard * u/ s; T! n9 Z' }1 B
deviation of 5 minutes.# i$ e- z$ x: N1 d2 U/ T# R
The three machines were purchased at different times and have 8 ^+ S4 @5 S* |0 s6 @, E1 ~6 q/ k1 I: ~
different failure rates. The failure and repair times are exponentially
6 i+ X# f0 \- T7 @* Udistributed with means as shown in the following table: ' R3 A: n( u1 u: s& U; ^* z& q
Note The solution for this assignment is required to complete % T4 J7 ^; K' I
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of & j$ l9 Q, v: ~
your model. % G( o1 S( a" o' u3 e8 |
$ A) p* R9 u3 U3 M2 P
MachineMean time to failMean time to repair7 D0 }) q1 s* G! H% b% \0 t
A110 minutes 5 minutes6 V2 [# l/ M- v: H, y: x+ k/ S
B 170 minutes 10 minutes
( f* r( Y! W) F/ E, cC230 minutes 10 minutes
8 g+ G3 B& x- k t: [) U/ j0 ]3 `$ m. e0 C; @5 [
The machines also must be cleaned according to the following $ \& z. Z2 \2 `; j. p
schedule. All times are constant: ( a# p9 L( N& T
$ L( K& o2 q6 G7 k7 `MachineTime between cleanings Time to clean7 a! {; U5 w P5 Q+ n
A90 minutes 5 minutes
9 t) F7 k. g/ C4 L9 P8 r XB 90 minutes 5 minutes. u' |& |4 ]0 F M; L Y- j; J
C90 minutes 10 minutes
' d- ^6 R" l+ l% o
: c! q0 m: y! C2 t$ R. y; K+ ^Place the graphics for the queues and the resources. 9 c+ j) ?7 P9 A- u& o, T. n, M
Run the simulation for 100 days.
* S- L# n. R$ M+ S' O. gDefine all failure and cleaning times using logic (rather than resource 6 K1 W; \# C! F" x) }* g
cycles). Answer the following questions:" h) A* z, V9 `
a.What was the average number of loads in the waiting queue?
, G8 T/ C. Y# x: t; s0 N6 K0 Pb.What were the current and average number of loads in Space? 5 I- [+ C7 t2 W6 y
How do you explain these values?
% r4 {, t' h& {; M3 m |