本帖最后由 GJM 于 2009-12-5 21:43 编辑
4 @# @- c6 i w) |7 g+ C# [% w7 B P$ T- ^8 L: }) u
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
+ s2 ?' S' w/ U6 T: D6 A, Z* O9 o3 ~
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
3 k8 l5 n J& a1 y- @' j! U/ {: h6 C% Q
--------------------------------------------
" ^' Q0 i- ]# B7 j5 G8 pbegin P_something arriving( e% |0 T4 H U( P N2 G9 e1 e
move into Q_wait3 m( K' @4 g4 V( A. m
move into nextof(Q_mA,Q_mB,Q_mC); M( A( |# V) A
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min, n+ [0 b: v: n- N
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
8 ?- |8 [5 R' N$ ~" | A5 o% n9 [2 B& Y send to die( {9 z& N& V( I+ h1 ~0 q7 {
end
6 {' N" {6 o2 L" |+ Q6 y # X6 v e" l7 e5 g, Q: h
begin P_mA_down arriving
' X5 o( u! h2 u while 1=1 do
; t8 F" n1 M5 t% M; Y4 \8 a begin
( f; ~' T, W/ c X1 G wait for e 110 min
" A2 `3 o/ q3 E; ?6 H take down R_mA2 H* c3 Q4 L6 Q, Y2 S
wait for e 5 min
1 L! z7 I' a: x; X& |# b1 d bring up R_mA+ T" u% ]" @7 B T, }
end9 E/ q$ P! J9 R1 K. s3 I4 [
end
& Z/ ^1 N4 _* Z& r- n2 m" @ 5 g2 r; N u: L! g" q
begin P_mB_down arriving
1 b) `, Z7 q/ E, G x while 1=1 do
* |' `6 ]* Y# D6 T begin* f( ^+ K/ J9 l5 L- G
wait for e 170 min
' [' m! D3 c3 y/ @5 n% m& E take down R_mB" |8 U6 }8 a9 L3 V' U W
wait for e 10 min
; N/ a' x8 A, [* _3 g& } bring up R_mB0 U- f6 \# w$ s F8 D+ i0 e
end; Y& M3 Y6 N# [. ^* ~5 f
end
$ _5 S' Y2 R, u! o
8 k+ [& t; ~+ |9 o: i) q4 vbegin P_mC_down arriving
" l; M) ~' B6 `8 D while 1=1 do 4 [, o2 [3 v! J( I
begin5 `7 Q, A" B' J2 k" @' p4 M7 D
wait for e 230 min; M! m2 B$ d2 {; f
take down R_mC
& g$ v! c0 b6 J. c# m, G: b wait for e 10 min
2 ]5 v7 D( l9 l9 O U% ^5 W bring up R_mC
3 e+ Q2 }1 e n) u8 g% i end
$ A A9 A" u/ i! ?" P7 |+ ~5 p |end% R. [$ j. o' p+ _% d2 s
: Q! Y! ^" y: c3 ?( f1 w
begin P_mA_clean arriving
* _* b) a' {( Z- u8 I+ g8 _2 ^' W while 1=1 do
5 U( n% E5 \" i6 @ begin
1 [: b. ]' ~4 P5 ]; e! w% p wait for 90 min
2 V/ e4 e, e" U( X take down R_mA" |3 L0 w! ?; r0 a2 z6 i; v
wait for 5 min8 Z$ b& ]1 k$ a8 W$ n( I0 N$ H
bring up R_mA& |( U2 F7 l' l: d$ v/ M# {; J
end
0 v6 b5 I$ U1 Z6 \end
2 L F4 ]# Q# n+ [, k- i 3 v: T/ D5 E" |9 t
begin P_mB_clean arriving
! u& t; y M7 ]2 p$ {7 ~ while 1=1 do9 A/ E; ~5 F- w
begin
6 U: ?- z7 o0 Q' `+ t- Q3 a1 d- g& r0 } wait for 90 min
- Z4 ~1 m& T5 C9 m$ O- r! q3 m take down R_mB
+ d& ~$ k: ]$ n wait for 5 min4 F0 X: P; O- u1 x/ e% s& e9 v* ]
bring up R_mB
2 C; h2 D. F* ] end
# I, _. [8 M' a/ Lend9 ~! l! q% \% W
5 Z( A, p7 |+ C0 g9 j2 O8 C
begin P_mC_clean arriving) L: R4 N0 f+ {1 W; R
while 1=1 do
; ]$ D/ v9 d# o* R% b begin
/ ?1 Z! h W: t* m6 @5 Z! {3 X; X wait for 90 min
* V. ~! d. ]: ~0 c& ?2 w) C ]1 Q take down R_mC
/ i4 T7 G) f* l4 k3 } wait for 10 min$ \) B# L3 p; L ~9 f0 k# o. f
bring up R_mC
: v& N& M! w8 g! J# ?2 R end9 E; }" H7 g n0 \9 g; P8 ?
end+ k3 `/ V; d* W/ E7 H+ _+ v
----------------------------------------
7 D" [0 H$ t; A" D6 d6 q; c 4 f! Z5 a+ d! G/ W- D5 f
Exercise 5.99 n5 h4 Q, Z" B& v
/ P+ k# _: X9 l% K' F' v* A, T$ _7 G( q1 k+ k& p. k
Create a new model to simulate the following system:
4 ~" U# V" y* ?0 z% |( ?0 B, aLoads are created with an interarrival time that is exponentially 9 K" X7 R8 `/ q: b; ~1 M n, d
distributed with a mean of 20 minutes. Loads wait in an infinite-
0 v- A6 s X$ [7 x; a' k7 {6 icapacity queue to be processed by one of three single-capacity, % `7 i6 K9 C% b2 t0 B( [: P
arrayed machines. Each machine has its own single-capacity queue
" m. @6 [5 S$ w) A. t7 c/ cwhere loads are processed. Waiting loads move into one of the three ; K0 \8 a) z. W8 e; J, g9 z
queues in round-robin order. Each machine has a normally 9 D; ]' a6 z1 D
distributed processing time with a mean of 48 minutes and a standard & Q2 y* z' v+ e* w! E
deviation of 5 minutes.! d6 M) D0 k+ w; j
The three machines were purchased at different times and have
* `# F, @- j/ r2 L- v1 m' k$ u9 rdifferent failure rates. The failure and repair times are exponentially
8 ~8 e# D$ `( A! }! \, adistributed with means as shown in the following table: ' @% b* L6 V) w/ P/ H/ \, V
Note The solution for this assignment is required to complete 2 q! g- z- W9 m
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of ; e) C3 X( i+ V; j! w$ ?$ q* s4 G; L, ^
your model. 9 U, B/ V2 ?/ S- G) _9 A8 f3 h9 ^
6 j0 T$ R* J0 kMachineMean time to failMean time to repair+ {/ d6 H5 A, t, ~# B! r9 O6 o, |
A110 minutes 5 minutes
/ Y( ? T$ K, f/ mB 170 minutes 10 minutes
6 l5 q3 T# q3 l) kC230 minutes 10 minutes9 b1 i0 S; K% |! Z
. J) ]2 f* `) w p6 a7 n
The machines also must be cleaned according to the following
: L. |4 @4 [# r; Bschedule. All times are constant:
/ o* U0 a5 k* Z. W E
! l8 G* P% f. u4 g5 X J$ FMachineTime between cleanings Time to clean) z' y3 r3 o. L, e) c' a
A90 minutes 5 minutes: d3 m+ U3 c& z/ v* K6 f
B 90 minutes 5 minutes
7 z0 i7 g% w% E( z! r. ^: A: i' B$ v9 v" ?C90 minutes 10 minutes
/ X2 Q; \* ?& d& D. M
6 `) Y' _9 F9 u* F \Place the graphics for the queues and the resources.
4 ?8 m$ A9 J/ _5 _) iRun the simulation for 100 days.
* S5 N ~9 f0 A9 q9 NDefine all failure and cleaning times using logic (rather than resource " U, U" V5 O% A
cycles). Answer the following questions:6 O, p9 @$ x4 v$ {
a.What was the average number of loads in the waiting queue?
! l2 H# T( o4 tb.What were the current and average number of loads in Space?
- a& t. ]5 V. @" r2 ]: BHow do you explain these values? 7 R9 {+ Z* H$ ?
|