请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现# [; X& c+ U; j1 D' l( [
globals
7 y3 B+ x+ c. G/ @[
1 H) v l" Z: [$ a& I max-grain 0 Y) F% ~+ L' ?9 v7 [' M, W
; S* v4 U* u( E$ c
]
1 U( R+ A- ]5 [) {
4 S; X' p- z. [ @/ xpatches-own; m, |& p, F' A$ Y
[
" M: s% x- x! P0 j grain-here
* Y) M2 J$ l- i3 S; y& m. E+ Z% g max-grain-here % E2 D- H$ R- h& l$ R- e+ T
]) Z! r7 s$ i9 Y4 g( l. W! j
! s1 d7 M* i$ e, w' s$ nturtles-own: a, M6 a, g/ ^9 p5 S# d" Q8 [
[
& k6 c7 z0 y1 M# q0 w( a8 X% H age ! d5 A1 X3 F; V# o/ C: Y
wealth
5 f/ J9 N2 v& d% T4 h life-expectancy
7 M: u6 g2 N( \! S metabolism
' j& S$ O. K* ? H5 a s6 _ vision
) n' t2 e ^! x9 q0 G8 a inherited
4 o/ n- B) G1 l]2 [+ ]4 u: L* H
$ M& U6 s4 J! U G9 U
P9 h' Z9 K# eto setup
% h) }4 g } r% w ca9 V, ^/ {# H# Y
set max-grain 50( L; L" y' s: q! c% w$ W
setup-patches5 [8 s- `. z# ^- h
setup-turtles
4 }8 j( I0 H6 \4 c' U setup-plots
# R/ f& @: g' k9 h e1 ` a update-plots. B) }* }3 ^ h- `- O
end
, q0 G9 u+ o; n+ q8 m; Jto setup-patches
% S3 R) ]$ h* F- e" k ask patches* z- V/ [: [/ s
[ set max-grain-here 08 k/ H. R u5 u4 R: w( T
if (random-float 100.0) <= percent-best-land/ `+ @3 ?4 o- X' H& G0 A
[ set max-grain-here max-grain
3 K# G# [0 W5 l) d" X' @- H! ^ set grain-here max-grain-here ] ]2 x/ ~2 \% [2 l% o5 G" d, f
repeat 5
7 R, N1 V, |4 m* ?4 q [ ask patches with [max-grain-here != 0]
2 m3 M3 q: W; M0 D8 K [ set grain-here max-grain-here ]
4 s$ X, y, Q3 `# c8 Q; v diffuse grain-here 0.5 ]6 g! g' C& f& m3 v7 l' K: Y
repeat 10
- b6 h( V/ Z% o2 G! u [ diffuse grain-here 0.5] 7 E5 ^* u# D, m- F
ask patches2 a& |& w1 [! g: j7 n! o
[ set grain-here floor grain-here
5 |( v3 f3 A- T; }) n/ B, ^% m set max-grain-here grain-here 6 i! E$ i. n4 T( d; I: O) @
recolor-patch ]
$ {5 h# \6 V6 Y# C; j" E4 h& j& q; eend. W! o1 Z( m0 M7 J$ K" {2 [5 P+ g3 Z& ]0 D
to recolor-patch
! O" L# @' h6 @' t set pcolor scale-color sky grain-here 0 max-grain
+ i( w( o" p* p3 aend: N, X$ Y. Q: k, q6 E+ V
to setup-turtles
1 x! ]3 a" M4 Z! P2 O8 T set-default-shape turtles "person": t0 I" f* g8 v5 a: |
crt num-people- J! Q6 _" ^' ^) v% h3 e( V7 ]8 N
[ move-to one-of patches . O0 V3 H! I8 p% l. a; D J: Q
set size 1.5 & c$ V8 T, G% D! Y8 D; ?9 m
set-initial-turtle-vars-age! K( I1 ~9 N4 {. J: N
set-initial-turtle-vars-wealth% h' R2 \- a2 T) E4 V4 ^+ N
set age random life-expectancy ]
+ @* O9 Q. s( ~) z recolor-turtles
" X- P R; r; {# o" f! [( |# `" aend
* m' |4 |; V* n. e, C
; B9 d" Z' w" P' f8 Xto set-initial-turtle-vars-age9 G9 ?; A1 H2 k4 b6 W) J3 l* M! l
let max-wealth max [wealth] of turtles& K' {. X) A8 _. O
" C1 Y9 ~6 g( z* y( M0 V% Z( ~ q
ifelse (wealth <= max-wealth / 3)2 W4 n9 D- _$ L/ X* o* A1 p
[ set color red
9 M" e1 v- ]9 P set age 0
3 D! \; b! p2 a1 n/ \" y face one-of neighbors4
9 f. i& W v7 b/ ?8 d' ~+ r. l set life-expectancy life-expectancy-min +& b, a0 j* A8 f8 W: U, x" z2 t
random life-expectancy-max
! P, ^( G$ S- g7 n p set metabolism random 1 + metabolism-low6 z9 p* _( {, d% Z* w, T
set wealth metabolism + random 30
f5 ]: A1 }4 Y2 M; { set vision 1 + random max-vision1 L" o: y2 Z) i# ?& @2 `5 [, V
set wealth wealth + Wealth-inherited-low ]
! D; ~% @8 D3 H6 i: } [ ifelse (wealth <= (max-wealth * 2 / 3)) R* X# x2 {9 a" R4 L
[ set color yellow 8 [" |' f6 R6 m
set age 0+ ]1 }6 Z1 s7 O5 T! O, u6 K7 M
face one-of neighbors4 8 e$ N& R {8 Z h+ B8 N$ U( k
set life-expectancy life-expectancy-min +# C0 b E% x. r( m6 S; n6 ~
random life-expectancy-max + 1: S: S1 E2 ~, d9 b$ {
set metabolism 1 + random metabolism-mid+ _7 K: e- A0 l+ m
set wealth metabolism + random 30
, w T( i( S$ l4 @7 H set vision 3 + random max-vision
, Z8 S, H T: X x3 e0 M# m5 f& k. V7 C set wealth wealth + Wealth-inherited-mid]% ]. }! L b6 L% i5 [
[ set color green
7 U( j1 z2 _* \) Z7 u* _* z set age 0+ \' V8 o' y8 s2 K+ V
face one-of neighbors4 g! d3 g! J1 x
set life-expectancy life-expectancy-min +5 l' D5 ^/ {( Z0 R
random life-expectancy-max + 2
( \$ G6 r. M* h8 j8 N set metabolism 2 + random metabolism-up
g6 ]% S. c, l0 [6 Q! J set wealth metabolism + random 303 |5 z- x; k+ N7 Y, o: i0 j
set vision 3 + random max-vision( Y! F" j" E* ]' ^6 C
set wealth wealth + Wealth-inherited-up ] ] : }1 ` G' R& T' }( n0 t
; x; `7 a6 ?( D4 C3 }4 I2 X
end
3 S: ~+ L! }$ I9 @! A0 qto set-initial-turtle-vars-wealth
# ^( v4 y a3 b- Q. F let max-wealth max [wealth] of turtles$ d: m. r' \- S7 @- P" Y
set age 09 I! B9 m3 Y n( R2 c/ w5 W
face one-of neighbors4 5 e- S! a! P% R4 w2 X/ E$ Q- P
set life-expectancy life-expectancy-min +
" n$ z2 x5 I1 a( B2 k random life-expectancy-max & j* Y7 b4 k- f8 o8 h! L
set metabolism 1 + random metabolism-up
4 m" P2 C& p- R* u0 a; I set wealth metabolism + random 30
/ J* B$ [9 i8 ?% \0 E/ q# G& W/ z set vision 1 + random max-vision
% Q1 e9 b* a& @ C9 F3 Vend
3 i3 v' A9 {) Uto redistribution
' u; `* E5 Y$ e4 llet max-wealth max [wealth] of turtles! v3 {* C0 U$ E0 ^) l7 Y
let min-wealth min [wealth] of turtles5 ~# E8 E/ O2 G" L; v, ?
if (wealth <= max-wealth / 3)" }) f- }1 _3 D2 n0 e) V8 V# w
[set wealth wealth + Low-income-protection ]7 c* Z4 N! p1 D* h
end5 |+ x6 v$ F" |9 f1 n; Y
/ P, ?) g* F+ @: K& o$ A
to recolor-turtles
% J, Q/ s4 v' Z! V" _ let max-wealth max [wealth] of turtles
$ ^6 V4 B$ o! ~" m o/ I ask turtles. G5 ?+ ]) h# i$ M5 H5 v" x: w9 S1 y
[ ifelse (wealth <= max-wealth / 3)
( r7 Q& r1 l8 C% I9 { [ set color red ]6 W! f9 I6 h9 {* ]
[ ifelse (wealth <= (max-wealth * 2 / 3))0 q z9 C- ~, \
[ set color yellow ]
; I1 k" [2 Y b* T3 @+ O+ [# ~ [ set color green ] ] ]: g0 `0 y4 K( ^ u1 j4 q
ask turtles [ifelse show-wealth?
* h; b9 L9 G$ Q; D/ w1 J [ set label wealth ]
1 t3 ?; K1 A2 E [ set label "" ]]) p, P! I( F/ e S! z
end9 X) L# d! J" D' r' \
* o/ G( _& H$ u1 F% uto go7 s$ t+ x) t+ n+ \5 W2 y
ask turtles* X1 s9 {# e5 b/ d5 I
[ turn-towards-grain ]
! w& |$ _) y* I) Q! B% ?" q& B4 k harvest
0 S5 X* i3 n! q h0 C ask turtles
n! S; J* `: P" @ [ move-eat-age-die ]5 @; v) M2 I" o; R( s; s
recolor-turtles
2 v9 W- U( L. ^ X8 I% ~# T; U3 d if ticks mod grain-growth-interval = 0
) K$ I4 Z: D6 _& F1 l [ ask patches [ grow-grain ] ]
' B2 Q' D8 S( j, C& x
( |* Y. F& v- q6 u; ^ if ticks mod 11 = 0 g5 y* k6 K h7 C
[ask turtles
; q# z' G# ~$ V8 t: m [ redistribution ]]% r# G1 s$ u5 L$ R
if ticks mod 5 = 0# @+ U: B7 K; S* C" m0 J! r
[ask turtles% d( H& U2 a" q0 H1 C
[ visions ]]
% J# f9 j* m/ N6 k* m# i9 g, C tick6 y$ S) N6 ~# k8 J4 f
update-plots
8 l! r- x) N7 n9 h; l* f. Z- x# @end
; B3 S4 i% G, _8 `# F3 Rto visions. }' S& b) y9 r5 h( X7 a
set vision vision + 1
1 L( P# w* M3 V0 }end- l3 e& i$ |, `/ z5 }% R: G
* t5 S) }) D R5 X; z
* u+ t {, Q j' ?5 F
+ f6 e2 H9 @3 Jto turn-towards-grain : O4 W0 ~; O; I: ?, }8 E3 f
set heading 0' H& b1 K% P- U
let best-direction 07 D/ O) d7 U5 }8 Z, \) D5 t
let best-amount grain-ahead
@9 f" y; X1 f6 ?( Y5 e set heading 90
7 b& S# t+ P* a' c' [ if (grain-ahead > best-amount)4 }! U% P, n. }* B3 W
[ set best-direction 905 r! b; D3 v9 d+ b" U3 i
set best-amount grain-ahead ]
0 Y" o, i9 `* k+ O: z set heading 180* f8 e& I* }+ D1 ^& b) B+ v
if (grain-ahead > best-amount)
; N2 n' w# y/ Q% y [ set best-direction 180
; z- p% `7 |5 Q- j8 S% n set best-amount grain-ahead ]
2 J' \) L8 w2 g. { set heading 270
. P v! j; m, }. b if (grain-ahead > best-amount)1 J9 X. F+ R% `1 N& P9 G/ S. Y
[ set best-direction 270( l8 [) {: M9 D8 C& m) E o
set best-amount grain-ahead ]! d) ^6 o. e, N, l- o+ f- [# \" T
set heading best-direction
4 C( @& C! J( y+ z1 h+ Aend# |4 m7 c8 i1 H5 P5 n) F, E: C$ U
# B! f7 C, J: J/ ~. @
& A6 \# o1 ~ @( s! m1 [( I3 oto-report grain-ahead
D! b! K7 ]3 N2 J0 { let total 0
+ I( V, P6 k5 [! K, A# B( J let how-far 1
. k' A3 D' z8 U; l! _ repeat vision; n* ~$ \8 g6 }' }* O$ W/ s0 _
[ set total total + [grain-here] of patch-ahead how-far: g6 n, U# d$ w
set how-far how-far + 1 ]
D6 R% @0 C A report total7 _& D4 J6 |+ Y0 m a% ]+ t
end
7 l" [! I, R! W1 Y- ^$ F
2 }% ]5 g& Z5 ~0 f: Rto grow-grain
- N+ p1 k/ e V if (grain-here < max-grain-here)
( u/ y6 c+ j! S+ N, Q; M5 b [ set grain-here grain-here + num-grain-grown) B9 s2 U+ o$ x- c1 L+ O4 J
if (grain-here > max-grain-here) ! D/ @. n% v4 U
[ set grain-here max-grain-here ]
8 f e: a3 S8 ]3 Z: Z, j- F recolor-patch ]
- [3 C/ w3 c* t# A" H3 pend
2 f, p5 H4 N8 i) A# ]5 F* Zto harvest. L6 Q* q) _9 V/ I* O
ask turtles
( \; s4 O# \% y/ M3 `$ U [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]1 M/ k8 A, U1 z# ?
ask turtles
5 |3 |0 b5 o7 i2 B' K [ set grain-here 0% \/ b* w2 p! U9 M9 s% P
recolor-patch ] a$ R2 C7 A% \* H& W! v4 C
1 E* j' q: l8 d
end
/ [9 I+ M7 H' W9 P* {
/ G; {1 q; [7 Z3 M; ato move-eat-age-die
! |6 E6 W. b* r+ ?. z2 v fd 1 O6 h+ j& U; o3 \0 j, B
set wealth (wealth - metabolism)5 K5 ^# Z; [* D/ Q5 a
set age (age + 1)
5 m; _# X; A t' P if (age >= life-expectancy)
) u5 C0 f7 [# N: r [ set-initial-turtle-vars-age ]
9 [1 R& |% l! r$ o1 o if (wealth < 0)
5 [: ~. B( X- \$ V [ set-initial-turtle-vars-wealth ]
. a, X" V% K: n$ d( o 9 D$ y7 A* N3 T* d& l% w. g- B
end4 ^( ~9 m H% s7 Y8 y6 T& U) O; t
2 Z: r3 g( g, Y* G( Z/ x; b4 o
# d- s# }9 c/ ]/ v9 o! @" xto setup-plots) a; \1 |+ N$ d$ p
set-current-plot "Class Plot"5 u* d6 U) W6 X$ r: k9 m% M
set-plot-y-range 0 num-people5 c8 f/ w w1 U* t7 w* p
set-current-plot "Class Histogram"
3 \, _. E8 a; F& ]4 u( z* ?* Z$ i. g set-plot-y-range 0 num-people
, Q( S! S# G- w7 I4 k! fend
9 p: W9 r f7 |' Q, [; Z
# ^. p4 v& l# ]5 G! k6 _' qto update-plots: d- E' K2 l. z; J* ]( Q3 r7 Q
update-class-plot
* a. N9 K3 q. O2 D* D- S3 s6 X update-class-histogram* z5 l+ i- i& t: P1 s+ v9 h4 t
update-lorenz-and-gini-plots
8 V0 V- l7 ^/ Y L i: pend
. Y/ z0 \; m8 w, x) l4 T3 _8 w% }3 X( V6 c" [8 N! h" Y. @
to update-class-plot
) X8 z8 G/ Q5 O: g set-current-plot "Class Plot"
6 \8 }: G2 C5 c/ v set-current-plot-pen "low". X# H8 [3 P- }' z0 k' T
plot count turtles with [color = red]; o6 h' n+ d" I% a: _% d" K
set-current-plot-pen "mid"7 p9 I4 |- Z# P" v. [& b# l% H7 X+ s/ o9 [
plot count turtles with [color = yellow]0 k6 ]# q a# _1 i& s- G4 @
set-current-plot-pen "up"
( e3 B) S5 m3 D plot count turtles with [color = green]
: d" {9 ?' c: u8 v& Iend
0 Y$ |( `7 c0 D0 W
; J% B: O4 J. w; [. t) Yto update-class-histogram: i% Q7 m6 l4 [ \* m% d( C
set-current-plot "Class Histogram"3 r/ i7 H, m' T+ Z, M. j
plot-pen-reset5 ~! L$ M4 g. j/ }+ \
set-plot-pen-color red
; q) t S2 W5 H4 o8 g. v plot count turtles with [color = red]
* I3 v3 a5 U' t* h set-plot-pen-color yellow
( C& l6 r# F. Y" x plot count turtles with [color = yellow]& _7 `+ _* h7 C! |, e
set-plot-pen-color green
% F- Z. c. U8 s% N plot count turtles with [color = green]
) Z3 N9 C' R& {4 g% c: fend
' j) l2 }9 ~6 B; i) eto update-lorenz-and-gini-plots
+ U2 T1 h9 L* G7 i m$ {7 k set-current-plot "Lorenz Curve"" L# B& t1 l* n) ~1 |
clear-plot- Y- D& {* V: d( l$ W! C2 H
) D; d$ a" C& A, V set-current-plot-pen "equal"4 x* j8 {3 X8 C# }7 Y9 [
plot 0
f' I4 B2 l/ g' _4 M plot 100
0 X2 Y0 D! D1 r# n# z2 q+ y0 T# `1 ?+ g9 l
set-current-plot-pen "lorenz"
' z& ^/ O! O$ W6 O# Y/ t set-plot-pen-interval 100 / num-people
& h0 v0 \ v5 G* {; u' I, }- O plot 0 `5 s3 K) |6 K& P+ K* v/ N$ w* g
/ w( Q* z! R9 L9 C7 [' B! y let sorted-wealths sort [wealth] of turtles0 t) D0 R4 |0 K7 [- @( |
let total-wealth sum sorted-wealths
# _ c1 n5 l% S let wealth-sum-so-far 0
' X0 [2 c* W6 {. m* ]# q, {( A" f let index 06 v. U) s4 V6 L/ G, ^" p Q
let gini-index-reserve 0
+ f0 [5 R( f7 m2 D% b" z5 \5 k! `3 C6 A2 M8 s- E
repeat num-people [ z5 Q+ Q' S+ c: U. n( t
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)" j- Y( L% }0 K8 F! ]
plot (wealth-sum-so-far / total-wealth) * 100
& {# J/ v+ B* M set index (index + 1)$ G" u0 |* E4 n& m, F& z* F. E1 ?7 k
set gini-index-reserve
) i8 U8 c: y- [% Y+ @ gini-index-reserve +9 w |3 O, Y% F' M* I& r
(index / num-people) -$ O1 y2 t% ^( }' {
(wealth-sum-so-far / total-wealth)) _' [4 ^$ b1 J/ x
]' g( s" I$ _6 w1 R
. Y% h' U: `$ X set-current-plot "Gini-Index v. Time"
5 P( d$ y7 k( k ~: \ plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 ]! K3 Y* o+ j; M mend2 m4 I. z- W7 ?! i
to-report area-of-equality-triangle* \! V1 E& q% F' `. ~! t
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)" x2 r1 N, S: ~! w) U( a4 F0 B
end |